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Induction de regles de décision pour ’extraction
de connaissances

Résumé

Deux perspectives principales pour Pinduction de régles de décision & partir d’exem-
ples peuvent étre envisagées. Outre la perspective classique de « I'induction orientée
classification », dont 'objet est de batir un classifieur, nous distinguons et discutons
« I'induction orientée extraction de connaissances » dont ’objectif est d’extraire des
regles « intéressantes » et utiles pour I'utilisateur. La signification d’« intéressant » doit
étre définie selon le niveau d’expertise de 'utilisateur et/ou ses exigences. Compte-
tenu de la diversité des objectifs respectifs, il nous semble impératif de concevoir
différemment les approches pour I'induction orientée extraction de connaissances et
celles, plus classiques, pour Pinduction orientée classification. Une approche spécifique
visant a 'extraction de connaissances est présentée dans ce papier. Une implémentation
informatique nous a permis d’illustrer I'intérét de cette approche dans le cadre de plu-
sieurs expérimentations.

Mots clés: Apprentissage par induction, extraction de connaissances, régles de
décision, classification.

Discovery-oriented induction of decision rules
Abstract

Two main perspectives for inducing decision rules from examples can be envis-
aged. Besides the classical perspective of ‘classification-oriented induction’ whose
objective is to build a classifier, we distinguish and discuss ‘discovery-oriented induc-
tion’ whose purpose is to exiract rules ‘interesting’ and useful to different kinds of
users. The meaning of ‘interesting’ clearly depends on the user’s level of expertise
and requirements. According to the diversity of the respective objectives, we claim
that approaches for discovery-oriented induction must be conceived quite differently
from well-known approaches for classification-oriented induction. Hence, a specific
approach for discovery-oriented induction is proposed. The results of several experi-
ments with an implementation of our approach illustrate its usefulness for discovery
purposes.

Keywords: Inductive learning, knowledge discovery, decision rules, data mining,
clagsification.



1 Introduction

This paper deals with induction of decision rules in data sets representing experience
in certain domains. It is assumed that data sets contain information about a set of
objects described by a set of attributes. The problem consists in finding rules that
determine whether an object belongs to a particular subset called a decision class or
concept. It is assumed that the definition of this class is known (e.g., given by experts
or users). Hence, this is a case of the so-called supervised learning. The objects
analysed are called learning ezamples. The rules considered are logical expressions of
the following form:

IF <conditions> THEN <decision class>

where conditions are formed as a conjunction of elementary tests on values of
attributes.

Induction of decision rules can be performed because of different aims. The most
common ones are connected with:

o classification-oriented induction,
o discovery-oriented induction.

The alm of classification-oriented induction is to find automatically, from the set
of learning examples, a collection of decision rules which will be used to classify
future examples. This problem has been, in fact, extensively studied in Machine
Learning literature and several approaches for deriving such classification rules have
been proposed [17]. Some of them provide a set of rules learned directly from examples
(see, c.g., the well-known algorithms AQ [9, 11, 10], CN2 [2], PVM [21], ...), while
other approaches first generate decision trees and then transform the branches of the
trees into rules (as done in Quinlan’s system C4.5 [14]).

The main criterion for evaluating the quality of a set of classification rules
is the classification accuracy rate {(or conversely the misclassification error rate -
see, e.g., [22]). Several comparative studies, based on experiments using this crite-
rion, have shown that most of these algorithms give similar rather good results. It
must be noticed that other classification systems using, e.g., neural networks or sta-
tistical approaches perform at least as well, and sometimes better than rule-based
systems [22, 17]. However, it is often claimed in favour of the latter systems that
they provide a symbolic representation of classification knowledge which is useful for
justification of classification results (see [9, 10]).

The aim of discovery-oriented induction is to extract, from data sets, information
patterns and regularities interesting and useful to different kinds of users (data ana-
lysts, experts, ...). Discovered patterns and regularities, if they are represented in the
form of rules, will be further referred to as ‘interesting’ rules. Such ‘interesting’ rules
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can help in understanding and explaining relationships between values of attributes
and definitions of decision classes. Clearly, the meaning of ‘interesting’ must be mod-
ulated according to the user’s expectations and requirements. In general, however,
interesting rules should correspond to strong and simple patterns.

