CAHIER DU LAMSADE

Laboratoire d’ Analyse et Modélisation de Systémes pour 1’ Aide & la Décision
(Université Paris-Dauphine)
Unité de Recherche Associée au CNRS n° 825

EXACT AND APPROXIMATION RESULTS ON
MAXIMUM INDEPENDENT SET AND MINIMUM
VERTEX COVERING -~ GRAPHS WITH
GREAT STABILITY NUMBER

CAHIER N° 128 Marc DEMANGE !
juin 1995 Vangelis PASCHOS !

regu : septembre 1994.

1 LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex
16, France. '

Contents

I A polynomial algorithm for the maximum independent set problem on

a class of graphs including Kénig-Egervary graphs 2

1 From independent set to matching 2

2 A characterization of Konig-Egervary graphs in terms of linear programming 3

3 A generalization of the Konig-Egervary graphs 6

4 Konig-Egervary graphs revisited 11
Some independent set approximation and exact polynomial results “inspired”

from Koénig-Egervary graphs - 11

II The approximability behaviour of some combinatorial problems with
respect to the approximability of a class of maximum independent set prob-

.6

lems 13
Minimum vertex covering and maximum independent set 13
6.1 The non-constant-approximability of 83 would induce a lower bound for vertex

cover’s approximation ratioo L L o 13

6.2 The constant-approximability of Sg would induce an improvement on vertex -

cover’s approximation ratio L oL oo 14

6.2.1 An algorithm for vertex covering and its properties 14

6.22 Themammvresult 19

7 Mathematical programming and maximum independent set 22
- 7.1 Convex programming and maximum independent set 22

7.2 Concave programming and maximum independentset 23

III On the approximation ratio of the greedy algorithm of the maximum
independent set problem 25 -

Résultats exacts et approchés sur les problémes du stable maximum et de la
couverture minimum de sommets - graphes & grand nombre de stabilité

Résumé

Dans la premiére partie de cet article, nous présentons un algorithme exact polynomial pour
le probléme du stable maximum dans la classe des graphes incluant les graphes de Konig-
Egervary. Tout graphe G d’ordre n appartenant & la classe des graphes de Konig-Egervary
est tel que a(G) = n —m ol & est son nombre de stabilité ¢t m la cardinalité d’un couplage
maximum de G.

Nous prouvons ensuite que 1’existence d’un algorithme polynomial p-approché (ol p < 1
est une constante fixée) pour une classe de problémes du stable maximum conduit & un
algorithme polynomial approché avec un rapport d’approximation strictement plus petit
que 2 pour la couverture de sommets alors que la non-existence d’un tel algorithme induit une
borne inférieure sur le rapport de tout algorithme polynomial approché pour la couverture
de sommets. Nous prouvons aussi un résultat similaire pour un probléme de programmation
convexe (maximisation) incluant la programmation quadratique comme sous-probléme.
Finalement, nous montrons que l’algorithme glouton naturel pour le probléme du stable
maximum sur les graphes admettant un couplage parfait admet un rapport d’approximation
strictement plus grand que 2/A ol A est le degré maximum des sommets du graphe.

Mots-clés: Probléme NP-complet, algorithme polynomial approché, transversal, stable.

i

Exact and approximation results on maximum independent set and
minimum vertex covering - graphs with great stability number

Abstract

In the first part of this paper, we present an exact polynomial time algorithm for maximum
independent set problem in a class of graphs including Kénig-Egervary graphs. The class of
Kénig-Egervary graphs is the class of graphs with «(G) = n — m, where given a graph G
of order n, we denote by o its stability number and by m the cardinality of a maximum
matehing of G. ,

Next, we prove that the existence of a polynomial time p-approximation algorithm (where
p < 1is a fixed constant), for a class of independent set problems, leads to a polynomial
time approximation algorithm with approximation ratio strictly smaller than 2 for vertex
covering, while the non-existence of such an algorithm induces a lower bound on the ratio of
every polynomial time approximation algorithm for vertex covering. We also prove a similar
result for a (maximization) convex programming problem including quadratic programming
as subproblem.

Finally, we show that the natural greedy algorithm for maximum independent set problem
on graphs admitting a perfect matching achieves an approximation ratio strictly greater
than 2/A, where A is the maximum degree of the vertices of the graph. :

Keywords: NP-complete problem, polynomial time approximation algorithm, vertex covering, in-

dependent set.

i

Introduction

Consider a graph G = (V, E) of order n. An independent setis a subset S C V such that no two

vertices in § are linked by an edge in G, for & > 1, let us denote by S, the following problem:

“given a graph G admitting a maximum independent set of cardinality greater than or equal

to n/k, find a maximum independent set of G”; a vertex covering is a subset C' C V such that, for

. each edge uv € E, at least one of u, v belongs to C. In a graph G a (minimum) vertex covering

is the complement, with respect to the vertex-set of G, of a (maximum) independent set; in

what follows, we shall denote by &(G) and 7(G) the cardinalities of a maximum independent

set and a minimum vertex covering, respectively; so, a(G) = n — 7(G).

A matching is a subgraph of G, all of its vertices having degree equal to one, and a mazimum

matching is the maximum order such subgraph. The size (number of edges) of any matching of
a graph is at most the size of any vertex cover of a graph. A matching is called perfect if its
cardinality equals the half of the order of G.

A graph of order n is called Kénig-Egervary (KE) if o(G) = n—m, where m is the cardinality of
a maximum matching of (. This condition is, obviously, equivalent to the condition 7(G) =

The underlying optimization problems, with respect to the notions of independent set, vertex
covering and matching, are, the maximization of an independent set, the minimization of a
vertex covering and the maximization of a matching, respectively, (in what follows, we shall -
denote the first one by S and the second by VC. Problems § and VC are famous NP-complete
problems ([6,7]), while the maximum matching problem admits an O(n??®) algorithm ([7]).

For VC, the maximum matching algorithm constitutes a polynomial time algorithm solving

approximately VC (the endpoints of the edges of a maximum matching cover all of the edges
of a graph) with approximation ratio smaller than 2. There are two interesting open problems
associated with this result, (i) to design an algorithm with a better ratio or, (ii} to prove a lower
bound for the ratios of any algorithm supposed to solve approximately VC.
On the other hand, the approximability of S has constituted an interesting open problem for
many years. Recently ([1]), it has been proved that unless P = NP, S, even for bounded degree
graphs, cannot be approximated within a constant error and also that VC does not admit a
polynomial time approximation schema.

In section 6, we examine the way the behaviour of Sz influences VC. We prove some condi-
tional results that show how the existence of an approximation algorithm for Sz would lead to
the design of an approximation algorithm for VC guaranteeing an approximation ratio strictly -
smaller than 2, while the non-existence of such an algorithm induces a lower bound for the ratio

of VC.

Part 1

A polynomial algorithm for the maximum
independent set problem on a class of
graphs including Konig-Egervary graphs

In [4], Bourjolly et al. produce results similar to the ones of this section. Here, we give simpler
algorithms and proofs and, moreover, we bring to the fore some properties of the graphs of the
considered class (as, for example, the value of the “discrete duality gap”) not exhaustively con-
sidered in [4], properties that permit us to obtain some further exact or approximate polynomial
results for § and VC. On the other hand, for the completeness of the paper and since we use
the results of this section as a subcase result of theorem 5 of section 6, we give all of our proofs
in details. We also notice that, in [5], Deming gives an exact polynomial time algorithm for §
(and consequently for VC} for the class of KE graphs.

1 From independent set to matching

A general instance! of § defined by a graph G = (V, E) can be written as a (0,1) linear problem
as follows:

max lp-#
S = A& < Ty
Fe{0,1)

where A is the edge-vertex incidence matrix of G and TD-(O'D) is the one-column vector of R”
(D € IN), all of its coordinates being equal to 1 (0).
Let us denote by SR the following relaxed version of S:

max 1%
SR = A-ZL T|E[
>0,
The dual of SR, denoted by ECR is
min 1|E| - E
ECR = AT . z>1,
Z> 6|

where, this pro.blem is denoted by ECR in order to indicate that it is the relaxed version of the
following problem EC known as the minimum edge covering, which is polynomial ([3]):

" min 1EE| .

z
EC = AT . #>1

Let us denote by v(I) the optimal value (of the objective function) of an instance / of a problem.
Remark that 0, and 1z are feasible for SR and ECR, respectively. As these dual instances

1In what follows, for purpose of clarity when no confusion arises, we use the same notation o denote a'ptoblem
and its instance; but we have to remark that all instances of the problems mentioned below correspond to the
© same matrix A.

have their respective constraint sets non empty, they have the same opfimal value.
So, the following inequalities hold: »(S) < v(SR) = v(ECR) < v(EC).

One can construct an identical schema concerning VC expressed in terms of a (0,1) linear
program as follows:

min 1, % min I, 7
VC = A-(Tﬂ-—.’.!-:')éﬂm = VC= A‘fEA‘Tn_I|E[=T|E|
£e{0,1}" Ze {0,1}"*

where the constraints of the lefthand side of the equivalence mean that the complement of a
vertex covering is an independent set. The equality A -1, — 1jg = 1z is due to the form of the

matrix A.
We consider now the relaxed version VCR. of VC:

. -+
min 1,-%

£
VCR = A-T> -’|E|
£> 0,
Its dual, denoted by MR, is written as:
max _'|E| T
MR = AT . z2<1,
Z 2 Oigy

max ljg - &
M= AT .2< 1,
€ {0,1)/"

As previously, we have v(M) < v(MR) = »(VCR) < »(VC).

