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Sur une mesure d’approximation fondée sur les liaisons entre
la théorie d’optimisation et celle de 1’approximation
polynomiale

Résumé

Tl est bien connu qu’un bon moyen d’exprimer les problémes de combinatoire est
de les écrire comme des programmes linéaires en nombres entiers. Dans ce con-
texte, la théorie de 'approximation polynomiale de problemes NP-complets semble
incapable de cerner la nature des problémes qu’elle traite en ce sens qu’elle ne per-
met pas de gérer du point de vue de l'approximation les différentes formulations,
équivalentes au sens de 'optimisation, d’un méme probléme sous la forme de pro-
gramme linéaire. En fait, la facon de formuler un probléme influe considérablement,
comme nous le mettons en évidence, les résultats d’approximation que nous pouvons
obtenir. Nous discutons quelques anomalies de la théorie de 'approximation poly-
nomiale qui semble ignorer la notion d’équivalence du point de vue de 'optimisation
entre les formulations des problémes. Nous commencons par définir formellement
les notions de problémes d’optimisation NP-complet et d’équivalence entre de fels
problémes incluant notamment quelques équivalences intuitives (comme, par ex-
emple, la transformation d’un probléme en composant 'objectif par une fonction
affine) ou encore quelques équivalences évidentes entre problémes de maximisation
et de minimisation (comme par exemple I’équivalence entre entre la couverture min-
imum d’ensembles et le stable mazimum), qui ne sont pas respectées dans le cadre
de la théorie classique de approximation. Nous imposons comme principal axiome
devant étre vérifié par une mesure d’approximation le respect de cette équivalence
et montrons qu’une mesure de la forme d’une fonction des deux variables - la valeur
trouvée par Palgorithme - la valeur optimale - ne peut vérifier cet axiome. Nous
introduisons alors un nouveau rapport d’approximation, comme fonction de trois
variables, respectant cette notion d’équivalence et obtenu, sous le choix a priori
de ces variables, par une approche axiomatique. Cette mesure a, entre autres,
I’avantage d’uniformiser I’intervalle des valeurs possibles dans les cas de maximisa-
tion et de minimisation. Enfin, nous montrons quelques résultats d’approximation
en utilisant ce rapport.

mots-clés: optimisation combinatoire, probleme NP-complet, réduction polynomiale, approxi-

mation polynomiale



On an approximation measure founded on the links between
optimization and polynomial approximation theory

Abstract

It is commonly known that a convenient way to express combinatorial problems is
to describe them as integer linear programs. In this context, the theory of the poly-
nomial approximation of NP-complete problems seems to be inadequate to capture
the nature of the treated problems, as it is not able to capture in a global manner
the equivalence—with respect to their approximation—of all the ways of expressing
a given problem in terms of an integer program. In fact, as we show, the way a
combinatorial problem is expressed, influences the approximation results one can
obtain for it. We firstly define formally the notions of an optimization problem as
well as the one of equivalence among such problems. This equivalence includes more
particularly some intuitive equivalencies as the several ways of expressing an opti-
mization problem (for example, by translating or affining the objective function) or
yet some evident equivalencies between maximization and minimization problems
(for example, the equivalence between minimum vertex cover and maximum inde-
pendent set). We note here that the equivalencies mentioned before, are not covered
by the conventional approximation theory. We impose as principal axiom on the
approximaticn the respect of this equivalence and we prove that the approximation
ratio defined as a two-variable function cannot verify this axiom. We then adopt
a three-variable function as a new approximation ratio (already used by a number
of researchers), which is coherent to the equivalence and, under the choice of the
variables, the new ratio is introduced by an axiomatic approach. Finally, using the
new ratio, we prove approximation results for a number of combinatorial problems.

keywords: combinatorial optimisation, NP-complete problem, polynomial time approximation
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1 Introduction

Numerous researchers ([1,3,14]) working on the polynomial approximation of NP-com-
plete problems, have been led in introducing a new approximation measure that takes
into account the notion of the value of the worst solution (let us denoted this value by
§3(I); given an instance I of an optimization problem, the worst solution can be informally
defined as the worst value solution, among the feasible ones for I). According to these
researchers this new measure reflects better the structure of the problems treated. In fact,
their main objection against the usual measure was that this measure creates an artificial
dissymetry between minimization and maximization problems. Thus, in [20] has been
shown that the problem of finding approximately optimal clusters can be solved in linear
time under the maximization criterion (maximum cut) while it is P-complete under the
minimization criterion (minimum clustering). But this phenomenon is in contradiction
with the fact that these two problems are in fact “dual” and it occurs due to the non-
stability of the classical approximation measure under linear transformations. In [1],
a new measure has been proposed such that every p-approximation algorithm for the
maximum cut problem is also a p-approximate algorithm for the minimum clustering
problem (since in what follows we will not treat these two problems, we do not define
them; their definitions can be found in [10]).

This is one of the numerous problems arising when the ratio 5%%% (where A(I) and
OPT(I) are the values of the approximate and the optimal solution for an instance I of
an optimization problem) is adopted as measure of the quality of a heuristic for a NP-
complete problem.

Another problem, very well known to the community of the researchers working on the
polynomial approximability theory, is the one of the incompatibility (with respect to their
approximations) between vertex cover and independent set. Given a graph G = (V, E), a
vertex cover is a subset V' C V such that, for each edge uv € F, at least one of v and v
belongs to V' and the minimum vertex cover problem (VC) is to find a mintmum size vertex
cover; an independent set is a subset ¥V’ € V such that, for every pair (v;,v;) of vertices in
V', the edge v;v; does not belong to F, and the maximum independent set problem (IS)
is to find a maximum size independent set. These two problems are linked by a simple
relation, namely, given a graph, a vertex cover is the complement of an independent set
with respect to the vertex set of the graph. The inconvenience of the traditionally adopted
measure of the quality of an approximation algorithm is particularly apparent in the case
of these two problems which are trivially equivalent (from an optimization point of view),
in the sense that once the value of the solution of the former is given, a simple subtraction
provides the value of the solution of the latter. However, this equivalence is not reflected
on the approximation performance of the algorithms solving these two problems. For
example, the maximal matching algorithm ([10,15]) is a 2-approximation algorithm for
VC, while for IS, the approximation ratio of the same algorithm tends to infinity when
the size of the instance also tends to infinity. Moreover, in [2] is shown that there is no
constant-ratio approximation algorithm for IS unless P = NP.

However, in all the works cited above, the use of a measure taking into account the value
of the worst solution was neither in the core of the problem treated, nor justified by itself,



except to the fact that it establishes a symmetry between minimization-maximization.
On the other hand, we have to remark that the currently used ratio OJ}&TL()I—) is also a priori
selected, without any discussion or even “debate” on the properties such that a measure
has to satisfy. But, the results obtained in polynomial approximation theory depend so
largely on the adopted measure, that a debate on the choice of an approximation function
seems to be very important. Thus, in the first part of this paper, we propose to “open”
such a “debate” and to elaborate a formal answer. Proposition 1 for example, tries to
justify the use of a third variable for the approximation function. Next, the use of the value
of the worst solution (we will use the term worst value from now on) is motivated and,
once the choice of variables has been performed, the form of this measure, that coincides
with the one proposed originally in [1] and revisited in [14,3], appears as consequence of
the axiom imposed on an approximation measure,

Up to now, this approximation function is only very punctually used for the evaluation of
approximation algorithms, without its adoption to have a more general character. Only
in {3] the authors use it in a systematic way, but only to study approximation preserving
reductions and not to evaluate algorithms. So, in the second part of this paper and
also in [7] we propose a systematic approach of the approximation theory using the new
approximation ratio and we prove a variety of positive, negative and conditional results,
also including in the latter approximation preserving reductions.

The starting point of this work consists in focusing on the main inconveniences of the
current approximation measure. Its principal inconvenience is that it is not compatible
with the optimization theory, the dissymetry between minimization and maximization
being one of the multiple facets of this incompatibility. These remarks will lead us to the
definition of a notion of equivalence between optimization problems that encompasses, for
example, the links between maximum cut and minimum clustering or between VC and
IS. This equivalence will motivate the choice of the principal axiom for the measure.