Discovery-oriented induction is not so well studied as classification-oriented in-
duction, although it has been raising an increasing attention in the last years due to
the development of the Knowledge Discovery research field [4, 10, 1, 23].

As the well-known rule induction algorithms have been introduced taking into
account classification aims, the results of their direct application to discover data
patterns may be quite unsatisfactory. Moreover, nearly all of these algorithms give
as a result a minimum sef of rules. It must be stressed that this set represents only a
limited part of the most ‘interesting’ decision rules. Other ‘interesting’ rules may still
remain hidden in the data set. Conversely, a minimum set of rules may include very
specific rules with no real interest. Therefore, we believe it is necessary to develop
specific approaches for discovery-oriented induction.

The aim of this paper is to underline some specificities of discovery-oriented in-
duction and to propose an approach for extracting ‘interesting’ rules from a set of
examples.

The paper is organized as follows. In section 2, motivations for discovering other
types of rules than for classification aims, are discussed more precisely. After intro-
ducing some basic concepts in section 3, the criteria for evaluating ‘interesting rules’
are presented in section 4. In section 5, the algorithm for getting the set of ‘interest-
ing’ rules is presented. Some computational experiments are described in section 6.
Final remarks are given in the last section.

2 Specificities of discovery-oriented induction

The aim of discovery-oriented induction is to extract ‘interesting’ rules, i.e. rules
which are of interest and use for different kinds of users (decision analysts,
experts, ...). Actually, discovery-oriented induction is much more difficult to define
than classification-oriented induction. Indeed, the meaning of terms like ‘interesting
rules’ or ‘potentially useful information patterns’ [4] is not so obvious and depends
on the interests and expertise level of users. An advanced user or an expert will cer-
tainly look for other patterns than a novice and should be able to direct and constrain
somehow the discovery process.

In spite of these difficulties, in discovery-oriented induction, one is usually inter-
ested in getting a set of decision rules which are (see, e.g., [4, 13, 23]):

a) strong, i.e. refer to a large number of learning examples,



b) simple, i.e. whose condition parts consist of a rather limited number of ele-
mentary conditions easy to interpret by the user,

¢) consistent, i.e. the relationship between its condition part and decision part
is sufficiently well supported.

Let us emphasize that in discovery-oriented induction, each rule is evaluated in-
dividually and independently as a possible representant of a specific pattern. In
classification-oriented induction, rules are parts of a system; hence, the evaluation
refers here to the complete set of rules.

One can notice that it is not so easy to define criteria representing requirements
a, b, ¢ and above all to consider all of them together. In case of induction algorithms
creating classification rules, there 1s in fact one dominant criterion expressing mis-
classification error rate. For discovery systems none of the criteria is dominant and
they must be treated in a different way depending on the current context.

A crucial issue refers to the way of getting such ‘interesting’ rules. The well-known
approaches for inducing classification rules have been constructed taking into account
only classification point of view. Most of them are focused on inducing a minimum
(smallest due to some additional criteria [9, 17]) set of rules using a greedy heuristic
strategy. This strategy consists in creating a first rule by choosing sequentially the
‘best’ elementary conditions according to some heuristic criteria. Then, learning
examples that match this rule are removed from consideration. While there are still
gsome significant undescribed examples, the procedure is repeated.

The decision rules obtained in this way, although work well in classification, may
not be easy to interpret by the user. Such difficulties in interpreting and understand-
ing classification rules are particularly clear in the case of decision lists (as these
created by the C/.5 or CN2 systems) where an interpretation of each rule depends
on its position in the list.

Another disadvantage, even more important from a discovery point of view, is
connected with the fact that a minimum set of rules contains only a limiled part of
‘interesting’ rules. Conversely, such a set may include specific rules of no interest. The
perspective is quite different in discovery-oriented induction where all ‘interesting’
and only ‘interesting’ rules should be extracted.