Note that given a graph (of order n, there is a well-known relation between v(M) and v(EC):
v(M) = n — v(EC). On the other hand, a similar relation holds between S and VC: v(S) =
n—v(VC). L

So, the following schermna summarizes the above discussion:

v(S) < v(SR) = o(ECR) < (EC)
| I (1)
n—vVC) < n-v(VCR) = n—-v(MR) < n—o(M)

Recall that the KE graphs are defined as the graphs where o G) = v(S) = n — v(M); using
" the above relations, we can give alternative expressions like a(G) = v(S) = v(EC), or 7(G) =
v(VC) = v(M). In any case, we can interpret these graphs as the ones where there is no “discrete
duality gap” between S and EC.

2 A characterization of Kénig-Egervary graphs in terms of linear program-
ming

In this section, we try to interpret of the KE graphs using arguments of linear programming.

We have already mentioned that, for these graphs, the relation »(S) = »(EC) holds. In the

following theorem 1, we prove that this relation is equivalent to the relation v(S) = v(SR).

Theorem 1. In a graph G, v(S) = v(EC) < v(S5) = v(SR).

3

Proof: From schema (1), the implication v(5) = v(EC) = v(S) = v(SR) becomes obvious.
To obtain the converse, we will use a duality argument. Let us revisit the two dual programs SR,
and ECR. We consider a graph G = (V, £') with edge-vertex incidence matrix A.

The primal-dual necessary and sufficient optimality conditions for SR and ECR can be expressed
as follows let (:E 3}) € " x RI®!; then, the fact that # is a solution of SR and, simultaneously,
that y is a solution of ECR, is equivalent to the following conditions:

([4.& < Qg (1)

g > O (ii)

AT > 1, (iit)

$ g > O (iv)

8>0 = 3 gG=1 (v)

j€adi(s)

>0 = ¥ &=1 (vi

L t€extr(f)

where adj(i) is the set of the edges adjacent to vertex ¢ and extr(7) is the set of the endpoints
of edge j. N
If we suppose that G admits the property v(5) = v(SR), then there exists a solution # of SR
having only (0,1) coefficients (m is the characteristic vector of a maximum independent set 5'
- of). Let us now consider a solution y of ECR (y having real coefficients). The pair (;r:,y)
satisfies the optimality conditions (i) + (vi). Let us notice that condition (vi) means that g
“covers” (“touches”} all edges having a non-zero value in g,
Consider the bipartite graph B(8) = (8,V\S,E), withe =2y € E'ifand only if2 € § (y ¢ 5),
orz € § and e € E. The edge-vertex incidence matrix A’ of B(S) is obtained from A by deleting
the rows of A corresponding to edges linking vertices of V\S. It is trivial to verify that .S' remains
an independent set in B(S), and since it “touches” all the edges of I havmg 1n § non-zero
values, these edges are, by definition, contained also in £’; so, the projection y of § y in RIE (we
retain the components correspondmg o an edge of £') constltutes a feasible solution of ECR
in B(S) and, moreover, the pair (£, §) satisfies the optimality conditions (i) + (vi) in B(S),
so, S is a maximum independent set for B(S). Also, every bipartite graph (consequently B(.S' 1)
is KE (]3]); hence, we deduce that ’U(SB(S) = v(ECpg) = v(S¢)}, where we use indices to
denote the graphs on which the instances of the prob{ems are defined. On the other hand,
u(EC B(3) y) = v(ECg} because every feasible solution for EC in B(S) implies a feasible solution
for EC in G by considering the same set of edges as solution in both instances; so, 'U(S(;) >
v(ECg); moreover, the opposite inequality is always satisfied as we have already seen above; so
v(S¢) = v(ECg) and G is a KE graph. I

Let us notice here that the equality v(ECR) = v(EC) is not always true. In fact; the
difference u(EC) — v{ECR) can be arbitrarily large. Let us consider the following sequence Gy,
p € IN*, of graphs: p triangles and a vertex z, linked to a (arbitrary) vertex of every triangle
by an edge. The graph G, is of order 3p + 1; the value (maximum cardinality) of a matching
is p+ 1 (we form such a matching by taking an edge per triangle and an edge incident to zp).
We have then »(EC) = 2p; moreover, by assigning the value 1/2 to every edge of the triangles
and the value 1 to all edges incident to z,, we construct a feasible solution, of value (3p/2) + 1,
for ECR, so, v(EC) — v(ECR) > (p/2) — 1 —posce 0.

On the other hand, let us consider a Kg,, p € IN*. The size of a maximum matching
in Ky, is equal to p; so, v(EC) = p; moreover, the optimal value of SR in Ky is greater
than p, value correspondmg to the assignment of the value 1/2 on every vertex of the graph;
so, v(SR) = »(ECR) = v(EC) = p; but a(Kzp) = 1; hence, a result analogous to the one of
theorem 1 cannot be hoped for the pair (EC,ECR).

For the KE graphs where »(S) = v(EC) = »(SR), it is natural to suppose that S can be
solved in polynomial time; but, although determining the stability number is almost trivial?, it
does not appear evident how we can deduce directly an independent set from an edge covering.
In fact, such a solution constitutes, by values equality, a solution of ECR starting from which
one can deduce all solutions of its dual program SR. Solving S becomes then, searching in the
polytope of the solutions of SR one solution with (0,1) coefficients, which exists if the graph
is KE. But this last step is not a priori simple since, as we show in proposition 1, in the general
case, searching for a (0,1) point in a polytope is NP-complete.

Proposition 1. Deciding if an integer-linear program and ils relazed version have the same

optimal values is NP-complele.

Proof: The reduction is from the Hamiltonian circuit problem (HC)2, which can be expressed
in terms of an integer-linear program as follows:

{ no o,
max », ly - &
=1
Agizzi ie{l,...n} (i)
AC={ £ AZm (i)
L,-& <n ie{l,...n} (i)
n - .
o<l ie{l,...n} (iv)
i=1
| ;e {0,1}" ief{l,...n} (v)
where A is the vertex-vertex incidence matrix of the graph-instance G of HC and &5, = 1,...,n,
is a sequence of n characteristic vectors of a vertex-set.
In the above program, constraints (iii) and (v) imply that each one of the vectors #3,i = 1,...,n,

represents one or zero vertices; constraint (i) signifies that if #;3, and &; represent two vertlces

- then the represented vertices are neighbours (linked by an edge); so does constraint (ii); in both
last cases, if one of the implied vertices has all of its components equal to zero, it is the one of
the righthand side of the inequality, and, on the other hand, if both vectors have all of their
components equal to zero, then the corresponding constraint is true. The sequence of vectors
(£3,...,27) is of the form (&3, ... %},0p,...,0,), where k € {0,...,n} and £, i < k, represents
a vertex; so, in the case where k # 0, the sequence (#1,. .., %) représents a path which; in the
case k = n, stops on a neighbour of the first vertex of the path. Finally, constraint (iv) means
that the path is elementary.

So, if the optimal value of HC is equal to n, then G is Hamiltonian and, moreover, every optlmal
solution constitutes a Hamiltonian circuit.

Let us now relax constraint (v) by transforming it into £} > 0", i = 1,...,n. The resulting
program has now an optimal value less than or equal to n because of constra.mt (iii); in fact, its
optimal value is equal to n since the solution obtained by setting & = (1/n) I,,i=1,...,n,is

feasible or, equivalently, G is Hamiltonian and program HC has the same optimal value than its
relaxed version.
This completes the proof of proposition 1. i

?To determine the stability number in a KE graph one has only to solve SR by a real-linear programming
method (in O(n®)) or, better, to determine a maximum matching (of cardinality m} in the graph and to compute
the quantity n — m (because of the equality v(S) = »(EC) and the fact that EC is polynomial ([3])).

*In [6], HC is defined as follows: “given a (non-directed) graph G of order n, does G contain a Hamiltonian
circuit, that is, an ordering {1, v2,...,va) of the vertices of G, such that v,v1 € B and wivuiy1 € E for all 4,
1<ign?,

3 A generalization of the Konig-Egervary graphs

Throughout this section, we consider the weighted version of S, i.e., we consider non-negative
weights on the vertices of the graphs; the objective is then to find a maximum-weight independent
set, where the weight of an independent set is the sum of the weights on its vertices. _
Let us denote by Sz a general instance of the weighted version of S represented by a graph & =
(V, E) of order n and by a vector @ € (IR*P)", the components of which being the weights of V.

So, Sz can be described by the following integer-linear program: ' '

i
Sz = A
i

where A is the edge-vertex incidence matrix of G.
The relaxed version SRz of Sz is defined by

a
SRz = A-F< |B|
T

min |
ECRz = A
¥

In what follows, we treat the class Gz of graphs for which v(Sz) = v(SRz); it is easy to see that,
by theorem 1, the class Gy, is exactly the class of the KE graphs.

We present a polynomial time algorithm (algorithm 1), optimally solving the maximum in-
dependent set problem in the class Gz. We suppose that the input of the algorithm is a
graph G = (V, E) known to be in Gz; later, we shall show how the same algorithm can be
applied to every graph in order to decide if its input belongs to Gz.