An optimization problem Hl,ﬂ can be written as:

o= opt f1,0(5)
mES(I]_,o)

where S(I;p) is the set of the feasible solutions of the instance I; o and the operator
opt € {min, max}.
For all pairs (A, u) € IR™ x IR, the problem:

My.= opt Afro(z)+p
..";‘GS(I]_I())

where I o is always any instance of Il o, is equivalent to II; o (in the sense that IT; o and
IT,,,, have the same set of optimal solutions.

The transformation from IT; o to II, , is so natural that we can consider all problems II, ,,,
(A, ¢) € R™ x IR as equivalent versions of the same problem II.

Given an approximation algorithm .4 that solves (approximately) a NP-complete problem
II, a usual measure of its approximation performance is the approximation ratio of A

defined as Ra(Li0) = ppeils, where OPT(lyo) is the value of Il and A(I1o) is the

value of the solution found by algorithm .4 when applied to the instance I g.
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Of course, given an instance [, of Il ,, OPT(1),) = AOPT(l; ) + p, the value of the

solution provided by A becomes AA(I1p) + 1, and consequently, the approximation ratio

of A for the new (equivalent) problem is now defined as R4(I,,) = m’\%&%ﬁ%.

Obviously, from a mathematical point of view, the two ratios R4(I,,) and R4(l ) are
equally interesting and natural (the example of IS and VC is meaningful here). The same
remark occurs for both alternatives we use to express the problem II. We show below
that the choice of A and p affects considerably the approximation results one can obtain.

For a given problem Ily o, we suppose that A(l1) and OPT (1) are functions of the size
of the problem which are bounded when the size is bounded. Obviously, all the known
algorithms verify this hypothesis.

We have then, for I o of size less than n, lim,. O]A,;(II‘;?:;L = 1. Therefore, for a u
sufficiently big, it holds that VIl 0, VK € IV,Ve, VA, Jp such that R4(fy,} <1+ ¢for all
I, of size less than K.

For the problems admitting an algorithm which approximates their optimal solutions
within a constant p, we can obtain a stronger result by treating A and p as universal
constants (not depending on the instance).

Let the problem II, o and the algorithm A4 be such that VI, 4 E)'%% < p for a fixed con-
stant p. Then for every ¢, there exists A, . such that, for all IH1,0= 1 S Rall ) <1l+e

ApOPT(In, )+ .
In fact, Ra(l),) < ;EPT(J)TJ = p—(p = Vsoprieays = o — FOPT(Ly)). With-

out loss of generality, let us suppose that Il; o is a minimization problem, thus p > 1,
R4(I,,) =2 1. Then f(OPT(11,)) is a decreasing function of OPT(1;4) whenever y <0
(for a maximization problem, we would have taken p > 0).

Let ¢ = 1}}1{1}1 OPT(hLy), o € IN*. Then, for all I,,, (\,p) € R™ x R, we have

Ra(ly,) < ;;—— (p = 1)5t. Note that if o =0, Ra(/5,) =1 for all I, ,, p # 0.

Hence lim,,_,, p— (p — 1)/\—;_”1_—” = 1* and consequently, by choosing y arbitrarily small, we
get 1 S RA(L,) S 1+e

Therefore, algorithms as for example the one of maximal matching for vertex cover, can
have approximation ratios arbitrarily close to 1 if we make a judicious choice of A and p.
Hence, given a problem II and all equivalent forms II, ,, the choice of A and g in the
objective function influences considerably the value of the approximation ratio of an al-
gorithm supposed to solve Il (and also all II ). This inconvenience seems to us quite
embarrassing, as it isolates complexity theory from combinatorial optimization theory,
both theories been complementary for almost all researchers.

For the stability of any approximation measure with respect to II, o and II, ,, we prove

the following.

Proposition 1. Let IT be an NP-complete problem and let ITy ,, (A, p) € R™ x R be
the versions of 1l arising from e strictly increasing affine transformation of its objective
function. Let also K be an epproximation measure of an approzimation algorithm for
Il and let Ry, Rio be its values for 11y ,, 1110, respectively. Then, the measure R for
which Ry, = Ri0, Y(A, p) € IRT™ x IR holds, cannot be expressed as a 2-variable function
R(A(I),OPT(I)).



Proof: Indeed, such a function should satisfy the following property:
V(z,y) € B, Y(\,p) € B™* x R: R(Az+u, Ay +p) = R(z,y).

If we denote by &, the set {(Az + g, Ay + ) : (A, ¢) € IRY* x IR}, we have obviously:

z=y = &Ey={z=y} (i)
>y => &,={z>y} (if)
r<y = &Eu,={z<y} (iii)

In fact, &4 = ,\lSJo{(Am +pu,  y+p)p € R} = ,\L>Jo D, where D, denotes the straight line
parallel to {z = y}, passing through the point (Az, Ay). &, appears to be the set of the
translations of the straight line £ = y with vectors & - (Z) k> 0.

In case (i), these vectors are all to the direction of D); in cases (ii) and (iii), the vectors
of translations are not to the direction of D), thus in both cases, £;, is a half-plane.
Consequently, R should be constant in all the three sets {z = y}, {z > ¥}, {z < y}.
Such an approximation ratio would just detect if A(1) = OPT(I), A(I) > OPT(I), or
A(I} < OPT(I), respectively, and nothing more. But such a ratio does not give any
meaningful information at all. I

Another problem someone could mention here, is that the traditional definition of the
approximation ratio gives too little information on the real quality of an approximation
algorithm, In fact, let us take the case of an algorithm solving approximately problem II
within a constant error. Most of the known algorithms which they have this nice property
are greedy algorithms that, in many cases, provide the worst value feasible solution. The
maximal matching algorithm for VC is such an algorithm. We think that those algorithms,
even if they are considered as efficient, are not outstanding. Their “good” behaviour is
rather due to some “nice” properties of the optimal solution than to an efficient conception
(and operation) of the algorithm itself. Always in the case of VC, it is commonly known
that almost every graph admits a perfect matching ([5]) and also that, in every graph,
the covering number is greater or equal to the cardinality of a maximum matching ([4]).
Thus, in many cases, a solution containing all the vertices of the graph has cardinality
not greater than twice the cardinality of the optimal one. On the other hand, one can
remark that almost every graph has maximum independent set size O(logn) ([5]) and
thus a VC solution of cardinality equal to the order of the graph has approximation ratio
asymptotically equal to one. But isn’t it a default of the usual measure the fact that we
cannot affirm this result at least for large classes of VC instances?

It seems to us that hoping to optimize (minimize or maximize) a solution is synonymous
to trying to find a solution as far as possible from the worst value one and therefore the
approximation ratio in use is not the best measure for this taking away.

All the previous reasons make us to consider that the conciliation of the quality measure
someone uses to estimate the approximation performance of an algorithm and the intuitive
ideas on the equivalence between optimization problems is an important problem.

In the following, we define the problems treated by the approximation theory, which are
the optimization versions of the decision problems defined formally in [10]. We define a
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notion of equivalence between such problems, equivalence that respects some commonly
accepted (from an optimization point of view) affinities between some problems, like
instance the vertex covering and the independent set. Finally, the formalization of our
notion of equivalence, allows us to propose a new approximation measure which follows
this equivalence.

The present version of the paper is the detailed version of [6].

2 A notion of equivalence and some of its impacts

Usually, a problem is formally defined in a decision version, i.e. in terms of a question
about the existence of a solution satisfying some required constraints. An instance of a
problem can be defined either by the specification of particilar values of problem param-
eters, or by the specification of the question itself (by attributing particular values to the
parameters of the constraints). In this paper, we adopt this second approach.