The limitations of existing algorithms discussed above lead us to propose an al-
ternative approach which aims at inducing only ‘interesting’ rules and all of them
by focusing on the rules that satisfy requirements, like a, b, ¢. In this approach, we
use an algorithm originally introduced by two of the authors in [20]. The algorithm
progressively generates rules of increasing size. The exploration of the rule space is
controlled by incorporating one or several stopping conditions (connected with user’s
requirements). The stopping conditions guarantee desirable properties of the rules
and significantly reduce the computational costs of the algorithm.



Consulting the literature one can nofice that similar motivations were also the
starting points for two other approaches to non-standard rule discovery developed
independently in last years by [15, 16] ( Brute system) and [8]. However, our approach
uses a different strategy for exploring the space of rules. Moreover, as it will be shown
further, our algorithm can be easily adapted to the users’ requirements.

3 Basic concepts

It is assumed that classification rules are discovered from examples represented in an
attribute-value form. Let X be a set of objects or examples partitioned into m classes
Xi,.-y Xm. Each class X; (i = 1,...,m) is considered independently so as to be
described on the basis of its positive ezamples (objects from X;) and negative ezamples
(objects from X \ X;). In the following, X; will represent the decision concept K to
be described.

Let us consider the following concepts and notations:

o A selector is a basic statement representing an elementary condition which can
be checked for any =z € X. In most systems learning from attribute-value rep-
resentations, selectors are expressed in the form <attribute rel set-of-values>
where rel stands, e.g., for =,#,<,... or € and set-of-values is a specific
value or a subset of values. A selector s can be interpreted as a mapping
s : X — {true, false}.

o A complez C, of size g, is a conjunction of ¢ selectors: C'= s Asg A--- A s,.
The size of complex C' will be denoted by Size(C).

o The cover of a complex C, denoted by [C], is the subset of exam-
ples which satisfy the conditions represented by C. Formally, we have:
[C]={z € X : C(z) = true}.

e Considering the concept K to be described, [C]f = [C]N K denotes the set of
positive examples covered by C and [C]p = [C]N (X \ K) denotes the set of
negative examples covered by C.

o A rule r (which partially describes K) is an assertion of the form
if R(z) then (z € K)
where R is a complex s; A sy A -+ A s, satisfying [R]}; # 0.

A rule r is thus characterized by its condition part R and the concept K

described by r.



e A rule r is diseriminant (i.e. distinguishes positive examples belonging to K
from negative ones) if its condition part R =581 Asa A+++ A sy is:

— consistent: [R| =0,

— minimal removing any selector s; from R would result in a complex which
is no longer consistent.

In some data sets (in particular if they contain inconsistent examples), discovery
systems could find only few discriminant rules which are ‘interesting’ (in the
sense presented in section 2). In such cases, it may make sense to look for partly
diseriminant rules. These are rules which besides positive examples could cover a
limited number of negative ones. They are characterized by a coefficient called level
of discrimination defined as:

| [R) |
D(R) =
=T
where | . | denotes the cardinality of a set. The above definition for discriminant rules

is thus generalized as follows:

o a rule r is partly discriminant, considering a threshold d (0 < d < 1), if its
condition part B = s; Asa A -+ A s, s

— partly consistent: D(R) > d,

— minimal removing any selector s; from R would result in a complex which
is no longer partly consistent.

When considering (strictly) discriminant rules, we just set d = 1.

4 Evaluation criteria for ‘interesting’ rules

In order to evaluate discovered rules several measures could be used
(see, e.g., [9, 8, 21]). In this paper, the rules are characterized by measures con-
nected with requirements a, b, ¢ (described in section 2). For a given rule r with
condition part R, the following measures are considered:

a) The strength of r, denoted by Strength(r), which can be expressed in one of the
following ways:

— absolute strength, in which case we have:

Strength(r) =| [R]% |



— relative strength, in which case we have:

| (Rl% |
| K |

Strength(r) =

b) the length of the rule r, denoted by Length(r):

Length(r) = Size(R)
c) the level of discrimination of r, denoted by Dise(r):

| [R)k |
| 8] |

When considering ‘interesting’ rules as a set of rules, we must also take into
account the two following requirements:

Disc(r)y = D(R) =

d) the number of rules must be acceptable: this number should indeed not be too
high owing to the limited cognitive abilities of the user (this largely depends on
the user’s level of expertise),

e) the classification accuracy rate must be acceptable (compared with classification
accuracy rates obtained by classifiers).

