CAHIER DU LAMSADE

Laboratoire d’ Analyse et Modélisation de Systémes pour 1’ Aide & la Décision
(Université Paris-Dauphine)
Unité de Recherche Associée au CNRS n° 825

AVERAGE-CASE COMPLEXITY FOR THE
EXECUTION OF RECURSIVE DEFINITIONS
ON RELATIONAL DATABASES

CAHIER N° 135 W. FERNANDEZ de la VEGA !
février 1996 V.Th. PASCHOS ?
‘ AN. STAFYLOPATIS ?

received: Qctober 1995.

! LRI, Université de Paris-Sud, Centre d’Orsay, 91405 Orsay Cedex, France, e.mail; lalo@Iri fr.

2 LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16,
France, e.mail: paschos@lamsade.dauphine.fr.

3 Computer Science Division, National Technical University of Athens, 15773 Zographou, Athens, Greece, e, mail:
andreas @theseas.ntuc. gr.

Introduction

The model
2.1 Some properties of the model . . .
2.2 Performance measures

The algorithms

3.1 The direct method algorithm
3.2 The intermediate storage algorithmo 00000000
3.3 Theanswers to the queries. i i
331 Adsfixed
3.3.2 Considering all the forests on a fixed number of nodes-

The execution costs for a given EDB

4.1 Thedirect method
411 The query R{o,y) o o oo e e
412 The query R(e,B) o o e
4.1.3 The query R(z,B) e
414 The query R(x,y) . . - . . o

4.2 The intermediate storage algorithm
4.2.1 The query R{o,) o e
4.22 The query R(2,8) e
4.2.3 The query R(z,y)« o e

Average-case analysis

51 Thedirect method L
511 The query R(o,y) - o
5.1.2 The query R(e,) e
513 The query R(z,8) o
5.1.4 The query R{z,y) o o e

5.2 Mean execution costs for the intermediate storage method
5.21 The query R{e,8) o o e
5.2.2 The query R(e,8) e
523 Thequery R{z,y)

Conclusions

Complexité moyenne pour évaluer des requétes basées sur des définitions
récursives dans les bases de données relationnelles

Résumé

Les coiits d’exécution de divers types de requétes dans les bases de données sont établis pour
deux algorithmes d’évaluation de requétes dans le cas olt les relations de base de données
sont représentées par des foréts d’arbres orientés étiquetés. Les coiits d’exécution sont tout
d’abord calculés pour une forét donnée. Puis les moyennes de ces coiits sont calculées en

considérant-toutesles-bases de-données qui peuvent &tre représentées-par-une forédt-avec-un
nombre donné de nceuds.

Mots-clés: base de données relationnelle, définition récursive, arbre, algorithme, complexité.

Average-case complexity for the execution of recursive definitions on
relational databases

Abstract

The execution costs of various types of database queries are evaluated for two common query
evaluation algorithms in the case where the database relations are represented by forests of
labelled oriented trees. The execution costs are computed first for a given forest. Then, the
averages of these costs, computed over all databases representable by forests with a given
number of nodes, are also evaluated.

Keywords: relational database, recursive definition, tree, algorithm, complexity.

ii

1 Introduction

In [6] the mean execution costs of some query evaluation algorithms were examined, for database
relations represented by full tree structures. In the present paper we extend these results to the
case of any forest-like structure. Moreover, we perform an average-case analysis over all forests
on a given number of nodes. We refer to [6] for motivation and for references to former results.
The simplicity of the forest structure allows us to perform a fairly detailed analysis and to derive
tight time bounds.
Our work complements the one done by Bancilhon and Ramakrishnan {[2]). These authors treat
relations represented by some particular tree structures (full trees), by inverted tree structures
and also by what they call cylinders (covering graphs of a particular class of graded partial
orders), whereas we consider any kind of tree, in fact any forest, which may represent a database
relation. ' '

We present two query evaluation techniques which we call the direct method and the in-
termediate storage method, respectively. Using database terminology, the direct method is a

--prolog-like top-down evaluation which uses a reordering of goals in order to ensure termination——-

(we will be more precise below); the intermediate storage method is a two-stage method: first,
the constants are pushed into the recursive rules and then, the query is evaluated in-a bottom-up
semi-naive fashion ([2]).

