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Difficulté relative de ’approximation
constructive et non-constructive: le cas du
probléme de stable maximum d’un graphe

Résumé. Nous proposons une démarche générale pour étudier la diffi-
culté relative de la détermination d*une solution (exacte ou approchée)
d’un probleme d’optimisation par rapport & la difficulté du calcul (ex-
act ou approché) de la valeur optimale en introduisant des problémes
incluant, dans leur instance, une information sur la valeur. Dans le cas
particulier du probléme de stable maximum, cette démarche nous conduit
4 définir une classe de problémes du stable dont I’étude de ’approxima-
bilité s’avére particulidrement intéressante.

Mots-clés: complexité, approximation polynomiale, stable.

Relative hardness of constructive —
non-constructive approximation: the case of
maximum independent set problem

Abstract. We show how polynomial approximation theory, developed
as the main tool for efficiently solving NP-complete problems, can moti-
vate a great number of questions on the meaning of “problem solution”.
We propose a general thonght process for the study of the relative hard-
ness between determining solutions of combinatorial optimization prob-
lems and computating (approximately or exacily) their optimal values,
whenever we deal with problems including an information on the optimal
value in their instance. In the particular case of the maximum indepen-
dent set, this thought process leads us to define classes of independent
set problems the approximability of which is particularly interesting.

Keywords: complexity, polynomial approximation, independent set.



1 Constructive — non constructive

In theoretical computer science, problems (a fortiori the NP-complete ones) are
originally defined as decisions about the existence of solutions verifying some
properties. So in the decision framework (denoted by D in what follows) a prob-
lem is a question whose objective is to answer by ges or no.

However, the polynomial approximation theory needs a different framework,
which we call eptimization framework, defined below, simultaneously establishing
and using the notion of the feasible solution and the one of the opiimal value;
both notions are crucial for defining the concept of the approzimate solution and
for characterizing its quality.

Sc in the optimization framework (denoted by O) the instance of a problem 7
is expressed in terms of an optimization program of the formn

{opt f(x)
xel

where opt € {min, max}, fis the objective function and C the set of feasible solu-
tions. Then, IT consists of determining an optimal solution x* and an algo-
rithm determining it is called constructive. An approximation algorithm dealing
with this framework (i.e., determining a feasible solution and guarantee-
ing a nearness of its value to the value of the optimal one) will be
called constructive approzimation algorithm. The approximafion point of view
of O will be denoted by O-ap.

There exists also another framework, the one of the optimal value (denoted
by V), where the instances are the same as in O but the goal is now to de-
termine the optimal value and an algorithm doing this will be called non-
constructive. Here also, one can define a concept of approximation (V-ap) and
an algorithm determining a feasible value and guaranteeing a nearness of this
value to the optimal one is called non-constructive approzimation algorithm.

Up to very recently, research in polynomial approximation theory was mainly
focused on the framework O. But its development makes that other types of
problems (of equally mathematical and epistemological natures) start to be
posed in the context of this theory. Among these problems, the problem of the
relative hardness between the constructive and non-constructive frameworks, i.e.,
the links between the approaches D, O and V, starts to interest the resarchers.
This question is, up to now, marginally treated and only from an optimality
point of view without taking into account approximation considerations, i.e.,
the links between O-ap and V-ap. This is what we are doing in this paper; we
consider the relative hardness between the constructive and the non-constructive
approximations.

One first remark is that a constructive algorithm is in particular non-const-
ructive and, also, that a non-constructice algorithm answers also to the decision
problem; consequently, O is, at least, as hard as 'V, the latter being, at least
as hard as D, Similarly, a constructive approximation algorithm is also a non-
constructive approximation one; the latter is, in geheral, not able to answer
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to the decision problem; so, O-ap is, at least, as hard as V-ap. For the cases
where a non-constructive algorithm provides an answer for the decision version
of a problem IT, the problem of approximating II with a certain approximation
guaranty is NP-complete. Consequently, constructive approximation is, at least,
as difficult as the non-constructive one and a natural question one can pose is:
in which sense is constructive optimization (vesp., approzimation) harder than
the non-construciine one?

In order to apprehend this type of question, either from an exact optimiza-
tion, or from an approximate optimization points of view, we propose in what
follows a general thought process consisting in integrating in the instances of
the problems an information carrying over their optimal value, in such a way
that the new (modified) problem is a priori V-easier! than the original one.
Let us note that in this case, the recognition of the instances of the derived
problems is not necessarily polynomial®. So, via this transformation, work in
framework O allows to better understand the links between constructiveness
and non-constructiveness and the question posed just above can now be trans-
formed into the following one: in what an information ebout the optimal wvalue
of ¢ problem helps in deleminining either the optimal or ¢ good approzimaic
solution for it?

In this paper we try, in a first time, to draw a (first} formal answer to the
questions just posed; then, we investigate the case of one of the most famous
NP-complete problems, the maximum independent set.

Let G = (V,E) be a graph of order n; an independent set is a subset of
V' C V such that whenever {v;,v;} C V', v;v; ¢ E, and the mazimum indepen-
dent set problem (IS} is to find an independent set of maximum size. A natural
generalization of IS is the one where positive integer weights are associated with
the vertices of G, then, the objective becomes to maximize the sum of weights of
the vertices of an independent set; we denote this problem by WIS; we suppose
also that the (integer) weights are universal constants (independent of n).

