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INFERER UN MODELE ELECTRE TRI A
PARTIR D’EXEMPLES D’ AFFECTATION

Résumé

Le probléme du tri d'un ensemble d’actions consiste a affecter chaque action a une des
catégories pré-définies. Dans cet article, nous nous intéressons au probléme de tri multicritére
et, plus précisément, & la méthode ELECTRE TRI. Cette méthode nécessite I'évaluation de
paramétres (poids, seuils, limites des catégories, ...) pour construire le modéle des préférences
du décideur. L'évaluation directe de ces paramétres étant difficile, nous supprimons cette dif-
ficulté en demandant au décideur une information qui requiertde sa part une charge cognitive
beaucoup plus faible. Nous évaluons ces paramétres indirectement & partir d'une informa-
tion globale donnée par le décideur sous la forme d’exemples d'affectation. Nous proposons
une approche interactive qui permet d’inférer un modéle ELECTRE TRI a partir d'exemples
d'affectation. La détermination du modéle ELECTRE TRI qui restitue au mieux les ex-
emples d’affectation est formulée & travers un probléme d’optimisation. L'aspect interactif
de cette approche réside dans la possibilité donnée au décideur de modifier les exemples
d'affectation et/ou de de donner une information supplémentaire avant de redémarer la phase
d'optimisation.

Mots clés : Aide multicritére & la décision, Problématique du tri, ELECTRE TRI
method, Evaluation des paramétres, Procédure d'inférence, Optimisation.

INFERRING AN ELECTRE TRI MODEL
FROM ASSIGNMENT EXAMPLES

Abstract

Given a finite set of alternatives, the sorting problem consists in the assignment of each
alternative to one of the pre-defined categories. In this paper, we are interested in multiple
criteria sorting problems and, more precisely, in the existing method ELECTRE TRI. This
method requires the elicitation of parameters (weights, thresholds, category limits,...) in order
to construct the DM’s preference model. A direct elicitation of these parameters being rather
difficult, we proceed to solve this problem in a way that requires from the DM much less
cognitive effort. We elicit these parameters indirectly using hollistic information given by the
DM through assignment examples.

We propose an interactive approach that infers the parameters of an ELECTRE TRI
model from assignment examples. The determination of an ELECTRE TRI model that best
restitutes the assignement examples is formulated through an optimization problem. The
interactive aspect of this approach lies in the possibility given to the DM to revise his/her
assignment examples and/or to give additional information before the optimization phase
restarts.

Keywords : Multiple criteria decision aid, Sorting problem, ELECTRE TRI method,

Parameters’ elicitation, Inference procedure, Optimization.



1 Introduction

When modeling a real world decision problem using multiple criteria decision
aid, several problematics (or problem formulations) can be considered. [Roy85]
distinguishes three basic problematics: choice, sorting and ranking (see also
[eC93]).

Given a set A of alternatives (or actions), the choice (or selection) problem-
atic (see Figure 1) consists in a choice of a subset A’ C A, as small as possible,
composed of alternatives being judged as the most satisficing. Optimisation
problems are particular cases of a choice problematic where A’ is restricted to
one alternative.

A
A Selected
alternatives

A-A’
Rejected
alternatives

Figure 1: Choice problematic

The sorting problematic (see Figure 2) consists in formulating the decision
problem in terms of a classification so as to assign each alternative from A to
one of the predefined categories. The assignment of an alternative a to the
appropriate category should rely on the intrinsic value of a (and not on the
comparison of a to other alternatives from A).

The ranking problematic (see Figure 3) consists in establishing a preference
pre-order (either partial or complete) in the set of alternatives A.

In this paper, we are interested in the multiple criteria sorting problematic
and, more precisely, in an existing method called ELECTRE TRI (see [Yu92a],
[Yu92b] and [RB93]). When using this method, the analyst must determine val-
ues of several parameters (profiles that define the limits between the categories,
weights, discrimination thresholds, ...). These parameters are used to construct
a preference model of the decision maker (DM). Apart from some very specific
cases, it is not realistic to assume that the DM would be able to give explicitly
the values of these parameters. They are far different from the natural terms
in which the DM usually expresses his/her preferences and expertise. Qur aim
is to infer the model parameters of ELECTRE TRI through an analysis of as-
signment examples given by the DM, i.e., from hollistic information on his/her
Judgments.
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Figure 2: Sorting problematic
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Figure 3: Ranking problematic

The paper is organized as follows. In the next section, we characterize the gen-
eral objectives of our approach. In section 3, we recall the main steps of the
ELECTRE TRI method and then we pass, in section 4, to the description of our
inference procedure from assignment examples. In section b, we are consider-
ing the choice of an optimization technique for our inference procedure and we
provide, in section 6, an illustrative example. A final section groups conclusions.