But there exist problems consisting in finding either a solution (if such solution exists,
as for example in the case of satisfiability or of Hamiltonicity), or the best (minimum
or maximum) value solution between the existing ones; these last problems also admit a
decision version. )

Commonly, the theory of the approximation of NP-complete problems focuses on “op-
timization problems” in the sense that we need to attribute to each solution a value
characterizing the quality of this solution; consequently, we are interested in “optimiza-
tion problems” (having NP-complete decision version), these problems being defined in
definition 1.

Definition 1. Let opt € {max, min}, let F,. .., E, be a finite number of closed subsets of
IR. An elementary affine optimization problem is a sextuple (n,t,s,v,C, (Ai)ictm, .5} )
where n € IV is the size of the elementary problem, ¢ is a dimension and s is a number of
constraints both (¢t and s) polynomial in n, v is an affine function on /R*, C is a polytope
of IR’ defined by the s constraints and finally 4; € {F,...,E},i € {1,...,t} (for the
moment, we restrict ourselves to problems for which there is always a solution (i.e. E;
closed and C' compact). -

We call such an elementary problem an instance and we write it in the form

T, € A;,1e{l,...t}

The size of an instance 1s n.

An optimization problem, is a set of instances such that the set of questions “VYM is there
any ¥ € C such that v{Z)0M?” (where 0 equals < (resp. >) if opt equals max (resp.
min)) is exactly the set of instances of a problem in the usual sense'. 1

'Tn general, to express the fact that all instances of a given problem have the same structure, arguments
of language theory are used ({10,13]); we have given this definition in order to avoid to repeat such a
discussion.



An algorithm is defined, as usual, ag a finite sequence of elementary steps consisting in
selecting an element in F; and performing all the arithmetical or logical operations on it.
The complexity of an algorithm is defined as the number of elementary steps needed to
complete the solution.

Definition 2. Two problems II;,l; are equivalent if

(a) there exists an algorithm oc;y polynomial in n,, which from every instance I; of II;
(ny is the size of I) constructs an instance I of 1l (we call algorithm o3 a reduction
from II; to II5), where n, (the size of I;) is a polynomial of ny; there exists a polynomial
time algorithm 3 such that for each instance I) and I, =y, (I;) and Vz € Cy, ¥ (z) €
Cy, where Cy,C; are the constraints corresponding to II;,II; (the expression ¢y is a
polynomial time algorithm which means that it works in time polynomial in the size of
its variable z, which is by definition the size of the corresponding instance); there exists a
bijective affine function f5; : R — IR preserving the order of the solutions from their value
point of view ( fy; increases if II;, I, are both maximization or minimization problems and
f21 decreases in the opposite case, i.e. one of II;,II; is maximization and the other one is
minimization problem), and for which holds: (Vz € C3) vi(¥ha(z)) = far(v2(z));

(b) there is a reduction oy, polynomial in n,, which constructs an instance I; of II; from
every instance I, of II;, where n, is a polynomial of ny; there exists a polynomial time
algorithm ,, and a bijective affine function fi, for each instance I and I} =g ()
satisfying (a) via the interchanging of indices 1 and 2;

() x12 0 xg1= Id, g1 0 xxyg= Id; for every instance I}, (12 © ¥s1)|c, = Ide, and for
every instance Ip,(va; 0 ¥13)lo, = Idg,. |

We note here that v, ;(¢,7 € {1,2},7 # j) map the best solution of II; to the best solution
of Pj.

Also, when two problems are equivalent, 13,21 associate bijectively Cy,C; in such a
way that the distribution functions of I;, I, are identical in the sense that

Vke R,Privi(z) = k] = Prlve(zs) = fra(k)].

This property can be interpreted in terms of structure, notion introduced in [3]. There, the
structure of an instance [ is defined as the list (a1, -+, ;) where ¢ = |OPT(I)~Q(I)[ and
a; = |{z € Cy,|v(z) — Q(I)| = ¢}|. This definition as well as the one of a convez problem
(always in [3]) have the drawback to be incompatible with the homothetic transformations.
Let us, for example, consider IS whose an instance can be formulated as

Z
IS = A7 < T

where A is the edge-vertex incidence matrix of the graph representing an instance of IS.

This problem is convex in the sense of [3], and this means that all the integer values in
[OPT(I),Q(I)] can be attained. On the other hand, the problem

max §|V| -z

18" = A Z

—

<
) €

Tig,
{0, 1}V



where 2 is the vector with all its components equal to 2, is not convex as the odd values
are never attained. For this reason IS’ has not the same structure as IS (always in the
sense of [3]).

In our context on the contrary, it is natural for both problems to have the same structure.
We define thus the structure of an instance (we prefer to call it by sharing out of the values
of an instance) as the equivalence class defined by the following equivalence relation:
(ap, -+ yan) = (boy -+ ybm) <= (n=m) V IX € R*,Vie {0, ---,n} a; = A - b; where
(ap,+++,a,) and (bg, -+, by ) are structures in the sense of [3].

It is easy to see that, under this definition, the equivalence preserves values sharing out.
Moreover, we note that all the structure preserving reductions described in {3] remain
structure preserving for our definition.

Finally, we should note that the main difference between the equivalence of definition 2 and
the strong equivalence defined in [11] is that the authors of [L1] consider fa; = Id. But this
consideration does not take into account the notion of the affine transformation, notion
central for us. More particularly, the definition of [11] does not allow the equivalence
between a minimization and a maximization problem, for example between VC and IS.

The form of a new approximation ratio

Let II be an NP-complete optimization problem and A an approximation algorithm for
II. We choose, as in the classical approximation theory, to associate a real number p to
the pair (II,.4); this number is called approximation measure of A for II. In fact, as
usual, p will be defined to reflect the behaviour of A on each instance of II. Thus, we
start by associating to every instance I of II a number f(I,A); by convention f € [0,1].
Here resides the first difference with respect to the classical approach which differentiates
the interval of the possible values of f depending on the nature (maximization or mini-
mization) of the objective. Once this convention been made, the first property that seems
natural to be imposed to f is that it has to increase when A([) is improved (in the sense
of the objective), by taking the value 1 when A finds the optimal solution of /.

Starting from the local measure f let us now define a global one. Recall that we are placed
in the frame of the worst case complezity, in the sense that the approximation results we
try to obtain provide a guarantee over all instances of a given problem for the considered
algorithm. It is natural then, that for a given problem, a global measure represents the
worst behaviour of an algorithm on the different instances of the problem. As for f(A,7)
the nearer to 1 the better, we define:

(I A) = inf (f(A1 )
where, Z(II) the set of instances of II. In the following, for purposes of clarity, when no
confusion arises we will write p instead of p(II, A).
Let us note that the defined measure verifies the following natural “growth property”:



Property. Whenever there exist algorithms A, A', for II, if A gives better solution
values for an instance I of 11, then the value of the approzimation measure
for A is better (nearer to 1} for I than the one of A'.

This is a very natural and general property verified by every approximation measure which
mainly implies the monotonicity for an approximation function.

On the other hand, in order to answer to the problematics we are imposed we define a
second property taken as an axiom for the new approximation approach.

When speaking of axiom, we mean whatever is logic and coherent to require from an
approximation measure under the light of the thoughts and reserves which have been
expressed above. Let us recall that the essential criticism against the usual measure was
that it does not respect the notion of equivalence between NP-complete optimization
problems. By having introduced such a notion of equivalence in definition 2, we propose
the following principal axiom:

Axiom. If there are two equivalent problems, then every algorithm solving the former
allows to find (modulo ¥) an algorithm solving the latter within the same value
of the approzimation measure.

This, in terms of [22], signifies that algorithms o of definition 2 constitute continuous
(approximation preserving) reductions and also that the algorithms 1 are the two 1,0-
bounded, corresponding functions. In fact in the frame of the new approximation ratio,
one can see the equivalence as the 0-level of the continuous reductions.

We recall also that, in proposition 1, we have proved that a measure seen as a 2-variable
function R(A(I),OPT(I)) cannot respect the above axiom because already it cannot
respect it when f5 is increasing.

However, both variables A(I), OPT(I) seem to be very meaningful and natural because,
from our point of view, the predominating notion for estimating an algorithm is the value
of the solution it provides. On the other hand, we have already discussed the fact that
an approximation algorithm provides many times the worst value solution (f2} for some
instances of a problem.

