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Analyse en moyenne de la performance des algorithmes
gloutons pour des problémes d’optimisation sur des systemes
d’ensembles

Résumé

Nous présentons un cadre général pour 'analyse asymptotique d’algorithmes glou-
tons pour plusieurs problémes d’optimisation sur des systemes aléatoires d’ensem-
bles lorsque le rapport entre la taille de ’ensemble de base et la taille du systéme
d’ensembles reste constant. Les systémes d’ensemnbles sont engendrés via des graphes
biparties aléatoires et les approximations des chaines de Markov sont réalisées &
Paide d’équations différentielles ordinaires.

mots-clés; Probleme NP-complet, algorithme polynomial approché, approximation en moyen-
ne, couveribure d’ensembles, transversal d’un hypergraphe, stable d’un hypergraphe

Average case analysis of greedy algorithms for optimisation
problems on set systems

Abstract

A general framework is presented for the asymptotic analysis of greedy algorithms
for several optimisation problems such as hitting set, set cover, set packing, etc.,
applied on random set systems. 'The probability model used is specified by the size n
of the ground set, the size m of the set system and the common distribution of each
of its components. The asymptotic behaviour of each algorithm is studied when »
and m tend to oo, with 2 a fixed constant. The main tools used are the generation
of random families of sets via random bipartite graphs and the approximation of
Markov chains with small steps by solutions of ordinary differential equations.

keywords: NP-complete problem, polynomial time approximation algorithm, average case ap-
proximation, set covering, hitting set, hypergraph independent set



1 Introduction

There are many optimisation problems defined on families of sets such as hitting set, set
cover, set packing, etc., which are known to be NP-complete, and for the (approximate)
solution of which one must thus use either heuristics or greedy algorithms. The purpose
of this paper is to present a general framework which permits the asymptotic analysis
of greedy algorithms for several of these problems, including in particular those just
mentioned. T ' ' R .

This framework comprises two main parts:

(i) a representation of random set systems by using degree-constrained random bipartite
graphs.

(ii) the introduction of a Markov chain on a certain state space for the analysis of each
particular greedy algorithm.

It remains then to analyse the behaviour of this Markov chain. This behaviour can be
approximated for problems of large size by the solution of an ordinary differential equation
(or a system of such equations) which can be obtained in closed form.

We point out that Markov chains have been used previously, explicitely or implicitely, in
the analysis of algorithms by various authors. Let us mention Fernandez de La Vega ([3])
and Frieze Radcliffe and Suen ([5]).

This paper should be considered mainly as a theoretical contribution to the analysis of
greedy algorithms on set systems and, accordingly, we have not included numerical results.
Such results would be of limited help here since in most cases (a basic obstruction here,
comes from the fact that) we do not know the values of the optimum of the objective
functions (the approximate values which may be obtained via the use of the first moment
method seem to be rather inaccurate).

A preliminary version of this paper has been presented in the LATIN’92 conference ([4]).

The plan of this paper is as follows. In § 2 we introduce the model of random set systems
that we use and a useful connection with random bipartite graphs. In § 3, we study in
details an algorithm for set covering and hitting set and in § 4 we show how this algorithm
can be modified to be used for set packing and hypergraph independent set. Finally, in the
appendix, we prove the convergence of the differential system describing the set covering
algorithm.

2 Random set systems as random bipartite graphs

2.1 Random sets and random multisets

It will be convenient to work with families of random multisets rather than random sets.
Moreover, we will view our families as ordered. In other words, we introduce the uniform
measure 4 on the set of ordered k-tuples from some finite ground set § and work with u™,
the m-fold product of 4 defined on the set of ordered families of k-tuples of size m. Let
" us denote by » = 1, the more conventional mesure which gives the same weight to each
m-family of pairwise distinct k-sets. It is easy to see that when sampling on genuine k-sets



with replacement we get m distinct sets with probability near to 1 if only m = o(n*/?).
Now the probability p of getting a genuine k-set when sampling according to p™ satisfies

clear]
¢ (n=1n-2)...(n —k+1) k?
p= = EAwTIA

Thus, setting A = m/n, the probability p™ of getting m genuine k-sets when sampling
according to p., satisfies p™ >.exp {—(1/2)Ak?}, and this together with the former result,
implies that, for a fixed A, the 4™ measure of the genuine systems of m k-sets drawn from
a set of size n exceeds exp{—Ak*}. Thus, again for a fixed A, every event “almost sure”
relatively to the sequence of measures 4™, m — oo is also almost sure relatively to the

more conventional measure v, and this property suffices for our purposes.

2.2 Random set systems and bipartite graphs

Let X and Y denote sets with the same cardinality. Let P = {X;, X»,..., X} denote
a partition of the set X into sets with sizes my,my,...,my. Let P = (p1, P2, Pm)
where p; denotes the number of classes of P of size ¢. Similarly, let @ = {¥},Y;,...,Y,}
denote a partition of the set Y into sets with sizes dy, dz,...,dy, and let @ = (¢1,42,-. ., ¢n)
be defined similarly as P.

Now, let II denote a random pairing between the sets X and Y. If we contract each set of
vertices X; to a single vertex and similarly each set Y}, we get a bipartite graph, say B, with
partitions M = (mq,ma,...,Mmy) and D = (di,ds,...,d,). If we think of Q as a fixed
ground set, this pairing defines naturally a random set-system P = {X, X,,..., X},
where we identify X; with the set of classes ¥; adjacent to it in II.

Notice that this pairing procedure gives the same measure to all genuine set systems, in
which no set contains more than once any element of the ground set and no two sets are
equal. Indeed, any such system is given by precisely [Tiw, m;! [Tz, d;! distinct pairings.
Henceforth, we have at our disposal a procedure for generating random systems of sets
with fixed cardinalities, subject moreover to the condition that each element of the ground
set belongs to a prescribed number of sets in the system.

2.3 A particular class of set systems distributions

We are in fact mostly interested in the following class of probability distributions on
set systems. We postulate that the cardinalities of our random sets X7, X,,..., X, are
independent random variables Ny, Vs, ..., N, with a common distribution £ defined by
its individual probabilities {p; = Pr[N; = j],7 = 1,2,...}. Moreover, we postulate that,
for each fixed j, the set X is, conditionally on ¥; = j, uniformly distributed between the
(multi) subsets of [n] of cardinality j.

Thus, if we choose for F' the distribution concentrated on some fixed integer k, we get a
random k-uniform set system of size m. If we give a fixed value to the ratio m/n, say
m/n = A, then, by the law of large numbers, the number n;, of vertices of degree % in
the corresponding incidence graph satisfies, for each integer A > 0, ny/n — e *A*/A! in

2



probability as n — oc.

Now, if we want to generate a random set system according to some distribution in the
class just defined, we are faced with two difficulties:

1) the degrees are unbounded,

ii) the partition of the incidence graph is not fixed.

In order to circumvent the first difficulty, we restrict our algorithms to work only on
vertices with a bounded (but arbitrarily large) degree A and we show that the size of the
obtained solutions tends to a limit as A - 00. -

The second difficulty is circumvented by conditioning on the degrees of the graph. Indeed,
since the proportion of vertices of each fixed degree in each color class of the incidence
graph B = B, tends to its expectation when n — oo and, as it will be seen, the sizes
of the obtained solutions are continuous relatively to the ratios ny/n, we can obtain the
limits of these sizes by replacing these ratios by their expectations.