A first step of this algorithm is the construction of a solution g—}' of ECRg; we do not detail on.
this step since ECRz is a linear problem on real numbers which can be solved by a linear pro-
gramming method in O(n®) (see for example [2])%. Let us denote by C the set {e € E : §. > 0};
also, given a set P C E, we denote, Yv € V, by I'p(v) the set {u € V : uv € P}; of course,
I'z(v) = I'(v) (the neighbour set of v in G); finally, given a vertex-set V! C V, we denote by r(v’)
the set of neighbours of the vertices of V. Algorithm 1 calls the recursive procedure LABEL
and the function TEST. Procedure LABEL has as arguments the “current graph” G, = (V;, E.)
(a sub-graph of), some vertices of which being labelled by s and some other ones by c (we
denote by LV, the set of the labelled vertices of ;) and the set C'; LABEL completes, while this
is possible, the vertex labelling by respecting the following two rules: (i) if a vertex is labelled
by s, then LABEL labels its non-labelled neighbours by ¢, and (ii) if a vertex v is labelled by ¢,
then LABEL labels the non-labelled members of I'¢(v) by s. Function TEST has as arguments
the ones of LABEL plus a solution yr of the problem ECRY, instance of which is the graph G,;

this function tests if the set of vertices labelled by s forms an independent set of value dg,| - gr-

Theorem 2. Algorithm 1 is an O(n®) ezact mazimum-weight independent set algorithm for the
class Gz, @ > Un.

~ *In the case where @ = I, since E_‘CR and EC have the same optimal value, following the discussion in
section 2, one can determine a solution § € {0, 1}!®! starting from a maximum matching on G.

begin
S e B
Gr — G,
find a solution § of ECRz in &
while V. # 0 do
determine ;&: by projection of _13 on the space corregponding to E,;
select an zp € V;., such that z; is not isolated;
£(xo) — ¢
LV, «— {xo};
LABEL(G,,C,LV,);
if ~“TEST(G,,C, LV;, i) then
begin
£(zo) —s;
LV, «{zo};
LABEL(G,,C, LV;)
end;
Ve = Ve \ LV
E, — E.\T(LV,);
S — SU{zg € LV, : £(mg) = s}
od '
end,

| Algorithm 1: Weighted independent set algorithm. We denocte by £ a labelling of the vertices
of (7, that is a function V — {c, s}.

begin
Eiest — LV;;
for all z € LV, do
if {(2) = ¢ and Peng, (2) ¢ LV, then
for all y € Teng, (x) such that y & LV, do
Hy) —s;
LV, — LV, u{y}
od
fi
if {(2) =s and T'g,.(z) € LV, then
forallye g (z)Ay ¢ LV; do
£y) — ¢
LV, « LV, U{y}
od
_ fi
od ‘
if LV, # Eies; then LABEL(G,,C,LV;) fi
end;

Procedure 1. LABEL.

begin
TEST +~ true
if > a, Fdr- yf» then TEST « false
v,8(v)=8
else
delete all the edges of G, incident to at most one vertex z such that £(z) =s;
update all the degrees in V;;
if 3v € V, with |T'g,(v)| # 0 then TEST + false

end;

Function 1. TEST.

Proof: Consider a graph G = (V, E) of order n belonging to {z; we index by k, k=1,

the iterations of the while loop of algorithm 1, and we denote by G¥ = (V] ,Ek) ka and
LGF = (LVF LEF), the “current graph” on whlch iteration k operates, the vertices of V¥
labelled at the end of the iteration k and the sub-graph of G¥ induced by LV}, respectively;
finally, let us notice that if & < K, then GFt! is the sub-graph induced by the vertex-set
VEN LVE.

The proof of the theorem is essentially based upon the intermediate result expressed by the
following lemma 1.

Lemma 1. The graph Gf is a subgraph of G belonging to Gz; moreover, fork < K, e mazimum-
weight independent set S¥ of G can be obtained by setting $¥ = {z € LVF : #(z) = s} U SFH1,
where S¥1 is 4 mazimum-weight independent set of G and £ is the mapping vE i {e,s}
computed by algorithm 1.

Proof: (lemma 1.) Let us prove by induction that Gk € G;.

First, we shall prove that, Yk, GF satisfies the property: Tg(v) C VE Yv € VE For k =1,
‘since GL = G and C C E, the property is obvious. Let us suppose the truth of the property
for k < K (we recall that algorithm stops after the K'th iteration). The set LVTI‘ is constructed,
during iteration k, starting from a singleton and following rule (ii) given above in the description
of algorithm 1; so, in the same way, if v € V¥ \ LVF, then Tg(v) C V¥ \ LV, = V#+! and the
property remains true for the induction step &+ 1.

Tn order to complete the proof of the fact that, for a given k, the graph GF is in Gz, we shall
prove the following lemma 2.

Lemma 2. Let G = (V,E) be a graph of the class Gz, y be an optimal solution of ECR-— on G
and C be as defined previously; let G = (V EY be a subgraph of G induced by V C V such 'that,
for alle = ij € C, either (z)€ V xV, or (4,7) € (V\V) x (V\ V). Then, G € Gz; moreover,
in this case, the tracks ofy and & on V are solutions of ECRz and Sz on G, respectively.

Proof: (lemma 2.} Let % be an optimal solution of Sz and, consequently, of SRz (G € Gz); let
us rewrite the primal-dual optimality conditions for the dual linear programs SRz and ECR;z: -
let (z,9) € R™ x RIEl: then, the fact that & is a solution of SRz and 7 is a solution of ECRg is

equivalent to the following conditions:

(Ad < g (i)
£ > O (ii)
AT > @ (iif)
4 7 = Ug (iv)
E>0 = 2 giz=a (v)
jeadj(i)
>0 = o & =1 (vi)
\ i€extr(j)

where adj{¢}, extr(7) and A are defined as previously.

Let us consider a sub-graph G = (V E) of (7 satisfying the hypotheses of lemma 2; its edge-
vertex adjacency matrix is obtained from A by taking into account only the rows and columns
correspondlng to the edges and vertices of G, respectively. Let i E Rlvl such that, Vv € v,
Zy==%,and g y € lRlE | such that Ve € E, e = e the projections of £ % and § y on the characteristic
spaces of V and I, respectively; we also deﬁne ic RV such that, Yo € V, & = ay, the
projection of vector & (it is easy to see that & z € {0, 1}IV|)

We shall show that the pair (z,y) satisfies the primal-dual optimality conditions (i) = (vi)
(for SRz and ECRg, respectively) in the graph G of edge-vertex incidence matrix A

In fact, % is the characteristic vector of an independent set of G because 5 corresponds to an
independent set of ' and, moreover, G is a sub-graph of G so, Az < 1|E| and z > 0|V| (condi-

tions (1) and (ii)). It is also easy to obtain ¥ 7> 0|E| (condition (iv)). Moreover, vector § satisfies

A y > a (condltlon (iii)). Plainly, let us consider one of these constraints; it corresponds to a -
vertex v € V; let an edge e € F incident to v; if g, > 0, then, by definition of C, e € C and . '
hence, since v € V, by the hypotheses of lemma 2,e€ B s0, the sum of the values 7, e incident
to v in G equals the sum of values ., e incident to v in G. :
Let us now verify the exclusion conditions (v) and (vi). The fact that #, > 0 means also that
£, > 0, hence the corresponding constraint of ECR;z is saturated, so does the corresponding
constraint of ECRz in G given that the sums of the values of the edges incident to v in both G
and (3 are equal, thus condition (v) is satisfied. Finally, if § > 0, then §. > 0 and consequently,
the sum of the values &,, where v endpoint of e, is equal to 1; since both these endpoints belong
to V, condition (vi) holds also for G.
As a conclusmn vectors # and 7 are solutions of SRz and ECRg, respectively, defined on G;
IMOTeover, % has (0,1) coordinates; so, G € Gz and this completes the proof of lemma 2. §

We now continue the proof of lemma 1.
By lemma 2, for a given k, GF is an element of Gz; so, the first part of the lemma is proved.
Let us notice that, from the proof of lemma 2, we can deduce also that LGF € Gz and, moreover,
the intersections of a maximum-weight independent set of G with V¥ and LV,.’“, constltute

maximum-weight mdependent sets for G’c and LGF, respectively; if we denote also by § y.r and Lyr
the projections of § i on the spaces corresponding to Ek and LE,’f , respectwely, then the graphs Gk

and LG’c have weighted-stability numbers equal to alvkl y,. and d|py¥) - Lyr, respectively.

Given a labelling £ : V¥ — {c¢, s} of G, we call it a “good labelling” if there exists a maximum-
weight independent set of G* containing all of the vertices labelled by s and none of the ones
labelled by c. Let us remark that procedure LABEL proceeds only by necessary conditions, in
the sense that, for a fixed maximum-weight independent set, if a vertex belongs to it, then its
neighbours belong to the associated minimum-weight vertex covering; on the other hand, if a
vertex v belongs to the minimum-weight vertex covering associated to the fixed maximum-weight
independent set, then optimality condition (vi) in the proof of lemma 2 imposes that [g(v) is

included in this (fixed) independent set. These two properties of procedure LABEL make that
the procedure completes a “good labelling” by producing a “good labelling”. So, in the case
where the initial labelling, assigning label ¢ to a vertex zp and no label to any other vertex
(see algorithm 1) is a “good labelling”, then the labelling completing this initial one is also

“sood labelling”. In this case, the vertices labelled by s constitute, in G¥, the track of a
-k
max1mum—we1ght independent set of G, hence a weighted independent set of value &, aiLer] - Ly,

this fact being tested by function TEST. Consequently, since LG* € Gz, by lemma 2, the value
of this function is true if and only if the vertices labelled by s constitute a maximum-weight
independent set in ZG¥. If this is not true, then the initial labelling was not a “good labelling”,
i.e., 2o belongs to every maximum-weight independent set. So, the labelling assigning to g the
label s and assigning no label to any other vertex, is a good labelling so does, consequently, the

completed one; hence, with the same arguments, the vertices labelled by s always constitute a :
maximum-weight independent set of LGE. To summarize, after one or two calls of prot:'edu:re‘
"~ LABEL by algorithm 1 during an iteration of its while loop, the vertices labelled by s after the
last call constitute always a maximum-weight independent set of LGE of value @ CiTA%IR Ly,. On

1
the other hand, if k¥ < K, a maximum-weight independent set of G"“'*‘1 has value &, By et - y,+ ;

so, since the disjoint union of LV* and V¥ equals V¥, the union of these weighted independent
-k —k+1 -k
sets (in G¥ and GF*') has value @ drve - Ly, + C\':’Vk-i-l y,,+ = dypy * §p, which is the value of

a maximum independent set in V¥. So, to prove that this union constitutes a maximum-weight
independent set for G¥, it suffices to show that this union constitutes an'independent set for Gk
In fact, by the way the vertex-labelling is performed (if a vertex is labelled by s, then all of its
neighbours are marked by ¢ and introduced in LV,F), the vertices labelled by s at the end of
iteration k are not linked, in G, to any vertex of the set VT’“H; so, the union of an independent
set of LGE with an independent set of G¥*! constitutes an independent set of GE.

