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Une relation entre les versions approchées de la couverture
minimum d’ensembles, de la couverture minimum de sommets
et du stable maximum

Résumé

Soit p une constante universelle représentant le rapport d’approximation d’un al-
gorithme approché pour les instances du probléme du stable maximum vérifiant
%n <a(G) < %n, ott G est un graphe d’ordre n et de nombre de stabilité o(G).
Supposons qu’il existe un algorithme approché de rapport constant pour le probléme
de la couverture minimum d’ensembles. Il existe alors un algorithme polynomial ap-
proché pour le probléme de la couverture minimum de sommets avec un rapport
majoré par 2 — %p + ¢ avec ¢ arbitrairement petit.

mots-clés: Probléme NP-complet, algorithme polynomial approché, couverture d’ensembles,

couverture de sommets, stable



A relation between the approximated versions of minimum set
covering, minimum vertex covering and maximum
independent set

Abstract

Let p be a universal constant denoting the approximation ratio of a polynomial
time approximation algorithm for the instances of the independent set problem
with ;,g—on <a(G) < %n, where G is a graph of order n and stability number o(G).
Let finally suppose the existence of a (universally) constant-ratio-polynomial-time-
approximation-algorithm for set covering problem. Then there exists a polynomial
time approximation algorithm for vertex covering problem with a ratio bounded

above by 2 — -l%p + ¢ for an ¢ arbitrarily small.

keywords: NP-complete problem, polynomial time approximation algorithm, set covering, ver-

tex covering, independent set
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1 Introduction

Given a graph G = (V, E) of order n, a vertex cover is a subset V' C V such that for
~each edge uv € E at least one of v and v belongs to ¥V’ and the minimum vertex covering
problem (VC) is to find a vertex cover of minimum size.

Also, given a collection § of subsets of a finite set C, a set cover for C' is a subcollection &
of & such that every element of C belongs to at least one member of §' and the minimum
set covering problem (SC) is to find a set cover of minimum size.

Finally, given a graph G = (V, E), an independent set is a subset § C V such that not any
two nodes in V' are linked by an edge in G and the maximum independent set problem
(IS) is to find an independent set of maximum size.

One of the most interesting theoretical problems in the complexity theory is to be able to
“transfer” approximation results (positive, negative, or conditional) from an NP-complete
problem to another via reductions preserving approximations ratios or to condition the
existence (or the improvement) of existing approximation performances for some problems
on the existence (or the improvement) of approximation performances for other ones.
VC is a famous combinatorial problem for which we know a polynomial time approxi-
mation algorithm (PTAA) with a ratio equal to 2, namely the maximal matching algo-
rithm [5,8]. But, up to now all researchers have failed either to find another approxima-
tion algorithm with better performance guarantees. On the other hand, recently, some
researchers ([1]) have proved that VC does not admit a polynomial time approximation
schema unless P = NP. In the light of this remarkable result, the evaluation of a value
constituting the lower bound for the approximation ratio of VC, or an improvement of
the known approximation ratio for VC would be of great theoretical interest. Concerning
the improvement of this ratio, we mention here the works of R. Bar-Yehuda and S. Even
([2,3]). Their results concern an improvement of VC’s approximation ratio from 2 to 2— €,
but for an ¢ = _DM ([3]) wich tends to co with n.

In this paper, we propose a conditional method for the improvement of VC’s ratio for
an absolute constant €, by considering VC as a restriction of SC. In fact we link, from
an approximability point of view, three optimization problems, the VC, SC and IS. We
prove then, that a sufficient condition for the improvement of VC’s approximation ratio is
the simultaneous existence of an approximation algorithm for SC and an approximation
algorithm for IS on graphs for which holds =n < a(G) < £in, where a(G) denotes the
stability number of the graph G and the two a,pprommatlon algorithms are supposed of
constant approximation guarantees.

In fact, every instance I of SC characterized by two sets § and C (§ = {sy,...,3,}
denoting the family of the subsets of the set C = {e1,¢3,...,¢n}, where n, m are the
cardinalities of & and C respectively), can be represented by a bipartite graph B =
(S8,C, E), called the characteristic graph B of I, where the vertex set S denotes the family
S, the vertex set C the elements of the set C' and F = {s;¢; : ¢; € 3;}.