2.4 Removing Vertices from the Incidence Graph

Let us return to the graph B and let us look at what happens when we remove a ver-
tex y randomly chosen from the vertices in Y of degree h in B, i.e, we remove the &
corresponding vertices in V{P) (then, all the sets containing y are removed). Since the
pairing P between the sets X and Y is random, the subset of ¥\ {y} whose vertices are
adjacent to the removed sets in X is also random. It can then easily be checked that
the new incidence graph is again random within the graphs which have the same degrees.
We note that, since B may eventually be a multigraph, the number of removed sets may
(exceptionally) be strictly smaller than . We will of course take this fact into account in
our calculations.

It will be seen that all the algorithms we consider, remove at each step either vertices
from Y chosen on the basis of their degrees, or a vertex X,; chosen on the basis of the
size | X;|, or both. This implies again that the successive incidence graphs which appear
are random within the graphs which have the same partition.

3 :Hitting Set and Set Cover

3.1 A Lower Bound for the Random Hitting Set Problem

Let C denote a fixed subset of [n] of cardinality {. The probability that C intersects C}
for some fixed i is 1 — [L — (I/n)]*. Since the Ci’s are independent, the probability that
C intersects C; for each ¢ is p = Il —[1 - (I/n)]k]m Hence, the expectation FY] of the
number Y] of sets of cardinality ! which intersects each C; is given by

B(-0-)



Setting mm = An and [ = 8n, we get

1 1

This implies £Y; = o(1) whenever

1
lOg..‘@(l—_mr:,a: S . @

AS X, =
T g gy

- The following assertions can be easily deduced from this formula.

Assertion 1. For any fixed k, S tends to 1 when A tends to co.
Assertion 2. For any fixed A, the ratio Sk&/log k tends to 1 when & tends to oc.

Proof of assertion 1.
Putting v = 1 — /3, and using the inequality (’;’) < (ne/l), we get from (1),

o (- (2)

Suppose for a contradiction that v > v, > 0. Then, when A — oo, the first term on
the righthandside tends to 0 whereas one can easily check by taking derivatives that the
second term is bounded above by e. Therefore, FY; — 0 as A — oc.

Proof of Assertion 2.
Let us prove first that we have § > k~tlog k(1 — o(1)). Inserting in (2) the value g =
(log k — 2loglog k)/k and using the inequality Zlog(8~') < 1, we get

log ﬁ-ﬁ < 3+ 252 < 2k log k

Ap <
# = log g e Pk — e = p=Tlog? k(1 — o(1))

= o(1).

The proof of the reverse inequality is similar and is omitted,

3.2 The GRECO algorithm

For any family C of sets, a set H is a hitting set for C if H has a non-empty intersection
with each element of this family and the minimum hitting set problem is that of finding
a hitting set of minimum cardinality (see also [6]). We note that this problem is the
dual (via the interchange of the two vertex sets of the incidence graph) of the set cover
problem.

We note that recently, Lund and Yannakakis in [10] have proved that unless NP C
DTIME[nPY 6] (conjecture weaker than P = NP but highly improbable), there is
no polynomial time algorithm approximating the optimal solution of these two problems
with a ratio smaller than clogn for a constant ¢ < 1/4 (this result is of course a “worst
case” result). Consequently, average case studies of approximation algorithms for these

4



begin
split every set ¥; with degree d; > 7 into d; new vertices of degree 1

for h —nptoldo
while | X| # 0 do
choose randomly one of the Y;’s with maximum d;;
delete vy |
delete X = X;,, ... , Xy, the set of the classes in P, incident to ¥; in II;
delete any other vertex in Y adjacent to at least one of the classes of X;
let X,Y,P,Q denote now the new configuration;
let T denote the survived incidence graph
od
od
end;

Algorithm 1: GRECO algorithm. We suppose that after the splitting of the Y; per-
formed in the first line of the algorithm, the incidence graph II is left
untouched).

begin
7 — [nlog k/k];
SC—{x1,...,2,}
for j — 1 to m do
if C; NSC = 0 then add to SC an arbitrarily chosen element of C}
od;
end.

Algorithm 2. QUICK algorithm

problems are of high theoretical and practical importance. Let us mention that another
algorithm due to Karp has been analysed with the same probability model ({7]).

Let the family of sets P = {X;, Xs,..., Xn }, together with the corresponding partitions P
and @, be defined as above via the random pairing II. We consider the greedy algorithm 1
for finding a hitting set for P. Informally, our algorithm GRECO selects at each step
one element chosen at random between the elements hitting the biggest number of sets
which have not been hiited before. It depends on an integer parameter 7.

Before proceeding to the analysis of this algorithm let us remark that when the product Ak
is high, the distribution of the degrees tends to uniformity. It turns out that in this
case the much simpler algorithm QUICK (algorithm 2) provides asymptotically optimal
solutions.

Let us proceed to the analysis of QUICK.



Plainly the size of the solution is bounded above by v + u, where g denotes the number

of elements of C which do not intersect the set {zi,...,2,}. We have
n—y k
Ep=Xn ( i ) N)\n(l—loik) .
(2

A simple computation yields that the variance of g is of a smaller order than the square
of its expectation. This irﬁplies, using Tchebicheff inequality and the familiar inequality
14z < €%, that Pr{g < An/k] - 1.

Thus, again with probability tending to 1, the total size of the solution found by QUICK
is bounded above by (nlog k/k) + (An/k).

Assertion 2 then implies that the approximation ratio of QUICK tends to 1 when k tends
to co. Moreover, it can be shown that algorithm GRECO works better than QUICK;
thus, assertion 2 provides also an approximation guarantee for GRECO when & tends
to o0,

3.3 Analysis of GRECO on random instances

Let us consider again a random configuration X,Y, P, @,11 and the corresponding par-
titions P and ). We are interested here in a system of m random sets of size k, drawn
from a ground set of size n and we assume that the ratio m/n is fixed, say m/n = A, and
we let m (and n) go to infinity. We must analyse separately the phases of the algorithm
corresponding to the successive removals of the @-vertices of degree n,n —1,...,1. Let A
be a positive integer satisfying 1 < h < n and assume that, after having used vertices with
degrees greater than h, there remain, for 1 < § < h, precisely m; Q-vertices of degree j.
Then, as it was pointed out hefore, the conditional distribution of the remaining incidence
graph (conditioned by the previous steps of the algorithm) coincides with the “random
pairing” distribution corresponding to the n;’s and m;’s (the n,’s being here all equal
to k).

Let us remove a (randomly chosen) Q-vertex of degree £, Then:

¢ Pr[h new sets in P are captured] = 1 — o(1);

e the total decrease of the degrees of the remaining vertices has expectation h(k—1)—o(1)
and the probability that the degree of any given Q-vertex is decreased by 1 is equal to
[(A(k — 1) ~ o(1))7]/ T1<i<h tm, where j denotes the degree of X;

o the decrease of the total size of the remaining Q-vertices has expectation h(k—1)+o(1)
and this implies that, setting S = h(k — 1}/ 3y <icp i, the expectations FEAm; of the
increments Am, satisfies ‘

EAm; = (J+1)mins —jmS, 1<3<h-1,
EAmh = —-1- hth
Let R, 5 = (1/n) 21<ich tm; denote the average degree of the Q vertices. Notice that the

total decrease of the degrees of these vertices in one step is 2+ h(k — 1) = hk. Standard
results concerning the approximation of “small steps Markov chains” (see for instance



Proposition 4.1 in [9}) imply, setting y, 4 ; = m;/n and 8 = t/n, that the y, ; ;s are well
approximated as n — oo by the solution 7 of the following system of differential equations
(where we use Newton’s notation for dy/df)

(S01) Unhg(0) = (5 + 1)%%%;%%@;;“(9) — iy (0), 1< <h—1
» . -1
’ Jnin(®) = —1—hgo=igyman()

in the sense that, sup |y, 5 ;(8) — (1/n)m;(#)] — 0 as n — oo, in probability for each
o

1 £ § £ h if only the initial conditions y,, ;(0), 1 < j < n tend to fixed limits.
This concludes the description of the systems (S, 4),1 <h < 7. -

Let us mention that the use of three indices 5,k and § which may scem luxurious to
the reader, is in fact needed for the mathematical study of the above systems (see the
appendix).