This completes the proof of lemma 1. 1

We are well prepared now to conclude the proof of the theorem.

If algorithm 1 does not stop at step &, then, since GF+1 € Gz, the arguments developed prev1ously
remain valid for GF+1. Moreover, Whﬂe |V(GT)| # 0, a new execution of the while loop is always
possible and produces a set LV, of size greater than 2, since if LV, contains a vertex v, then
it contains T'g(v), this set being of size greater than 1, because C is an edge covering of G;
consequently, the number of the total while calls is smaller than n/2 and the convergence of the
algorithm is concluded. At the end of the Kth (last) iteration, LVK VK, so, vertices of VK
labelled by s constitute a maximum-weight independent set of GK; lemmas 1 and 2 allow then
to verify immediately, by means of an easy backward induction, that algorithm 1 produces a.
maximum-weight independent set of G.

Concernmg the complexity of algorithm 1, as we have already mentioned, obtaining a so-
lution g for ECRz in G is performed in O(n3), on the other hand, we notice that during an
iteration of the while loop, procedure LABEL takes time of O(|E,’?|) and since k¥ < n/2, this
results to a total time (for the while loop) of O(n?®). The two described operations being inde-
pendent, the total time complexity of algorithm 1 is of O(n®) and this completes the proof of
the theorem. §

Theorem 3. Algorithm 1 decides in O(n®) if a given graph G belongs to Gz.

Proof: It suffices to apply algorithm 1 on a given graph G algorithm stops in O(n®) steps
providing a set of vertices labelled by s; one can verify then if these vertices form an independent
set of total weight &g - y, this verification taking time linear to |E|. If this is the case, then
G € Gz, while in the opposite case G ¢ g, since from theorem 2, if G € (g, then algorithm 1
determines a solution of optimal value d)g - y |

10

4 Kénig-Egervary graphs revisited

In the case where @ = 1n, the resulis of section 3 mean that one can decide, in polynomial
time, if a given graph G is KE and, if this is the case, determine, always in polynomial time, a
maximum independent set of G. _
In this case, the constraint 7(G) = m, where 7(G) and m are the sizes of a minimum vertex
covering and of a maximum matching of G, respectively, imposes that the set of the exposed
vertices® of (3, with respect to a given matching M, are included in at least one of the maximum
independent sets of G (let us denote by S such an independent set); moreover, for every edge _
of M, exactly one of its endpoints is included in the minimum vertex covering V' \ 5.

Let us notice that, in this case, one could, slightly, simplify algorithm 1 by initializing the
solution to the exposed vertices in order to obtain, after one application of procedure LABEL,
a graph admitting a perfect matching® {the sub-graph of G induced by the set of the matching
edges endpoints); then, the set C' defined and used in section 3 is exactly the perfect matching
of the reduced graph.

In this case, the step of algorithm 1, consisting of solving a linear program in order to find a
solution of ECR, becomes to find a maximum matching, the complexity of this step becoming
of O(n25) ([7]). But, in any case, the complexity of the so simplified algorithm remains of O(n?).
So, the following theorem summarizes the discussion of this small section.

Theorem 4. There exists an O(n®) algorithm deciding if ¢ given graph G is KE and, if so,
determining a maximum independent set of G.

We find in theorem 4 the well-known result of [5]. In any case, let us notice that, in comparison
with the corresponding theorem of [5], both algorithm 1 and the proof of theorem 2 are much
less complicated and simpler (for identical algorithmic complexities).
5 Some independent set approximation and exact polynomial results “
spired” from Kénig-Egervary graphs '
Let us consider a minimum vertex cover C* and the corresponding maximum independent set 5
in a graph G. Let us also suppose that, given a matching M, there are f matching edges such
that both their endpoints belong to C*, for the remaining ones, one of their endpoints belonging
to C* and the other one to §*. Let us call this edges “dissymmetric” and denote by F the
get of these “dissymmetric” edges (|F| = f). For M (in the case that it is not perfect), let
us denote by X the set of the exposed (non-saturated) vertices of G with respect to M, and
by X (JX¢| = g) and Xg the subsets of X belonging to C* and 5%, respectively (of course,
X = X¢ UXg). The numbers f and g, consequently the sets F' and X¢, depend not only on M *
but also, for a fixed matching, on the sets C* (and 5*) considered. However, the sum f+gisa
quantity depending only on G (f + ¢ can be considered as the “discrete duality gap”). In fact,
for every graph o

€] = 7(C)=m+(f+0) |
[= a(@)=n—m—(f+g) oN

So, a KE graph is exactly a graph where f 4+ ¢ = 0.

In the first part of this section, we allow a relaxation of the condition f + g = 0 by con-
sidering this quantity bounded above, first by a universal constant, next by a number which
can be function of the size of the instance, and we give some polynon’ual results for maximum

%We have adopted the terminology of [7] where the non-saturated vertices of a graph with respect to a given - -

matching are called exposed.
%A matching saturating all of the vertices of the graph.

11

independent set problem; in the first case, these results are exact, while in the second case, the
given results are approximation ones. '

Proposition 2. Consider a graph G = (V,E) such that 0 < 7(G) —m = f + ¢ < k& (where m
is the cardinality of @ mazimum matching M). Then, (i) if k is a fized positive inleger con-
stant, there exists an exacl polynomial algerithm for mezimum independent set problem in G
(ii) otherwise, there exists a polynomial time approximation algorithm (having k among s tnput
parameters) providing an independent set of cardinality at least equal to |nf[2(x + 1)] — 2].

Proof:
(i) The condition f+4g¢ < « implies that both f and g are bounded above by . So, for all integer
h < min{m, k} (where m is the cardinality of 2 maximum matching M of) and for all integer
ke {0,...,min{n — 2m, & — h}}, for all h-tuple H of matching edges and for all k-tuple K of
exposed vertices of V with respect to M, we form the sub-graphs of G induced by the vertex
set V' \ (K UT[H]) where, by T[H], we denote the endpoints of the edges of the set H.
We next apply the simplified version of algorithm 1, discussed in section 4, on all of the so-
obtained sub-graphs of G. Then, for one of the pairs (#, K}, the induced subgraph is KE and,
moreover, in this graph, a maximum independent set is identical to the maximum independent
set of G. Hence, the maximum cardinality set between the so-obtained independent sets is a
maximum independent set of G.
(Given that & is a universal constant, there is a polynomial number of pairs (H, K) and, conse-
quently, the whole of the described process remains also polynomial.
' (ii) Obviously, f < x and g < k. We arbitrarily partition the edges of M into £ + 1 sets
My,..., Mgy, where |[M;l = [m/(k+1)],i=1,...,x and Mxy1 = m — 2 [m/(k+1)]. We
also arbitrarily partition the set X of the exposed vertices of (7 into x+1 se::s 1X 1y -+ Xrt1 sets,
each of size at least [(n — 2m)/(k + 1)]. We so obtain (k + 1) sub-graphs of G (x < m < n/2),
each one induced by the vertex-set X; U T[M;] (where, as previously, by T[M;], we denote the
set of the endpoints of the edges in M;), (i,4) € {1,...,k +1}* (Cartesian square).
So, we can apply simplified version of algorithm 1, dlscussed in section 4, on all of the so- obtalned
(k + 1)? graphs. Since at least one of these graphs is KE, one of the obtamed solutions will be
of size at least (n — 2m)/(s+ 1) + (m)/(s+ 1) —2=(n—m)/(k+ 1) — 2.
The minimum of this fuction, for m € [0,n/2], is obtained for m = n/2 and its value is, in this
case, equal to n/[2(k + 1)} —

Corollary 1. Given a fized positive constant , deciding if a graph G salisfles 0 < f+g <k is -
polynomial.

12

Part 11

The approximability behaviour of some
combinatorial problems with respect to the
approximability of a class of maximum
independent set problems

6 Mipimum vertex covering and maximum independent set

Proposition 3. There exists a ko such that, for every fized constant p < 1, there is no poly-
nomial time approzimation algorithm for Sy, quaranteeing approrimation ralio greater than or

equal to p.

Unfortunately, up to now, we do not precisely know the value of kg. However, we shall see at
the end of this section that ko > 2. In any case, S; {(x > 2), in particular for small values
of k, seems to have interesting properties, since it interferes with VC (as well as with some
interesting mathematical programming problems, as we shall see in the next section) and its
approximability behaviour.