In fact, given an optimization problem

opt o(Z)
IT = & € C
z; € A, Vie{l,...,t)
we define {1 to be the value of the problem
opt v(Z)
II'= g e C
r, € A, Vie{l,...t}

where opt = min(max) if opt = max(imin).
In [7], we show how the formulation of an optimization problem contains implicitly the
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notion of £ as it contains explicitly the one of the optimum of the objective function.
The arguments presented up to now make us to think that the parameter {2 is a consistent
variable that has to be considered for the adoption of a new approximation function.
Therefore, it seems natural to introduce as an approzimation ratio, a 3-variable function
R(A(I), OPT(I), (1).

In any case this notion of worst value is worthy of many remarks. First, let us take the
work in [3]. There, the authors call trivial value what we call here trivial value. However,
it should be better not to conclude that it is always easy to calculate it; if there are
many cases where the computation of the worst value is easy, there are many problems
for which the computation of the worst value is as difficult as the computation of the
optimal one, i.e. NP-complete. Let us for example consider the case of the minimum
maximal independent set in a graph. This problem is exactly the one of searching for a
minimum dominating set constituting simultaneously an independent set and it is NP-
complete ([10]). The worst value solution for this problem is the independence number of
a graph, and the problem to be solved in order to find it, is exactly the IS. In [8], a broad
class of examples is given, and it is shown that the notion of worst value is crucial for
the definition of a problem, and moreover that in many cases, changing the worst value
solution entails the changing of the optimization problem itself.

Let us consider two equivalent problems Iy, TI, (definition 2).

We suppose also that we have an approximation algorithm 4, solving all instances of II;.
We consider the following algorithm A, for Iy VIz, A3(Ls) = ¢12( A (exar (1)).

If \ € R*,p € IR are the two numbers such that Vo € R, fizs(z) = Iz + p, we
have respectively: OPT(l2) = AOPT(xa (L)) + p, Ax(fz) = Mi(xa (I2)) + #,
O(p) = AM¥xa (I2)) + p, where A; (Az) denotes the value of the solution provided
by the algorithm A; (A;), respectively.

We denote by € = {(z,y,2) € R® : z # 2 and y between z and z}, the set of all the
possible triplets for (OPT'({), A(Z), (1)) (in fact, the case z = 2z corresponds to the case
where OPT(I) = Q(I} = A(I), which is trivial).

Then (following the imposed axiom), the 3-variable function R, has to satisfy R(Az +
Ay + py Az + p) = R(z,y,2), Y(z,y,2) € E,¥(A\, 1) € R* x RR.

Let us denote by F the set {{Azq+ p, Ayo + g, Azo + p), (A, p) € JR* x IR} and by G the set
{(z,y,2) € £: L2 = W2} it is obvious that F C G. We prove that Y(zg, 19, 20) € €,

r—2z £p—20
F=g. |
Consider a triplet (z,y,2) € § and, define A = ;2% (A exists because zy # 2) and
B =Y — Ao

We have: z =y — Ayo+ Azp = Azo + #, T = 2 — Azp + Azg = Azg + g1, hence G C F.
Consequently, R is constant on each hyperplane ££ = constant and thus, there exists a
function f : IR v+ IR which satisfies R(z,y,2) = f (g—:—;—), Y(z,y,2) € £.

Let us consider two algorithms A, A’ for a given problem, the first algorithm being bet-
ter (more efficient) than the second one. This means that for every I, %%(;%Q‘—r(% >
A'D)-0(
oPT(D-a(D)"

Al(D)-2(])
1-f (OPT(I}—Q(I).) - ) ) o
If we suppose for instance that the approximation ratio is less than 1 (and consequently

By the property imposed on the ratio we have then |1 — f (5—%) | <



maximum in the best case), then f:[0,1] — [0,1] and it is decreasing.

We choose the simpler function f satisfying the previously imposed axiom and property
the identity function.
Consequently, we propose as an approximation measure the ratio

A(I) - ()
OPT(I) - (1)’

If A(T) = OPT(I), then the ratio is equal to 1, and if A(J) = Q(I), then it is equal to 0. If
OPT(I) = Q(I), then the ratio is undefined but this case is trivial for the approximation.
A possible interpretation of this ratio is that it expresses the position of A([) into the
interval of its possible values.

The proposed ratio, obviously satisfies the imposed axiom, i.e. if two problems II;,1I,
are equivalent, then for every algorithm .A; solving the first problem, we can find in
polynomial time-as we have explained above—an algorithm A; having the same ratio

for every instance of the second problem.
Here, we have to note that any ratio obtained by a circular permutation of the three

parameters A([), OPT'(1),Q(!) (for example %{%ﬂ) satisfies both the axiom and
the property. The only thing that changes eventually, if we adopt such a ratio is the

interval of variation of the ratio’s values.

In fact, someone can note that the axiom and the property imposed on the ratio are
satisfied even if we use a more restricted version of equivalence called weak equivalence.

Definition 3. Two problems II;, I, are weakly equivalent if

(a) there exists an algorithm o;; polynomial in ny, which from every instance 7, of II;
constructs an instance f; of I, where n; is a polynomial of ny; there exists a polynomial
time algorithm 3 such that for each instance [; and I; =03 (f1) and Vz € Cy, 991 (2) €
Cy; there exists a bijective affine function f5 : B +— IR such that for each instance
.[1 and 12 =X12 (11) and V.I‘ = Cg, U](‘l,!)gl(ﬂf)) = fgl(’vg(lt)), fg](OPT(Ig)) = O.PT(Il),
F21 (U L)) = Q( 1), where Q(I;) denotes the value of the worst solution of the instance I;
of the problem II;;

(b) there is a reduction oz, polynomial in ny, which constructs an instance I; of II; from
every instance I of II;, where n; is a polynomial of ny; there exists a polynomial time
algorithm 115 and a bijective affine function fi; for each instance Iy and Iy =g (J2)
satisfying (a) via the interchanging of indices 1 and 2. |

In order to obtain positive results using the adopted measure, one has to deviate, more or
less, from the way he/she was used to think up to now, mainly in the case of minimization
problems. Major notion conceptually included in this new ratio is the taking away for the
worst value feasible solution of an instance. This taking away is quite explicit for the most
of the maximization problems where, usually, we start from an empty set constituting a
feasible solution (the worst value one) and we try to augment it while it is possible (taking
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away from the worst case). This process constitutes a strategy applied even by the greedy
algorithms. On the contrary, for minimization problems the taking away is quite rare and
a strategy where we start from the worst value solution by trying to reduce it is either non
efficient or it leads quickly to non-feasible solutions. For example, in the case of VC if we
start from the worst value solution, (the vertex set of the graph) and we try to reduce its
size by obtaining a smaller one, we are unable to find bounds for the obtained cardinality.
We think that an interesting idea for overcoming this difficulty is to use the advantages
definition 2 provides us. In [7] we give examples of how one the defined equivalence can
be used, in order to produce positive results for minimization problems.

Let us revisit for a while the notion of the sharing out of the values of an instance. If
this sharing out is known (but this is impossible unless P = NP), then one can interpret
a value x of the ratio as the fact that the solution found lies among the (1 — x) x 100
percent of the better solutions. This measure can be considered by many people as the
ideal approximation measure. Unfortunately, positive results using such a measure are
impossible.

In fact, the possibility to prove results, and in particular positive ones, validates a pos-
teriori every proposition of an approximation ratio. Qur approach seems to guarantee a
consistent ratio, even if other ratios defined in a different way could contain even a greater
amount of information. On the other hand, the present approach allows us to produce
results as we show in the sections that follow.

But, the scientific richness and wealth of this theory does not consists only of its capacity
to contain positive results but also to allow negative or conditional ones. In particular a
theory where only positive results are proved is dull and without a real scientific content.
On the other hand a theory only allowing negative results, being too restrictive and inef-
ficient. In what follows we show that the adopted theory is rich enough to allow all kinds
of results dealing very well with the NP-completeness theory, which contains problems of
various degrees of difficulty concerning their approximation.