Let us emphasize now how we use these systems to analyse GRECO with parameter 5.
We integrate first (S, ,) under the following initial conditions:

o0 -Ay7
1 - e\
Ynm1(0) = €77 + —
e~ .

where A = m/n is the average degree of the Q-vertices of IL

Observe that for each j, the corresponding RHS of the above equalities is equal to the
~ almost sure limit of m;(0)/n as n — oo. Also, Ry, = X1 jyl , ;. We denote by 4, the
first time at which the last coordinate becomes 0:

O = min{6 > 0 : g 5., (0) = 0}.
We set yl 1= tnni(Onn)y 1 <5 <n—1,and Ryyy = 71jyl._1,;. Then, we turn
to the system (&, ,-1) of dimension (7 — 1) x (g — 1) which we integrate with the initial
conditions: # = 0 and y,,—1;(0) =yl _;;, 1 <j <n— 1. We define 6, ,_, by

Oyn—1 = min{f > 0 : yyp-1,9-1(8) = 0}

and we repeat inductively this procedure for each h > 1, taking as initial conditions for
. the system (8,) the final conditions for (S, h41)-

We define ;
T.n = Z 8,,,,,1.
h=1

Our aim is to study the asymptotic behaviour of the sequence (1,), . py. We observe first
that, using inductively the approximation theorem of [9], we get immediately the following
theorem.

Theorem 1. There exists a function f(.,.,.) such that, for any fived values of the pa-
rameters k,n and X, the size § = S(k,n, A\, n) of the solution found by GRECO when
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applied with the parameter  to a random winstance of m k-sets of size k drawn randomly
from a set of size m = nA~!, satisfies

_ 5
n.f(k,1,})

— 1
in probability s n — oco.

We will prove in the appendix that the sequence (Tn)n cIv+ tends to a limit as  — oo,
This implies immediately the following theorem.

Theorem 2. There exists a function ¢(.,.) such that, for any fived velues of the pa-
rameters k and A and any positive €, the size S = S(k,n,A,n) of the solution found by
GRECO when applied with the parameter n to ¢ random instance of m k-sets of size k
drawn randomly from a set of size m = nA~!, satisfies

S
- — <
1 e_n.g(k,,\)_l-l_ﬁ

in probability as n — oo, if only n is sufficiently large.

3.4 Proof of the convergence of of the sequence (Tn)new*

3.4.1 Explicit integration of the differential systems

Let us firs reformulate the system (S,4). By introducing 8 = (k —1)/k and ayp =
(1/RE)Rpp, 1 < b < 7, the vectors of R : yy4(8) = (v4,,5(8) %J'Sh’ en = (0,0,...,—1)T
and the matrix M} of dimension A x h with

Myj; = —J
My = § Muiim1 = 541
My;; = 0 elsewhere

we can reformulate (S, 5) in a vectorial form as follows:

(Sn,h) ?)n,h(g) = ““‘““Ig“""Mhyn,h(H) + €.
Cf,?‘h - 9

We define also )
. Ty = Z 9,,,},,.
h=1
Our aim is to study the asymptotic behaviour of the infinite sequence (), py-

We consider (S,.) when 8 € [0, ;4] It is a vectorial first-order linear non-homogene-
ous non-autonomous o.d.e. (ordinary differential equation). The system’s coefficients
are continuous functions of the variable # on [0,a,4[. So, Cauchy’s theorem about the
existence and uniqueness of the solutions of linear Cauchy’s problems is applicable here,

8



and moreover the non-extendable solution of (S, ) under the initial conditions y,,,(0) =
y;;,h, is defined everywhere on [0, [, ([1], p- IV, 17).
To solve (8,,), we consider the associated homogeneous o.d.e.:

(Hnn)  9(0) = Mpy(6).

Up b — 0
The resolvant .of this homogeneous. system is ®(#) =.exp {F1n (ayn/0yn —0) Mp}. The
calculation of the characteristic polynomial of M) shows that M) possesses h distinct
eigenvalues, namely —1,—2,...,—h, hence M, is diagonalizable. If b; is an eigenvector
associated to eigenvalue —j, for each j in {1,2,...,h}, then B = {b,...,b;) is a basis

of IR" and, in terms of B, M, is expressed by means of the diagonal matrix D), = (—iSf ) L
T

where &/ is the Kronecker symbol. Denoting by P the matrix of the change of coordinates
from B to the canonical basis, we have M, = PD,P~. For each j, we take b; =
(bj15-- -5 b )T where

(~)#(1) i i<
it 1=73
0 if ¢>3

&
T,
—

The matrix P is then defined as

(~D(0) i i<y
F; = 1 if i=3j
0 if i>3
and its inverse matrix P~! = @} is defined as
(1) i i<y
Qi; = 1 if i=j
0 if i>

Then ®(0) = exp {BIn(ayn/ans —8) PDyP™'} = Pexp{8ln(ayp/oms —0) Du} P71,

and we can explicitely compute its components, obtaining so:

®;;(0)=0 o f P>
{ 2:,00) = (3) (sezte) " (1- (zs)”) it i “

So, we have expicitely integrated (H, ). The solution of (5, ) under the initial conditions
ynn(0) = yl, is , for 8 € [0, e, ({1}, p. IV, 21):

Ynn(0) = ©(8) ynh + (0 (/‘I’ dor) e (5)

Let



Since u, is the solution of (&, ) under the initial conditions u, ;(0) = 0, one can verify
by a straightforward calculation that, for every j = 1,...,k and for every & € [0, o 1],

g -8i B\ P
h oy — 0 ayn — 0
(0) = — - - == dt.
wnsl®) =~ () / (22=) (1 o )
So, with expressions (4,5,6,7), we have explicitely resolved the system (&, 1) under the
initial conditions y, 4(0) =y, ,.

3.4.2 The computation of 8,
Using the results of § 3.4.1, we have, V8 € [0, &, 4],

a4 ~Bh , '1 a;,ﬁhﬂ
Ynhn(0) = (m) Ui * g7\ e — 0P (ann—0) ] .

Assuming that y., , > 0, we search for these 8 € [0, ays[ verifying y,u4(¢) = 0. By a
straightforward computation, we obtain: if y;;,h,h >0,k >2and h > 2, then there exists
a unique 8, € [0, o, [ such that y, 5 4(0,4) = 0 given by

h—1 =BT
Gn,h = Qph l:l - (1 + ﬂ yrl;,h.,h,) } * (8)

Qb

3.4.3 The signs of y?I?’hJ

Let us start by establishing the following assertions.

(A1) Let 1 < h < 7 and suppose that V5,1 < j < &, y;’;,h‘j > 0. Then:

(1) Yy € {1,2, cey b — 1}, Vo € [0,9,7,11,[, yn,h,j(g) > 0

(11) VJ € {1723 T ',\h - 1}) yﬁ(,h—l.j = yﬂ,h,j(gﬂ,h) 20.1

To show (i), we reason by contradiction in assuming that there exist 8 € [0,6, [ and j,
1 <j < h—1, such that y,,;(f) < 0. Since yy4;(0) =y, ;> 0, we have ¢ > 0. By an
argument of connectedness, there exists ¢; €]0,8] such that y, ,;(01) = 0. Let us denote
by J={j:1<j<h—=1,y,;([0,0,,)) 50}, J #0. For each j € J, let us introduce

0(j) = inf{0 € [0,0,4]: yy0,4(0) = 0} = inf{[0,0,1] : ynn5(0) = 0}
= inf([0,6,4] Ny, 5 ;({0})).