The derivation of mean execution costs has now become an important chapter in the analysis
of algorithms ([10]). Average-case analysis provides results which, to some extent, summarize
the salient features of the behaviour of the algorithm and can highlight aspects of the problem
that are not visible through the most commonly used worst-case analysis. In fact, by using
average-case evaluation, we can gain a quick insight into the properties of the algorithms with-
out depending on information that is really too detailed to be handled in practice. Of course,
we do not imply that this mean execution costs, based on the hypothesis of equal occurrence
probabilities for the distinct possible queries, or, at the higher level, of equal occurrence prob-
abilities for the distinct possible queries forest structures for the EDB relation, reflect exactly
the actual costs in every situation occurring in practice. However, we have undertaken to treat
the average-case complexity analysis of logic programming algorithms in a systematic way and
to produce asymptotic expressions for this complexity; this, to our knowledge, is the first time
that such a theoretical thought process is undertaken. _

The paper is organized as follows. In the next section we introduce the model and discuss its
properties. In section 3 we present the two algorithms, the direct and the intermediate storage
methods. Section 4 deals with the study of the average-case complexity of these two methods
when the forest structure of the EDB relation is fixed. Finally;, in section 5, asymptotical
expressions for the mean execution costs (taken over all forests) are given.

2 The model

Let @ denote a binary relation on some set X (data set). We are concerned with the analysis
of the cost of queries R(z,y) defined recursively as follows:

Te R(m,y)«—Q(m,y)
v Rz, y) « Qz,2), 8(2,y)

Clearly, the relation R holds precisely for the pairs (z,y) for which there is a directed path
from to y in the digraph of @. Accordingly, @ is called external database (EDB) relation, R,
defined by means of the above rules, is called internal database (IDB) relation, while the above
rules are called the transitive closure definition in the database terminology.

We will assume in this paper that the graph of Q) is a forest F of labelled oriented trees,
that is, trees, with labeled nodes, where the left-to-right order of subtrees is immaterial(for
more details on the definition of this type of trees, see [3]) called labelled oriented forest. So,
the problem studied in this paper is the computation of the average-case complexity of the two
algorithms (algorithms 1 and 2), presented in section 3, when they operate on labelled oriented
forests.

2.1 Some properties of the model

We consider the nodes of the forest as distinguishable points, since they represent distinct values
of the domain of ¢). For convenience, we fix the set of labels: X = {1,2,...,n}.

We define as usual the execution cost.for each type of query of interest. when applied to the
EDB represented by a fixed forest A, as the average, taken over all instances of the query, of the
number of steps used (by some given algorithm) to evaluate an instance of this query. Then we

__will compute, again for each fixed query, the mean of the execution costs taken over all distinct

“forests with a given number of nodes.
The following notion of node equivalence is basic in our work, since, as it will be seen, all
our calculations are expressed in terms of classes of equivalent nodes.

Definition 1 (node equivalence). Consider a forest A = {1,...,Tx}. The nodes of A are
partitioned into equivalence classes (h, ..., O recursively delined as follows:

® every node is equivalent to itself,

o two nodes of A, none of which is the root of a component tree of A, are equivalent if their
fathers are equivalent and, moreover, the oriented subtrees emanating from these nodes
are isomorphic;

e two roots of component trees T; and T; of A are equivalent #f T; and T are isomorphic
oriented trees. il

Given an oriented forest A and the partition of its nodes into equivalence classes C1,Ch, ..., (),
we will use the following notations:

A: the given forest structure;
n(A): the order (number of nodes} of A;
T;: the subtree rooted at a node of class i;
n(1;): the order of Tj;
li: the level of the nodes of class ¢ (assuming that the roots of the component trees are
: at level 0);
card(i): the cardinality of class i;
h;: the height of the subtree rooted at a node of class i
Df: the set of classes to which belong the kth descendants of a node of class i; obviously,
D,? = {7} and D} corresponds to the children of nodes of class i;
o;: the number of nodes of class i having the same father (by definition of the classes,
all the nodes of each class have the same number of children of each class).

The node equivalence relation leads to the following “uniformity” proposition.

Proposition 1. Consider a fired oriented forest A. The number of labellings of A in which a
given label is assigned to a node of a given equivalence class is equal to the cardinality of this
class multiplied by a constant, which is the same for oll classes.