2 General objectives

2.1 Scheme of the proposed approach

The general scheme of our inference procedure is presented in Figure 4. Its aim
is to find an ELECTRE TRI model as compatible as possible with the assign-
ment examples given by the DM. The assignment examples concern a subset
A* C A of alternatives for which the DM has clear preferences, i.e., alternatives



that the DM can easily assign to a category, taking into account their evaluation
on all criteria. The compatibility between the ELECTRE TRI model and the
assignment examples is understood as an ability of the ELECTRE TRI method
using this model to reassign the alternatives from A* in the same way as the
DM did. To get a representative model, the subset A* must be defined such
that the numbers of alternatives assigned to the categories are almost equal and
sufficiently large to ”contain enough information”.

Assign alternatives
from A* to the categories

Y

<Additiona] information on

Fix value or interval
of variation for one or
several paramelers

some model parameters ? g~ Yo

no

Optimize to
obtain a model

Model accepted ?

no

Revise
assigment f<no
examples

T'igure 4: General scheme of the inference procedure

In order to minimize the differences between the assignments made by ELEC-
TRE TRI and the assignments made by the DM, an optimization procedure is
used. The resulting ELECTRE TRI model is denoted by M;. The DM can
tune up the model in the course of an interactive procedure. He/she may either
revise the assignment examples or fix values (or intervals of variation) for some
model parameters. In the former case, the DM may:

e remove and/or add some alternatives from/to A*,

e change the assignment of some alternatives from A*.

In the latter case, the DM can give additional information on the range
of variation of some model parameters basing on his/her own intuition. For
example, he/she may specify:

e ordinal information on the importance of criteria,
e noticeable differences on the scales of criteria,

e incomplete definition of some profiles defining the limits between cate-
gories.



When the model is not perfectly compatible with the assignement examples,
the procedure should be able to detect all “hard cases”, i.e., the alternatives for
which the assignment computed by the model strongly differs from the DM’s
assignment. The DM could then be asked to reconsider his/her judgment.

2.2 Interest of the approach

One of the main difficulties that an analyst must face when interacting with
a DM in order to build a decision aid procedure is the elicitation of various
parameters of the DM’s preference model. In the ELECTRE TRI method, the
analyst should assign values to profiles, weights and thresholds (see section 3).
Lven if these parameters can be interpreted, it is difficult to fix directly their
values and to have a clear global understanding of the implications of these
values in terms of the output of the model.

Our approach to the construction of an ELECTRE TRI model aims at sub-
stituting assignment examples for direct elicitation of the model parameters.
The values of the parameters will be inferred through a certain form of regres-
sion on assignment examples.

Inferring a form of knowledge from examples of expert’s decisions is a typical
approach of artificial intelligence. Induction of rules or decision trees from ex-
amples in machine learning (see [Mic83], [Qui86]), knowledge acquisition based
on rough sets (see [GB92], [PS94], [S1092]), supervised learning of neural nets
(see [Gal93], [WK91]) are well-known representatives of this approach. The ap-
peal of this approach is that the experts are typically more confident exercising
their decisions than explaining them.

In Multiple Criteria Decision Analysis, this approach is concordant with
the principle of posterior rationality (see [Mar88]) and with the aggregation-
disaggregation logic used for the construction of a preference model in UTA-like
procedures (see [JLS82], [JLMS87], [JL90], [NMK91], [Slo91]). It has been also
applied for the elicitation of weights used for the construction of an outranking
relation in the DIVAPIME method (see [Mou95] and [Mou93]).