Since this last set is closed and bounded below, it contains its greatest lower bound, thus
Ynn,i(0(7)) = 0. As, on the other hand, 3,,,;(0) > 0 and y,, . ; is continuous, then y, 5 ; is
positive on a neighbourhood of 0, hence #(j) = 0. By definition of é(7), for all @ € [0, 8(7)],
we have y,5,(#) > 0. Let us introduce § = min{8(j) : 5 € J}; we have 0 < § < 0,1
and let 7 = max{j € J : (j) = é} Note that j cannot be equal to A — 1. In fact, if

10



the contrary holds, we have Vf € [0,8], ¥gnn-1(8) > 0 and y, 4 4-1(8) = 0, which implies
Ynhh-1(0) < 0. By using (S, ), we get

0> Gonscr (0) = by 1 0) = (b = )Ly ps(0) = h—L—n(8) > 0
. Xph — 9 Qph — 0 Qnh — f

which is impossible.

Consequently, we have proved that 1 < 7 < h—2. Let us note that if 7<j<handif

6 € [0,8], then y, 4 ;(0) > 0 because § > j == (j ¢ JVI(j) > 0).

Since y, () > 0 for 8 € [0,4], and ymh'}((j) > 0, we have y,,,h,3(é) < 0. This, by

using (S,,4), implies that

L A 3 .. B \
0 > [0y = (7+1)——=y, p104(0) = =y, 20
yn,h,_y( ) (.7 )Oln,h . Hyn,h.,g-}-l( ) Qg ~ eyn,h,J( )
z f A
= + 1) ———=y, 524(0) > 0
(7 )amh —tanin(0)

a contradiction.
This justifies (i). On the other hand, (ii) is a consequence of (i) because of the continuity

of Yn,h,g-

(A2) Under the hypotheses of (A1) let 1 < j < h—1. Uy, ;(0,n) = 0,then Vi, j <i < h
we have yp 4:(0,4) = 0.1

In fact, with (A1) we know that for all 8 € [0,8, 4{, ypri(8) > 0 and y,4;(8,4) = 0,

which implies

. . B B
0 2 gpailban) = G+ 1)mymh,j+l(9n,h) "Jﬁyn,h,j(eﬂ,h)
0, , n:h T Vb

= (7+1) Ynnit1(Oan) = 0.

a’?yh - 9"71}"
Thus’ y?’,‘,h,j+1(9ﬂ,h) = 0'

We can repeat the same reasoning for y, 5 ;42 and so on.

(A3) Under the hypotheses of (A1) we have:
(Vj = 17 Tt h - 13 ynlh'lj(elq?h) > O) — (yﬂrh?h_l(aﬂ}h) > O)' I
In fact, the first implication is obvious and the converse results from (A2).

We also remark that g, pa—1(0nn) = 0 <= gy pn-1(0y0) = 0. In fact, it suffices to remark
that by the definition of 6y, gy hh-1(0nn) = —(h — 1) (8o — Onn )y pp—1(0n.0)-

3.4.4 Relations between 0,y and o,

We multiply the j-th equation of (8,) by j and next, we add the A resulting equations;

we thus obtain Ty j,i(0) = —h — [8/(ayn = ) Zjes 79n0,4(6)-
Denoting by z,x(0) = 5%, jyyn,(0), we see that z,, is a solution of the o.d.e.:

Zon(0) = —“h - zq,(0) (9)

Q:,?,h - 3
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under the initial condition #,,(0) = R, . We note that equation (9) is an one-dimen-
sional linear non-homogeneous o.d.e. with variable coefficient (continuous function of 8)
and consequently, the theorem about the existence and uniqueness of the non-extendable
solutions of Cauchy’s problems is usable in (9). Integrating (9), for instance using the
method of constants variations, we obtain, V8 € [0, ay, 4],

8 Jéj
h ]
2(8) = By (.1_ ".)..+.O”?.= b (1_L) _..(.1_._..) -
- Qb Q.

&y —f+1
On the other hand, z,4(8,4) = S0y jni(nn) = Lozt Jydso1,; = Bnh-1, that implies
Ryp1=Ryp—khO,,, 2 < h<n—1,or equivalently

s = (Tfﬁ—f) (Gipp — B ). (10)

Ry, — hib.

By introducing the 2-variable function Tj{a,y) = o [1 — L+ (8h - 1)/ory]1/(_ﬁh+l)] for
o >0,y > 0, we see, using expression (8), that 6, = Th(c, ¥l 44)- One can also verify
thatif k>3, h > 2, >0,y > 0 and ka > y then

1 _Bh+1 ] |
mln(l—Ty)zl_( (k= (= 1),

By taking for a short while X = (k — 1)(h — 1) > 2, the previous inequality allows
us to obtain [1/(—8h+ )]ln[l — (=B~ + 1)/ay] > In(X )/( 2 > 1In (1/2); therefore,
taking the exponential mapping, we get [1 + (82 — 1)/ ][ /(=811 > /2; consequently,
iftk>3,h>2,a>0,y>0and ka > y, then

Ti(e,y) < 5. (11)
From the above expression, since ko, = (1/h)Ryn > yl, ,,, we deduce, Vk > 3, VA > 2
1
Bn,h S -2—017',,;1.

3.4.5 An upper bound of y,j,;

By adding the A equations of the system (S, ), we obtain after some calculation the
following expression: 17 tg,;(8) = —1 — (ﬁ/am Vynna(0). Since y, 41 is non-negative
on [0,0, 4], the derivative of the function 3" i1 Ynh,j 1S non-positive on the same interval,
hence this function is monotonically decreasing on [0,8, 4], and consequently, V8 € [0, &, 4]

h h
> Ynhi(8) Dty (12)
Jj=1 i=1

By taking 0 = 0,, we get Y02yl < Tk, yl,; which implies that VA < g

Zyny hg — Zy‘ﬂﬂ?.ﬂ - " (13)

=1

12



Also, from the above expression and expression (12), we deduce, ¥n € IN*, Yh € N7,
h S 7, VJ € W*a J S h; VH S [Ozgn,h]

0 < ynns(0) < L. (14)

On the other hand, using expressions (5) and (6), we get:

1
Yn,h,j (0) = E"I)EQPI(H)yi,h,p'"F Uy hp(0):

p=1

We easily verify, using expression (7), that u,,,(0) < 0; thus using expression (4), we

obtain i
h JB 81"
Oy h — g Xpp — f
) < N I e e L oo 15
w0 ;( ) ( Oy ) [ ( QU ) } I 5)

- In what follows, we will need inequality (16), whose demonstration is elementary:
el <1 2 €0,1),) > 0,i € N,i > A (16)

We are going to establish, by downward induction, inequalities (17) and (18), for all

integers n, h,j € IN, A < j <h <nand V8 €{0,6,,).

e\
it

I
Ynhi <

(17)

In fact, we initialize the induction at A = 7 with expression (3). We suppose true the
inequalities for a fixed h. Then, in the step & — 1, by putting @ = [(ans — Oyi) /s, we
use expression (15) to obtain, for § = 0, ;,

h
yf;,h—lg Y (Bp) < z ( ) yn, hyp}
p=
next, using the induction hypothesis, we get for yi,_; -

h . e AP
yé’h_l,j < z (P)mj(l—m)p_o"e A

|
p=7 j p'

-Ayi o
< = Z 1 _ 3:)‘” izpmi = e_._,é_mge(l—w})\
J’ 7!

and, finally, with expression (16) we obtain (17).
e~ M\
i

Ynhi(0) S

In fact, by taking now = = [(ans — 0)/ays)’ and by using (15), we get:

I
Yn.h ;J S Z( ) p Jyn, hyp

=7

13



Next, using expressions (16) and (17), we obtain

h -,\)\p My —A )i
yn,m Z( ) 1_1 - < € - 7 (12 < e k

p! 7! 7!
g.e.d.
Let us now introdg(;e the constant 4 -
- 1
== — {e‘?‘)\j } (19)
ielN 1<5<A 7

We note that = does not depend on A and also that = > 1, since e=*) /5! < ede = 1.
Using =, we can prove the following expression.