Notations. In what follows, we shall speak about D- (zesp., O-, V-) NP-comp-
leteness? (resp., approximation) to denote the NP-completeness (resp., approxi-
mation) of a given problem in framework D (resp. O, V). Furthermore, we shall
use the term D- (resp., O-, V-) easy (resp., hard) to denote the facility (resp.,
hardness) of a given problem in framework D (resp. O, V).

We consider a connected graph G = (V, E) of order n. We denote by a(G) the
stability number (cardinality of a maximum independent set) of G and by w; the
weight of the vertex v;, ¢ = 1,...,n; as usual, I'(v), v € V, denotes the neigh-
bourhood of v. For a set V! C V, we denote by G[V] the subgraph of G induced
by V'; for a set A of edges, we denote by T[A] the set of vertices, endpoints of
the edges of A.

Moreover, given an instance I of a problem IT, we denote by v(I) its optimal

! Fasier when dealing with V.
2 This type of problems are, in particular, not NPO in the sense of [2].
? For a formal definition of the notions of V- and D-NP-completeness, see [5].



Algorithm ORSTABLE
begin.
S —
while V #£ 0 do
choose a vertex v € V;
G, — G[V \ {v]]
if VAL(G) # VAL((,) then
S — Su{v}
V= VA ({v}uT(v));
G — G[V]
else G — G,
fi
od
end.

value. Finally, whenever vector 1 is indexed by a set of vertices, it denotes the
characteristic vector of this set. Especially for the four linear programs of sec-
tion 4.2, since the dimensions of the vectors 1 and 0 are not always the same
ones, these vectors will be indexed by their dimension.

2 First point of view: information over all instances

Given a combinatorial optimization problem IT and an oracle which, for each
instance I of I, computes the optimal value of I, does there exist a constructive
polynomial algorithm ORIT for T #*

The answer to this question is positive in the case where the decision-version
of IT is NP-complete ([2]). In other words, in the case of the D-NP-completeness
of II, the frameworks V and O are, globally, of equivalent hardness.

For example, in the case of IS it is very easy to bring to the fore an algo-
rithm ORSTABLE which using an oracle VAL computing for a graph G, its
stability number VAL((G), returns, in time linear to the order of G, a maximum
independent set® S for . As we can see from algorithm ORSTABLE, the ex-
istence of VAL for every instance of IS allows to transform a global information
(stability number) into a local one (form of a maximum independent set) in the
particular instance.

For IS, a very interesting open question would be: if one has recourse {0 an
orecle APR. providing, for ¢ graph G, the cardinality o/(G) of an independent

* Let us remark that the existence of a polyhomia.l non-constructive algorithm would
allow, by substituting this algorithm to the oracle, to establish a constructive poly-

nomial algorithm.
5 Here, we exceptionally use the notation VAL(G) instead for a(G) to indicate the
computation of the latter quantity by VAL,
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set verifying o (G) > pa(@), with 0 < p < 1, would one be able to construct an
independent set with cardinality a (constant) fraction of o(G)?
This question (posed in the framework O-ap) seems to be harder to answer
than the analogous one posed in O (where given a(G), the computation of the
optimal solution is requested).

The following result constitutes & first partial answer to the above question
since it shows how we can use APR to determine a non-constructive polynomial
time approximation schema.

Proposition 1. For every € €]0,1[, there exisls o polynomiel fime olgorithm
which, using APR, provides, for every graph G, the cardinality o'(G) of an in-
dependent set verifying ol(G) > (1 — €)a(G).

Proof Let us fix € > 0 and determine the least integer m such that p!/™ > 1—e¢.
Let us then consider the graph G™ inductively defined as follows:

Gt=@
G=Gx !

where (G X (3 denotes the composition of the graphs Gy and Gz ([3]). It can be
easily proved (see [3,8]) that every independent set of cardinality &(G) in G can
be polynomially transformed into an independent set of cardinality &(G™) =
&(G)™ in G™ and vice-versa. Consequently, a(G™) = a(G)™. So, by construct-
ing G™ and by using APR on it, one obtains the cardinality o'(G™) of an inde-
pendent set of G™ verifying o'(G™) > pa(G™). In this case, o/(G) = &/ (G) >
pUma(@) > (1 — €)a(G), qed.

3 Second point of view: information linked to a fixed
instance

In the previous section, the external information attached to the problem was
dynamic and implemented via an oracle supposed to be able to answer for every
graph (let us also recall that algorithm ORSTABLE requires O(n) distinct calls
to VAL). Such an information is sufficiently rich, at least when we are interested
_ in optimally solving a problem, to allow the construction of an optimal solution.

Let us now consider a static information on problem’s value, information
much more restrictive and attached to a fixed instance; in this case, the strongest
possible information on the optimal value is, of course, the knowledge of this
valueS. Then, for an optimization problem If, we define problem I an instance I
of which is a pair (I, 3(I)), where I is an instance of /I and 3(I) its optimal
value. Of course, I is V-polynomial, since it suffices to read the answer in I.
In O, one has to determine, starting from (I, 4(I)), an optimal solution for /.
Let us remark here that I and I have the same set of feasible (resp., optimal)
solutions and, consequently, deciding on the feasibility of a solution for T is

€ Naturally, from this point of view, V-ap can be discarded.
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polynomial whenever this decision is polynomial for I. The study of the rela-
tive hardness between V and O (resp., O-ap) for I is equivalent to the study of
the O- (resp., O-ap) hardness for .