In this section, we examine how the approximability of Sz influences the one of VC. We prove
some conditional results which show how the existence of a polynomial time approximation
algorithm for S3 would imply the existence of a polynomial time approximation algorithm for VC
guaranteeing an approximation ratio strictly smaller than 2, while the non-existence of such an
algorithm induces a lower bound for the ratio of VC.

In what follows, given a graph G = (V,E) of order n, we denote by r(G) (resp. 7'(G))
and «{G) (resp. ¢/(G)) the cardinality of the minimum (resp. approximate) vertex covering
and the stability (resp. approximate stability) number of G, respectively. Also, given a set of
edges A, we denote by 7'[A] the set of the endpoints of the edges of 4; given a set V' C V of .
vertices of G, by G[V’] we shall denote the subgraph of G induced by V'. Given a maximum
matching M and an edge uv € M, vertices u and v are called mates and we will denote vertex v
(resp. vertex u) by m(u) (resp. m(v); m stands for mate); given a vertex z, exposed with respect
to M, we denote by M[z] the subset of M such that, for any edge e € M|z], at least one endpoint
of e is adjacent to z. In the following, we shall denote by E(G) (resp. V(G)) the edge (resp.
vertex) set of G.

6.1 The non-constant-approximability of S3 would induce a lower bound for vertex
cover’s approximation ratio

Proposition 4. If Sz is not constant-approzimable in polynomial time, then there cannot exist
& polynomial time approrimation algorithm for VC guaraniceing approrimation ratio strictly
smaller than 3/2.

Proof: Let us suppose that VC admits a polynomial time approximation algorithm .4 with an
approximation ratio less than or equal to (3/2) — ¢, for a fixed constant € > 0. Let also G be an-

instance of Ss.
From the hypothesis on the existence of the p-approximation algorithm .4, we have r'(G}/7(G) <
(3/2) — ¢ and, on the other hand, since G is an instance of S3, we get '

() = n—afG) < %n 3)

13

begin
compute a maximum matching M in (),
C « T[M]

end;

Procedure 2.

From the above expressions, we deduce
, 2
7(G) < 1—§€ n (4)
and hence one can obtain immediately an independent set on GG of cardinality
2
() =n-1(G) > e (5)

. Consequently, A (provided with a set-difference instruction) constitutes a polynomial algorithm
for 83, always guaranteeing a ratio o (G)/(G) > o'(G)/n > (2/3)e, this ratio being a {(universal)
constant. So, on the hypothesis that Ss is not constant-approximable in polynomial time, such -
a polynomial time approximation algorithm .4 cannot exist for VC (unless P = NP). |}

6.2 The constant-approximability of S3 would induce an improvement on vertex
cover’s approximation ratio

In order to prove the conditional result of theorem 5 of section 6.2.2, we present in section 6.2.1,
a polynomial time approximation algorithm for VC (algorithm 2). Moreover, we suppose that
there exists a polynomial time approximation algorithm A4 for 53 with a fixed positive constant
approximation ratio’ p. In section 6.2.2, we show that, under this hypothesis, algorithm 2
guarantees an approximation ratio strictly smaller than 2 for VC. '

6.2.1 An algorithm for vertex covering and its properties

We introduce and discuss now three different procedures for finding a vertex covering in a
graph G, which will be then exploited in a more general algorithm (algorithm 2 presented at
the end of this section). In fact, as we shall see, algorithm 2 calls algorithm 1 and the three
- procedures presented in what follows and chooses the smallest among the produced solutions.

All the three procedures and algorithms 2 and 1 have as input a graph G (without loss of
generality, we can suppose that G is connected) and output a vertex covering for G. In what
follows, by C and §, respectively, we shall denote a vertex covering and the independent set
associated with C,i.e., S =V \C.

First, procedure 2, the maximum matching algorithm ([7]; this is the most-known approxi-
- mation algorithm for VC}, is called.

In the case where M (the matching computed by procedure 2) is perfect, procedure 3 is
called to provide a solution for G. procedure 3, is a simple procedure calling the hypothetical
constant-ratio approximation algorithm .4, and then taking the complement of a the solution
provided by .A.

Finally, procedure 4 treats the case where G admits a non-perfect maximum ma,tchmg
Let M be a maximum matching of G, with |M| = m and suppose that M is not perfect. Let S

"We suppose that whenever A operates on graphs & which are not instances of 83, it stopsin polynomial time,
delivering either non-feasible solutions or maximal independent sets of cardinality smaller than pn/3.

14

begin
apply A on & to obtain an independent set solution S;
C—V\S

end;

Procedure 3.

be the independent set derived by procedure 3 when applied to G' = G[T[M]]; let X be the set
~ of the exposed vertices of V with respect to M, and let My C M (|M1| = mq) be the edges of M
_ having one endpoint in S NT(X), where, for a vertex-set ¥ C V', we denote by I'(Y') the set of
vertices of V \ 'Y joined by an edge to at least a vertex of ¥ (informally speaking, ['(Y') is the
set of neighbours of the vertices in ¥). Let Ma = M \ My (|Mz| = mg = m — my); also, let us
assume that T[M1]NS = {s1,...,8m, Y and ¢; = m(si), i = 1,...,my; let X4 = [(T[M]NS)NX
and let X, = X\ X;. Finally, let us note that the set C (output of procedure 4) is initialized at
line (3) of the procedure by the output of procedure 3 called at this line and it is completed by
the execution of either the consequence then, or the consequence else of procedure 4.

The following lemma brings to the fore an interesting property of procedure 4, in the case
where the consequence else of the if clause of procedure 4 is executed; this property is used
in the proof of lemma 5 (establishing the correctness of procedure 4) as well as in the proof of
theorem 5.

Lemma 3. Consider a vertez v € 51\ X; then, there exists an exposed vertez x € Xy and an
alternating path from v to z starting with vm(v), all edges of this path being included in E.

Proof: From procedure 4 and since v ¢ X, there exists ! € {1,...,|X1|} such that v is introduced
in §7 during the {th iteration of the for loop of line (12). We then distinguish two cases:
(DHvesNC,and (i) veSNS. '
For case (i), v — m(v) — #; is the searched path. .
Let us now discuss case (ii). Vertex v is introduced in S; during an execution either of
line (19) (case (j)), or of line (22) (case (jj)), or of line (25) (case (jjj)).
In case (j), the 5-cycle discovered at line (17) is the cycle z; — v — m(v) — ¢ — m(c) — z; (with
m(c) # v) and the searched path is v — m(v) — ¢ — m(c) — 1. '
Case (jj) (the case of triangles) is similar to the case (J).
Before considering case (jjj), let us note that since lines (17)-(22) have all been executed, for
every vertex s € S}, vertex m(s) € Cl. Let us now consider case (jjj). Let us number from 1
to N the executions of line (25) (since we treat case (jjj), N > 1) and, forall k € {1,..., N}, let.
us denote si the vertex introduced in S} during the kth execution of line {(25); let us denote Si (k)
and Cl(k), the subsets of 5% and C!, respectively, resulting from the insertion of sy in S{. If
line (25) has been executed at least once, then line (19), or line (22) has also been executed
at least once; let us denote by $%(0) and C(0), the non-empty subsets of 5% and C! resulting
from the last execution of lines (19), or (22).
Let us now show by induction on & € {0,...,N} that: (a) Yv € Si(k) U Ci(k), m(v) €
S (k) U Cl(k) and (b) for every vertex s € Si(k), there exists an alternating path from s to #;
starting from a matched edge and exclusively containing vertices of S%(k) U CL(k).
_ Basis: for & = 0, (a) and (b) immediately result from from the discussion of cases (j)
- and (jj). .
: Inductive step: suppose (a) and (b) true for k¥ < N; the only newly introduced in S§(k) U
Ci(k) vertices being sp41 and m(sgy1), property (a) is obviously satisfled on range k + 1; for

15

begin
(1)
(2)
(3)
(4)
(5)
(6)
(T)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
1(22)
(23)
(24)
(25)
(26)
(27)

(28)

|(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
end;

compute a maximum matching M in G;

G — GITIM]]

call procedure 3 on G’ to obtain sets C and S;
determine My, M3, X1 and Xo;
if my < pm/3 then C «— CU(T[M]N S)

else

Cy « T[My);

C

—

51— (D;

order arbitrarily the elements of X71;

let X; = {e1,...,2]x,|} be the resulting ordering
for ! — 1 to |X1| do

od

Cl <

S5t 0

Vi e T[Mi[zi]] U{z: };

Er — E(G[V]);

find all 5-cycles @; — s; — ¢; ~ ¢; — 85 — &7 such that {s;c;,¢;8;} C My;

Ci Ao C{ U {Ehciacj};

S —Siuisi, sk

find all triangles @; — s; — ¢; — 27 such that {s;¢;} € Mn;

Cl = Clu{zm,al;

8] —Siu{s}

while 3(c;, € (VV\C})As; €8], 18, € By, k #i do
C] —ClU{a}
1« Sju{m(c)}

od

while dsic;, € Ml,{sk,ck} C V;,{sk,ck} ﬂC{ =0 do
Gl — G U{sk};
51 = Sju{el}

od

Ci—C1 U C{,

S —5U S{;

S1 =S U(X\Ch);
C*—C1UCQ

Procedure 4.

16

Figure 1. The thick lines represent matched edges.

property (b) on range k + 1, it suffices to consider the case where sg41 ¢ CU (the opposite '
case being treated in case (i)); then, from line (23) of procedure 4, m(sz41) ¢ Ci{k) and, also,
s € Si(k) such that m(sg41)s € E; from the inductive hypothesis on property (b), there exists
“an alternating path p from s to ; exclusively containing vertices from Si(k) U Ci(k); on the
other hand, from the inductive hypothesis on property (a), {srs1, m(sre1)} & St (k) U Ci(k)
and, moreover, (5% (k) U CH(k)) N {sre1, m(sx+1)} = 0; so, the path spy1 — m(spq1) — p is the
searched alternating path concluding the proof. i
To illustrate the property described by lemma 3, let us consider the following example.