, Vb, je N A< <h<nV0€0,0,,] (20)

In fact, if j > ), then by using (18), (Z > 1) we get ynu,;(0) < e *A /5! < Ze=*X3/4!. On
the other hand, if 7 < A, then by expression (14) we get

g.e.d.

3.4.6 An upper bound of the sequence (7;) p

Using expression (10) and for A > 2, we get:
h—1
gn,h. =0y p— Tan,h—-l = Qpp — Qph-1 + Ean,h—l-

Consequently,

Tn_zgnh—anl+z aﬂh_aﬂh 1 +Z aﬂh l_gﬂl—l_aﬂn anl-i_zh-[-lan’

h=1 h=2 b2

Thus,
n—1 1

Ty = (Gn,l - an,l) + o + Z maﬂ.h'
h=1

We know that 8,1 < o1 and, by using expression (3) we obtain

7 -—)\)\_1 7—1 1 2 e~ )\ -1 Nooonol = —A/\g
™S Zﬁ’ ; hlmh—E Vi S SRR h+1hk§1-’
the last inequality obtained using (20); hence




Not¢ that

n—1 1 h—1 15 n=1 1 n—1 1 1
S L s oS () =2 (1)
= h(h+1) = 5! = h(h+1) h h+1 7

§=0

which leads to

e A [10X)  E) ( 1)
T, < - -] +=—I1-=]. 21
Tk ngﬁ_._k n) e
Note also that (1/7) ?;é(/\j/j!) < maxocj<n {A?/7!}. By denoting by |A| the floor of A,

we easily verify that: maxXocj<a-1 {¥/5!} = A=1/(|A] — 1)} and maxy_1<; {N/j!} =
ARI/IA ]! and, since A > |A], we have A/|AJ1 > AA=1/(|A] = 1) consequently, we
get max, M/} = A/ A|l. Whenever 0 < A < 1, we have [A] =0, [A]! =1 and
. eV
M/t < 1= 20700 = A/ |A]!, therefore, VA > 0,
b AL
max§ — ; = —. : 22
mie {37} = T )
On the other hand, 1 — (1/7) <1 and by (21) and (22) we deduce that
eMAA =x A [e"")\w ﬂ}

<& 22 4222 =
e pYTIA Sl R DY

and consequently,

sup T, < + 2| < +o0. (23)

w2k

A [em2AlA

[A]!
Since = depends only on A (see also (19)), the proposed upper bound only depends on A
and k.

3.4.7 Variations with respect to a

We consider for each h € IV* and for each a > 0, the following differential system in R":

(Ch,a) y(e) =

o aMhy(g) + e,

when @ € [0, a.

One can see that (Spn) = (Chay,)-

We denote by 5 (f, o, z7) the value at the time 6 of the solution of (C, o) that takes the
value 2! at the time 0. Then, function T} («, 2{) introduced above denotes the first time
the h-th coordinate (¢4 4) of @h becomes 0. We can see that y,x(0) = (8, ann, ¥ls)s
V0 € [0, oy [ We have already noted that 8,5 = Th(cmn, ¥l 44)-

The homogeneous system associated with (Cp ) is denoted (Lpo) and the resolvant
of (L) is denoted by @,(8, ).

With computations similar to the ones performed for the systems (S, 5), we establish the
following: ®,(0,a) = exp{fIn [/ (8 — )] My}, with

0 if i

‘I’h,z’,j 9,0! = ; " ~Bi e V7« j-i . . , 24
- {(J(m)ﬁ[l—(m)ﬁ] SE
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We have also Vj =1,...,h, ¢4;(0) > 0 in [0, Th(«, 21)] when zh3 > 0.
The solution of (Cj, ) that is equal to 2 at the time 0 is (6, @, 27) = 8,(0, )z’ + 4 (9, a),

where .
Yn,;(0, @) = —(?) ]08 (Z:f)ﬁj [1 - (Z:f)ﬁ] k dt. (25)

Starting from expression (25), we have, V4§ < A and V8 € [0, Ty, (o, #1)]
Py i(6) <0. (26)

Moreover, with a similar reasoning as in the case of expression (18), if Vj = 1,...,4,
2l <Ze M/l then Vi =1,...,k, V0 € [0, Ty(a, zt)] we have

- Also by arguments similar to the ones of § 3.4.4 we establish that function

h
0 — Zj(ph,j(ga o, ZI)

i=1

is solution of the scalar o.d.e. #(8) = —h — [3/(a — 8)]z(#). We then deduce that

St ()b -(-2]

Supposing also that EJ - sz < hka, after some easy algebra we obtain: Vh € IN¥,
Va > 0, Vz! € R™ such that 7, jz/ < hka

> deni(0,@,2") < hk(a —4). (28)

i=1

We now compute a lower bound for R,, and e,,. In fact, we prove that VA > 0,
dn(A) € IN* such that Yy € IN*, 5 > 5(})

Mo 23

A

Qg 2 '275 (29)

Since lim, . 375 (A/il) = e* > €*/2 and (E?__& ()\"':/z")) is a monotonic increasing

sequence, then In{A) € IN* such that Vg > n(\), Tiss (A /! ) > ¢*/2. Consequently,

nn~6'AAZ ¢ = i

: = ! 2 2
and R \
"=k 2 Bk
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q.e.d.
Let us now prove the following: Vn € IN*, YVh € IN*, h <7

Yok 2 O (30)
Recall that
0< gy < (31)
. - Hay .a’,y_.._ e i e :
and also that Vo > 0, Ty{e,0) = 0. Using the mean value theorem, we have
0 < by = Tulongn¥ium)
oT,
= [Talnhs Y nn) — Tn(oms, 0) | sup —(f(an,my)D W — Ol
yE[D,yé,h,h] Y

< 1|y£,h,h| = yf;,h,h-
This concludes the proof of expression (30).

Moreover, by some easy calculations, we can prove the following ¥p € IN*, p > 2,
Vh,n € IN* such that p — 1 > h > 2)

pY < -1 AP

T -0 P
n—1 AP /\h An-1
. - . 32
ot T (A1) (np—1)! (32)
We now prove that Vp € IN*, Vh € IN* such that A < n we have
hany 2 (B + o — (A + 1)y£,h+1,h+1- (33)
In fact, using expression (10), we have Ryp = Ry p41 — (b + 1)kl p4q o0
R R :
2 = =2 — (At Dy

Recall also that e, = R,5/(hk). So, we get
hags = (b + Vagpe — (A + 1)0n ht-

Moreover, using expression (30): —0, 411 = —¥: 441441 Combining the last two expres-
sions, we obtain expression (33).

Let us now prove that ¥n € IN*, n > 2X and Yh € IN™, 2X < h < we have

7 e AP
Qnh 2 Eanm TR

Using expression (33), VI € IN” such that > [ > 2 > 2A, we have

(34)

; e—)\/\l+1

lan,l — (I + 1)aﬂ,l+1 z _(I + 1)yn,l+1,l+1 > _(l + 1) (l + 1)|
(17) g7 ANH A
2 ll = ¢ )\—ﬁ'
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Summing these inequalities, we obtain (using expression (32))

n—1 n—1 /\I
Z lan’ l + 1)0{.n +1 = > e /\
I=h I=h
- Using also expression (32), we get ha,p — nay, > —e *A%/(h — 1)1, and expression (34)

follows.