Proof: Let «(A) be the number of distinct labellings of A. Let X; denote the number of
these labellings in which the label j is assigned to some node in class ¢. Setting n = n(A), we
have a(A) = Ctnd(1) card(2),.pcard(t)? 1€+ a(A) is equal to the number of ways of distributing
the n labels within the classes (indeed exchanging two labels within the same class, results in the
same labelled forest and two distinct distributions of the labels give distinct labelled forests), and

C’card(@) 103;5?“1,(3),.:&:1(2 1) card(i-+1),...card(l)’ where the first term accounts for the choices
of the labels of class C;, other than labe])_;', and the second for the number of ways in which the
remaining labels can be distributed in the rest of the classes. We can write now

(card(z) 1) _ ()
a(A)———— (card(z)) card (i) —— (A) (1)

2.2 Performance measures

..Let again A_be any forest on n nodes. The queries that are usually considered fall into_the.

following categories:
e list the descendants in A of a particular node a: query R{a, z); -
o does there exist in A a path linking two particular nodes o and 87: query R(o, 3);

list the ascendants in A of a particular node 3: query R(y, #);

e find the paths linking every pair (z,y) of nodes in A: query R(z,y).

We shall denote by ck (resp., cl2, ¢%, and c%), the corresponding execution cost (for a given
forest on n nodes) of the query R(a, y) (resp., R(a, 8), R(x, 8) and R(z,y)). The mean execution
costs (averaged over all forests on n nodes) will be denoted by replacing ¢ by 7 in the previous
notations, i.e., ¥, 73, and so on. Finally, the costs for the relation @ will be denoted by
replacing by @ the subscript R in the above notations, i.e., cb, cbz, and so on. We assume as

usual that the quantities ¢g are given. Details on this matter can be found in [9].

3 The algorithms

We describe in this section the two query evaluation algorithms, the average-case complexity of
which we study in the sequel. Moreover, for each query, we describe the type of the obtained
answer in terms of forest’s parameters.

3.1 The direct method algorithm
The first algorithm (algorithni 1), called direct method, is a kind of exhaustive procedure which,

. without applying any cost reduction technigue, performs a prolog-like top-down evaluation, this

evaluation using a reordering of goals in order to ensure termination.

Concerning query R(e,), procedure bfs(a, 3) consists of searching, in a breadth-first-search
manner ([1]), the nodes of the subtree rooted at & until either 8 is found, or the whole subtree
is exhausted.

Concerning query R(z,3), the result of the execution of r. (line (%)) is the list of all the
nodes of the forest. Moreover, once this execution is completed, all the values of the nodes are
known and, consequently, the evaluation of the query R(xz, 5) is reduced to the evaluation of the
query R(a,).

Finally, for query R(z,y), once all the values of the domain of @ are known, the evaluation
of R(z,y) is reduced to the evaluation of R(a,y).

begin :
case R{-,") do
R(a,y): execute r, with o fixed;
store the results
repeat
(*) evaluate Qe 2) of . with o fixed,
for each ¢ such that @(e,{) = true do
execute (#) by substituting { for o
od ‘
until no new resulis
R{a, 3): bfs(a, §)
(%) R(z,3): execute r, with both variables free
"~ for each node value ¢ obtained from the execution of line (*#) do
execute case R{wx,) by substituting ¢ for o
od

(%) R(z,y) execute vy with both variables free; - —
for each node value { obtained from the execution of line () do
execute case R(w,y) by substituting { for o
od
od

end.

Algorithm 1. The direct method algorithm.

begin
execute r. and store tuples
repeat
execute r, putting in the place of the recursive predicate the last stored tuples;
store new tuples :
until no new tuples
end;

Procedure 1. The query pre-processing.

3.2 The intermediate storage algorithmn

The intermediate storage method (algorithm 2) is a two-stage method: first, during a query
pre-processing, the constants are pushed into the recursive rules; next, the query is evaluated in
a bottom-up semi-naive manner.

The query pre-processing is a natural cost-reduction strategy reducing the number of accesses
to the disk where data are stored; it is described in procedure 1.