Example 1. Let us consider the graph of figure 1. Suppose that at line {(c) of procedure 4, the
cycle 7 = & — 81 — ¢1 — ¢a — 52 — « has been detected, where # € X, ¢1 and ¢z belong to C (the
vertex covering of G'), and s1, s2 belong to S (the independent set of G’ detected by procedure 3).
Once w is detected, ¢; and cg are added in C) and sq, s2 in S1. During the first while loop,
" the vertex set {cs,c4,¢5,c6} has also been added in C}, the insertion of each ¢;, ¢ = 3,...,6,
- in } entailing the insertion of s; = m(c;), ¢ = 3,...,6,in Si. Then, for sg, the alternating path
claimed by lemma 3 is the path p = sg—cg— 85— c5 — 54 — €4 — 83— c3 — 83 — cg — &1 — 51 — &; for the
rest of the vertices s;, 1 = 2,...,86, the alternating paths claimed by lemmma 3 are the fragments
of u starting from s;, while for s;, the alternating path is the path 51 —¢; —cz — sz —z. 11

Let us now prove another easy lemma concerning procedure 4 and used in the proof of theorem 5
in section 6.2.2. '

Lemma 4. There does not exist an edge uv € My such that there ezist {z;, x;} C X, 2; # 2,
with {uz;,ve;} C E.
Proof: Plainly, if the contrary is true, then #; — u — v — 2; is an augmenting (alternating) path,
contradicting the maximality of M. |l

A particular case of lemma 4 is that there is no edge uv € My such that one of its endpoints,
say u, is linked to an exposed vertex z; € X7 and the other one, say v, is linked to an exposed
vertex z; € Xg. '

‘Lemma 5. (Correctness of procedure 4.) Procedure 4 finds in polynomial time a vertez '
covering C of tts input graph G.

Proof: Concerning the time-complexity of procedure 4, it is easy to see that its most “expensive”-
operation is the instruction of line (17) performed at most |X;| times. This operation entails a
worst-case complexity of n® (where n is the order of G).

17

Consider now the set C created during the execution of the then consequence of the if clause
of procedure 4.
It is easy to see that since the only uncovered edges are the ones of the form wv, where u €
SNT[M] and v € Xy, then set S NT[Mi] suffices to cover them; therefore, C U (5 N T[My])
constitutes a vertex covering for G. '

Let us now consider the set C' created during the else consequence of the if clause of proce-

dure 4.

We arbitrarily label by s;, i = 1,...,my, the vertices of SNT[Mi], and by ¢; the vertices m(s;),
i =]., N 1151

We prove now that set C) created by the procedure constitutes a vertex covering for G[T[M;}U
X1]. In order to do that, we distinguish two families of edges in this graph: (i) edges of E,
x; € X1, and (ii) edges v;v;, where v; €V}, v; € Vp, {21, 2,} C X1, I # p.

(i) We first prove that the subset of C} created at the lth iteration of the for loop of the
procedure {(concerning x; € Xl) covers all edges in).

Let us first point out that S NV = Vi \ C%. In fact, obviously, CI N 5! = §; line (34) of
procedure 4 guarantees that X C 51 UCh; on the other hand at the lth iteration of the for loop,
I=1,...,|Xy|, i a vertex of T[Ma] is introduced in C}, its mate is immediately introduced in St
Finally, the second while loop (lines (27)-(30)) guarantees that all of the edges of M N £} are
covered by C%. Hence, S} UC! D T[MiNEJUX D V.

Observe that when the execution exits the first while loop (lines (23)-(26)), ! C 1, and
thus S{ is an independent set of G. Now, let ¢; € S’{; suppose there exists s; € Sf such
that s;cr € E;. Since cp is inserted in .S'{ during the execution of the second while loop
(lines (27)-(30)), i # k; but then ¢z € C} (first while loop), a contradiction. Suppose now
there exists ¢; &€ .5’{ such that cie; € E;. Then, c; and ¢ would be inserted in .S'i during
two distinct executions of the second while loop and, consequently, there would be a cycle
®] — s — ¢ — ¢; — 8; — x; detected at line (17) of the procedure. ' _
Consequently, S{ NV, really constitutes an independent set for G[V]], set Vj \ S} constituting a
vertex covering for this graph.

(ii) Now, we will use lemma 3 to prove that set Cp, obtained by procedure 4, covers all
edges v;v;, where v; € V}, v; € Vj, {21, 2} C X1, | # p. We show this by contradiction; let
v; € Vi, v; € Vp, {z1,2,} C X1 such that v;u; € E(G); let us suppose that {v;,v;} C S1. We
distinguish two cases, depending on whether or not at least one between v;, v; belongs to X1 o
We first study the case where {v;,v;} C T[M1] (neither v;, nor v; belong to Xy).

If {v;,v;} C T[My], then by lemma 3, there exist two alternating paths v; —m(v;) — ... —2; and
v;—m(v;)—...— 2y, respectively. These two paths do not have vertices in common because, in the'. '
opposite case, if they had a vertex v in common, they would have the edge vm(v) in common too,
and an augmenting path #;—...—m(v)—v—...—z, would be brought to the fore. Consequently,
on the hypothesis of the ex1stence of an edge v;v;, the path #;—. . .—m(v;)—vi—v;—m(v;)—. . .—2p
is still augmenting, contradicting the maximality of M.

Let us now study the case where at least one of the v;, v; belongs in X; we first note that the
case {vi,vj} € X is excluded since X is an independent set. So, we suppose that v; € X and
v; € X, v; € Vp, zp # vi. But then, the application of lemma 3 on v; brings to the fore an
alternating path v; — m(v;) — ... — zp, and consequently, the path v; — v; — m(v;) — ... — zp is
augmenting, contradicting so the maximality of M.

The above discussion concludes the proof that €y constitutes a vertex covering for the graph
GTMUXy)

On the other hand, obviously, set T[M3] covers all edges in E(G) \ E(G[T[M;] U X]) (recall
that Mp is maximal for G[T[M3] U Xa]); consequently, it covers all cross edges between T[My] |
and T[M3]. In fact, the edges between X, and T[M;]NC) are covered by Cy U Cy; on the other

18

begin
call algorithm 1 on G
if G is KE then find and store the complement of the provided independent set
cail procedure 2 and store the obtained solution for VC;
compute & maximum matching M in G
if M is perfect then call procedure 3 and store the obtained solution for VC
else call procedure 4 and store the obtained sclution for VC
fi
choose, between the two candidate solutions, the smallest one
end.

Algorithm 2.

hand, there is no edge between X and T'[M;]NS; because, in the opposite case, the application
. of lemma 3 would bring to the fore an augmenting path. So, the set C obtained at the end of
the else consequence of the if condition of procedure 4 constitutes a vertex covering for G.
Let us remark here that the case of triangles {lines (20) and (21) of procedure 4) is similar to
the case of cycles just examined; so, the proof for triangles is omitted. Il

We give now an overall specification of algorithm 2, the approximation performance of which,
is studied in section 6.2.2; we recall that this algorithm uses the hypothetical constant-ratio
approximation algorithm 4 {directly called by procedure 3) for Ss.

6.2.2 The main result

Theorem 5. On the hypothesis that algorithm A is a polynomial time p-approzimation algo-
rithm for 83, for p < 1 a fixed positive constant, algorithm 2 is a polynomial time approzimation
algorithm for VC, guarantecing approzimation ratio smaller than 2 — (p/6) < 2.

Proof: Let G = (V, E) be a graph of order n, instance of VC, and M (|[M| = m) be a maximum
matching of G.

Let us consider a minimum vertex cover C* and the corresponding maximum independent set 5*
in @, i.e., §* = V\C*. As previously, let us also suppose that there are f matched edges (already
called “dissymmetric”), such that both their endpoints belong to C*, for the remaining ones,
one of their endpoints belonging to C* and the other one to 5*; let us denote by I the set of
“dissymmetric” edges (|F| = f); given X, the set of the exposed vertices of G with respect to M
(when M is a perfect matching, X = B), let us denote by X¢ ([X¢| = g) and Xg, the subsets
of X belonging to C* and S*, respectively (of course, X = Xg U Xs). In fact,

IC*[=7(G)=m+(f+9) (6)

and, consequently, |S*| = a(G)=n—m - (f +g).
In order to prove the theorem, we distingunish three cases for the quantity f 4 g. We first
study the case (a) f+ g = 0; next, we study the case (b) f + ¢ > m/3; finally, we study the
case (c) 0 < f+g<m/3.

(a)f+g=0. -
This is the case where algorithm 1 is called for VC. As we have seen in part I, in this case VC
admits a polynomial time algorithm of approximation ratio equal to 1. So, for case (a) we have

(G) _
G =" (7)

19

(b) f4+g > m/3.

In this case, procedure 2 is used as an approximation algorithm for VC.