Moreover, such an approach may be used within a different context from
the one it was initially intended for: construction of ordinal criteria. When a
criterion should take into account several dimensions related to specific aspects
of the decision, it is sometimes difficult to define directly a satisfactory index
that ”measures” the performance of alternatives relatively to this criterion. A
way to overcome this difficulty is to proceed as follows:

e define, for the considered criterion, an ordinal scale made of several impact
levels using linguistic terms,

o specify several prototypes of alternatives that meet these impact levels,

e consider the impact levels as categories and prototypes as assignment ex-
amples and infer the corresponding ELECTRE TRI model using the pro-
posed approach,



e use this ELECTRE TRI model to define the evaluation of any other al-
ternative on the considered criterion.

3 Presentation of the ELECTRE TRI method

ELECTRE TRI is a multiple criteria sorting method, i.e., a method that assigns
alternatives to predefined categories. The assignment of an alternative a results
from the comparison of a with the profiles defining the limits of the categories.
Let F denote the set of the indices of the criteria g1, g2, ..., gm (F={1,2,...,m})
and B the set of indices of the profiles defining p+1 categories (B={1,2,...,p}),
b being the upper limit of category Cj and the lower limit of category Ch41,
h=1, 2, ...,p (see Figure 5). In what follows, we will assume, without any loss
of generality, that preferences increase with the value on each criterion.

Category 1  Category 2 Category p-1 Category p Category p+1

N
/

T
1A IRV

/..

Figure 5: Definition of categories using limit profiles

ELECTRE TRI builds an outranking relation S, i.e., validates or invalidates
the assertion aSb, (and bySa), whose meaning is "¢ is at least as good as
by”. Preferences restricted to the significance axis of each criterion are defined
through pseudo-criteria (see [RV84] for details on this double-threshold pref-
erence representation). The indifference and preference thresholds (g;(bs) and
p;j(bn)) constitute the intra-criterion preferential information. They account for
the imprecise nature of the evaluations g;(a) (see [Roy89]). ¢;(bs) specifies the
largest difference g;(a) — g;(bs) that preserves indifference between @ and by, on
criterion g;; p;(bn) represents the smallest difference g;(a) — g;(bn) compatible
with a preference in favor of a on criterion g;.



At the comprehensive level of preferences, in order to validate the assertion a.Sby
(or bySa), two conditions should be verified:

o concordance: for an outranking aSby (or bySa) to be accepted, a ”suffi-
cient” majority of criteria should be in favor of this assertion,

e non-discordance: when the concordance condition holds, none of the cri-
teria in the minority should oppose to the assertion aSb, (or bySa) in a
”{oo strong way”.

Two types of inter-criteria preference parameters intervene in the construction
of S:

o the set of weight-importance coefficients (&, k3, ..., k) is used in the con-
cordance test when computing the relative importance of the coalitions of
criteria being in favor of the assertion aSby,

o the set of veto thresholds (v (bs), va(bn), ..., vm(ba)) is used in the discor-
dance test. v;(by) represents the smallest difference g;(bs) — g;(e) incom-
patible with the assertion aSby,.

ELECTRE TRI builds an index o(a, bs) € [0, 1] (¢(bs, a), resp.) that repre-
sents the degree of credibility of the assertion aSby (bpSe, resp.), Va € A,Yh €
B. The assertion aSb, (bySa, resp.) is considered to be valid if o(a, by) > A
(o(bn,a) > A, resp.), A being a "cutting level” such that A € [0.5,1].

Determining o(a, b) consists of the following steps (the value of a(bs, @) is com-
puted analogously):

1 - compute the partial concordance index ¢;(a, b), Vj € F:

0 if g;(bn) — g;(a) > p;i(bn)

cj(a,bp) =< 1 if g;(ba) — gj(a) < g;(bn) (1)
pf(i’;)(tffit;)jztff)(b") otherwise

2 - compute the comprehensive concordance index c(a,bp):

e Yjer kici(a,ba)
B 2 jerki @)

3 - compute the discordance indices dj(a,bs),Vj € F:

0 if g;(a) < g5(bn) +pj(bn)
dj(a,by) = < 1 if gj(a) > g;(ba) + v (bn)
€ [0, 1] otherwise

4 - compute the credibility index a(a, b,) of the outranking relation:

1-— dj(a, bh)

T—eld,ba) where F = {j € F :dj(a,bn) > c(a,bn)}

®)

o(a,b) = c(a,ba) [ ]

JjEF



The values of ¢(a, by), o(bs, a) and A determine the preference situation between
a and by:

o o(a,by) > X and o(bp,a) > A = aSb, and bySa = alby, ie., a is indiffer-
ent to by,

o o(a,by) > X and o(by,a) < A = aSb, and not bpSa = a > by, ie, ais
preferred to by, (weakly or strongly),

o o(a,by) < A and o(bs,a) > X =not aSb, and bySa = by, > a, ie., by is
preferred to a (weakly or strongly),

o o(a,by) < A and o(bp,a) < A =not aSb, and not bySa = aRby, ie., ais
incomparable to by.