For the application of procedure 1 to the transitive closure definition, the following condition
must hold: when there exist bound variables, af least one bound vartable corresponding to some
attribute must have the same value in the occurrences of the recursive predicate on both sides of
the recursive rule, so that the previously stored tuples may be used. For instance, the intermediate
storage method cannot be applied for the query R{e,y).

As a matter of fact, the procedure works by creating chains of tuples such that, for any two
successive tuples in a chain, the second attribute of the first tuple has the same value as the first
attribute of the second tuple. The applicability condition mentioned above ensures that such

begin
case R(-,-) do
R(w, 3): starting from 3 use procedure 1 to climb the tree up to its root
until either « is found or the root of the tree is attained,
R{z,3): execute re; '
starting from # use procedure 1 to climb the tree up to its root;
store all the nodes on the path;

(# R(z,y): execute ry;
for each node value { obtained from the execution of line (#) do

execute case R(z,) by substituting ¢ for 3
od '
od
end.

Algorithm-2The intermediate storage-algorithm————

chains can be created. For more details on intermediate storage, we refer to [5].

3.3 The answers to the queries

As usually, in order to analyze the average-case complexity of the devised algorithms we first
need to characterize the type of the answer in terms of input parameters:

3.3.1 A 1s fixed

For case R(a,y) (admitted only by algorithm 1), the answer will be the list. of the labels of the
nodes of the subtree emanating from «. Moreover, the case where « is a leaf is trivial, since it
vields the empty set.

For case R(w,), there is an answer to the query iff 8 is contained in the subtree rooted
at a; so the answer here will be “yes” or “no”.

For case R(z,), the answer will be the list of labels on the path from 3 to the root of the
tree containing S.

Finally, for case R(z,y), the answer will be the list (empty in the case where z and y belong
to two distinct trees of A) of the nodes on the paths between all the pairs of nodes of A.

3.3.2 Considering all the forests on a fixed number of nodes

The average cost for case R(w,y) using algorithm 1 is a function of the average order of a
subtree (the average being taken over all labelled oriented forests) of a labelled oriented forest
on n nodes,

For case R(a, 3), according to algorithm 1, this query involves either the exploration of the
whole subtree of & when 2 does not belong to this subtree (in this case the average cost will
be equal to the one of the case R(a,y)) or, else, all the nodes of this subtree belonging to the
levels strictly higher than the level of # (bfs search; in.this case, a kind of average length of
forest path, over all the forests on a fixed number of nodes, will be implicated in the average
cost computation). :

For the two last cases (R(z,) and R(z,y)) the average cost will be, once more, a function
of the average forest path size, over all the labelled oriented forests on a given number of nodes.

47172 ”Th'e”qu'ery'*R(*oz,*ﬁ)’"”’”"*"’”” ' S

4 The execution costs for a given EDB
4.1 The direct method

4.1.1 The query R(a,y)

Proposition 2. The ezecution cost ck, is given by:
¢ .
1 card() 1
er =y ——=n(T})cp. (2)
2 aa) "%

Proof: Let o be the label of a node in class C;. The corresponding proportion of labellings is
equal to K;/a(A) = card(i)/n(A)}, according to (1). For each of the n(T;) nodes of T; the file

--containing ¢} will be searched with cost-cb-. Thus the execution-cost, obtained by averaging the

costs n(fﬂ)cb over all the classes with the weights card(C}), is given by (2). Il

We first need the following proposition.

Proposition 3. Suppose that o is the label of a node of cluss C;. Then the conditional prob-
ability pgj, that a given label B is contained in the subtree rooted ot o is given by pg), =

(n(T) — D/ (n(A) = 1).

For the proof, we only have to observe that the number of labellings considered in which a given

subset of labels £ C {1,2,...,n}\ {a} with |L| = n(T}) — 1 is assigned to the nodes of T; is

independent of L. The probability above is just the proportion of these sets which contain 3.
We can now proceed to the evaluation of c}g

Proposition 4. The ezecution cost ¢ is given by:

card(z) n(A)=n(T) ., n(T) =1
CR _i_l H(A) [R(A)—-l X(Z)—l— (A) Y():' (3)
where
X() = n(T)(c] +db) (4)
hi—1 i—1 4
() = = 3 [ggz(gﬁfk)ﬁ”(""f D, 6l }(NS NG
E g:; i=1 k=0
=0

Proof: Let o be the label of a node of class 7. We distinguish two possibilities for 3.