As to requirement e, we insist again on the fact that classification accuracy is not
the most important aspect for discovery-oriented induction. However, rules which
are totally unable to describe the set of learning examples would be doubtful.

5 An algorithm for extracting ‘interesting’ rules

The basic purpose of the approach considered in this paper is to extract, from the
given learning examples, the set of all ‘interesting’ rules which satisfy the user’s de-
fined requirements. This is achieved by ezploring the rule space imposing restrictions
related to requirements a, b and ¢. This involves the definition of thresholds respec-
tively for the strength, length and level of discrimination of the rules to be generated.
The resulting rules are then examined considering requirements d and e. Notice that
the thresholds should be defined considering the user’s requirements. However, such
parameters may seem rather technical and depend on each data set. We shall show
in section 6 how to set these thresholds by testing different values.

The exploration of the rule space is performed using an algorithm which is repeated
iteratively for each concept K to be described. The main part of the algorithm,



originally introduced in [20], is based on a breadth-first strategy which generates rules
of increasing size starting from the shortest ones.

The strategy begins with the initial rule having an empty condition part. During
the search process this empty complex is extended with selectors from the list of
allowed selectors. The extended complexes are evaluated as candidates for being
condition parts of rules. _

Considering a complex C with covers positive and negative examples
(IC]f # B and [C]x # D), the determination of the cover of a new complex ¢ derived
from C' by including a new selector is quite straightforward. Indeed if ¢! = C A s,
we have :

[Clx = [Cl N [sili and [C'x = [Clg N (st

which makes the evaluation of a candidate complex, derived from another complex
by including a new selector, particularly easy.

The above feature is also particularly important when we consider applying dis-
covery techniques to large, real-world databases, as done in the date mining field
(see [1, 8, 4]). Let us notice that to evaluate all extensions of a complex C, we only
need to look at the cover of C' and not at the entire data set. This ‘zooming’ property
of the considered search strategy can reduce the response time connected with direct
access to data. Direct data access operations are only needed in the initial stage of
discovery in order to create covers of chosen selectors. Then, the results are kept
in the main memory and progressively re-used in the following steps of the search
strategy. '

Hence, the main breadth-first search strategy phase follows the initial phase where
the list of available and allowed (according to the user’s requirements) selectors is
created. Then, the sets of objects covered by each selector are identified, i.e. for each
selector we determine [s]f; and [s]-

The creation of the selectors may be performed in a more or less sophisticated
way depending on the type of attributes under consideration, i.e. whether they are
nominal or ordered ones (see, e.g., [13, 1, 8] or [21, 14]) .

The main part of the algorithm, i.e. phase of breadth-first search is presented in
pseudo-code:

1The typical forms of selectors atfr rel val have been discussed in Section 3. Let us add that
creation and evaluation of selectors are easier when one uses information about histograms of value
occurrence for given attributes [1, 8, 4]



Procedure Explore(d: discriminant_threshold; SC: stopping conditions; var R: set_of_rules)
begin
R0
for each available selector s do
begin
if [s]f = 8 or s satisfies SC then discard s;
if D(s) > d then R + R U {s} and discard s
end;
form a queue with all the remaining selectors s1,.. ., s,;

while the queue is not empty do
begin
remove the first complex C' from the queue;
let A be the highest index of the selectors involved in ('
generate all the complexes C A spy1, C Aspyz, ..., C A sy
let € be the set of these complexes;
for each €' € € do
begin
if [C"]% = 0 or C" satisfies SC then C + C\ {C"};
if D(C") > d then

bhegin
if C7 is minimal then R « R U {C'};
C«C\{C"
end;
end;
place all the complexes from C at the end of the queue
end
end

The above algorithm is very general and can be improved in many ways to
reduce the exploration. These improvements range from general heuristic ideas
(e.g., ordering the selectors in decreasing order considering the number of objects
covered) to small implementation details (e.g., it is unnecessary to put complexes
of the form C’ = C'A sy, in the queue since they cannot be extended). Other improve-
ments are related to the type of selectors used (in the attribute-value case, when
combining selectors to C, all selectors involving an attribute already in C will be
discarded).