We then have the following result.

Theorem 2. Let IT be an optimization problem and consider an instance { of 1.
Suppose that there exists ¢ bound M(I), polynomial in II’s size, verifying, for
every I, |3(I)| < M(I). Then, if II admits a constructive ezact (vesp., p-appro-
zimate, for e fived constant p)} polynomial algorithm A of complezity I — f(I)
computable in polynomial time, so does IT.

Proof. Let us suppose that such an algorithm A exists. It suffices to apply A,
for f(I) elementary steps on the data (I, k), k € [-M(I), M(I)]. This, for each k,
leads either to a decision that it is impossible to apply A, or to a non-feasible
solution (in this case, k¥ # B([)), or to a feasible one (in particular, when ¥ =
B(I). Then, we simply have to choose the best objective value’s solution among
the feasible ones.

Let us note that the constraint on the existence of the hound M is satisfied by
the most of the known problems; for IS, for example, one can simply consider
M(I)=mn.

4 Classes of problems defined with respect to the optimal
value of their instances

The result of section 3 shows that in the case where a static information is given,
this is not strong enough to deduce the form of an exact or approximate solu-
tion for a problem. In any case, in the two previous sections we have followed
thought processes quite “radical”, in the sense that we have supposed that the
additional information were a posteriori attached to the instances of the prob-
lems. However, we can cousider another type of static information addressed,
this time, to (restricted) classes of instances of a given problem, classes defined
using this information. This intermediate thought process can be rich enough,
since it allows us to apprehend the boundaries between constructiveness and
non-constructiveness.

4.1 The Konig — Egervary graphs

The class of Konig-Egervary graphs (KE-graphs) is composed of graphs G for
which the cardinality of a maximum independent set is equal to the cardinality
of a minimum edge covering of G. So, we really have here a class of IS instances
defined starting from an a priori information concerning the optimal value. In
this particular case, the knowledge of this information allows to polynomially
V-solve IS, since we only have to solve minimum edge covering, and this can be
done in polynomial time ([3]). So, IS in KE-graphs is polynomial for the non-
constructive framework. Moreover, given that Deming ([7]) has proved that the
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recognition of a KE-graph can be done in polynomial time and, furthermore, IS
is O-polynomial in KE-graphs, the constructive version of the problem is also
polynomial.

More recently, Bourjolly et al. ([4]) have extended the class KE to the one
b-KE, where positive integer weights were considered on the vertices of G, and
proved that WIS remains polynomially O-solvable for this class.

Here, we propose another generalization of the KE-graphs in both weighted
and non-weighted cases. For the non-weighted case generalizations are issued
from a combinatorial interpretation of the relation maximum independent set —
minimum edge covering. For the weighted one, this generalization contains a less
restrictive information than for the non-weighted case and is based upon linear
programming arguments. As we show, in both weighted and non-weighted cases
these generalization preserve the polynomiality of WIS,

4.2 Some generalizations of Kénig — Egervary graphs

The non-weighted case. A general instance of IS defined by a graph G =
(V, E) can be written as a 0-1 linear problem as follows:

max 1, x
IS(G) = A.-x<1g
x € {0,1}"

where A is the edge-vertex incidence matrix of G.
Let us denote by IS, the following relaxed version of IS:

max 1, ‘x
IS (G) = A-x< g
x>0,
The dual of IS, denoted by EC, is
min 1jg| - x
EC.(G) = AT x> 1,
x 2 Oz

where this problem is.denoted by EC, in order to indicate that it is the relaxed
version of the following problem EC known as the minimum edge covering:

min g - x
EC(E) = AT .x>1,
x € {0, 1}#

Remark that 0, and 1jg| are feasible for IS, and EC,, respectively. As these
dual instances have their respective constraint sets non empty, they have the
same optimal value. Then, the following inequalities hold”: a(G) < v(IS,(G)) =

-7 Recall that, following our notations, »(IS(G)) = «(G).
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?(EC,(G)) € v(EC(()). Let us refer to the difference v(EC(G)) — (G) as the
discrete duality gap.

A very interesting idea seems to be the generalization of the class KE (we
will see Iater how this generalization applies also to the class b-KE) by allowing
a certain “freedom” to the discrete duality gap. To do that, we first propose a
combinatorial interpretation of the difference v(EC{(G)} — o(G).

Given a graph G, let us consider a minimum vertex cover C* (|C*| = 7(G))
and the correspending maximum independent set S*. Let us also suppose that,
given a maximum matching M (|M| = m), there are f matching edges such that
both their endpoints belong to C*, for the remaining ones, one of their endpoints
belonging to C* and the other one to S*. Let us call this edges “dissymmetric”
and denote by F' the set of these “dissymmetric” edges (|| = f). For M (when-
ever it is not perfect), let us denote by X the set of the exposed (non-saturated)
vertices of G with respect to M, and by X¢ (|X¢| = ¢) and X the subsets of X
belonging to C* and S*, respectively (of course, X = X¢UXs). The numbers f
and g, consequently the sets F and X¢, depend not only on M but also, for a
fixed matching, on the sets C* (and 5*) considered. However, the sum f + g is
a quantity depending only on G (f + g is the discrete duality gap). In fact, for
every graph G, 7(G) = m+ (f + ¢) and |S*| = a(G) = n—m — (f + g). Conse-
quently, »(EC(G)) — v(IS(G)) = f + g and ¢ KE-graph is exactly a graph where
f+g=0.