(i) The label 3 is not contained in the subtree rooted at . The probability of this event is
1= Doy = (n(A) — n(T)/(n(A) - 1).
The whole subtree rooted at « (including «) will be searched with cost X (7) given by expression 4.

(ii) The label @ is contained in the subtree rooted at a. This happens with probability ps Ja-
The subtree will be searched until the father of f is attained. According to the uniformity
property, which applies to the subtree too, the label # is uniformly distributed over the nodes
of this subtree, excluding «. This implies that the same property holds for the father of 8 with
respect to all the internal nodes of the subtree. For each node visited before the father of 3, the
cost is equal to cbz + cb, while the cost of searching from the father of 3 is cbz

We recall here that under the bfs method, the nodes are searched level by level starting
from node a down to the level preceding immediately that of 7, this last level being visited until

the father of @ is attained. Let us suppose that #’s father is situated at level 7 of the subtree.
Before 3’s father is reached, all nodes at levels with index lower than j will have already been
visited and also perhaps some nodes at level j.

Let us define the following quantities:

g}: the number of internal nodes at level j of a subtree rooted at a node of class ¢,
0 <7 <h

f;' : the number of leaves at level j of a subtree rooted at a node of class 7, 0 < j < h;.

These quantities can be expressed as follows in terms of the quantities defined in section 2:

g = Lip1ze)
o= Y O'kl(.z o-kzn-(> O'kj)---),lSJ'<ha' (6)
ky €D} ko €D k; EJD}eJ._1
o o}, 40 ,
5 = Lpiog
B XX om (X o)) 1<i<h (7)
keD} k2€D} ijDij_ .
Dj, =0

where the symbol 1;x} denotes the indicator function of the event X.

The execution cost Y (7) (expression 5) for case (ii) is obtained by averaging over all internal
nodes the search cost corresponding to previously visited nodes.
Let us note here that since the indices have ranges linear in n, the quantities g] (expres-
sion (6)), f’ (expressmn (7)) and, consequently Y(¢) (expression (5)) can all be computed in
polynomial tlme

In (5) the expression in square brackets gives the number of nodes visited before the father
of 3, the latter being an internal node at level j of the subtree rooted at o, summed over all
internal nodes of that level. The first term in this expression accounts for nodes at levels with
index lower than j, that have been visited. The second term corresponds to internal nodes at

level j that have been visited before the father of # and is equal to Zi’: ((k—1). The third term
accounts for leaves at level 7, that are visited. Its expression is derived as follows. Let us suppose
that there are n 4+ m nodes at a given level where n is the number of internal nodes and m is
the number of leaves. We denote by Z(n,m) the average of the sum, taken over the internal
nodes of the considered level, of the number of leaves that have been visited before each of these
nodes, the average being taken over all possible arrangements of the n 4+ m nodes. We can write:
Z{n,m) =[nf{n+ m)]Z(n—1,m)+ [m/(n+ m)][n+ Z(n,m — 1)), where the first term on the
right-hand side corresponds to the event that during the search we first encounter an internal
node and the second term to the event that we first encounter a leaf. With the initial conditions
Z(n,0) = 0 and Z(0,m) = 0, the above expression for Z(n,m) yields: Z(n,m) = nm/2. By
substituting gj— and f; for n and m, respectively, we complete the derivation of (5).

The expressions in (4) and (5} for cases (i) and (ii), respectively, are combined in (3) to
vield the execution cost. I

4.1.3 The query R(z,f)

We assume that the edges of the forest are stored as usual with direct access to their first node.
The execution of line (%) of algorithm 1 is required because we need here direct access to the
second node of each edge.

Proposition 5. The ezecution cost ¢k verifies
c% ~ cgg + cUQ + [n(A) ~ l]c}gz. (8)
Proof: Equation (8) is immediately derived from case R(z, 3) of algorithm 1. |

4.1.4 The query R(z,y)

Proposition 6. The ezecution cost ¢ verifies
ck ~ cg + [n(A) — Leg. (9)
Proof: Expression in (9) is immediately derived from case R(x,y) of algorithm 1. I

4.2. The intermediate storage algorithm

4.2.1 The query R(a, 5)

 Before proceeding to the evaluation of the execution cost we need the following observation, the
proof of which is completely similar to the one of proposition 3 and is omitted.