Every instance I of VC is expressed in terms of a graph G = (V| E), which can be
equivalently represented by a bipartite graph Bg = (V, E, E’) where E’, the edge set of
Bg, contains the pairs v;e; such that e; is incident to v; in G.

Clearly the instances of VC are exactly the instances of SC where every element of C
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is contained in exactly two subsets of &, or equivalently, in the characteristic graph of
these instances of SC the degrees of the C-vertices are equal to 2. Hence we can treat
every instance of VC as an instance of SC, by considering G or equivalently Bg as the
characteristic graph of this instance. Consequently, the result of [1] is valid for SC also.

By supposing next that a PTAA for SC exists, we derive a PTAA that provides a ratio
for VC of value strictly smaller than 2. Our method consists, given an instance of SC,
in constructing a new larger instance of the problem in which the cardinality of a set
covering is a power of the cardinality of the solution in the initial instance.

This construction is performed by means of a kind of operation on bipartite graphs, called
composition, where, given two bipartite graphs B; = (S5;,C;, E;) and B; = (5;,C;, E;),
someone can construct the bipartite graph B;+B; = B;; = (S5, Cyj, Ey;) with Sy = 8;x .5,
Cij = 0; X C;, and Eij = {$mnchi : $Smek € Ei A spc; € Ej}, where the operator x denotes
the cartesian product.

We denote by B' = (S;,C;, E;) the graph obtained by the following inductive schema:

B! = B

B = Bsx B (1)
In what follows we will suppose that p’, p are universal constants representing approxi-
mation ratios for SC and a family G of instances of IS respectively. This family is defined
as

9 11
g:{G:Enga(G)<—0n}

where n is the order of the graph G and «(G) its stability number (cardinality of a
maximum independent set of 7). We can suppose that the IS algorithm A", solving
approximately the instances of the family G, when applied to graphs not contained in G
provides either solutions with ratio smaller than p (p < 1) or non feasible solutions. Also
we will denote by 7 the cardinality of a minimum vertex cover.

2 The result

Theorem. Let p be the approrimation ratio of a polynomial time approrimation algo-
rithm A" solving independent set on graphs in G and let us suppose the eristence of a
polynomial time approzimation elgorithm A of (universally) constant approzimation ratio
for set covering. Then there exists a polynomial time approzimation algorithm for vertex
covering with a ratio bounded above by 2 — =p + ¢, for a ¢ arbitrardy small.

Whenever a(G) < Zn, we have obviously 7 > Ztn and consequently, since any minimal
vertex covering is at most of cardinality n (recall that by n we denote the order of G),
any suboptimal algorithm for VC has an approximation ratio bounded above by
7 20
%—n = H < 1.82.

Thus, the main part of the proof concerns the case a(G) > =n.

In what follows we assume the existence of a PTAA A with approximation ratio p’ (ab-
solute constant) for SC which provides us with a solution 7} of cardinality 7/ for B
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(inductive schema of equation (1)), by means of which we shall derive a solution 7% of
cardinality 7’ for Bg (or equiv. for G).

In fact, given the graph B’ we can see the set C; as the union of m = |C| groups of
cardinality m*=! = |C;_,|, every group C;_; as the union of m = |C| groups of cardinality
mi~% = |Ci_y|, . .., every C; group as the union of m = |C| groups of cardinality m = |C|

(the same correspondence holds also for the set .S;). Moreover for every j, set C;_; of the
graph B is “seen” by two S;_; groups of BY. This is clear by the definition of B?, since
every c-vertex of Bg is “seen” by two s-vertices of Bg.

Consequently, a solution 7" for VC on a graph G = (V, E) can be obtained by the algo-
rithmic schema described by algorithm 1.

For example for the case i = 2, let us denote by M; (| M; |= p:), ¢ = 1,2,...,n the
subsets of 7} in the S-group S;.