Two assignment procedures are then available:

Pessimistic procedure :

a) compare a successively to b;, for i=p,p-1, ..., 0,
b) by being the first profile such that aSby,
assign a to category Cht1 (@ = Chy1).

Optimistic procedure :

a) compare a successively to b, i=1, 2, ..., p,
b) b, being the first profile such that by > a,
assign a to category Cp (a — Ch).

4 Inferring an ELECTRE TRI model from as-
signment examples

An ELECTRE TRI model M; is composed of:
o the profiles defined by their evaluations g;(bs), Vi € I, Yh € B,

o the importance coefficients k;, Vj € F,

L]

the indifference and preference thresholds ¢;(bs), p;(bn), Vi € F',Yh € B,
o the veto thresholds v;(bs), Vj € F, Vh € B,
e a selected assignment procedure (either pessimistic or optimistic).

In what follows, we will confine our analysis to the case were the pessimistic as-
signement procedure is used and where no veto phenomenon occurs (v;(bs) = oo,
VYj € F,VYh € B). So as to determine a model M, that best matches the assign-
ment examples given by the DM, one should formulate an appropriate optimiza-
tion problem, i.e., define the variables, an accuracy criterion and the constraints.



4.1 Variables of the problem

In ELECTRE TRI pessimistic assignment procedure, an alternative a; is as-
signed to category Cj (bn—1 and by being the lower and upper profiles of Cj,
respectively) iff oz (ak,br—1) > A and ox (ar, b)) < A

Let us suppose that the DM has assigned the alternative a; € A* to cate-
gory Ch, (ar — Cj,). Let us define the slack variables z; and gy such that
orl(ar,bp-1) — 2k = A and ox (ag, bp,) + y = A.

The optimization problem will include the following variables:

xi, Yk, Vap € A* slack variables (2n)

A cutting level (1)

ki, Vie F importance coefficients (m)
gi(bn), Vi€ F,Yhe B profile evaluations (mp)
q;(bn), Vi€ F,Yh € B indifference thresholds {mp)
p;(bn), Vi € F,Yhe B preference thresholds (mp)

4.2 An accuracy criterion

If the values of the slack variables z; and yi are both positive, then ELECTRE
TRI pessimistic assignment procedure will assign alternative a; to the ”correct”
category. If, however, one or both of these values are negative, the ELECTRE
TRI pessimistic assignment procedure will assign alternative ay to a ”wrong”
category. The lower the minimum of these two values, the less adapted is the
model M; to give an account of the assignment of a; made by the DM. More-
over, if zy and y; are both positive, then ay is assigned consistently with the
DM’s statement, for all A’ € [A — g, A + 2x].

Let us consider now the set of alternatives A* = {a;,aq,...,ax, ...,a,} and sup-
pose that the DM has assigned the alternative a; to the category Cy, , Yar € A*.
The model M, will be consistent with the DM’s assignments iff #; > 0 and
ye > 0, Va, € A*.

Consistently with the preceding argument, an accuracy criterion to be max-
imized can be defined as:
Ini}!.l. (@k, yx) (4)

ar€
If the accuracy criterion takes a non-negative value, then all alternatives
contained in A* are "correctly” assigned, for all A € [A — ming, eas (), A +
Mming, ea (2x)].