Also, ¥ € IN*, n > 2A, n > n{A) (expression (29)) and VA € IN” such that 2X < A <7,

we have

A e
>_2 _Z 2
TV Y
In fact, using expressions (34) and (29), a,s = (n/h)ay, — e A /B > (n/R)(A/2nk) —
e~ *M /h! and expression (35) follows.

(35)

We finally prove that JA, € IN* such that ¥np € IN", n > 2X, n > n(}) (expression (29)),
Vpe IN",n>h2>h,, h> 2\ wehave

(36)

> —.
RTY?
Since (Ah‘lf(h - l)l)h is the general term of a convergent series, M~1/(h — 1) —,_ 0.
Thus, A*/(h — 1)1 = AP /(B — D) = A0 = 0 or AA"/R! = M /(h — 1) =4 O
consequently, 3k, € IN* such that Vh > h,, A" A < AJ(4ke ™) or e™*A*/R) < A/(4hk).

Thus, using expression (35), we deduce expression (36).

Let us now introduce, YA € IN*, the norm || - ||, in R", defined as ||z||, = Sk, (i/h)]=].
Then, Je; > 0 such that VA € IN*, b > 2X, Vyp € IN*, p > h, Yo 2> min{a, s, tpa1 s},
V2! € R*" such that Vj = 1,..., A, z*-’ < Ze XM /jl and #} < ka we have

S ci. (37)

h

Haocph (Th(a zh o zI)

Let us fix 7 and & such that 7 > & > 2). Let also 8 = Ti(e, 2]).
Then, V5 =1,...,h — 1, we have

d j1+1)

210 oni@ro, )| < DL (B 2!) + oy ).

Since 2} < ka (expression (11), we have & < (1/2)e, hence 8/(a — 8) < 28/ a.

Let us suppose that o > a4, the reasoning being similar in the case o > ayq1 4. So,
Bl/(a—8) < 28/ann and since h > 2\, using expression (36), we get 8/(a —8) <
8Bhk/A = (8(k—1)/A)h. Thus, using the hypotheses of expression (37) and expres-
sion (27), we have

il - 3 +1)8(k — 1 . 3
E‘%‘Ph,j(‘?,a,zl) < 4 3 = ) )h(%,j+1(9,a521)+90h_j(9=a=21))
Sk 1) g
< 1 o .
= ) (.7 + ) ( ( T 1) + ;1

18



Hence,
B ,
K
Z h ‘agtph,f(g’a’z )

j=1

[ A

J J+1
B(k "ZH+1(A+ ) )

i=1

AN

Ze 2 2eMAT 4+ ) < 16(k - DEA+1).

On the other hand,
S N
B(k L <148(k-1)E

L o Lo T 1y
< _ I« =
7 aecphh(ﬂaz)] 1+a_9tph,h(9,a,z)_l—|— B hk o

and, finally,

- | og#mi (@0, 2))| S 8(k—1ERA+ 1) + 1]+ 1= ¢

i=1

hj‘a

q.e.d.

We now prove that Je; > 0 such that Vh € IN*, A < 2\, Vg € N, n > h, Va > 0,
vzl € R** such that Z?:i jzf < hka, we have

0

%@h(Th(aaz}{):a,zI) < ¢ (38)

h
Let us fix 7, h, @ and put § = Ty, z]). i j < h —~1, then

0 — . — . —
‘%(Ph,j(ev o, ZI) Lﬁ [(J + 1)(10h,j+1 (9? a, ZI) - J(Ph,j(91 o, ZI)] ‘

B
a—0

f < 7
amgg’i%,i(() a,2')

(A

(G + Von (0, e, 27) + e 5(8, v, 27)]

AN

and using (28),

iigoh’f(g,a,z‘f) < ﬁghk(a—ﬁ) = Bhk = h(k-1)

aﬂgz’:l a —

< 2A(k-1 ‘89%}’"0 )| < 1+aljg%,h(§,a,zl)
< 1+ ﬂghk(a-—ﬂ) = 1+hk-1) < 2X(k-1)+1.
a_
So,
0 - | _ &ild ok
H%‘Ph(aaaaz)h = Z}E a_g@h,%(esavz ;E! Q‘Ph%(gaz)

&9 7 oI 7 I

= Z %ﬁoh,i(aaaaz + "a“a(,ﬂh,h(a,a,z)

< ZzA —D+2Mk-1)+1

< OV(k-D4RE-D L = o
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q.e.d.

Using (37) and (38), putting c; = max{cy,c;}, noting that hzf < Tk, jzl < hka, or
zi < ko, we deduce that Jez, Vh € IN*, Vp € IN*, 5 > h, Ya > m1n{a,,h,a,7+1,h},
vzl € R such that Vj = 1,..., 5, zIEe_’\/\j/j and Y8 1321 < hka we have

- Jgmens) e w

h

We now prove that Yo € R, Va > 0, V0 € [0, T, (o, )]

246, @)vln < [jv]la | (40)
We have
h i h
340, a)olls = 32+ (3B, TP CARCLIIA
2—1 =1 =1 =1

By expression (24), putting ¢ = [(«~6)/al’ (0 < 2 < 1or 1 —z > 0), we have
@hﬂ-,j(f),a) 2 0. SO,

h i h 1 E R ‘ J' ) -
19400, a)0ln < thcp,w Bl = 2303 i1 - a) o
i=1 =1 J:l@:l E(J Z)'
i L 3 -1 1
- -,;Zyw(z( et =2y o
j=1 =0

1 & .
- ?ZZN(%‘H—:E)J ot = z||vila
=1

g.e.d.
Next, we prove that Vh € IN*, Vo > 0, V0 <

“é@bh(ﬂ,a) <1. | (41)

h

Let us put z(t) = [(o — 8)/(a — £))° (2(¢) < 1). Then

om0 = —gélwmaan - gzg / 2(2)(1 - a(t)) s
_ % 6 [é (’:_ll)m(t)’ 11 — a()) 1 6D )l dt




q.e.d.
Also, Yh € IN*, Yo > 0, V2! € IR V8 € [0, Ty (o, 2})], we have

%’@h(eaaaz ) = -a—-égcph(ﬂ,a,z )+ E%(Q:Q)- (42)

We fix k, o, zf. We have already seen that 8 € [0, T(«, 2{)] and also that

(ph(G, &, ZI) = (I)h(ﬂ, GI)ZI -|- ¢h(9: a).
Let us put x,(9, a,27) = ®,(0,a)!, so,
en(0,2,27) = xu(0,@,2") + 9a(f, ).

Let us introduce the function w : [0,1[— R* w(s) = exp {BIn[1/(1 — )] M} z%; then,
xi(0, o, 27) = w (8] ).
We also introduce the function v : [0, [~ R", v(s) = (vi(s), ..., v4(s))7, where

' B\ 7 /1 — s\ 1 —s\A]"
(8) = — — dr.
vis) (j)](l—r) [1 (l—r) ] ’
0
Performing a variable changing ¢t = ar, we obtain ¥,(8, @) = av (0/a).

From the above, we deduce that ¢,(0, @, 2') = w{8/a) + av (§/a).
Therefore,

Ga ) =W TG e T e e TR/

On the other hand,

%wh(e,a,z’) = (%) (';_g) o (g) o (g) (;_f)

and after some easy algebra, expression (42) is proved.