Moreover, an efficient implementation does not test minimality as a final condi-
tion, but restricts the search by discarding complexes as soon as it is known that they
cannot be minimal {considering rules already generated).

The exploration space of candidate rules is controlled by stopping conditions SC
connected with requirements a and b. Requirement ¢ is taken into account through
the discrimination threshold d. Additionally, these conditions significantly restrict
computational complexity. Here, the following stopping conditions are introduced:



Let C be the complex currently examined,

SC1: | [C]f |< I, where [ is the smallest number of positive examples that a rule
must cover (absolute strength requirement),
[61%

SC1": %{ILE < I, where I is the smallest percentage of positive examples that a rule

must cover (relative strength requirement),

SC2: Size(C) > m, where m is the largest acceptable size (length requirement).

Notice that some learning examples may not be covered by decision rules. How-
ever, this may not be damaging; it is even instructive to check the examples which are
difficult to cover. Such examples can be presented to the user or expert as possible
untypical cases. If they appear to be typical, it is possible to focus the search and
use ‘weaker’ stopping conditions.

One can easily consider other stopping conditions introduced so as to satisfy
additional specific user’s requirements (incompatibility of some selectors, relaxing
conditions when specific selectors are present in the candidate complex, ...).

6 Computational experiments

6.1 Presentation of the experiments

Our algorithm for discovery-oriented induction of ‘interesting’ rules was implemented
as a computer program. To illustrate its usefulness, we decided to perform compu-
tational experiments on different real-life data sets.

In these experiments, a main objective was to show how to set the values of param-
eters (thresholds for stopping conditions) in order to derive potentially ‘interesting’
rules. It is clear that such values could be further refined so as to take into account
more specific user’s requirements. However, we believe it is extremely important to
give initial values as starting points. As one will notice in experiments these values
depend on each data set.

Ideally, it might be necessary to test values for all types of thresholds. It seems,
however, that the most important threshold for detecting ‘interesting’ patterns is the
strength threshold. Moreover, this threshold is clearly interrelated with the length
threshold. This is why we used as a main control parameter the threshold I’ involved
in stopping condition SC1’ {see section 5). So, for each data set considered we tested
several different values of I’ and observed their influence on the results. The threshold
m related to stopping condition SC2 has not been really used as a control parameter.
One obvious interest of this parameter from a computational viewpoint is that it
guaranties that the search is polynomial. We also restricted our experiments to
strictly discriminant rules (d = 1).



To evaluate the set of discovered rules, the following measures are taken into
account:

e number of rules,

e average rule length,

e average rule strength,
o classification accuracy.

Let us precise that we are interested in discovering a limited number of relatively
short and strong rules which have a reasonable classification ability.

As to this last point, it must be stressed again that unlike the case of classification
systems, this criterion is treated as a secondary criterion. Classification accuracy
was calculated by performing standard 10 fold cross-validation reclassification tests
(see [22]). While performing reclassification tests, the matching of the testing example
to condition parts of decision rules was used to predict the example classification. If
the testing example matches several rules indicating different decision classes, the
strongest class was chosen (as done in CN2, AQ15 or LERS systems). The case of
possible non-matching is solved using the so-called VCR approach (introduced in [19])
where the decision class is chosen basing on the analysis of partly matching rules.

In order to appreciate the performance on the classification measure, we needed
to use a classification-oriented induction technique. As in experiments we restricted
to using selectors in the simplest form (attribute=value) and inducing discriminant
rules only, the classification-oriented induction was performed by means of the LEM2
procedure (introduced by Grzymala-Busse in [5]) which is an effective procedure [6]
giving rules in the above form. This algorithm follows a classical greedy scheme
aiming at inducing a minimum rule set covering all examples. We used the authors’
reimplementation of this procedure.