Suppose that B is the label of a node of class i (level ;). Then the probability pfym of the
event that a given label « is situated on the path from the rool of the component tree containing 3
down to 3 is given by p'a/ﬁ = lL;/(n{A) - 1). Furthermore, given that o is situated on the path
from the root of the component tree containing § down to 3, the probabilities that « labels any
node on this path are equal.

FProposition 7. The ezecuiion cost c}%2 using the intermediate storage algorithm is equal fo:

c ;
12 _ card(7) [(1 l;) I l; i+1 2 1
R EH(A) NPT AR Ay v i (10)

Proof: Suppose that # is the label of a node of class ¢ (level I;). The forest will be searched
from # to the root of the component tree containing 3 until the label o is found or until the
tuples are unsuccessfully exhausted. At each step of the search procedure the cost is CQ in case
of success and c 2y cQ in case of failure. Since, however, we are searching on a tree structure, we
have c};,z = cQ, because there is at most one tuple having 3 as the value of its second attribute.
Moreover, we need not to search twice in case of failure, since a single search will provide us
with the appropriate tuple whether the step is successful or not. Hence the total search cost for
all the steps of the procedure is equal to cé.

We distinguish two possibilities:

(}) The label & does not belong to the path from B to the root of the component tree
containing #. In this case the whole path is (unsuccesfully) searched. This event happens with
probability 1 — p"am =1-[;/(n{A) —1)]. The corresponding search cost is equal to:

X(i) = (L + 1)ch. (11)
(3j) The label o lies on the path from @ to the root of the corresponding component tree with
probability p/, /8
The path will be searched until the child of « is attained. As observed before, the label o
is uniformly distributed over the [; nodes on the path from the root of the component tree
to B, and hence the position of its child on the path will be uniformly distributed over {; nodes
(including 3). The execution cost will be in this case:

41
v(i)= 7 Z = + o k>0, (12)

By using (11) and (12) for cases (j) and (jj), respectively, we obtain the expression in (10). i

4.2.2 The query R(z,8)

Proposition 8. The execution cost ¢} under the intermediate storage method is equal to:

Proof: Immediate from case R(z,) of algorithm 2. il

4.2.3 The query R(z,y)

Proposition 9. The mean execulion cost COR under the intermediale storage algorithm satisfies:
cp ~ cg +[n(A) — 1)(ck —).

_ Proof: The proof of the proposition is immediately obtained from case R(z, y} of algorithm 2.1

5 Average-case analysis

When one specializes the results of the previous section to particular classes of trees such as
full regular trees ([6], see also [2]) or chains ([6]), one sees that a great variability takes place
concerning the costs. For instance, we have ¢k = O(log n) for the full trees whereas c} is linear
in n for chains. Tt seems thus appropriate to study the behaviour of our algorithms on “most”
cases. This is what we do in this section, where we average-the values of the execution costs of
the queries, over all the forests on a fixed number n of nodes.

5.1 The direct method
5.1.1 The query R(o,y)

Consider a labelled tree T' with n 4+ 1 nodes and notice that there is a one to one correspondence
between the set of subtrees of T, except T itself, and the subtrees of the forest “pending” from
the neighbours of the root of T'. Let f(n) (resp., g(n)) dencte the average order of a subtree
of a random rooted tree on n nodes (resp., of a random oriented forest on n nodes of R{e,y)).
This correspondence implies clearly f(n + 1) = [n/(n + 1)]g(n) + 1. It is well known (see [4])
that f(n) ~ (rn/2)Y/2. Hence the average cost vL for the query R(«,y) satisfies

LR R
TR ™ €Q 9 "
5.1.2 The query R(«,)

We will need two results concerning the number g{n) of oriented forests on n nodes. Let us first
recall the following lemma, due to Rényi {[7]).