If we relax the constraint f + g = 0 by allowing a positive discrete duality
gap bounded above, we get the following proposition.

Proposition 3. Consider a graph G = (V, E) such that 0 < 7(G)—m = f+¢ <
k. Then, (i) if & is a fized positive integer consiant, there exists an exact poly-
nomial algorvithm for mazimum independent set problem in G; (#) otherwise,
there exisis ¢ polynomiel time approzimution algorithm (having £ among ils
input parameters) providing an independeni sel of cardinalily, at least equal

to [nf[2(k+ 1)] — 2].

Proof. (i) The condition f+g < « implies that both f and ¢ are bounded above
by . So, for all integer & < min{m,«x} and for all integer ¥ < min{n — 2m,x —
h}}, for all h-tuple H of matching edges and for all k-tuple K of exposed vertices
of V with respect to M, we form the sub-graphs of G induced by the vertex set
V \ (K U T[H]). We next apply the algorithm of [7] on all of the so-obtained
sub-graphs of G. Then, for one of the pairs (H, K), the induced subgraph is KE
and, moreover, in this graph, a maximum independent set is identical to the
maximum independent set of G (by the definition of the quantities f and g).
Hence, the maximum cardinality set between the so-obtained independent sets
is a maximuin independent set of G. Given that « is a universal constant, there
is a polynomial number of pairs (I, K) and, consequently, the whole of the
described process remains also polynomial.

(if) Obviously, f < & and g < &. We arbitrarily partition the edges of M
into x + 1 sets My,..., M1, where [M;| = [m/(k+1)],i = 1,...,x and
Myt1 = m—Y i, [m/(x+1)]. We also arbitrarily partition the set X of the



8

exposed vertices of G into k + 1 sets Xy,..., Xy sets, each of size at least
[(n — 2m)/(x + 1)|. We so obtain (x+ 1)* sub-graphs of G, each one induced by
the vertex-set X; UT[M;], (i,§) € {1,...,x + 1}? (Cartesian square).

So, we can apply the algorithm of [7] on all of the so-obtained (x + 1)* graphs.
Since at least one of these graphs is KE, one of the obtained solutions will be
of size at least (n —2m)/(k + 1)+ m/(k+1) -2 = (n—m)/(k+1) — 2. The
minimum of this quantity, for m € [0, 3], is obtained for m = n/2 and its value
is, in this case, equal to [n/[2(x + 1)]] — 2.

Corollary 4. Given a fized positive constant k, deciding if ¢ graph G verifies
0 < f+g <k is polynomial,

The proof of the above corallary results from an immediate application of the
part (i) of proposition 3.

We have seen that we can allow some freedom on the hypothesis imposed on
the elements of the class of KFE-graphs; moreover, in the case of “bounded free-
dom”, the relation between constructive and non-constructive versions remains
invariant and polynomial. In the next paragraph we generalize this result in the
case of WIS,

The weighted case. We have already seen that the KE-graphs are the ones
for which the discrete duality gap v(EC{G)) — a(G) is equal to 0. Moreover, in
the previous paragraph we have relaxed the condition v(EC(G)) — a(G) = 0, by
allowing to this gap to be bounded above by a fixed positive constant. On the
other hand, v(IS,(G)) — a(G) < v(EC(G)) ~ aG); consequently, KE-graphs are
the ones for which v(IS,(G)) — a(G) = 0.

Of course, the question on the difference between the value of IS and the one
of its linear relaxation can be also posed for WIS®. In [4], the authors introduce
the class of graphs where v(WIS(G)) = v(WIS,(G)) and call it the class of
b-KE-graphs, for which they conceive an O(n??) exact WIS-algorithm.

Here, we relax the condition v(WIS(G)) = (WIS, (G)) by a less restrictive
one and we prove that, in the class of graphs defined by this relaxed infor-
mation, WIS remains polynomial. Although the proof of the similar result in
the non-weighted case resulted from a combinatorial interpretation leading to
the consideration of an upper bound of the quantity a(G) — v(IS,(G)), such a
combinatorial interpretation for the weighted case, or, more generally, for the
primal — dual approach, is much less natural. So, we give here a straightforward
proof based upon linear programming arguments.

The purpose of this section is to prove the following result,

Theorem 5. Consider the class of graphs G = (V, E) satisfying v(WIS(G)) >
V(WIS (G)) — &, where & is a fized consiant. Then, the problems: (i) decide if a
graph G belongs 1o this class and (i) solve WIS in this class, are polynomial.