3 Approximation results obtained using the new approxima-
tion ratio

3.1 The knapsack problem

We treat now the Bivalued Knapsack Problem (KP). This problem is usually defined in
its decision version as follows ([10]).

Bivalued Knapsack Problem (KP). Given a finite set I = {1,...,n}, with sizes
a; € IN*, a value ¢; € IN* and two positive integers b and d, is there a subset I' C I such
that 3= a; < b and such that > ¢ > d?

iel! iel’
Of course when speaking of approximation, we have to consider the optimization version
of the corresponding problem. In this case two optimization versions appear naturally:
the maximization and the minimization ones. Both versions are respectively defined as

11



follows:
max

2
Il
2] oy
8y 8

< b
e {0,1}, viel

H A

el

min

o) Ry
B wy

> d

z € {01}, Viel

For KM, Ibarra and Kim ([12], see also [21]) present a polynomial time approximation
schema (PTAS) by using the traditional approximation ratio. We treat in this paper the
following generalizations of KM and Km called RKM, RKm, where the components of
the vectors & and & as well as b and d are real numbers.

For these problems we propose a PTAS valid for the approximation ratio defined in the
previous section. Obviously, by the definition of our ratio, in the case of RKM where
the components of @ and ¢ and the constant & are all positive numbers (PRKM), this
schema works also for the traditional ratio. We note that this case is a generalisation of
the results of [12].

We shall see that the adopted approximation ratio plays a crucial role as it allows such
generalizations. We will see also that, following the notion of equivalence discussed above,
KM and Km are equivalent as well as RKM, RKm and PRKM.

We discuss after how the PTAS for KM and Km gives also a pseudo-polynomial algo-
rithm for subset sum problem (S) and also how to generalize S to preserve the pseudo-
polynomiality. This discussion, seen in the case of the PTAS for RKM and RKm, permits
to understand why the subset product problem (SP) is NP-complete in the strong sense.
S and SP are defined in their decision versions as follows.

Km =

Subset Sum Problem (S). Given a finite set A with a size s(a) € Z* for each a € A
and a positive integer B, is there any subset A’ C A such that the sum of the sizes of the
elements in A’ is exactly B?

Subset Product Problem (SP). Given a finite set A with a size s(a) € Z* for each
a € A and a positive integer B, is there any subset A’ C A such that the product of the
sizes of the elements in A’ is exactly B?

3.1.1 A polynomial time approximation schema for knapsack problem

The only interesting case for RKM is the case where Vi € I, a;¢; > 0. In fact, (i) if a; > 0
and ¢; < 0, then we can suppose that the object 7 does not exist, because it will never be
included in any sub-optimal solution; particulatly, if a; = 0 and ¢; = 0, then it is easy to
see that we can delete this object without changing neither the constraint nor the value of
any feasible solution ¢ involved; (ii) if @; = 0 and ¢; > 0, or if a; < 0 and ¢; > 0, then every
suboptimal solution contains necessarily the object 3 and consequently we can ignore this
object and resolve the resulting subproblem. Hence, in what follows, RKM will concern
the cases where a,;c; > 0.

12



Theorem 1. For any ¢ > 0, there is an O(n?) polynomial time approrimation algorithm
A solving every instance C of RKM with approzimation ralio

A(C) - Q(C)

GPFC) o) = ¢

where A(C), OPT(C),Q(C) are the cardinalities of the solutions provided by A, the opti-
mal and the worst ones, respectively.

Proof: Throughout the proof of the theorem, we consider a fixed instance of RKM, i.e.
we consider @, b, ¢ and d to be fixed; moreover, to allege the writing we will omit the
fleshes over the vectors.

We define first a greedy solution for RKM.

We re-arrange the set of indices J in such a way that %fj > ::—:11 > 2 %;1 For all integer

k < n, we define the vector Z* as follows:

. _ 0 ifa,;>0
Vjej’w3={1 if a; <0

. =k 1—:1'2? it j<k
Vk>0,VJ€J=~'”j—{ £ if >k

We denote by k(b) the largest index k such that Z* is feasible. The vector z*() is called
the greedy solution. Of course, z° is the worst solution of the problem (£(1) = ¢- z°).
Without loss of generality, we can make the following hypothesis ([H]).

[H] (i) @ 2° < b (the set of constraints is not empty); and (ii) every 0 — 1 vector deduced
from z° by changing only one of its coordinates corresponds to a feasible solution {because
in the opposite case the corresponding object, being too big, is never selected and thus
does not take part in any feasible solution).

We prove now that
¢ 30 < OPT(C) < ec- o+ (1)

We use the following relaxation RRKM (Relaxed RKM) of RKM:

z, € [0, Vael

In fact, we prove that the greedy solution gives an optimal solution of RRKM, or more
formally, that the vector & (called a continuous greedy solution) with

{ 5 = z°® if7 % k(b)+1

b—a-i‘k(b)+ak( b)+1E:E:g+1

T = Sh(b)+1

where #(3)41 is computed in such a way that e - & = b is optimal for RRKM.
In order to show that # is optimal for the problemmn RRKM, we just have to prove that it
is feasible and satisfies the Kuhn & Tucker conditions.
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The solution & has been computed to saturate the condition -z < b. We show now that
T is feasible, i.e. Zrp)41 € [0,1}.

We examine the following cases.
k(b _
® ajpy41 > 0 (thus mkgb%_{_l = Ty = 0).
By definition of k(b), we have a-Z*® < § < q- RO = a-:’c’“(b)—l-ak(b)_,_l or < b—g-3*¢) <
b—a gk
S Q{b)+1

ax(s)+1 or 0 = Ty < 1.

_k(b _
[ ] a-k(b)_|_1 < 0 (thus :Bkgbg-}-l = $2(b)+1 = 1)
By the same arguments as previously, we have a- ) < b < a-z*OF1 = ¢. 28 g, 1,

—a 70 <« _ ba @ oy
or 0<b—a-3*0 < ax(p)+1 or 0 < v = Typ)e1 < 1.

We establish now the Kuhn & Tucker conditions. Let us consider also the problem RRKM
including the box condition as a constraint denote by &, (A:)ier, (##:)ier, the Kuhn & Tucker
coefficients.

maxc-z
a-x < b (2)
—z; < 0 (4)

In the previous program, constraint (2) is associated to the Kuhn & Tucker coefficient #,
the set of constraints (3) to the coefficients (};)ies, and the set of constraints (4) to the
coefficients (t4;)ser-

There is a choice of &, A\; and p; which satisfies the following conditions:

(a) If ¢+ < k(b) and a; > 0 ((2) and (3) are saturated), we have ¢; = xa; + ;. If i < k(b)
and a; < 0 ((2) and (4) are saturated), we have ¢; = ka; — y;.

(b) If i = k(b) + 1, then cipys1 = Karp)41 + (possibly) Aepy+1 — re)+1 ((2) and possibly
(3) or (4) are saturated).

(c) If ¢ > k(b) + 2 and a; > 0 ((2) and (4) are saturated), we have ¢; = ka; — p;. If
i > k(b) + 2 and a; < 0 ((2) and (3) are saturated), we have ¢; = xa; + ;.

In (b), we consider Axs)+1 = pagp)41- Thus £ = Z—‘:&;Li >0

In (a), we determine A; or p; which are positive. The arguments: if a; > 0, then \; =
¢ —ka; >0as &>« (a; > 0); on the other hand, if a; < 0, then y; = ka; —¢; > 0 as
E>k (a; < 0).

We use the same argument in (c).