For comparison purposes, we also looked for all discriminant rules, This ap-
proach is sometimes used in some discovery systems for data sets of a limited size
(see, e.g., approaches based on the so-called discernibility matrix [18] ). This ap-
proach performing an exhaustive search in a space of possible rules leads very often
to combinatorical difficulties. However, information about all rules possible to induce
seem to be interesting if one wants to evaluate which part of them is really ‘inter-
esting’ in a discovery-oriented perspective. In experiments all rules were looked for
using our algorithm without any stopping condition. One can notice in Table 2 that
such information could not be obtained for one of the data sets (Flection) due to
memory and time restrictions of the used computer system (although this test was
performed on a powerful server SGI Power Challenge).
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6.2 Analysed data sets

In the computational experiment we used 4 real life data sets of different size and
characteristics. Three of them are coming from Machine Learning Database, Univer-
sity of California at Irvine and one (Election) is coming from the study described in
[7]. In Table 1 the main characteristics of these data sets are presented. Two data
sets were slightly modified. The Iris data set originally contains continuous-valued
attributes which were discretized by means of Fayyad and Irani’s method [3]. The
Voting data set has been modified so as to eliminate missing values by removing a
few attributes.

Table 1: Considered sets of learning examples

Type of Number Number Number | Cardinality
Data set data of examples | of attributes | of decision | of decision
classes classes
Iris botanical 150 4 3 50/50/50
Tic-tac-toe | games 958 9 2 626/332
Voting political 435 13 2 267/168
Election political 444 30 2 201/243

6.3 Results of the experiments

Using the implementation of the introduced algorithm, we tested systematically the
following values for {’ used in SC1": 5%, 10%, 15%, 20%, 30% (i.e. these are values
of minimum coverage of decision concept by the rule). For two data sets we induced
rules without using SC2 (data sets Iris, Election), while for others the threshold m
used in SC2 was set to 4 and 5 (for Voting and Tic-tac-toe, respectively). These
values were chosen as a result of analysing the length of decision rules induced inde-
pendently by the minimum rule set induction procedure LEM2. Information about
the characteristics of rule sets obtained in experiments is presented in Table 2.

Results summarized in Table 2 show that for all data sets it is possible to indicate
at least one set of ‘interesting’ rules. These sets consist of limited number of rules
(comparable to the number of rules in the minimum set) characterized by an average
strength usually about twice higher than for rules in the minimum set. Their average
length is also shorter. Moreover, these sets of interesting rules give a classification
accuracy nearly as good as rules obtained by LEM?2 algorithm {which is a technique
especially created for classification-oriented induction).

For instance, when analysing the Iris data set, it seems interesting to select a
threshold value I for SC1’ between 10% and 15%. Selecting for instance ¢ = 15%
allows to induce a set of 20 rules, which are really stronger and a bit shorter than
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Table 2: Characteristics of induced decision rules
Data set Stopping Number Average Average Classification
conditions of rules rule rule accuracy in
sCt SC2 length strength reclassification
[# conditions] | [# examples] tests [%]
Iris All rules 80 2.10 6.03 92.67
5% — 35 1.89 12.23 92.67
10% — 22 1.86 17.27 92
15% — 20 1.85 18.4 a0
20% — 15 1.8 21.6 83.33
25% — 14 1.79 22.36 78.67
30% — 6 1.83 33.83 60.67
Minimum rule set 23 191 11.0 95.33
Tic-tac-toe All rules 2858 4.63 4.27 91.35
5% 5 16 3 60.25 97.19
10% 5 16 3 60.25 96.14
15% 5 2 3 50 —
20% 5 0 — — —
30% 5 0 — — —
Minimum rule sef 24 3.67 40.83 98.96
Voting All rules 1502 4.723 10.61 95.87
5% 4 231 3.6 45.86 94.51
10% 4 138 3.3 66.96 94.50
15% 1 104 3.1 79.61 93.80
20% 4 82 3.1 89.87 94.00
26% 4 67 3.1 96.99 93.32
30% 4 50 3.1 104.7 93.31
40% 4 21 2.76 133.0 80.23
Minimum rule seb 26 3.69 43.77 95.87
Election All rules >260000 — — —
10% — 828 3.48 26.91 89.39
15% — 87 3.05 33.82 87.37
20% — 8 2.38 53.75 73.88
25% — 2 1.5 79 32.96
30% — 1 1 105 23.64
Minimum rule set 48 3.27 21.176 89.41
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Table 3: The detailed analysis of SC1’ threshold values distinguishing interesting