® Let us note that the respective linear programs for WIS(G) and WIS, (G) are iden-
tical to the ones for IS(G) and I8, (), up to the replacement of the unit-vector by
a positive cost-vector with components w;, 1 =1,...,n.
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It is well-known that the LP-relaxation WIS, of WIS has the semi-integral pro-
perty, i.e., each basic feasible optimal WIS, -solution B assigns to the variables
values drawn from the set {0,1/2,1} (see [9], for a very interesting discussion
about this fact). Starting from this property, it can be proved that if V3 is the
set of vertices corresponding to variables valued by 1 in B, then there exists a
maximum independent set in G that contains Vi (in what follows, we denocte
by Vi, V172 and Vp the subsets of V' corresponding to LP-variables agsigned by
values 1, 1/2 and 0, respectively; of course, these three sets form a partition
of V). Moreover, in {9], it is shown that WIS, can be seen as the problem of
computing the minimum edge covering in a bipartite graph. The key-operation
of such a computation is the computation of a maximum matching, performed
in O(rn?%).

In lemma 6, we show how, given an instance G = (V,E) of WIS, we can,
either determine a partition of V' into sets Vi, Vi, and Vg, such that Vi3 = 0
and so WIS((G) is solved to optimality, or we can reduce G to a subgraph where
the unique optimal solution for WIS, is formed by assigning to all of its vertices
the value 1/2. This result further extends the work of [9], where such a result
does not appear, even if the possibility that 1/2 is assigned as unique value of all
the vertices of a graph (when WIS, is solved) is mentioned. More precisely, let us
suppose the existence of a WIS, -solution B assigning 1/2 to all the verices of an
mput graph G = (V, E); this means that V = Vy;5. But, eventually, there exists
another solution B’, of the same objective value as B, in which V = ViUV UV},
with V{ UVJ # 0. In lemma 6 we show that whenever the basic feasible optimal
WIS, -solution B assigns values 1/2 to all the variables, deciding if B is unique,
and if not, construct solution B’, is of polynomial complexity.

In what follows, when speaking of WIS,-solution, we refer to Nemhauser -
Trotter’s method ([9]).

Lemma6. Given a graph G, the O(n*®) procedure DECOMPOSITION de-
termines a partition of V indo sels Vi, Vi3 and Vo, and a solution for WIS, (G)
corresponding to this partition, such that either (i) Vijs = 0 and so WIS(G) is
solved 1o optimality (by considering w(WIS(G)) = 3, oy, wi), or (ii) the unigque
optimal solution for WIS, (G[Vy;o]) is formed by assigning, to all of the vertices
of Vija, the value 1/2.

Proof. Since, by solving WIS,, V1 is contained to at least a maximum indepen-
dent set (and, consequently, V5 to the minimum vertex covering associated with
this independent set), in order to solve WIS(G) it suffices to solve WIS(G[V10]);
then, v(WIS(G)) = v(WIS(G[Vi/2]))+2_,,ev, wi- So, in the case where Vis = 0,
v(WIS(G)) = 3_,.ev, i, and this value is found in O(n*®) by solving WIS, (G)
(by the minimum edge covering computation of [9] mentionned above) and de-
termining V1.

The repeat loop of procedure DECOMPOSITION operates on G[N],
which verifies v(WIS(G[N1])) = (1/2)w-1x. So, ifW'(lv;+(1/2)1V{/2+1{un}) =
(1/2)w - 1n, then the solution of WIS(G[N]), consisting of assigning value 1 on
the vertices of V{ U {vo} and 1/2 on the ones of V; 12, is optimal; consequently,
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Procedure DECOMPOSITION

begin
solve WIS, (G) to obtain sets Vo, V1, Vyja;
stop « false;
while stop = false and Vi3 # 0 do

choose vy € N';

N« N'\ {v};

N — Vi \ ({vo} UT (m));
solve WIS, (G[N]);

{* V3, ¥/, Vl"/2 are the basic feasible sets of Vi3 \ ({vo} U I'(vp)) *}
until w - (].Vlr + (1/2)1‘/1'/2 + l{vu}) el (1/2)w . 1Vl/2 or N/ = @’
ifw. (lvlr + (1/2)1‘/1!,2 + 1{%}) = (1/2)W : 1V1/z then

Vi ViUV U{vo);
Vo — Vj U Vg
V1/2 A Vflz;
else stop — true;
fi od
end;

the so-modified solution remains optimal for WIS, (G) and, moreover, contains
more components equal to 1 than the initial one. On the other hand, the while
loop of procedure DECOMP OSITION converges, since at each iteration, V)9
decreases. Hence, if finally V3 = 0, then procedure DECOMPOSITION out-
puts a 0-1 solution for WIS, (G), therefore an optimal solution also for WIS(G).

In the opposite case, for every vy € Vi, v(WIS,(G[Vi/2\ ({ve} U T (v0))])} +
1{y,} - W < 9(WIS (G[Vi2])), and this means that there is no optimal solution
of WIS,.(G[Vi/2]) assigning 1 to wo. Since this is true for every vg € Vi 2, the
solution assigning 1/2 on all the vertices of V), is the unique optimal solution
of WIS,- (G[V]_/z])

In the worst case, the solution of the linear program corresponding to WIS,
will be executed for every vy € Vs obtained on the first line of procedure
DECOMPOSITION, the cardinality of the set V)5 decreasing after each ex-
ecution; so, in the worst case, we will have >, i executions of the procedure
solving WIS, in O(n*%), hence a worst case complexity of O(n*?), q.e.d.