If we note & and % the optimal solutions of RKM and RRKM respectively, we deduce

() 2 3
c- 7" <. 3 <5< e T (5)

—
——t
—
—

because %) is feasible for RKM (inequality (1) of expression (5)), & is feasible for RRKM
(inequality (2) of expression (5)) and

— o _k(b p
[ ({L‘k(b)+1 — .,."C) = ck(b)+1(mk§b;ﬂ - mk([,)+1) 2 0 (6)
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(inequality (3) of expression (3)).
In fact, expression (6) holds because of the following arguments: if cxpy41 > 0 then we
have :E,’:Egii =1 = a"kgb;+1 — &pey1 = 0 whilst, if czp)41 < 0, then we get izgzgii =

0 = mkgbg 11— Zk)41 < 0. This concludes the proof of inequalities in expression (1).
We continue the proof of theorem 1 by proving the following inequalities.

0<c-&—c- $°u<)c FEOF _ .30 < 2c-f—c-39). (7)

Inequality (1) in expression (7) results from expression (1).

Inequality (2) in expression (7) holds because ¢- 20 < -2+t |cry41| < g+ |erpya| <
2¢- & — ¢ i°. ‘

By hypothesis [H], the solution z° + sign{cr)+1)err)+1 is feasible for RKM where sign(z)
denotes the sign of . Thus, the fact that ¢« Z° + sign(capy+1)-cepy1 < ¢- # is equivalent
to the fact |cppy4e| < ¢- & —c¢- Z°

This concludes the justification of inequalities in expression (7).

We show now how to obtain an (1 — ¢)-approximation.

We define RKM? (see also [12,21])

max ¢ -
REKM®* = a-z < b
e; € {0,1}
with ¢f = ,_%J and & = &;'C'?ﬂe > 0, where for every z € IR, |z| denotes the floor

of x.
Since solutions & and % are feasible for RKM and RKM? respectively, we have ¢® - & <

¢ -t andc- 2% <ec- 2.
On the other hand, we have also 0 < ¢; — a¢f < a and thus according to expression (1),

ac® & <ac® ¥ <c g < g Pl (8)
and
0<c-&—c-3<e¢c-&—-ac® -2=(c—ac”) 2 <na. (9)
. B pe® 2 VB o0
We have also by expressions (7) and (8): £5=2% < —mift—ss =€ or ££=28- > 1 —¢,

and thus we can deduce so that * is an e-approximation for RKM.

It remains to show that there is a polynomial time algorithm which determines an exact
solution of RKM®.
We consider RKm§ defined as follows:

min a-z
RKm§ = ez > d
Ty € {071}
4o — o k(b1 . _
We have ¢ P 0<ca:°'_a < (5} Ca‘O 2n_|_cm _Ca.xOSZ?n_I_n,

the first mequahty holding because of (8) and (9 ( ), and the second one holding because of
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expression (1).
If we put d = [n(1 + 2){, we have also 0 < ¢*- 2% — ¢*- 2° < d.

We continue the proof of theorem 1 by proving the following emphasized proposition:
Let D= {c* 7 3+ 1,...,c% 3 4+ d} CIN. Once an optimal solution of RKmg is
known for every d €D, we can determme an optimal solution of RKM"‘ which constitutes
an (1 — e)-approzimate solution for RKM.

First, given an instance of a problem, let us use the expression “value of an instance”
to denote “the value of the optimal solution of the instance”. Also, given an instance
of RKm, let us denote by v»(d) its value. Finally, let dpe, the maximum of the set
Doz = {d € D : v(d) < b}. We note that Dy, # 0 because ¢ - 7° € Dy (a- 7% < b,
by hypothesis [H]).

If & is an optimal solution of the instance of RKm§ where d = d,,,,., then # is the searched
solution of RKM®. The arguments: obviously, a-& < b; if d;nge = ¢*-Z°+d, then as a-% < b,
by definition of £* we have c¢®- % > ¢®-&; but dp,p = ¢*-3°4+d < @ < 3% < - 7°4+d
thus ¢* - # = ¢* - £, i.e. # is optimal for RKM?; on the other hand, if dper # & - 2° 4 d,
then let = be such that ¢ - > ¢® - & > dpar + 1; this implying that a - z is greater than
the value of the instance of RKm§ with d = d,q, + 1 (z is feasible), thus a -z > b by
definition of d, ..

(From the arguments presented above, we can deduce that & is an optimal solution of
RKM*® and conclude the proof of the emphasized proposition.

To conclude the proof of the theorem, we have to show that it is possible to find an
optimal solution z of RKm for every instance such that d € D in polynomial time.

In the case of real coeflicients, we cannot deal directly with dynamic programming argu-
ments. So we have to proceed in two stages.

We start by solving the cases where all the coefficients are positive; we consider then the
following problem

min Z |ailz;

RKme[f =

We show that we can resolve problem |[RKm®|7 in n(d + 1) steps, for § € {0,...,d}, i.e.
solve [RKm®|}_ . -0 for d € D. _
We note here that, in order to determine the solutions of |RKII1&I§+1 for § € {0,...,d},
we only have to know the solutions of [RKm®*|¥ for all k£ <n and § € {0,...,d}. In fact,
for all § € {0,...,d}, to determine the better solution of [RKm®*|¥*! with 234y = 0, it is
sufficient to solve problem |[RKm®|. Also, to determine the better solution of |RKmC”[’“"'1
with 241 = 1, we only have to solve problem |RKm“|f5_|cg+ID+, where given a number z,
zt = max{z,0}. If we denote by v, the value of the former and by v; the value of the
latter, then by the dynamic programming principle, the relative position of the numbers
vy and vy + |@g41] determines the searched solution. Thus, by induction, if we can resolve
|IRKm®|% for n = 1, we also can resolve it for all n.
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As d < n(1 4+ 2), the number of necessary steps is O(n?).

We prove now that the first stage is sufficient to find a solution of RKmj for every instance
in which d € D = {¢*-3°%...,¢* - 5% + d}.

Consider a solution y of |[RKm®|?_ . 0. Weset: z; =y + &, if a; > 0, 2 = —y; + 37, if
a; < 0. We have also y = |z~ z°|. It is easy to see that z is an optimal solution of RKmj.
Indeed, Yz € {0,1}" we have |z — °| € {0,1}". Thus z is an optimal solution of

min |a| - |z — Z°
je?| -z —2° > d—c*-3°
z; € {O, 1}

Moreover, Vi € I,Vz € {0,1}" and by definition of 7} we have, a;(z; — 27) = |a;||(z; — Z7)|
and cf(z; — £7) = |cf||(z; — £0}|. 'Thus z is also an optimal solution of the problem

& (z—3% > d—c-3°
€

which has the same solutions as the problem
min a-2
RKmj = x> d
Z; € {0, l}
And this concludes the proof of theorem 1. |

The above proof shows, quite clearly, how the ratio has to be changed to preserve the
result. In particular, the expression A(I) — Q(I) seems to be very convenient for the
proof of the expression (7) and also in the definition of the greedy solution of RKM. This
expression is crucial for the transformation from RKM to KM. '

3.1.2 Some consequences of knapsack theorem

Theorem 1 allows us to bring to the fore a pseudo-polynomial algorithm for the following
generalization of KM.

GKM. Given two positive integers b and &', given a real vector @, and a vector & with
elements c; such that ¢; € N"U~IN", ¥ ¢ < band ¥ ¢ > —¥, solve the corresponding

>0 ¢i<0
RKM.
Corollary 1. There is an ezact O(2(b+ ¥)n?)) algorithm for GKM.

In fact, if we select € = m, the schema constructed in theorem 1 works in O(2(b+)n?))
and gives an optimal solution.

Indeed, we have Q(I) > —V and so phtroals > 1 —c or 0 < OPT(I) — A(I) <
e(OPT(I) — QI)) < e(b+ ¥) < 3. Thus, as OPT(I) and A(I) are integers, they are
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equal.
So, we can see how the hypothesis ¢ has integer coordinates intervenes and why RKM has

not a similar pseudo-polynomial algorithm.
We consider now the following generalization GS of S.
GS. Given two positive integers M and N, given a vector (¢;)icq1,....n} With ¢; € IN*U —IN*,

and - ¢ > —N, does a (0,1) vector = exist such that ¢c- 2 = M?
<0

Corollary 2. GS admits an O(2(M + N)n?) algorithm.