We now prove the following: Jeq > 0 such that VA € IN*, Vnp € IN*, n > h, we have

lons1 (Bt it Coprhit, ¥ pipgr) — Phit(Onirs, Qonit, Ul ps ) lata
< caloniihi — ol (43)

- To shorten the writing, we put 2’ = yg+1=h+1. So, Oyr1he1 = Thyr{Cnript1, 2hyy) and
Oph1 = Th+1(amh+1,z}{+l). Let us also denote by [z1;25] a convex segment (notation
which does not signify that z1 < z).

Let us introduce, for & € o, p11; Qye1pt1), the function g(a) = psr (Thya (o, 2h44), @, 27).
Thus

| on+1(@ntr,ne1s g it yf,+1,h,+1) — @nt1(On s Bputs yf,+1,h+1) [la+1
= |lg(antipe) — glempi1)llasa-
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Using the mean value theorem, we get

lg(cnsine) — glamnin)lla < ( sup “Q’(Of)”hﬂ) | gt ,h41 — i htl.
e €levy hy150n41,h+1

On the other hand

. &ph 8Th 5(,0 .
gla) = - 69“' (Thta (o, z,i_l_l),a,zI)T;(a, zf{+1) +~%(Th+1(aa Z}{'i‘l)? @, ZI)
42 8Th f 6(,0},, 1
‘D ( 6;1 (a,z;{u) - —) 39+1(Th+1(052;{+1),01521) + E¢h+1 (Th+1(a,zﬁ+1),a).
Consequently
“ aTh 0 a h
it < (| Fton ) + 2) |2 Thnston st
1
+ H — s (Thar (e 2f40) )|
o ht1
Let us remark here that one can prove by elementary techniques that
T,
ﬁ{%‘y—) <d. (44)

So, using this inequality as well as § < « and (41), we get

) o
Jitehes 5|22 Thn(ansfia s 41

h+1

~ We can also remark that the hypotheses made on o and 2! for the proof of (39) remain
valid here also; therefore, Yo € [y pt1; Gipg1,h41], we have ||§(e)||py1 < Bez + 1, qe.d.

The following inequality also holds ¥y, h € IN*, h < 7

1
Ian+1,h - an,h| < E”y1€+1,h = ?J?g,h“h- (45)
In fact,
| | < li'f 1zh:,1 12"32'1 zh:z‘f
Ont1,h — Qpal > |77 Wtk — TL (/AR - TYgtr1hs — TUnhi
K ! hk i=1 i hk i=1 ! ' k =1 h ? =1 h 7
1 1
= —|”y£+1,h”h - ||y£h||h| < _Hy£+1,h - yé,hnh
k k
the last two inequalities holding because y!,, ,,4!, € R* and because || - |4 is a norm

of R" respectively, q.e.d.
We now prove that Vg, h € IN*, b < 5, we have

||<Ph+1(9n+1,h+1, Mpt1,h4+1, ?Jf;+1,h+1) - ‘Ph+1(9'n,h+1a X ht1, y,€+1,h+1) ”h+1
< ”yé+1,h+1_y1€,h+1”h+l° (46)
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Plainly

”‘Ph+l(9n+1,h+1,an+1,h+1:y7€+1,h+1) - @h+1(9n,h+laan,h+1ayé+1,h+1)“h+l
< ”(I)h+1(07?,h+17a’n‘?,h+1)(y7€+1,h+1 - yi,h+1)||h+1-

Using this inequality and expression (40), we obtain (46).
Let us continue by showing the following: ¢5 > 0 such that ¥p, h € IN*, h < 7, we have

||.7>"11;+1,h - yé,h”h < C5|val;+1,h+1 - y;,h+1||h+1- (47)

Let us start the proof of expression (47) by noting that, if z = (2,,...,24,0)7 is a vector
of R*! and if we denote by z' the sub-vector (zy,...,2;)T of z, then

1
e = (14 3 ) s < 2ol

||y£+1,h - y;,h”h =

l¥41,h41(Frt1,41) = Yt Py prr) |2 <

2[|ens1(Fn1,p415 Agt1,h41, y,§+1,h+1) ~ ¢h1(fpp41s %h+1=y£,h+1)||h+1 <

2|I(Ph+1(9n+1,h+1, Q1 h+15 yi+1,h+1) - ‘Ph+1‘(9n,h+1, QX ht1y y;,r+1,h+1)”h+1

. I (26,45,46)

+2||‘Ph+1(9 ,h+laan,h+1:yn+1,h+1) - ‘Ph+1(9n,h+11aﬁ,ﬁ+17yn,h+1)”h+1 <
204

(T + 1) ||y-£+1,h+1 - yé,h+1”h+1 = C5|[y£+1,h+1 - yé,h+1”h+1

q.e.d.

Also, Jeg > 0 such that Yy € IN*, 7 > 2}, we have

sup  [[¥pe1,m42(0)]l5e1 < co (48)
9€[0,0y41,541]

Let y =1,...,n; then

. : B
Yntiniri(0) = (.7+1)—_9?Jn+1m+1,j+1(9)

Ctim+l
_jmyw+lm+l,j(9) or
. #wnﬂ,nﬂ,j(ﬂﬂ < J(Tf:ll) an+1’nf_1 — g(yn+1m+1ﬂ'(9) + (Y1 m+1,5+1(68)).
Also,
B . g < 2 8tk _Sn+l(k-1)
Appinrt — 0 7 Qnpigtt — Ot T Qpiage T A A

Therefore, using (20), we get

7. 8k—1) _y.,. A praz
- (0) < 25—z H|E
n+1|yﬂ+1,n+l.3(9)| <= e (5 + 1) 1 + GT)
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or,

i . Rk-1)_ _ H

52— @) < 2E= Dm0 07 4 4) = 160k - DE( 4+ 1)
J=1 7? + ]‘ A

On the other hand,

—Ayn

. P € i
Yntimtrg () S 1+ —gyn+1,ﬂ+1,n+1(9) S148(k—1)E5—— <1+8(k—1)=.
Optip41 — V- ‘ L

Thus ﬁnaﬂy, ||g71+1:77+1(9)||'ﬂ+1 S 8(]6 — 1)5(4()\ + ].) + ].) + 1= Cg, qed

Let us now prove that Je; > 0 such that ¥n € IN™, < 2X — 1, we have

sup  ||9gs1,001(O)llp1 < 7 (49)
0€[0,0541,n+1]

Let y =1,...,7; then

\ B . ‘
Unt1meri(0) < “"“'_9((3 + Dynsrpriva(8) + 3__""""gyn+1m+1,i(9))
Cpt1m+l — Untlm4+1 —
[3 h
< — ] :
= rimri— 0 ;Jyﬂ+1,ﬂ+1,j
(13)
< Lg(h + 1)k(on 41,041 — 0)
Cntim+l —
< Bn+k < 2A(k-1).
On the other hand
rrraraa(f) < 14 myn+1,n+1m+l(9)
nt+in
ﬁ n+1 )
< 1+ ) Ejyni—lmﬂ,j(e)
RUR SRS S e |
B |

U R -
Qpgiger — 0

= 14B8n+1)k<1+(k—1)2

Hence, [lgn1e1(8) st < [0 i/ + (k= 12N+ [1+ (= 1)2] < 4A(k=1)+1 = er,
g.e.d.