Then the solution 7" is obtained by taking one of the subsets of T4 of minimum cardinality
which covers a C-group of B? (the minimum being taken over the distinct C-groups), or
more formally:

T’ - {M,, U MJ' . |M3 U MJ‘I = kl-_]EIIIiZH...nI{Mk UM} D818 € E(G)}l}

In fact, since in B every vertex ¢; “sees” two s-vertices, s;, s;, then by the construction
of the graph B’ (equation (1)), vertex ¢; corresponds to a C-group Cj of B' receiving
edges issued only from two S-groups S;,5; of B’ corresponding to the vertices s;,s; of
Bg, and consequently the part of the solution T covering the elements of the group Cj
is contained in the groups 5;, 5;.

We are now well prepared to continue the proof.
Let us suppose that a graph G instance of VC is given. We apply A’ (algorithm 1) to G.
Step [1] of A’ serves to treat the cases where o(G) < Zn. Let us now estimate the size

20
74, of the solution T}.
We examine the following two cases corresponding to steps [5] and [6] of algorithm A’
respectively:

(a) Vi < k7l > n-5t,
(b) 3 < k7! < niSL

() Vi <k, 7> nf‘—z'l—

Here, we have to examine two subcases concerning a(G).

(al) o(G) = En.
(a2) 2n < of@) < 4n.

(al) Let 7,m be the cardinalities of a minimum vertex cover and a maximum matching
in G respectively.



[5]

Given the graph G = (V, E), obtain a maximal matching on G. Store as candidate so-
lution for VC the vertices incident to the edges of the maximal matching just obtained.

Construct the characteristic graph B = (5,C, E'), with S=V,C = E.

Fix two arbitrarily small universal constants ¢, € and construct the graph B* (inductive
schema of equation (1), where k is the smallest integer for which

1

p

E o L

<l4e. (2)

where
£

e <
— 9
g_iﬁp

(3)

" Execute ,4 on the instance of SC represented by B¥, let T4(|TY| = 7]) be the obtained

solution.

HVi <k > nT'T‘l then construct a solution 77(|7'| = 7} for G (or equivalently
for B) by taking the subset of T} of minimum cardinality which covers a C-group
embedded in a Cy group, embedded ..., embedded in Cj (the minimum being taken
over the distinct C-groups).

Also, execute A" to G and let ¢ be the cardinality of the obtained solution S’. If §” is
feasible and moreover o' > 2 pn then store the set 7" = V' \ §' as candidate solution.

Go to step [7].

3 <k < nT‘T‘l, then let P (Q) be the set of the S;_j-groups of Bt with more

(less) than T',T‘l subsets of 7.

Construct the graph BG = (P, @, E’), which is the bipartite graph resulting from G by
removing all the edges between the members of P{() and obtain a maximum matching
M on BG. Let PS,PE (QS,QF) the saturated and the exposed vertices in P (Q)
with respect to M.

Start from set @ F and take into account the members of PS5 adjacent to the members
of QE (let call this set by PS’). Take into account the mates of the set PS’ (let call
this set by @8’). Then augment PS5’ by inserting in this set all the vertices adjacent
to the members of Q3" that are not already in PS’. Augment also @5’ by taking into
account the mates of the vertices recently added to PS5’ and repeat this procedure until
no more vertices can be added to PS’.

Let G' and G” the subgraphs of 7 induced by the sets PS'UQS' UQE and (P\ PS")U
(Q\ (QS"U QE)) respectively. Take as solution of G’ the set PS5’

Go to step [1] and replace G by G”.

The final solution for G is the smallest between

(i) the set obtained in step [1],

(il) the union of 7" (obtained in step [5]) with the union of the sets PS5’ created from
the {eventually multiple) executions of step {6] and

(iii) the union of 7" (cbtained in step [5]) with the union of the sets P.S’ created from
the (eventually multiple) executions of step [6].