By solving the problem:
max ¢-&
&F < M
z; € {0,1}, Viel

we can answer the question if = exists.
But we note that, to solve in such a way the subset product problem ([10]), we have to

consider the following instances of RKM:

max In(é)-Z
In(@)-& < In(M)
T; e {0,1},VieI

Those instances are not included in the particular case of RKM for which we give a

pseudo-polynomial algorithm.
This illustrates why SP is NP-complete in the strong sense ([10]).

3.1.3 Some equivalence results

Proposition 2. RKM and RKm are equivalent.

Proof: If we denote by z° the worst solution, we construct from every instance

max ¢
IM = a-

8 8]

< b
€ {0,1}, Viel

Zq
of RKM, the following instance
min &%
Im (=RgmRKm (IM)) = -7 > a1-b
yi € {0,1},Viel

of RKm. The algorithm rkm,rkm (section 2) can be defined as Yrxm rxm(7) = T—gfor
all instances IM and Im, for all feasible vectors #, of Im.
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As soon as &-§ > @- I — b, we have obviously & - (1 — 7) € b, i.e. YrEmurM(T) i3 feasible
for IM.

The linear function fimm is defined by fram(Z) =& 1 — 2.

Also, from every instance of RKm

min Z-¥
. Im = a-y > d
{ € {0,1}, VieTl
we construct the following instance of RKM
max ¢&-&
M = % < &1-b

T, € {0, 1}, YViel
in such a way that XRKm,RKM © RKM,RKm= Id and XRKM,RKm © XRKm,RKM™= Id, where
Id is the identity function.
We define fivin = fimv 2nd Yrkmakm(Z) = 1 — # which satisfies the property (i) of
definition 3. Moreover, VIm, VIM, (4RKmRKM © ¥RKMRKm)|cy, = {doy, and (Yrkm, RKm ©
YREmRKM) o = Tdoyy- B

Proposition 3. KM and Km are equivalent, provided that we impose for each problem
an additional condition: we just consider the instances of KM where @-1 < b and the
ones of Km where d-1 > d.

We note that this condition restrict us to the interesting cases. Indeed, this condition
means that the set of feasible vectors of Im is not empty and that I is not feasible for KM
which, in the opposite case, would be a trivial solution.

With this restriction, the reduction described in proposition 2 is valid again.

Proposition 4. The two following problems are weakly equivalent:

(1) RKM with the additional condition that the set of feasible solutions is not empty (that
means, with the notations defined above, that the worst solution 70 s feasible).

(ii) PRKM (positive real knapsack mazimization problem), which is the previous problem
with positive coefficients for the objective function, the constraint function and the second
member.

Proof: We follow here a reasoning similar to the one of the last step of theorem 1. Let
us consider an instance of the former:

max ¢-%
IM = a-7 < b
z € {01}, VielT
The feasibility of z0 is written & - 20 < b.
We construct the following instance of the latter:
max |¢]-&
M| = @l -# < b—a. 20
z, € {0,1},Viel
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This construction defines a reduction ocpxm pRKM-

The function ¥prxmrkMm 18 defined as follows.

For all IM and [IM| =xggmprim (IM) and for all z € Cm

0 if a; >0

_ T + 7
(YpremprM(Z))i = {uxi.}.f? if a; <0

ie., V& € Copy [¥prempxm(E) — 20) = 2. In fact, by definition of 7°, we have @ -
(YpreMREM(Z) — 2°) = |d@] - |pREMRRM(T) — 20| and consequently Yprrm rrM(Z) € Civ-

Let us define fingm(%) = 7 — a 70, By the same argument, Z - (Yprxmrxm(T) — 2°) =
€] - |¥PREM REM(E) — i_f’| thus, fim)m satisfies the conditions of definition 3 of the weak
equivalence.

Since the second problem can be considered as a sub-problem of the former, every appli-
cation xprxM,RKM, a8 well as every application ¥prxm i, are the identical applications
on the convenient spaces, and moreover, for all instance PIM of PRKM, fepm = Id B

3.2 Approximation results for set covering, hitting set, vertex covering, in-
dependent set, clique, set packing

Let us take now VC and IS. In fact, there is a bijective affine transformation of the
objective function of VC to the objective function of IS if we take A = —1 and p = n,
where 7 is the order of the graph; hence, the equivalence defined in section 2 together
with the approximation ratio defined there, make vertex covering and independent set
to be equivalent with respect to approximation ratio of an algorithm supposed to solve
both problems. On the other hand, the way we have defined the new approximation ratio
implies that this ratio is similar to the old one for the case of IS.

Recently, some researchers ([2]), have proved the following:

Proposition 5. ([2]). VC, even for bounded degree graphs and IS for bounded degree
graphs®, do not admit a polynomial time approzimation schema unless P = NP,

Based on this result and on our definition of equivalence, we can conclude the following
more strict result for the approximation measure proposed here:

Theorem 2. VC and IS, even for bounded degree graphs®, do not admit a polynomial
time approzimation algorithm with a constant approzimation ratio (independent of the
bound) unless P = NP.

Let us now consider some other combinatorial problems like maximum set packing, max-
imum clique and maximum complete bipartite subgraph.

21t is well known that IS for bounded degree graphs admit polynomial time approximation algorithms
with ratios depended on the bounds
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Given a collection of finite sets S (|S| = n), a packing is a subcollection &' C &8, all of
whose members are mutually disjoint and the maximum set packing problem is to find a
packing of maximum size.

Given a graph G = (V, E), a clique of G is a subset V' C V such that every two vertices of
V' are joined by an edge in F and the maximum clique problem is to find a maximum size
set V' inducing a clique in G (a maximum size clique); the maximum complete bipartite
subgraph problem consists in finding a set I/ C V of maximum size inducing a complete
bipartite subgraph.

Given two problems II, II';, we call them approximate equivalent if any approximation
algorithm solving the former solves also the latter and vice versa within the same approx-
imation ratio.

Well known results ([10,15,17,22]) prove the approximate equivalence between IS, set, pack-
ing, clique and complete bipartite subgraph; this equivalence is also true in the framework
of our approach, since all these problems are maximization problems with (I) = 0.

Let us now consider the case of SC. Given a collection § (|§| = n) of subsets of a finite set
C (IC| = m), a cover is a subcollection &' C & such that U, s = C and the minimum

set cover problem (SC) is to find a cover of minimum size. Every instance I of SC can

be represented by a bipartite graph B = (S, C, E), called the characteristic graph B of I,
where the vertex set S denotes the family & and the vertex set C' the elements of the set
C. The graph B contains the edge s;c; if ¢; € S;.

Every instance I of VU is expressed in terms of a graph G = (V| E), which can equivalently
be represented by a bipartite graph Bg = (V, E, E'} where, E', which is the edge set of
Bg, contains the pairs v;e; such that e; is incident to v; in G.

Clearly, the instances of VC are exactly the instances of SC where every element of C is
contained in exactly two subsets of §. Hence, we can treat every instance of VC as an
instance of the SC, by considering G or equivalently Bg as the characteristic graph of this
instance. Consequently, as VC is a subproblem of SC, the negative result of theorem 2
holds also for SC.

Let us now recall the definition of another NP-complete problem, the minimum hitting
set problem. Let n and m denote two integers and § = {5y, ..., S5} a family of n subsets
drawn from an m-element set C; a subset H C C is a hitting set for the family & if H
has a non-empty intersection with each element of this family; the minimum hitting set
problem is to find a hitting set of minimum cardinality. It is easy to see that hitting set
is approximate equivalent to SC, because a SC becomes hitting set via the interchanging
of the two sets S, C.

All the above discussion is resumed, for the case of our approach, in the following theorem:

Theorem 3. The problems SC, VC, IS, clique, set packing, complete bipartite subgraph,
do not have a polynomial time approzimation algorithm with a ratio independent of the
size of the instance unless P = NP.