This criterion, however, takes into account the ”worst case” only, i.e., the
alternative for which the model M, gives the most different assignment from
the DM. An accuracy criterion should be able to take into account an average
information concerning the accuracy of the model, i.e., its overall ability to as-
sign the alternatives from A* to the ”correct” category. Hence, we propose to
replace criterion (4) by the following one:

Jmin (2, 96) + € E ek + vi) (5)

where € is a small positive value. (5) can be rewritten as :



(et €3 a,ear (@k +uk))
st. a<ap, Va, e A*
a <y, Yap €A

4.3 Constraints of the problem

The constraints of the optimization problem are the following:

on(ag, bry—1) — 2k = A, Vag € A* definition of the slack variables z; (n)
ok, bn )+ yx = A, Var, € A* definition of the slack variables y; (n)

o< ap, a <y, Va, € A* definition of o (2n)
A€[0.5,1] interval of variation for A (2)
95 (bnt1) > 95 (bn) + pi(bs) + pj(buy1), Vi € F,Vh € B
consistency of categories (m(p-1))
pj(bn) > ¢;(bn), Vi € F,Vh € B thresholds consistency (mp)
k; >0, g;j(bn) > 0,Vj € F, Vh € Bnon-negativity constraints (m+mp)

According to the general scheme given in Figure 4, some additional con-
straints can be added in the course of the interactive procedure in order to take

into account an intuitive view of the DM on the value of some parameters.

For

instance, if the DM does not consider any criterion as a dictator, an appropriate

constraint is: k; < £ 30 ki, VjEF

4.4 Optimization problem to be solved

The basic form of the optimization problem to be solved is the following:

max (o +e¢ Z (zr + y))

apeA*

st. a<ag, Ve €A
o<y, Va,eA*
2oier kici(ak, bn-1)

2 oie1 ki
2je1 kici(ar, bn,)
E;":1 kj

Ae0.5,1]
9i(bnt1) = g (ba) + pj(bn) + pj(buy1), Vi € F,Yh € B
pi>¢qi, VieF
k; >0,¢;20, VjeF

—ap = A, Vag e A*

+u =X Vo €A

Because of constraints (12) and (13), the above problem is a non-linear program-
ming problem. It contains 2n+3mp+m+2 variables and 4n+3mp+2 constraints.



Let us remark that the slack variables 2 and . can be eliminated from the
problem formulation since they are defined by the constraints (12) and (13).
This elimination reduces the number of variables to Jmp+4m+-2.

4.5 Approximation of partial concordance indices c¢;(a,by)

The partial concordance indices c;j(ax,bs) are piecewise linear functions (see
(1)), and are hence non differentiable. This prevents from using gradient opti-
mization techniques which would be the most suitable ones for solving the above
problem. In order to circumvent this difficulty, we will approximate c;{ax, bs)
by a differentiable sigmoidal function f(z) of the following form:

1
e = e i =)

The sigmoidal function has the following properties:

(18)

limy 00 f(@) = 1

limy oo f(z) =0

F(rg) = 05 (19)
4E) — f(z) (1 - f(2))

These properties make possible a ”fair” representation of ¢;(ax,bn) by f(z).
The shape of this function is shown in Figure 6.

f{=)

0.5

Figure 6: Sigmoidal function f(z)

cj(ak, bs) is a function of the difference g;(ax) — g;(bs) and of the thresholds
gj(bn) and p;(by)*. In order to represent ¢;(ax,bs) by f(z), we substitute & for
g;i(ax) — g;j(bn) and include both thresholds in the parameters zo and .

1We assume here that the preference increases with the value of g;.

10



As cj(ag, by) = 0.5 for gj(ar)—g;(ba) = —’ib—"#ﬂﬂ, we pose g = Eﬂb—")%ﬂb—"l.
The value of # minimizing the approximation error is: f = p—j@f)%(m (see
appendix). The resulting approximation of ¢;j(ax,bs) is given below and shown

in Figure 7.

1
(93(ax) — gs(bn) + P22 g00))

¢; (ax,bn) = (20)

55
1+ exp [Pi(bh)—‘]'j(bh) :

Cj (a;,., b,r,), éj((tk, bh)

~p?(bh) ~<Ij](-')h)
&ilag, b))  mmmomee cj(ak, bn)

Figure 7: Approximation of c;(ax,bs) by &j(ax,bn)

5 Solving the optimization problem

5.1 Input data

In order to run the optimization phase, the model should contain ”enough” in-
formation so as to infer a set of ELECTRE TRI parameters. More specifically,
the set of assignment examples ap = par Ch,, Var € A*, should be ”sufficiently
large”, e.g., n > m + p). Moreover, the alternatives should be well distributed
among the p+1 categories and alternatives assigned to the same category C}
should have profiles ”as different as possible”.

Consistently with the general scheme presented in §2.1, the DM can add infor-
mation concerning the value of some parameters of the model. This information
take the form of additional constraints in the optimization problem.