Algorithm 1. Algorithm A’ associating solutions for SC to solutions of VC.
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Given that ([4]) a(G) + 7 = n and m < 7, we have

9
<7< —=n. 4
m< T oen (1)
We know also ([4,5]) that given a maximum matching M, the set of vertices incident to
the edges of M constitute a solution 7" for VC of cardinality 7/ < 2m, thus by using
equation (4)

<

= 10"
and by taking into account the fact that the exposed vertices! of a graph with respect to
a maximal matching form an independent set of the graph we obtain immediately such a
set of cardinality "
!
[0 2 E
We have thus
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By an easy induction on ¢ and using the hypothesis of case (a) and equation (5), we
conclude that
5 k—1
nx(5) ™ (6)

(a2) In this case, if o' is the cardinality of the independent set obtained from A", it
verifies

-

= > p o
o
a > pa
9
> Zon.

By using arguments similar to those for case (al), we obtain

20 " or
20— 97

k—1
10
! > fk.‘
2 () 7 ")

1We use here the terminology of [8] where exposed vertices (with respect to a maximal matching M)
are called the vertices that are not saturated by the edges of M; also given an edge uv of M, u (v) is
called the mate of v (u).

n

This concludes case (a).




(b) i < k1) < n52.

Of course, the inequality 7/ < nr"T'l imposes in B’ the existence of some $;_;-groups with
less than I;-zﬂ- subsets if the solution 77 (set Q).

As we have already seen, in B there are n = |9| S;_;-groups, each one of these n groups
representing a vertex of G when seen with respect to the whole graph Bi. Thus we have
equivalently a partition of S((G) in two sets P and ¢}, the set () being an independent set
of G. The argument is that as the S-groups that form @ contain each one less than Lz‘l-
members of 7/, the existence of a C;-group of B (equiv. an edge of ) “seen” in common

by two groups of @ would lead to a smaller solution 7/_;.

Moreover, in what concerns sets PE,QF, if QF is empty, then the constraint 7] < nT‘T‘l
is not true. This is because if the whole of @) is saturated then all the groups in PSUQ

of the graph B’ contain at means more than 7‘2;1 elements. Moreover the members of

PE contain T}-groups of cardinality greater than T:T'l On the other hand if PE is empty
(P = PS) or M is perfect, then the optimal solution for G is found. The arguments:
as PS = P is saturated by the matching M, the mates of this set is set )5 and P is a
solution for G (complement of an independent set, i.e §\ ¢}) and moreover in every graph
the cardinality of a vertex covering is greater or equal to the cardinality of a maximum
matching ([4]), the minimum over all the possible solutions is found.

Thus the sets PS,PE,QS,QF provided by the execution of step [6] of A’ are all non-
empty.

Of course the fact that M is a maximum matching implies that there will never be a vertex
member of PE added in PS5’ during the described procedure. In fact during step [6], we
proceed by creating sets of alternating paths. If for instance we suppose that by this
construction we attain a member of PFE this means exactly that we have discovered
an augmented path and of course the hypothesis that M is a maximum matching is
contradicted. Also the fact that there are no more vertices that can be added in PS’
during step [6] of algorithm 1 implies that all the members of the so formed QS’ are
adjacent exclusively to the members of PS’ formed throughout the procedure. At the end
of step [6] of A" we have a partition of the vertices of G into two sets namely PS5’ and
P'=P\ PS.

We claim that PS’ is an optimal solution of VC in G'. Clearly, PS5’ is a solution for G,
as its members are adjacent to all other vertices (QS'UQE) of G'. Moreover this solution
is optimal for G'. The arguments: the way we have constructed PS’ implies that all the
members of this set are endpoints of edges contained in M. Moreover all the other edges
emanate from those vertices. Finally the edges added for completing the graph G are
edges between the members of P.S’. Thus the cardinality of PS5’ is exactly the cardinality
of a matching in G’ and thus the solution induced by PS’ is minimum ([4]).

Also by the way we have conceived step [6] of A’, there are no edges between the members
of S’ U QF and the vertices of the graph G” for which all the vertices of the set ¢ \
(QS'UQE) are saturated.

Finally algorithm A" produces a partition of G say GY,G,,..., G} such that G}, 1 < £



are polynomially solved and G, is either polynomially solved or admits the constraint

Tic1

7{ 2 n-5* where now 7/, n and 7/_; concern Gy, for which case (a) is applicable. Let

us denote by G’ the union B G; of the graphs produced by the (eventually multiple)

execution of step [6] and G the graph G,.