rules from others

Data set Stopping Number Average Average Classification
conditions of rules rule rule accuracy in
SCt SC2 length gtrength reclassification
[# conditions] | [# examples] tests [%]
Iris 15% — 20 1.85 184 90
18% — 19 1.84 18.95 85.33
20% — 15 1.8 21.6 83.33
Minimum rule set 23 1.91 11.0 96.33
Tic-tac-toe | 2% 5 202 4.03 18.46 95.52
3% ] 92 3.78 26.78 96.56
4% 5 18 3 56.89 97.19
5% 5 16 3 60.25 97.19
10% 5 16 3 60.25 96.14
12% 5 10 3 74.8 75.81
14% 5 4 3 70 24.15
16% 5 2 3 50 —

Minimum rule set 24 3.67 40.83 98.96
Voting 0% 4 50 3.1 104.7 93.31
32% 4 42 3.1 109.1 90.54
35% 4 33 3 117 82.06
40% 4 21 2.76 133.0 80.23
Minimum rule set 26 3.69 43.77 95.87
Election 15% — 87 3.06 37.82 87.37
16% — 48 2.92 40.4 - 85.59
17% — 34 2.85 42,44 81.53
18% — 19 2.84 48.89 80.20
20% — 8 2.38 h3.75 73.88
Minimum rule set 48 3.27 21.176 89.41

classification rules from the minimum rule set, while preserving a good classification
accuracy. Similarly, for other data sets the following values for { seem to give inter-
esting rule sets: 5%—10% for Tic-tac-toe, 20%-30% for Voting and around 15% for
FElection.

It is worth noticing that the values and their range are quite different depending
on the data set.

One can also notice that the option of generating all rules seem to be ineffective
and useless from the discovery point of view. It gives an extremely high number of
too long, week and specific rules.

Moreover, the detailed analysis of the influence of I values on the ‘quality’ of
induced rule sets show that exceeding some of the SC1’ values leads to sharp dete-
rioration of at least one measure. In particular it refers to the number of rules and
classification accuracy (see, e.g., I'=15% for Tic-tac-toe, 25% for Election). These
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values depend on data sets but for all of them the observed deterioration is very
sharp. This shows that we must look for threshold values allowing to obtain a bal-
ance between all relevant criteria.

In order to examine this effect more precisely we decided to focus for each data
set on the critical threshold values. The obtained results are presented in table 3 and
show more precisely where are the critical values distinguishing still interesting rules
from others. Such a table is precious when trying to determine ‘interesting rules’.

Notice also that the sets of rules are included in each other as the threshold value
I’ increases. This allows to consult first the strongest rules (assumed to be the most
"interesting’) and if needed consult the other ones progressively.

7 Final remarks

In this paper we introduced and discussed discovery-oriented induction of decision
rules. We believe that this perspective is more promising for rule induction than the
classical perspective of classification. A reason is that other types of classification
systems (based, e.g., on neural network or statistical approaches) often obtain at
least as good results as classifiers based on induced rules. However, these alternative
approaches do not compete as to the possibilities of explanation.

Discovery-oriented induction, whose purpose is to obtain ‘interesting’ rules, re-
quires to take into account various criteria which contribute to define the meaning of
‘interesting’. Moreover, this definition must take into account specific user’s require-
ments. This clearly shows that approaches for discovery-oriented induction must be
quite different from approaches for classification-oriented induction whose main and
often unique purpose is to perform well regarding a criterion related to classification
efficiency.

We presented a general algorithm which can be easily customized to take into
account requirements related to the various criteria allowing to define ‘interesting’
rules. In addition, we showed, on the basis of several experiments, that the values
of the thresholds intervening in the requirements can be defined rather easily by
trying to obtain a balance between all criteria. This balance clearly depends on
the importance assigned to each criterion, which must be determined in accordance
with the specific needs of the user. However, we noticed in our experiments that
it is possible to determine a range of values for the thresholds which leads to good
results regarding all criteria. More precisely, we were always able to determine sets
of rules which were significantly better than a set of classification rules considering
the criteria number of rules, average rule length and average rule strength without
decreasing significantly the classification accuracy. '
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