Using (48) and (49) and putting c¢s = max{cs, ¢r}, we obtain the following, ¥ € IN*

sup  {[Fga1041() 541 < s (50)
ge[0,6p41,n41]

We now prove that ey > 0 such that Vi € IV, we get

e~ Mt
(n+ 1)

[Yt1,m — yé.n”ﬂ < ¢
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Using the remark in the beginning of the proof of (47), we have

|Iy£+1m - yi,nllﬁ Ynt1m41(Ons1g41) = (y,{,mo)”n

< 2Wnrrait Bnprer) = @ Ol
i P 6—,\/\1!
KT o T I —Avi
7 e~
< 2;—?7 T1 Ynt 141, (Opgr 1) — i
n+1 i
= 2 ?;; mlyﬂ+l,n+1,i(3ﬂ+1,n+l) — Yn41,+1,i(0)]
n+l
= 2 Z I|y”?+1"ﬂ+1(9ﬂ+1u’fi+1) - 'yn+1m+1(0)”n+l
i=1
Brt1,m41
= 2 f Unt1,0+1(0)d0
0 n+1
Bagt1me1 . (50) Ontimt1
< 2 f 941041 (O)llgndf < 2es f a0
0 0
e ML ggy T AT
= 2¢g0 < 2egee—m — = ¢
A R )] " +1)!
q.e.d.
Finally, let us prove the following: Vn, h € IN*, h < 7, we have
9 0 <A (143 s — o 52
| ﬂ+1.h Thh| —_ + k ”y’-ﬁ"‘i"l,h y’?]‘,h“h' ( )
By (44) and (31), we have
0s1h = Opil = |Tul@nsrns¥hpann) — Tul@nn Ympn)]

< Hlaggin — aqpl + |y£+1‘h,h - ?Jf;hh“

So, using (43), we obtain expression (52).

3.4.8 The convergence of the sequence (T”)WEJW'

We prove first that the series of general term (Zh-y [0ys1,0 — Oya|), 5, is convergent in R*.
In fact, this series is a positive terms one, hence in order to prove its convergence we shall
use the comparison principle. '

By combining expressions (52), (51) and (47), we can obtain

7 7 e~ A AL 1 e— Ayt 7 1\"
6 -0, < —h -—:4(1+—)ccﬂ——————— (—) .
2 nei nl S 2 T ey B ST

Cy
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Since ¢5 > 2 > 1, we get

Ege“’\(/\cs)“"‘l 1
s (p+1)! -1

1 1
> 10riin — Oyl <4 (14 1)
h=1

Putting 10 = 4[1 + (1/8)] co/es)1/(cs ~ 1)} > 0, the quantity They Basas — baal is
bounded above by cjpe™*(Aes)" /(5 + 1)!; hence,

. S ”e'x(‘,\cg)"ﬁ“ ‘ | ,A%. .
2 (;::1 |9'fi+1,h - 97?,11') < o —(7] T 1)1 < cpe e < 40

n=1
q.e.d.

Let us now prove that the series of general term (6,11,541)y>1 converges in R,

Plainly, using (30), we get 01t < Yipyppier = € ()™ /(n + 1)L

Since it is a positive term series, it suffices to apply the comparison principle, by noting
that the series of general term (e™*A"*/(n + 1)!),>1 converges in R*, g.e.d.

The series of general term (|7,41 — 7y|)y>1 converges in R*.
In fact,

41

n
Z 8’7']'11}" - Z 9’?1}"
h=1 h=1

7
977"'1’7?"'1 + Z(BTJ‘H-h - 9771}")
h=1

|Tn+1 — Tn‘ =

7
< Opirtr + 2 |Ontr,n — Ool-

k=1
The convergence follows from the comparison principle and the propositions proved above.

We conclude the section by proving that the sequence (Tﬂ)ﬂ < IV* converges in Rt

Using the proposition proved above, the series of general term (7,41 — 7y )n>1 is absolutely
convergent in IR, thus convergent in .

Let us remark that 7, = $0=1 (7,41 — 7,) + 1. Moreover,

o0

lim T’? = Z(T‘H‘l — Tq) + Ty-

—00
7 poac

These two remarks conclude the convergence of the sequence (), gy~ in R*.

4 Set packing and hypergraph independent set

4.1 The PACK algorithm

We consider the greedy algorithm 3 for finding a set packing for P. Informally, PACK
algorithm selects at each step one set chosen at random between the sets of smallest
cardinality which do not intersect any previously selected set. By exchanging the two color
classes of the incidence graph, this algorithm gives an independent set in the hypergraph
P, Q, i.e. a set of vertices no two of which belong to the same hyperedge.
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[STEP1]  choose at random one of the X;’s with minimum d;;
add X; to the solution, delete it and delete also ali the classes in O, say Y;,,...,Y;,,
incident to it in the graph II;
next delete any other vertex in X adjacent to one of the classes ¥;,,...,Y;,;
let X/, Y' P’ Q' denote the analogues of X,Y,P, @ for the new configuration;
let II' denote the subgraph of II induced by X' UY’;

[STer2] if X' is emptly, then stop, else, execute STEP1 with X', Y’, P/, @' Il in place of
XY, P, Q1.

Algorithm 3. PACK algorithm.

4.2 Analysis of PACK on random instances

. 4.2.1 Analysis of PACK on standard distribution

The analysis of PACK on random instances can be carried over along the same lines than
for GRECO. However, this leads prima facie to a more complicated system of differential
equations because, in the case of PACK, we have three succesive removals at each step
(see the description of PACK).

The following observation ([2]) permits a simpler analysis: at any stage of the execution
of PACK, the conditional distribution of the remaining sets X7,..., X}, (relatively to the
previous unraveling of the algorithm) coincides with the uniform distribution; we can then
compute the expectation of the number of these sets which will be tried before finding
one which does not intersect the partial packing as a function #(j) of the size j of the
partial packing which satisfies ¢(j) ~ [L — (jk/n)]*.

Thus, the expectation of the number T'(s) of trials before a packing of size s is obtained
satisfies

BT(s) = YO 4(5) ~ k(k”_ a [(1 - ;)k_l - 1} . (53)

i=1
Using the fact that the trials are independent, Tchebichev’s inequality implies T'(s) ~
ET(s) and solving (53) for s, one gets the following estimate for the size of the obtained
packing:

5 =

3

1
[1_[1+ak(k_1)]fz]

4.2.2 The differential system simulating PACK for solving the hypergraph
independent set problem

When analysing PACK on the hypergraph independent set problem, we interchange the
color classes of the incidence graph and, since it is not true that for any given value A
the joint distribution of the sets Y; with |¥;| = % is uniform, we must abandon the
preceding stopping times method and come back to Markov chains. The expectations of
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the increments during the stage when vertices of degree h enter the independent set are

EAm; = ((j+mip —img)S, J#h,
EAm;, = -1+ ({(hA+1)mpsq — hiny))Sd,

where S = h{k — 1)/(3im;).

With the same notation as in § 3.3, we get the differential system

Wk-1) . h(k—1)

i = (G + Dbt o = i, 0S5 b1,
Yn,h,g (7 + D¥npit Rop — kO IYnihg R, — hké 0=y

_ ~ h(k —1) h(k —1)

Unph = —1+(h+ Lynhrn Rop— RO Fn o R, — hk0’

A similar method, as for system (S,,) in the case of hitting set, could be developed to
solve the above system.

5 Conclusions

We have proposed a general method to analyse the behaviour of approximation algorithms
for hard optimization problems defined on random set systems. We note that this method
is quite general and its application could be extended even to graph problems. In fact, a
graph G = (V, E) can be seen as a hypergraph whose vertex set is £, each vertex of V being
a hyperedge containing its incident edges. Hence, problems like minimum dominating set,
minimum vertex covering, maximum independent set, etc., could be solved by algorithms,
the behaviour of which could be analyzed using the framework described.

We remark here that, when working on average case approximation, a well-known difficult
mathematical problem is the precise estimation of the expectation of the size of the
optimal solution. Such an estimation would enrich our method, by permitting to obtain
close estimations for the expected values of the approximation ratios for the algorithms
under study.
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