Definition 7. Let «k be a fixed positive constant. The class #-KE is defined as
the class of graphs G = (V, E), of order n, such that: (i) the solution of WIS, (G)
consisting of assigning value 1/2 on all of the vertices of V is unique for WIS, (G},
and (ii) (1/2)w - 1, — x < »(WIS(G)) < (1/2)w - 1,,.

‘We are now going to prove lemma 8 (the proof of which constitutes the main
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Algorithm STABLE
begin
if ¥ € 0 then call the procedure of [4] to optimally solve WIS(G);
else
choose v;v; € E;
for z € {i,j} do
Vo =V \{w}
call procedure DECOMPOSITION on Gg;
{# Vay, Veysa, Vi, the obtained sets +}
if V;,,, = 0 then S; — 0;
else
V:,': = unz;
Gz — GIVg;
k—r—(1/2)
Sz «— STABLE(x, G%);
fi
od
& — argmax e {w - (v, +1s,) b5
S Vo, USa;

end.

part of the proof of theorem 5), i.e., that WIS is polynomial for the class of
#-KE-graphs.

Lemma 8, Let k be ¢ fixed positive constant and let G = (V, E) be a k-KE-graph
of order n. Algorithm STABLE determines a mazimum-weight independent set
for G in O(n*®). Also, STABLE polynomially decides if a graph is x-KE.

Proof. Let us first prove the following emphasized proposition: if there exists a
mazimum-weight independent set of G not containing vy, then G, construcied
by algorithm STABLE, is [x — (1/2)]-KE.

In fact, let us evaluate v(WIS(G)). Let us first note that, from the hy-
pothesis on v, ¥(WIS(G,)) = v(WIS(G)). On the other hand, procedure DE-
COMPOSITION, called by algorithm STABLE, works in such a way that a
maximum-weight independent set of G is obtained by adding to a maximum-
weight independent set of G, the set V5, (the vertices of ¥ valued by one in
the basic feasible solution of WIS, (G.)); so,

v(WIS(GL)) = v(WIS(G;)) — 1v,, - w
=o(WIS(G)) ~ 1v, -w
21/ w1 —k—1y, W
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> (1/2)“’ . (1{%} + }'V:r:l + 1Vz1,2 + ]-Vz.,) —K— 1Va:1 -w

> 1/ 21y - w— (k= (1/2)(1p,3 + v, — 1y, ) W) (1)

where the last inequality holds because V; =V, .

By definition of the class x-KE, the solution of WIS, (@), consisting in assign-
ing value 1/2 on all of the vertices of G, is the unique optimal solution of the
problem; so, since the solution determined by procedure DECOMPOSITION
(called by STABLE) is feasible for WIS,.(G), we get

(v, +(1/21v, ) -w < (1/2)w - (L3 + 1v,, + 1w, , +1v,,)
and since the above inequality takes place between two semi-integers we have
Ly, + (1/D)1v,,,) W < (2w - (L +1u,, +1u,,, +1v,) — 1/2
we 80 deduce that
(12U oy + Ty — T, ) w0 2 1/2. @

From expressions (1) and (2), we get v(WIS(G%)) > (1/2)1y; - w — [k — (1/2)].
Finally, let us recall that procedure DECOMPOSITION is conceived in such
a way that the solution assigning 1/2 on all of the vertices of G, is the unique
optimal solution of WIS, (G?); this concludes the proof of the emphasized propo-
sition.

The recursive algorithm STABLE expleres a binary tree of depth 2«, the

nodes of which correspond to the edges v;v; chosen at the first line of the else
clause of the outer if condition. If there exists a branch along which v, ver-
ifies the hypothesis of the emphasized proposition, then from its conclusion,
and by an immediate induction, the graph, obtained by algorithmm STABLE,
corresponding to the leaf of this branch is b-KE, so, WIS is polynomial for this
graph ([4]). Observe finally that, for all k, if we denote by G¢*) the graph treated
during the kth recursive call of algorithm STABLE, the sum of a maximum-
weight independent set of G’x(k) with the weight of the set V,,gf ), constitutes a
maximum-weight independent set for G’m(k) , hence for G®) (because of the hy-
pothesis that there exists at least a maximum-weight independent set of G(*)
not containing vz).
On the other hand, for every edge v;v; of G®) | both of its endpoints cannot
simultaneously belong to every independent set (a fortiori optimal), this fact
guaranteeing that such a branch (leading to a b-KE-graph) always exists; so, al-
gorithm STABLE, which, in fact, entirely explores this binary tree by choosing
among the independent sets corresponding to the branches, the one of maximum
weight, it determines a maximnm-weight independent set of the initial graph (re-
call that the algorithm of [4], called here on the leaves of the binary tree, returns
an empty solution if an input graph is not b-KE).

So, algorithm STABLE is called, al worst, on all of the nodes of a fic-
tive binary tree of depth 2k and order 4* (a constant since & is a fixed con-
stant), the dominating operation of each call being procedure DECOMPOSI-
TION of complexity O(n*®); consequently, the overall algorithm’s complexity
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is of O(n*?®). .
Finally, remark that STABLE can be trivially used to decide if, for a given
(fixed constant) &, a graph is x-KE.

Let us remark that in the light of the previous result the complexity of the
algorithms of proposition 3 is also of O(n*?®).