For SC however, we present a constant ratio polynomial time approximation algorithm for
some restricted instances. This algorithm works on the C-intersection graph G¢ = (C, E)
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begin
S — B,
construct Gg;
obtain a maximum matching M in Gg;
5" — 8" U {sct of labels on the edges of M};
C'<—‘C'\{ck,c1 Y TN EM}
while C' # 0 do
choose a vertex ¢; € C;
choose an edge e incident to ¢;;
C — C\{e;}i
5" — 5" U {set of labels of e}
od
remove the (eventual) duplications from 5’
end.

Algorithm 1.

of SC defined as follows.

Definition 4. The C-intersection graph G¢ = (C, E) of SC is an edge-labelled graph
whose vertices are the elements of C, two points ¢;, ¢; are adjacent iff 3% : {¢;, ¢;} C Si,
and the label of such edge ¢;c; is sp.

Theorem 4. Algorithm 1 is an O(m*®) heuristic which, if m < n, approzimates SC with
ratio .
3

Proof: Every vertex j of G represents the element j of the set ', and labels of the edges
incident to § represent exactly all the subsets containing the element j. Thus, each time
algorithm adds the labels of an edge e in ', in fact it covers the elements represented
by the endpoints of e by the subsets whose names are labels of e. During this phase, m’
edges are selected, where m’ = |M|. This entails the removal of 2m’ vertices of C.

Now in the set C, remain m — 2m/’ vertices called exposed vertices. This set is an indepen-
dent set because, if there were an edge e’ between two vertices, then ¢’ would be added in
M. For each such vertex ¢;, we add in ' the labels of one of the edges incident to ¢;. Thus,
after removing duplications, the set S’ has cardinality at most m’+ (m —2m’) = m —m/.
Let us denote by o the: cardinality of 5.

The fact that the exposed vertices of C associated to M form an independent set, means
in terms of SC that there is no subset covering two elements represented by two vertices
of this set. Thus, the optimum solution of the problem contains at least as many subsets
as the cardinality of the set of the exposed vertices which is equal to m — 2m’. Let us
denote by 3 the cardinality of the optimal solution for SC.

On the other hand, we take (1) = |C| = m (we discuss later this choice).
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Q- m—m+m’ m
We have then: p = 98_; > m—m-:-Zm" = &, thus p > %
It is easy to see that the more “expensive” operation of the algorithm is the maximum
matching ([9,15]) performed in O(c*®) and this determines its complexity, and this com-

pletes the proof of the theorem. |

The example of SC is an interesting example of how the choice of the worst value intervenes
in the evaluation of the approximation performance of an algorithm. In fact, SC is a
problem of choosing a number of sets having a certain property and as the union of
the elements of S equals C, the whole § (with cardinality n) appears to be a natural
worst value solution. On the other hand, it is equally natural to suppose that one does
never have a solution where the sets chosen are more than the elements to cover, hence,
another feasible solution for the problem is the one obtained by an arbitrary choice of a
set per element, and the value of this solution is m (the cardinality of C); the so obtained
solution can equally be considered as the worst value solution. It is easy to see that if we
systematically choose m as the value of the worst solution, then algorithm 1 is always 3-
approximation. But, trying to be coherent with our principal motivation, that is, adopting
an approximation measure rich in information about problem’s approximability, we have
chosen min{n,m} as worst value. Obviously this choice makes SC more difficult than
the a priori choice of m to be always the worst value because if min{n,m} = n, then
algorithm 1 has no constant approximation ratio.

4 Discussion and final remarks

We have tried to point out some strange side effects of the usual approximation theory,
due to the fact that it is conceived without taking into account requirements of the opti-
mization theory. We have also tried to capture the complexity and the lack of a concise
definition of a consistent polynomial approximation theory, respecting all the alternative
(equivalent) ways an optimisation problem can be expressed as an integer program and
more particularly the affine transformation of the objective function. We have firstly
defined an equivalence among optimization problems, context strongly necessary for the
definition of an approximation theory. After that, we have searched for a measure which
respects the equivalence of pairs of problems under affine transformation of their objective
functions. We have imposed as principal axiom on the approximation the respect of this
equivalence and we have proved that the approximation ratio as a two-variable function
cannot verify this axiom. We have then defined a three-variable function as a new ap-
proximation ratio which is coherent to the defined equivalence and under the choice of
the variables the new ratio is introduced by an axiomatic approach. The consideration
of solutions other than the optimal ones seems to be the least thing an approximation
theory has to take into account, given that when we study the deterministic approxima-
tion performance of an algorithm, we always deal with the worst case. Moreover, even for
practical reasons, when dealing with “real-life” applications, the quality of an approxima-
tion algorithm is measured on both its approximation performance and on the quality of
the solutions provided by it. For this last point, the taking away from the worst feasible
solution is a reasonable prerequisite for an algorithm.
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In fact, the requirement of a coherent approximation ratio is very strong. Many researchers
try to define subclasses of NP-complete problems having a kind of continuity property in
the sense that the design of a polynomial time approximation algorithm (schema) for one
of the problems contained in such a class imply the design of polynomial time approxi-
mation algorithm (schema) with asymptotically the same approximation ratio for every
other problems of the class ({16,19,22]). We think that a prerequisite for the efficient
definition of such classes intersects the concise definition of a consistent approximation
theory respecting the continuity in the interior of a given problem.

Indeed, the concept of the affine transformation is not only mathematically challenging,
but also interesting from a “computer science” point of view. Think that two (perhaps
the most) famous NP-complete problems, the vertex covering and the independent set,
are equivalent in the sense of the equivalence we have defined in definition 2. But the
existence of a 2-approximation algorithm (following the classical approach) for the former
does not imply an approximation algorithm with a bounded error for the latter. Of course,
a generalization of this work could be the conception of a measure valid for a large class
of transformations. But, the concept of affine transformations is already very natural
and resides in many real applications where tools of the operational research and the
combinatorial optimization have to be used.

We think that a large part of the inconsistencies of the classical approximation theory
is hidden behind the conception of the notion of the approximation algorithm. When
someone deals with a maximization problem, the notion of going away from the worst
case solution {} is included there by default. On the contrary, in a minimization problem,
an eventual approximation algorithm as the ones known up to now, does not incorporate
this prerequisite in its conception. The result of such a lack is evident in the case of vertex
covering where, as we have already mentioned, a solution including all the vertices of the
graph may be (and in fact it is in the most of instances) a good solution.

It is obvious that the removal of the inconveniences and the success of the tentative
on designing a consistent approximation theory do inevitably treat the changing of the
conception of an approximation algorithm. Moreover, this new conception has to take
into account parameters other than the value of the sub-optimal solution found by the
algorithm (why not value of the worst case solution?).

We have to note here that the notion of equivalence we have introduced and used through-
out this paper, reminds slightly the notion of L-reduction introduced by Papadimitriou
and Yannakakis in [16] whose goal is to preserve the polynomial time approximation
schemata between problems linked by such a reduction. Qur notion of equivalence is
however quite different. In fact, among the properties of our reduction is the preservation
of any value of approximation ratio, not only the particular value 1+¢, for an € arbitrarily
small.

On the other hand, the L-reduction, conceived for the usual approximation ratio, includes
some of the inconveniences mentioned, as (i) the dissymmetry between maximization and
minimization problems, and (ii) bad behaviour over affine transformation.
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In fact, let us consider the two following problems:

_J maxc-z = mex Ac -+ p
zeC reC

As soon as we allow instances with OPT(I) arbitrarily close to 0, there is an L-reduction
from II to II' only if x is negative. Therefore, if we consider the equivalence relation
Ry defined on two problems II and II' (via the L-reduction) by ORI’ <= (II L —
reduces to II') A (II'L — reduces to IT), then II and II' are equivalent only if 4 = 0. This
fact signifies that the notion of affine transformation is incompatible with L-reduction.
However, affine transformation is very natural particularly in the case of the connection
between vertex covering and independent set.

We have wished to point out some inconsistencies due to the lack of a formal (axiomatized)
approximation theory and we have tried to propose definitions for some notions “sine qua
non” for such a theory. We hope that this issue will receive comments and answers and
a fruitful discussion on this matter will be open.
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