Lemma 1. Let 1 < k < n. Denote by F'(n, k) the number of forests on 'V = {1,2,...,n} which
have k components and in which the nodes 1,2,...,k belong to distinet components. Then,

Bn, k) = kn51,

Since in an oriented forest the roots of the components are arbitrary, we get g(n) = > 5=, 9(n, k)
with g(n, k) = kC’}:n”‘k"l. We have, for 1 < k <n—1, g(n,k+1)/g(n, k) = (n - k)/(kn).
It is easy to deduce from this the assertions g(n) < en™"! and

g(n) ~ en™ . (13)

Let us denote by m the size of the subtree T rooted at o and by V(T') its node set; furthermore,
for each A > 0, let us denote by mp the number of nodes of this subtree belonging to its Ath
level. The total number of steps needed by the queries R{a,3) for g € V(T) is N(T) =

Y1 (mh+1 ko mk) = (1/2)[(m — 1)* = Cpy1 mi].
We shall denote by N, the mean value of N(T') on the set of trees on n nodes. It follows from
known results on the moments of the sizes my, of the levels ([8]) that we have

Ny, ~ 5 _ (14)
We will also need an estimate for the number f(n,I) of forests on n nodes in which the subtree
of a node with given label has order {. Let g(n) denote the number.of oriented forests on n
nodes. Clearly, the number of distinct trees with a given root and ! — 1 other nodes chosen
between n — 1 other given nodes is 7' 12

Now given such a tree T and a forest on the complementary set of nodes, we get a complete
forest (on n nodes) in exactly n — ! 4+ 1 ways, namely by linking the root of T' to one node of
the given forest or by just adding the tree to the forest as a new component. Hence we have
F(n, 1) = CrM " 2g(n — D(n -1 +1).

We are now well prepared to derive an asymptotic equivalent to the mean cost 7}%2 of the
query R(eo,). Let us set vi2 = 7}%210 + 7}1{2,2-, where 7}%2‘0 denotes the cost corresponding to the

case where J belongs to the tree of & and '1’1122,5 the cost corresponding to the other case. We have

We = @B+ LA-DI0D (15
=2
B = %Hﬁ(cgwb)zf(n,zwﬂ. (16)
=2

We shall prove that 71132,2 = 0(7}32’0).
We have, for g <! < n — ¢, using Stirling’s formula and (13),

N = (1 n—1 (n ~ 1)’&—1 11—2 1+1 n—1
f(n:) - (+ 6(@})8 271_(1 _ 1)(?’1 _ I) (I _ 1)[..1(n _ I)n_l (TL - +)n
= (14 @) (n— 1 1 (17)

—1/2x(-Dn-1

where €(g) — 0 uniformly as ¢ — co. From expression (17) we have

3 — n e())ed(n — 1) 3 .
D=0 2 (el =)Y ey

A+ @y (-1 (18)

v

where the last inequality is obtained by approximating the left side sum by an integral.
Using, for | < g (vesp., I > n — g), the inequality 1/[(I — 1)(n — D]Y? < 1/(n — 1)!/2 we get
from (17) in the case where ng~2 — oo:

n— "I+ (g))m + —me]

n—1 -

[FAN

S0 - 1)f(n1)
=2

FAN

(L+(@)mel(n—1)n~12 (19)

10

Since ¢ and ¢ are arbitrarily small for sufficiently big ¢ it follows that we have

i)

ST = 1)f(n, 1) ~ me?(n — H" /2 (20)

=2

and, using (13), (15) and (20): 711%2,0 ~ [1/(371”_1)](0%22 + cb)ﬂ'ez(n - 1)”_1/2, or

TRo ~ (€5 + c@)m/m. (21
Furthermore, by using (16), (17), (20), (21) and after some easy algebra, we deduce that '711%2,2- =
o(VHo)-

So, (21) gives the asymptotic expression of viZ.

5.1.3 The query R(z,f)
Replacing in (8) c}Z by the value obtained for 13, we get

TR~ ch +cy+(n— 1R

5.1.4 The query R(z,y)
Replacing in (9) c}R by the value obtained for 7}11, we get

Y~ cg + (n = 7R

The following theorem sums up our results concerning the mean execution costs for the direct
method.