We are now well-prepared to conclude the proof of theorem 5.

Consider a constant & and a graph G = (V, E) such that v(WIS(G)) >
(WIS, (G)) — k. Procedure DECOMPOSITION allows to partition V into
three sets Vg, V1 and Vi, in such a way that v(WIS(G)) = »(WIS(G[V1/3])) +
w - 1y, and, furthermore, v(WIS, (Q@)) = v(WIS(G[Vi/2])) + W - Ly, . Moreover,
in order to construct an optimal solution of WIS(G), one has simply to com-
plete an optimal solution of WIS(G[V;/,]) with the vertices of ¥;. The above
expressions allow to establish that v(WIS(G[Vy;2])) 2 v(WIS,(G[Vise])) — &;
furthermore, using lemma 6 one can be sure that the graph G[Vi;s] is «-KE.
Lemma 8 concludes then the proof of theorem 5.

4.3 Problems S,

The classes considered in sections 4.1 and 4.2 were restrictive enough to allow
facility for the constructive framework; so, for these classes, the constructive
and non-constructive points of view are of identical facilities and one cannot
dissociate them.

In order to capture the boundary between the two frameworks, let us now
consider, starting from IS, the transformation consisting in integrating in the
instance a vaguer information on the optimal value, i.e., consider only the order
of the optimal value with respect to input-size n. This thought process leads us
to the following problems introduced in [6].

For every constant & > 1, we define the stability problem S, corresponding
to the restriction of IS to graphs (of order n) admitting stability number greater
than or equal to n/k; we also define the problem S,e, an instance of which is
the pair (G, x), where & > 1 and G is a graph of order n with a(G) > n/x. Here
also, the objective is to determine a maximum independent set of G.

The first remark concerning these problems is that the recognition of their
instances is NP-complete for & > 2 (contrarily to the problems considered in
sections 4.1 and 4.2).

Proposition 9. The problem of deciding if, in graph G of order n, «(G) > n/x
is NP-complete V& > 2, k € IN.

Proof. The reduction is from IS, where we have to decide if, for a graph G,
a(G) > £, for a constant £ € IN.

Remark. We can consider that £ < n/k.

If not (£ > n/k), we add a clique XK. in G and we insert all edges between
vertices of & and vertices of K.. The new graph G’ is of order n+ ¢ vertices and,
moreover, a(G) = a(G'). f ¢ > € — n, then £ < (n + ¢)/&.
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Remark. The quantities n and £ are multiples of £ — 1.

If not, we consider graph G consisting of & — 1 disjoint copies of . Its order is
now (k — 1)n and the question becomes if a(G') > £(x — 1).

Remark. Finally, £ = n/x.

If £ # k, we add ¢ independent vertices in G. The resuliing graph G' has n 4- &
vertices and o) = a(G) + 0. So, we have to decide if &(G)+ o > £+ 0. The
fact £4 o = (n+ ¢)/x can be assured if o = [n/(k — 1)] — [k¢/(x — 1)]. The two
first remarks assure o > INT.

The combination of the three above remarks conclude the NP-completeness
claimed.

The above result indicates that the information integrated in the instance of the
problems S, is quite strong. Consequently, it is reasonable to ask ourselves if one
can exploit this information for approximating these problems.

We then have the following result.

Theorem 10. For every constant p, there is ne polynomial time approzimation
algorithm for Sye which guarvantees approximation ratio grealer then or equal
to p. :

In other words, 8.~ does not admit constant-ratic polynomial time approxima-
tion algorithm. For the problems S, this means that, if there exists ¢ polynomial
time approvimation algorithm guaranteeing, for every problem S., an approxi-
mation ratio p(k), then the mapping x — p(K) tends to 0 whenever k — co.

In fact, we can even precise the above remark by computing the convergence
velocity of p to 0.

Theorem 11. Je > 0 and Ikg such that Vi > kg, there does not exist algorithm
polynomial in n (but, eventually, exponential in k) for S, guarantceing approri-
mation ratio (1/k)°.

Proof. In [1], it is proved that unless P = NP, IS, even for above-bounded-
maximum-degree graphs (let us denote the class of IS defined on such graphs
by B(A)S), cannot be approximated by a polynomial time approximation sche-
ma® (PTAS).

Using the result of [1}, we prove the following intermediate result (lemma 12).

Lemma 12. kg such that S,, does not admit ¢ PTAS.

Proof. (Lemma 12.) Let us prove that if, Yk, S, admits a PTAS, then B(A4)S
also admits a PTAS.

Recall that in a graph G of order n, every maximal independent set is greater
than or equal to n/(A + 1); consequently, a(G) > n/(A + 1) and, for each 4,
.problem B(A)S is a sub-problem of Say;, solved by a PTAS on the hypothesis
that, Vi, S, can be solved by a PTAS, and this completes the proof of lemma 12.

® A sequence of polynomial time approximation algorithms, indexed by ¢, guarantee-
ing, for every ¢, approximation ratio of 1 — e.
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Let now G be an instance of S, of size n. For all integers m, consider the
graph G™ defined in the proof of proposition 1 and let n,, be its order; then,
N, = n™. The properties of this construction allow to establish that, if G is an
instance of S;, then G™ is an instance of Sym.