5.2 Output of the inference phase

The output of the inference phase consists of a set of values for ELECTRE TRI
parameters. It should be checked then whether the obtained model is com-

11



patible with the assignment examples. If it is the case, the variable o takes a
positive value. The inferring process stops at this point unless the DM wants
to revise the value of some parameters.

In the case of a negative value of «, it is possible to find which assignment
example causes this negative value, i.e., which example is the most difficult to
be reproduced by the model. Let us denote by @ the corresponding alternative.
This assignment example can be viewed as the most *untypical” compared to
the others. In such a case, two options are possible:

o cither the DM changes the ”untypical” assigment of @ and then the opti-
mization phase restarts with the modified set of assignment examples,

o or the DM confirms his/her assignment of @ and then the optimization
phase restarts considering all assignment examples but a.

In the second option, the elimination of @ is temporary and aims at finding
an appropriate model for the remaining examples. This elimination is not defi-
nite as @ can be re-integrated to A* when the DM modifies another assigment
example.

5.3 Choice of an optimization technique

In the case of relatively small optimization problems, the solver of Excel 5.0 gives
satisfactory results in a reasonable computing time (see section 6), although we
cannot be sure to attain the global optimum with this tool. When considering
large problems, a more powerful solver seams necessary, mainly because of the
multiplicity of local minima. As can be seen from recent works (see [MJ91]),
metaheuristics in particular based on genetic algorithms can satisfactorily deal
with the local minima problems. This direction of research deserves further
investigation.

6 An illustrative example

Let us consider a sorting problem in which alternatives have to be assigned
to three categories, C1, Cy and Cs, defined by two profiles, by and by (B =
{1,2}), taking into account their evaluations on three criteria, g1, g2 and g3
(F ={1,2,3}). The evaluations on each criterion take their values in the inter-
val [0,100]. Let us consider the 6 assignment examples given in Table 1.

The optimization problem corresponding to the search of an ELECTRE

TRI model consistent with the assignment examples contains 23 variables and
44 constraints (see §4.4). Three additionnal constraints of the form k; <
%Z?:l k;,j=1,2,3 prevent any criterion to be a dictator.
In order to perform the optimization phase, we need to determine a starting
point. In the absence of any additional information from the DM, we fix
k; = 1,5 = 1,2,3. The initial profiles are defined by the following heuristic
rule:

12



7 ga g3 Category
ay | 70 64.75 | 46-25 Cy
ag | 61 62 60 Cs
as | 40 50 37 Cs
a4 66 40 23-125 Cg
as | 20 20 20 Cy
as | 15 15 30 Ch

Table 1: Set of assignment examples

gj(bh) - 5 Nh—1 th

1 {ZG;—}CA_I gj(a:) n Ea;_;c,. 93'(“5)}

where ny, and nj_1 are the number of alternatives assigned to categories Cj, and
Ch-1, respectively.

The above heuristic rule leads to the initial profiles defined in Table 2.

N g2 [E]
by | 59-25 | H4-19 | 41-6
by | 3525 | 3125 | 275

Table 2: Initial profiles defining the category limits

As to the initial values for the indifference and preference thresholds, their
values are fixed arbitrarily as follows.

g;(bn) 0.05 g;(ba)
p;(bn) 0.1 g;(bn)

Table 3 presents the initial values of the thresholds.

(21)

g1 g2 g3

gi(b2) | 2:96 | 271 | 2-08
pi(bs) | 5:93 | 542 | 416
gi(by) | 177 | 156 | 1-38
pi(by) | 353 | 3-12 | 275

Table 3: Initial values of indifference and preference thresholds
Fixing A = 0.75, we obtain the initial values for 2, and y, shown in Table 4.
The initial values of the parameters lead to a model that is not able to assign
all alternatives consistently with the DM’s assignments. a4 is assigned by the

model to category €1 while the DM assigned a4 to category C'. As can be seen
in the starting point, o = 24 = —0.083 < 0.

13



Tk Yk

ap | 0.25 0.75
az | 0.25 0.75
as | 0.25 | 0.598
aq | -0.083 | 0.417
as | 0.25 0.75
ag | 0.25 | 0.417

Table 4: Initial values of the slack variables g and yg

The resulting optimization problem has been solved using the Excel 5.0
solver which computes a solution within less than two minutes on a Pentium
60Mhz computer. The values of parameters in the obtained model are shown in
Tables 5 and 6.