Theorem 1. The mean execution costs vh, 1k, 75 and ¥% of algorithm 1 for the queries
R(e,y), R(e, B), R(z,B) end R(z,y), respectively, where the mean is taken over all date base
relations represented by forests on n nodes and over all bindings of the variables, satisfy

TR~ cp(mnf2)'®

H o~ +)t

Th o~ (g +cp)m®?

v~ cb w32,

5.2 Mean execution costs for the intermediate storage method

5.2.1 The query R(w, /)

It is easily seen as in section 5.1.2 that the main contribution to the mean cost comes from the
case where 3 does not belong to the subtree rooted at e. Thus, since in this case, according to
section 4.2.1, the query amounts to search the path from 2 to the root of its tree, the mean cost

verifies
T

12 a2
7R 2 CQ.

5.2.2 The query R(z,5)
Recall that the solutions here are all the nodes on the path from 3 to the root of its trée. Thus

we have similarly as above
2 ™ 2
TR 5 Q-

11

5.2.3 The query R(z,y)

Replacing the quantities ¢% and ¢% in proposition 9 by their averages, we get

Yo~ e + (0 — (7R — cf).
The following theorem sums up the results concerning the intermediate storage method.

Theorem 2. With algorithm 2, the mean ezecution costs vi, 712% and fy% for the considered
queries R(o,), R(z,B) and R(z,y), respectively, where the mean is taken over all data base
relations represented by ortented forests on n nodes and over ell bindings of the variables, satlisfy

H o~ (/2
vh ~ (wnf2)'%d
1 o~ (nf2) P07

It is seen that the intermediate storage method brings in the case of the query R(z,3) a con-
siderable improvement over the direct method.

6 Conclusions

We have presented an average-case complexity analysis of two simple and natural algorithms
performing the evaluation of the transitive closure. Both methods are proven to be quite efficient
when they operate on relations represented by labelled oriented trees, or forests of labelled
oriented trees.

The complexity of each algorithm has been studied in two cases: for any given forest structure
we have obtained expressions for the execution cost of the most usual queries; our results are
derived, in this case, using a notion of equivalent nodes which is very natural and leads to
significant simplifications in the analysis; next, we have derived expressions for the mean costs,
the mean being taken over all the possible forest structures with a fixed number of nodes.

At a first level, our approach has provided a formalism for describing the underlying structure
mainly based on the notion of equivalent nodes and then has allowed us to obtain expressions
for the complexity of the algorithms by averaging over all possible queries on a given database
structure. At a second level, average-case results have been obtained by taking into account all
possible structures with a given number of nodes. The first level can be used to characterize
any given situation but requires a rather detailed representation of the structure. The second
level allows an abstract characterization which uses no representation at all and leads to simpler
expressions. .

Let us point out that our strategy and analysis can be used for most of the evaluation
methods appearing in [2].

Finally, a very interesting extension of this work is the study of the average-case complexity
of algorithms 1 and 2 whenever the EDB relation € is represented by means of a directed acyclic
graph.

References
1] A. V. Aho, J. E. Hoperoft and J. D. Ullman, The design and analysis of computer algo-
rithms, Addison-Wesley, 1975.

[2] F. Banchilhon and R. Ramakrishnan, An amateur’s introduction to recursive query process-
ing strategies, Proc. SIGMOD’86, pp. 16-52, 1986.

12

[3] D. E. Knuth, The art of computer programming (vel. 1: Fundamental algorithms), Addison-
Wesley, 1973.

[4] A. Meir and J. W. Moon, On the altitude of nodes in random trees, Canad. J. Mathemat-
ics 30(5), pp. 997-1015, 1978.

[5] J. Naughton, Data independent recursion in deductive databases, Proc. PODS’86, pp. 267-
279, 1986.

[6] V. Th. Paschos and A. N. Stafylopatis, Evaluation of the evecution cost of recursive defini-
tions, The Computer Journal 35, pp. A429-A437, 1992.

[7] A. Rényi, Some remarks on the theory of trees, Publ. Math. Inst. Hungar. Acad. Sci. 4,
pp. 73-85, 1959.

(8] V. E. Stepanov, On the distribution of the number of vertices in strata of a random tree,
Th. Prob. Appl. 14(1), pp. 65-78, 1969.

[9] J. D. Ullman, Principles of database and knowledge-base systems (vols I and 1I), Computer
Science Press, 1988.

[10] J. S. Vitter and Ph. Flajolet, Average-case analysis of algorithms and data structures, in
Handbook of theoretical computer science (vol. A), pp. 431-525, J. V. Leeuwen ed., Elsevier,
1990.

13