We have then /(@) = 2m. From the expression (6) and the one for r'(G), we obtain the
following approximation ratio: 7(G)/7(G) = 2m/[m + (f + g}]. Then, for (f + g) > m/3, we
obtain immediately an approximation ratio -

7(G)

=0 52 (8)

for the maximum matching procedure 2, whenever used to solve approximately VC.
(c) 0< (£ +g) <m/3]
In this case, we distinguish two subcases (c.1) and (c.2) depending on whether M is perfect or
not.
(c.1) M is perfect (g = [Xg| = |X¢c| = |X]| = 0).
Then, n = 2m and procedure 3 is used to obtain an approximate solution for VC.
The expression (6) for T(G) gives 7(G) = m + f < 4m/3; consequently, a(G) > 2m — (4m/3);
so @) > 2m/3 = n/f3.
Thus, G is an instance of S3 and, when A operates on G, gives o/(G) > pn/3. Then, the following
inequalities hold for G: o/(G) > pn/3, (@) =n-o(G)<{l~ (p/3)]n (G) > m = n/2 and,
consequently, (@) .
o .
T(G)<2_3<2' (9)._
(c.2) M is not perfect (X # 0).
This is the case where procedure 4 is called to solve VC (recall that in proposition 5 it is
proved that procedure 4 feasibly solves VC). Consider the graph G' = G{V \ X]; M is perfect
for G'. Obviously, since (G} > m — f > 2m/3 = |V(G')|/3, G’ is an instance of S3. The
call of procedure 3 to G {performed by procedure 4) initializes sets C' and S and allows the
computation of My, Ms, X; and Xg;
With respect to M, we consider two cases, namely m; < pm/3 (case (c.2.1)) and my >’
pm/3 (case (c.2.2))5.
(c.2.1) my < pm/3.
This case is treated during the execution of the then consequence of the if clause in procedure 4.
We have |[CU(SNT[M))| = 7(G) = 7'(G') + my < 2m[l — (p/3)] + pm/3; on the other hand,
(G} > m; consequently,
@) g 2y (10)
(G) 3
(c.2.2) m; > pm/3.
This case represents the else consequence of the if clause in procedure 4.
Let us give a bound for the cardinality of the solution C) found by procedure 4 (whenever its
else consequence is executed). :
First, we shall prove that there are less than f + g exposed vertices added in Cj at line (21) of
the procedure. Plainly, given a triangle 2 — s —c— &, then either ¢ € X¢, or [r € X and sc € F]
(this last inclusion is due to the definition of the set F'). Moreover, the case of the existence of
two vertices x;, z;, both belonging to X (a fortiori to X}, and of a matched edge sc of M such
that both z;scz; and z;scz; are triangles discovered at line (20) of procedure 4 is excluded,
because of lemma 4. Consequently, there may be exposed vertices of X forming triangles with,
eventually, many edges of Mj, but there is no more than one exposed vertex of X (a fortiori

¥We have arbitrarily chosen the constant 3 for the denominator of the fraction; in fact, theorem 5 remains
valid for all constant greater than or equal to 2 in this denominator (up to 2 modification of the VC-ratio’s value). -

20

to Xg) forming triangles with the same edge of My N F. Since we have f edges in ¥ and g
vertices in X¢, then there are less than f + ¢ exposed vertices introduced in Cy at line (21) of -
the procedure.
Let us now see how many exposed vertices have been introduced in € because of the cycles
discovered at line (17) of the procedure. First, let us define the intersection of two such cycles
to be the set of their vertices in common. The particular form of these cycles (they contain two
matched edges) induces that their intersection could only arise either on an exposed vertex, or
on an exposed vertex and the endpoints of a matched edge. The arguments: it 1s easy to see
that two such cycles cannot be intersected on a set of vertices containing only one endpoint of a
matched edge; on the other hand, if there exist two cycles z; — s;; — m(s;;) —m(s;,) — i, — % and
zj — i, —m(s;,) —m(s;) — s, — zj, 2; # z; (intersected only on the endpoints of the (matched)
edge m(szk }si.), then the path z; — 5;, — m(s;,) —m(s;) — sy — 2 1s augmenting; so, this case is
to be excluded. Moreover, for a set of non-disjoint cycles, a unique exposed vertex is introduced .
in C;. Consequently, if at line (¢) of procedure 4 (for all iterations of the for loop) £ disjoint
5-cycles have been detected, then k exposed vertices have been introduced in C at line (18) of
the procedure.
Finally, for the my edges of My, my vertices have been introduced in Cy for all iterations of the
for loop of procedure 4, since once a vertex v of T[M] is introduced in C, its mate m(v) is
 introduced in Sj.
So, |C1] = 7 (G[TIM]U X1)) € (f +g) + k +my; hence, [C] = 7(G) < (f +g) + k +my + 2mg;-
on the other hand, (@) = m + (f + g), with m = my + mg; moreover, my > pm/3; finally,
k<my/2 and f+g > 0. So, we have

(G) _ k4 mi+2my P
< = 2Z— < D - =,
r(G) — m 2 m 2 6 (11)

Consequently, from expressions (7), (8), (9), (10) and (11), algorithm 2 constitutes a polynomial
time [2 — (p/6)]-approximation algorithm for VC. Since p is supposed to be a universal constant,
this ratio is always strictly smaller than 2. i

'The following theorem summarizes the results of sections 6.1 and 6.2.

ml_k<2_T_2_L
- m

Theorem 6. Let p < 1 be a fized positive constant. Under the hypothesis P # NP, (i) the non-
eristence of a p-approzimation polynomial time algorithm for S5 implies that no polynomial time
approzimation algorithm for VC can guarantee an approzimation ratio strictly smaller than 3/2;
(ii) if, on the contrary, such an algorithm exists for S3, then there exists an algorithm for VC
guaranteeing an approzimation ratio smaller than, or equal to, 2 — (p/6) < 2.

As we have already mentioned above, we do not precisely know the infimum #o of the values
of « for which S, does not admit a polynomlal time approximation algorithm of constant error.
However, we can prove that kg > 2. In fact, let us consider an instance G of 5z, for a positive
constant €. Then, for this instance, there exists an ¢ > 0 for which (@) > [(1/2) + ¢]n
holds. Let e be the number of the exposed vertices with respect to a maximum matching M
of cardinality m. Then, n = 2m + e, and moreover, it is easy to see that a(G) < m+e If
we choose as approximate solution for the instance the set of these exposed vertices, then the
combination of the above inequalities leads to e > 2¢'n. Since 2¢' is a constant for S;_., we can
conclude that kg > 2.

In fact, our guess is that S, is not constant-approximable for any « > 2, unless P = NP. In any
case, with arguments similar to the ones used for the proof of statement (i) of theorem 5, one
can easily prove the following proposition 3.

Proposition 5. If S; is non-constant approzimable in polynomial time, then no polynomial
time approzimation algorithm for VC can guarantee an approzimation ratio p < 2 —¢, for a

21

fized positive constant €.

To prove proposition 5, it suffices to replace, in the part (i) of theorem 5, (3/2) — ¢ by 2 — e;: |

then, expression 3 gives 7(G) < n/2, expression 4 gives 7/(G) < [1 — (¢/2)]n, from expression 5,
we get o (G) = n — 7'(G) > (2/3)en. Consequently, the hypothetical algorithm .4 constitutes a
polynomial algorithm for S gnaranteeing always o/ (G)/a(G) > &/(G)/n > €/2, a contradiction, '
" since €/2 is a (universal) constant. '

7 Mathematical programming and maximum independent set

7.1 Convex programming and maximum independent set

The (maximization) convex programming problem considered here is defined as follows:

{ max 3 ED)
CPM(R) = i€{1,.ym}
reP

where P is a polytope defined by a finite number of constraints, and f belongs to a family F of
functions increasing in [0, 1], with f(0) = 0 for every f € F, verifying the property

) 1
}Qﬁ{ﬁ)}e[o,z[, k> 2 (12)

The following theorem is the main result of this section.

Theorem 7. Let k > 2 be such that S, does not admit a polynomial time algorithm guamnteeiny
g mazimal independent set greater than pn for a fized positive constant p < 1. Then, on
the hypothesis that P # NP, there does not ezist a polynomial time approzimation algorithm
for CPM(x) guaranteeing an approzimation ratio greater than xinfrer{f(1/2)/F(1)}.

Proof: Let us suppose the existence of an approximation algorithm A for CPM(x), with a
constant ratio p < 1. Given an instance of CPM(«), let us denote by © the value of the
solution # found by A, and by v* the value of the optimal solution z; of course, © > pv*.

Let us also consider an instance of the maximum independent set problem, in other words a
graph G of order n with edge-vertex matrix A. This instance defines a family of instances
of CPM(x) for which P = {# € R" : A-# < I,# > 0}. We denote this family by IPM(x) and
we express it in terms of a nonlinear program with linear constraints as follows:

max > f(=)
IPM(H) = Az<T
zZ

Of course, IPM(k) being a particular instance of CPM(k), it can be solved approximately within
a ratio p. Let us now consider an instance of [PM(x) and let us denote by v*(f) its optimal
value, and by 9(f) the value of the approximate solution found by A. Let also a(G) be the
stability number of G, let S* be a maximum independent set of G, and #(5*) the corresponding
vector.
Since, Yf € F, #(5*) is feasible for IPM and since the objective value of this vector 1s f (1)e(@),
we have, Vf € F, _
9(f) = pv" () 2 pf(1)(G). (13)

.On the other hand, let us consider the solution :g(f) of IPM(x). We then consider the seb
S ={ie{1,...,n},#(f) > 1/2}, where z; is the ith component of vector &. It is easy to

22

see that § constitutes an independent set for G. Plainly, the facts: A - §(f) < T and ::c’(fl = 0
irply, on the one hand, that &;(f) € [0,1], for all i € {1,...,n} (4 is a 0—1 array), and, on the
other hand, that two adjacent vertices have positive values the sum of which cannot exceed 1;

consequently, two adjacent vertices cannot belong to S (recall that S is constituted by vertices £
for which 2;(f) > 1/2).