Moreover, @ = 0.37, A = 0.629, ky = 0.517,ky = 1, k3 = 0.483.

g1 g2 g3
by | 5925 | 62-75 | 41-6
by | 3525 | 31.25 | 23-65

Table 5: *Optimal” profiles defining the category limits

g1 g2 g3
)| 296 | 2271 | 2-08
) | 5-925| 5-419| 4-16
gi(b1) | 1-762| 1-563| 1-376
) | 3-525( 3-125| 2-813

Table 6: "Optimal” values of indifference and preference thresholds

We obtain the final values for @; and y; shown in Table 7. The obtained
model is able to assign all alternatives from A* consistently with the DM’s
assignments. The model assignments remain consistent for all A € [0.5, 1] which
proves a good robustness of the model.

Tk Yk

ap | 0.371 | 0.629
ay | 0.370 | 0.629
az | 0.371 | 0.624
aq | 0.370 | 0.370
as | 0.371 | 0.628
as | 0.371 | 0.387

Table 7: Final values of the slack variables x; and
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7 Conclusions and further research

We have proposed an interactive approach that infers the parameters of an
ELECTRE TRI model from assignment examples. The determination of the
model that best restitutes the assignement examples is formulated as an opti-
mization problem. The interactive aspect of this approach lies in the possibility
given to the DM to revise his/her assignment examples and /or to give additional
information on the range of variation of some parameters before the optimiza-
tion phase restarts.

The proposed approach is based on a realistic assumption that the DM
prefers to give some assignment examples rather than to specify directly the
values of parameters used in ELECTRE TRI. In this way, our approach trans-
fers the interaction with the DM from the level of direct elicitation of parameters
to the level of exemplary assignment decisions at which less cognitive effort is
required.

As preliminary experience with this approach is encouraging, further re-
search should be pursued in two complementary directions: improvement of
computational efficiency in the optimization phase and extension of some useful
features of the proposed approach.

As to the first direction, additional computational experiments should be
made, both for larger problems and using different optimization techniques.
The use of metaheuristics based, in particular, on genetic algorithms deserves
further investigation. Another important point to be studied concerns post-
optimal analysis of the obtained solution so as to estimate its stability.

As to the second direction, it should be given a possibility of considering
subproblems concerning subset of ELECTRE TRI parameters to be inferred,
This may be particularily interesting from a practical point of view and can
lead to linear optimization problems. Moreover, the inference procedure should
be able to propose a rich interaction with the DM. The dialog with the DM
should enable assignments of alternatives to multiple categories, e.g., ” aj should
be assigned to the top two categories” or ”ay will not be assigned to the two
extreme categories”, etc. It should be also taken into account that the DMs
are sometimes able to express a degree of confidence related to an assignment.
Two assertions, ”it is possible that ay meets the requirements of category C}”
and ”ay, should certainly be assigned to Cj,”, should not be processed by the
inference procedure in the same way. Furthermore, the approach should be
extended to take into account the veto phenomenon considered in the complete
version of the ELECTRE TRI method. Finally, the development of user-friendly
interactive software is a necessary condition of a successful implementation of
this approach in real-world decision problems.
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APPENDIX: Approximation of ¢;(ax,bs) by ¢&;(ex,bs)

We approximate the partial concordance index cj(ax,bsn) (see (1)) by the
sigmoidal function f(z) = 1/(1 + ezp(—p(z — xo))). As follows from §4.5,
the value of &g = (p;j(bn) + ¢;(bn))/2. The value of B influences the angle of
inclination of the tangent to ¢;(ax,bs) in the point (0,0.5) (see Figure 6). As
a consequence, it also influences the size of the closed areas A and B created by
cjlak, by) and &;(ax,bs) (see Figure 8). The value of # has to be chosen such
that the surface of A is equal to the surface of B. Then, the approximation error

is minimal. Solving a simple integral equation, we get § = m%m.
bl

Cj(akl bh): éj(a'k: bh)

gi(ax) — g5(bn)

Tpibn)  —rielepi®h)  —qj(by) !
2 0
éilak,bp) —mm————— cjlax,bn)

Figure 8: Determination of 8 minimizing the approximation error

18