Suppose now that, Ye > 0, 3« > ko such that S, is (1/x)°-approximable. For

n > 0, choose g > 0 such that (1/;;3’2)5 > 1—nand & > g such that S, is (1/x)*-
approximable. We then determine integer m such that &7 < & < &T'*!; G™ is
an instance of S, and so, the algorithm supposed to solve it allows to determine
in polynomial time an independent set of cardinality o/(G™) > (1/%)%)a(G™) >
(1/83%7) ) (G™).

Following the above discussion, we can deduce an independent set of cardinal-
ity o/ (G™)Y™ > (1/&{™ ™) (G NY™ > (1/63))a(G) > (1~ p)a(C)
for G. This holding, ¥ €]0, 1[, we have determined a PTAS for S., a contradic-
tion. This completes the proof of theorem 11

We cannot yet characterize the hardness of approximating problems S, for a
fixed k. The only remark we can make is that, for £ > 2, S; is polynomially
constant-approximable.

In fact, let us consider an instance G of S3_, for a positive constant €. Then,
a(G) 2 nf(2—¢€) > [(1/2) + €']n for € > 0. Let us denote by e the number of
vertices exposed!” with respect to a maximum matching M of cardinality rn. We
have n = 2m+ ¢ and o(G) < m+ €. If we choose as approximate solution for IS
the independent set formed by these vertices, the previous expressions lead to
¢ > 2¢'n and the constant ratio 2¢' is guaranteed for Sg_..

The approximability of problems S, is particularly interesting. In fact, if one
could precise (see theorem 11) a threshold sy such that, Y& > «yp, S, is not
constant-approximable, then one would bring to the fore a problem constant-
approximable in the non-constructive framework within a ratio 1/x which, at
the same time, is not constant-approximable in the constructive framework.

Furthermore, the approximability of problems S, is strongly linked to the
approximability of other combinatorial problems, for example, convexe program-
ming problems, including quadratic programming as sub-case, or, even, to the
open problem of improving the approximation ratio 2 for minimum vertex cov-
ering.

More precisely, the following conditional results are proved in [6].

Theorem 13. ([6]). Let p-< 1 be a fized positive constant. Under the hypothesis
P # NP, (i) the non-eristence of a p-approzimation polynomial time algorithm
for 53 implies that ne polynomial time approzimation algorithm for VC can guar-
antee an approzimation ratio strictly smaller than 3/2; (i) if, on the contrary,
such an algorithm exists for Sz, then there exists an algorithm! for VC guaran-
teeing an approzimation ratio smaller than, or equal to, 2 — (p/6) < 2.

10 The set of these vertices is non-empty because of the hypothesis a(G)} > »/2.
1! This algerithm is constructive, since the proof of part (ii) of theorem 13 is entirely
constructive,
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In the case £ = 2, we can obtain the following result.

Proposition 14. ([6]). On the hypothesis P # NP, if Sy is non-constant ap-
prozimable, then no polynomial time approximation algerithm for VC can guar-
aniee an approzimation ratio p < 2 — €, for a fized positive constanie.

The (maximization) convex programming problem considered in [6] is defined as

follows:
max 35 f(a)
CPM(K) = ie{l,..,n}
reP

where P is a polytope defined by a finite number of constraints, and f belongs
to a family F of functions increasing in [0,1], with f(0) = 0 for every f € F,
verifying the property

}2;{%}6[0,%[, KER\[D.2L 3)

We have then the following result.

Theorem 15. ([6]). If there exisis k € R\ [0,2] such thet S, does not admit
a polynomial time algorithm guarenteeing ¢ maezimal independent set greaier
than pn for a fized positive constant p < 1, then there does not exist a polynomial
time approzimation algorithm for CPM (k) gueranieeing an approzimation ratio

greater than s infre={f(1/2)/f(1)}.

By applying the result of theorem 15 on particular families F ([6]), we can de-
duce the following corollaries.

Corollary 16. ([6]). If S5 does not admit a polynemial time approzimation al-
gorithm of (universally) constant ratio, then the quadratic programming problem
does not admit a polynomial time approzimation algorithm guaranieceing an ap-
prozimation ratio grealer than or equal to 3/4, unless P = NP.

Corollary 17. ([6]). If there exisis & such that S, does not admit a polynomial
time algorithm guarantecing ¢ mazimal independent set greater than pn for a
fized positive constant p < 1, then the problem of mezimizing a convez function
in a polytope does not admil ¢ constent-retio polynomial {tme approzimation
algorithm,

Analogous results are given in [6] for concave programming problems.

A slightly different problem, with respect to the approximability of S, is
" defined as follows: given an instance G of S,, determine an independent sel of
size n/k. This is & purely constructive problem, harder than the approximability
of S, with ratio 1/x.

For this new problem, starting from proposition 9, we can immediately de-
duce the following result,
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Proposition 18. (Constructive version of proposition 9.)

If P£NP, then Ye > 3, k € IN, there cannot ezist a pair of (A, f), where A is
an algorithm and f a function, both (A and f) polynomial in n (but, eventuelly,
exponential in k) such that, for all graphs G of order n instances of Sx, A de-
termines an independent sel greater than, or equal to nfx with complexrily less
than, or equal to f(n).

The proof is an easy conjugation of the ideas of theorem 2 to the result of
proposition 9.
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