The va.lue 9(f) corresponding to S can be decomposed as follows (recall that f is increasing):

3(F) = Ties F@N) + Tigs F(@(F) <51 (1) + (n = |5DF(1/2), or

B(f) — nf(3)
F)-f(3)

Let us now consider a x > 2 satisfying proposition 3, and an instance G of S.. From ex-
pressions (13) and (14), Vf € F and given that a(G) < n, we have for the cardinality of EE

151 2 [(nf (1)p/k) — nf(/2)/[F(1) = F(1/2)], or

81, L2 -1G)
o(G) = F() - F})’

So, the hypothetical algorithm A4 for CPM({k) is used to solve polynomially S, within an ap-
proximation ratio given by expression (15) and moreover, this ratio does not depend on G. We
can thus define a ratio for S, for every function f.
Because of the hypothesis on the non-constant approximability of S, all these ratios are zero
or negative, or, Vf € F, (f(1)p/k) — f(1/2) < 0; consequently, p < xf(1/2)/f(1) and, by using
the property given by expression (12), we obtain p < winfser{f(1/2)/f(1)}. 1

If we take the singleton F = {(2 + z?)}, then CPM(k) becomes: find a point of mazimum
norm || - ||2 in a polytope, which is a special case of the quadratic programming problem, and '
more particularly, of the case of quadratic programming known to be NP-complete ([6]); in thls_
case, £ = 1/4, and the following corollary holds.

5] > (14)

(15)

Corollary 2. If S5 does not admit a polynomial time approzimation algorithm of {universally)
constant ratio, then the quadratic programming problem does not admit a polynomial time ap-
prozimation algorithm guaranteeing an approrimation ralio greater than or equal {o 3/4, unless
P = NP

On the other hand, let us consider the family of all the convex increasing functions f with
F(0) = 0; then, £ = 0 and we get the following negative result.

Corollary 3. The problem of maximizing a conver function in a polytope does not admit @
constant-ratio polynomial time approzimation algorithm, unless P = NP.

7.2 Concave programming and maximum independent set

Let us, once again, consider a x > 2 satisfying proposition 3 and the following minimization

problem:
min S f(l—ay)
CPm(k) = 1€{1,n}
£epP
where f belongs to the family F of functions increasing in [0,1] with f(0) = 0, satisfying the -

property . : .
f(3) k-1
igg{ri)} E]T,I]. (16)

23

Theorem 8. Let k > 2 such that S does not admit a polynomial time algorithm guaranteeing
a (universally) constant approzimation ratio. Then, unless P = NP, there does not ezist a poly-.
- nomial time approzimation algorithm for CPm(k) guaranteeing an approzimation ratio smaller -

than [/(x — 1)]sup;er{F(1/2)/f(1)}.

Proof: We use the same notations as in the proof of theorem 7. Let us suppose the existence
of a polynomial time approximation algorithm .4 with a fixed constant approximation ratio P
for CPm. Then, to every instance of the maximum independent set problem, we associate the
following family of instances of CPm:

min ¥ f(l-a)
ie{ll"'vn}
IPm = A-g<T

z; 2 0, i’E{lﬂ)n]’

where, as previously, A is the edge-vertex matrix of a graph G.
The approximation algorithm for CPm(k) solves also the instances of [Pm; consequently, d(f} <
(). |
As for theorem 7, given a maximum independent set S* of G, #(5*) is feasible for IPm and we
have, Yf € F,

i(f) < pv*(F) < p(n = (G))S(1). (17)
'On the other hand, let us consider the solution value #(f) (given by A) for IPm, once G,

and consequently A, is given. We define S as in the proof of theorem 7 and we take it as an
approximate solution for the maximum independent set problem on G. Since function z >

fA(l —x)is decreiasmg in [0,1], we have, Vf € F, #(f) = X;e5 F(1 — 2:(F)) + i _f(l——m,(f)) >
1S17(0) + (» — |S)F(1/2), or

1512 n— 2L (18)
f(3) o

Let us suppose now that in G, n/k < a < n/2. From expressions (17) and (18) we get,

Vi e F, |5)/e > 21 - [pll = (1/x)1f(1)/f(1/2)]] and since we have supposed that S is not

polynomlally constant-approximable we have, Vf € F, 1 — [p[l — (1/x)]f(1)/f(1/2)] < 0, or

p > [F(3)/F(L/1L - (/8]

Since F satisfies the property described by expression (16), we easily get the following lower

bound for p: p > [/(k — L)lsup ser {£(1/2)/F(1)}. 1
From theorem 8, we can deduce the following negative result.

Corollary 4. The.pmblem of minimizing a concave function in a polytope does not admit a poly-
nomial time approzimation elgorithm guaranieeing an approzimation ratio less than k/(x — 1),
unless P = NP.

24

input: a graph G admitting a perfect matching;
output: a maximal independent set S';

begin
S 1
repeat
vj « argmin, ey {|T'(v)|};
S — S Uy,
V = VA {y} UL (y));
delete from E all edges incident to {v;} UT'(%;);
update the degrees of the vertices in V'
until V' =0
end.
Algorithm 3. The greedy S algorithm.
Part I11

On the approximation ratio of the greedy
algorithm of the maximum independent set
problem

In what follows, given a connected graph G = (V, E) of order n, we denote by I'(v;), v; € V', the
neighbour-set of vertex v;; we denote by A the quantity mgg{[‘(w)}, i.e., the maximum degree

~of the vertices of G; finally, as previously, we denote by m the size of a maximum matching M
of G.

The result of this section concerns the approximation ratio of the natural greedy algorithm 3 -

on graphs admitting a perfect matching M (a matching of cardinality [n/2]). In fact, we try

to refine the analysis of the approximation performance of the greedy algorithm by taking into

account the existence in M of a set F of “dissymmetric” matching edges reducing the size of .

the stability number a(G).

Theorem 9. Given a graph G = (V, E) of order n with mazimum vertex degree A, algorithm 3
(having a perfect matching M among its inpuls) is an O(|E|) approzimation algorithm for S,
achieving an approzimation ratio et least (2/A) + [2/[A(n — 2)]].

Proof: In repeat loop, the choice of a vertex of minimum degree is performed in O(n) by
supposing that G is represented by adjacency lists. Once a vertex v; is selected to be added
in §’, the deletion of vertices in I'(v;) can be made by treating the edges incident to v;. On the
other hand, the updating of the vertices of the “survived” graph concerns edges v;uvg, v; € I'(2;)
and vy, is a “survived” vertex. Finally, since all edges incident to deleted vertices are also deleted,
all edges are treated only once. We see thus that, totally, the execution of the second repeat loop
takes time proportional to the sum of degrees that equals twice the number of edges; therefore,
‘we can conclude that the operations of the second repeat loop are performed in O(|E]).

Algorithm 3, during the first selection of an element of 5", removes at most (§+1) vertices of the
set V (the selected one and its neighbours), where 6 = gn&}% {I'(v;)} is the minimum degree of the

vertices of G. After, for each of the later selections, the algorithm removes at most A vertices
(always the selected one and its neighbours). To prove that, it suffices to prove that there will

25

always be a vertex of degree < A — 1 to be selected to enter in S’. In fact, if before the deletion
of all vertices from ¥ such a vertex does not exist, this implies that there is no vertex v; of V
having at least one common neighbour with a vertex already in S’, because if such a v; exists,
then its degree is at most A — 1. But, in this case, there is a set V3 C V' (the set of the removed
vertices during some steps of the algorithm) and a set V3 = V' \ V4 such that there is no edges
linking vertices of V; to vertices of V3, contradicting so the hypothesis on the connectivity of G.
Consequently, the cardinality o’(G) of the solution § satisfies o/(G) > [[n — (6 + 1)]/A] + 1.
Since & < A, the above expression results to

n—(6+1) + n—1

1> ——. (19)_

o (G) > < > —

_ From expression (2), we get:
(@ =n-—m—(f+gl=m+e—(f+g) (20)

where ¢ is the number of the exposed vertices (of G) with respect to 2 maximum matching of G.
On the other hand, let us suppose that f = n/; so, given that G admits a perfect matching M,
we have the following for the terms of the third part of expression (20):

m < g
e—g < 1 (21)
n
;=2
T
- From expressions (19), (20) and (21), we obtain
' n=1
G, K (22)

ol G) — 41— ;—‘

The function on the righthand side of expression (22) is decreasing in z; on the other hand, by
proposition 2, we can, without loss of generality, suppose that f = n/x > 2, or z < n/2; so,
after some easy algebra, we get o’(@)/e(G) > (2/A) + [2/A(n — 2)]. 1

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verification and in-
tractability of approzimation problems, Proc. FOCS’92, pp. 14-23, 1992. '

{2] B. Aspvall and R. E. Stone, Khachiyan’s linear programming algorithm, J. Algorithms 1,
pp. 1-13, 1980.

[3] C. Berge, Graphs and hypergraphs, North Holland, Amsterdam, 1973.

[4] J. - M. Bourjolly, P. L. Hammer and B. Simeone, Node-weighted graphs having the Konig-
Egervary property, Math. Prog. Study 22, pp. 44-63, 1984,

[6] R. W. Deming, Independence numbers of graphs - an estension of the Konig-Egervary
theorem, Disc. Maths 27, pp. 23-33, 1970.

[6] M. R. Garey and D. S. Johnson, Computers and intmctabz'ffty. A guide to the theory of
NP-completeness, W. H. Freeman and Company, San Irancisco, 1979. '

[7] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and com-
plexity, Prentice Hall, New Jersey, 1981.

26