For this partition of G into the graphs G', G" we can prove that the epprozimation ratio
p of an algorithm solving approzimately the VC in G is smaller than the approzimation
ratio py of an algorithm solving approzimately the VC in G”.

Really, let us consider the independent set ¢, associated to the solution 77 (|7%| = )
of G'. We denote by Ty (|T1| = 71) the optimal solution for G'. We have already proved
that Tlf = Tl (T{ = Tl).

Let T, (|T4| = 74) and T, (jT2| = 72) be the approximate and optimal solution respectively
for G and let % < py for a fixed constant p,.

As there are no edges between members of ¢}y and vertices of G”, there are no more edges
between ()3 and the independent set @), associated to T3, thus if 7" is a solution of G then
T=T]UTj.

Obviously, if T (|T'| = 7) is the optimal solution of G, then 7 > 71 + 75 because 7" has,
eventually, to cover not only the edges of Gy and G, but also the edges between Gy and
(75, thus we have

i
-
L = 1 and
Lk
TI
2 < py oor
()

™ 4T, mtT
p = —<=—2= 2 < pa. (8)

T Tt+Te m+T

The last line of step [6] of algorithm 1 implies the application of steps [1] + [6] of the
algorithm on G”.

It remains now to explore the approximation ratio for VC induced by solutions for SC
found after the kth composition of G” (step {5] of algorithm 1). In any case (see equa-
tions (6) and (7)), the cardinalities of the solutions obtained in this step are of the form

T;: 2 ﬁk—lfﬁc (9)

where 8> 1 and equal either to £ (equation (6)) or to 201_09p (equation (7)).

Moreover, for the optimal solutions 7, 7 of G, B* respectively, we have

* > 7. (10)

From equations (9), {10), and the fact that the approximation algorithm for SC A has
approximation ratio p', we have

T’ ’T’ k
Pz L2287 =) o
"

| %
iA
x
.
=]
]



We have already seen that if the composition of algorithm A’ is performed on G”, the
solution for G obtained in step [7] approaches the optimal one within an error smaller
than the one for the solution of G” (equation (8)).

As i > ﬁ we have (see also equation (2))

!
20 —
T? < (1+4¢) & 109'0 and by equation (3)
7’ < 9 9 L
r = “TfTE

Thus in any case the solutions obtained from the execution of step [7] of A’ for VC
are always less than 2 — 19—0,0 + ¢ and as we can choose ¢ to be arbitrarily small, the
approximation ratio for VC tends to 2 — 2p < 2.

3 Discussion

The result of section 2 has brought to the fore an aspect of the complex relation, con-
cerning their approximation behaviour, between three known and difficult combinatorial
optimization problems. We think that such results in a theoretical level contribute to
produce a deeper knowledge of the approximation mechanisms in the class NP-complete.
On the other hand they could help us in deeper understanding of the properties of this
class as well as of the relations between its problems, relations that are not exhausted in
the fact that the existence of an exact polynomial algorithm for one of them would imply
the existence of such an algorithm for all of the problems. Moreover, the investigation of
this type of relation, from a “practical” point of view could produce immediate positive
or negative results for some of the problems concerned. If for example, the conditions of
the theorem concerning IS and SC were true a new improved algorithm for VC would be
immediately found.

Unfortunately, this “practical” significance of the above result is not valid. In fact,
in [7] (see also [6]) Lund and Yannakakis have proved strong negative result for SC’s
approximability: SC cannot be approximated with ratio clogm for any ¢ < % uniess
NP € DTIME[nPY!8"] (conjecture weaker than P = NP but highly improbable). On
the other hand, the approximability of IS in the class G, even if such a result has not
be proven yet, is very improbable®?. For one more time, in theoretical computer science
it is very frequent, we have produce theoretical results, we have eventually increased the
number of open questions, without, unfortunately, increasing the number of the answers.
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2In [1], the authors prove that there is no constant ratio approximation algorithm for IS unless
P = NP.
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