CAHIER DU LAMSADE

Laboratoire d’Analyse et Modélisation de Systémes pour I’ Aide 2 la Décision
{Université Paris-Dauphine)
Unité de Recherche Associée au CNRS n° 825

THE SHIFT SCHEDULING PROBLEM:
DIFFERENT FORMULATIONS
AND SOLUTION METHODS

CAHIER N° 146 Eric JACQUET-LAGREZE !
juillet 1997 Denis MONTAUT !
Ariane PARTOUCHE *

received: April 1997.

! Eurodécision — 9, rue de la Porte de Buc — 78000 Versailles, jfrance; e-mail: ejl@eurodecision.fr

* LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16,
e-mail: partouche @lamsade.dauphine fr



Contents
Résumé-Abstract . . . . . . . . . . e
1 Introduction

2 Description of the Shift Scheduling Problem
2.1 Definitions . . . . . . . . .. e

3 Testing an implicit formulation of the SSP

3.1 Theimplicitmodel . . . . . .. ... ... ... ... ...,
3.1.1 Introduction to themodel . .. . .. .. .. ....,..
1.2 Data . . . o e e e e e e e

3.14 Objective . . .. ... ... ... e

3.1.5 Comstraints . . . .. ... .. ... ... ... ...,
32 ThelLPapproach. ... .. ... .. ... ... ... .....
33 The CLPapproach . ... ... ... ... . ..........
34 Experimentalresults . ... .. .................

3.4.1 Test on a very small problem with 10 periods . . . . .
3.4.2 Test on a small problem with 48 periods . .. ... ..

4 Testing two resolutions of the set covering formulation
41 ThemodelSC . . .. . . .. .. . . . . ..

42 ThellP approach. . . . .. .. ... ... .. .. .......
43 The CLP approach . . ... .. ... ... ... . . .....
4.4 Experimentalresults . ... ... ................
4.4.1 Set-covering model tested on a very small problem with
I0periods . . . . .. v i it e e
4.4.2  Set-covering model tested on a small problem with 48
periods . . . . . ...

4.4.3 Comparison of the 4 approaches . . . .. ... ... ..

5 Improvement of the set covering formulation solved by ILP

for large scale applications

5.1 Introducing flexibility . . . . . ... ... ... . ... . ...
5.2 The heuristic method proposed . .. .. ... . ........
5.3 Quality of solutions relative to the level of flexibility . . . . . .

6 Conclusion

References



La Construction de Vacations : Différentes
Formulations et Méthodes de Résolution

Résumsé

Le probleéme de construction de vacations (SSP) consiste & déterminer un
ensemble de vacations permettant de couvrir une courbe de charge étenduc
et variable tout en minimisant les cofits. La formulation du SSP comme un
probleme de couverture d’ensembles a été largement étudiée et une variété
d’heuristiques de résolution ont été proposées. Apres un tour d’horizon de la
littérature, nous proposons une modelisation implicite du probl®me que nous
résolvons d’une part par la Programmation Linéaire en Nombres Entiers,
d’autre part & 'aide de la Programmation Par Contraintes. Nous testons
également ces deux méthodes de résolution sur la formulation par couverture
d’ensembles et comparons les quatre approches pour finalement conclure 3
la nette supériorité de la PLNE avec le modele classique.

Nous proposons alors une heuristique quasi-optimale basée sur la PLNE
qui permet un fort niveau de flexibilité et nous mesurons de maniere expéri-
mentale les effets d’une meilleure flexibilité sur la productivité.

Mots clés : vacations, programmation linéaire en nombres entiers, pro-
grammation par contraintes, flexibilité.

The Shift Scheduling Problem: Different
Formulations and Solution Methods

Abstract

The shift scheduling problem (SSP) consists of determining the best set
of shifts to cover an extended and variable requirement curve, minimizing
the cost. The formulation of the SSP as a set-covering problem has been
much studied and many heuristic approaches have been proposed. After a
literature review, we suggest an implicit model of the SSP. We solve it both
with Integer Linear Programming and with Constraint Logic Programming,
We also test those two resolution methods on the set-covering formulation
and compare the four approaches to finally conclude that ILP on the classical
set-covering model gives much better results.

Then we propose an almost optimal heuristic based on ILP, that allows
a high level of flexiblity and we experimentaly measure the benefit of more
flexibility on productivity.

Key-words: shifts, shift scheduling, integer linear programming, con-
straint logic programming,.



1 Introduction

Manpower scheduling problems occur in organizations for which the operat-
ing day exceeds the staff working day or the operating week is longer than the
legal work week and the demand varies over each time period. Examples in-
clude the scheduling of nurses in hospitals, operators in telephone companies
and ground crews in airports. To provide continuous service and to meet the
requirements for all activity periods, employees work on multiple-shifts: the
problem is then to schedule working time and rest time for every employee.

Research interest in manpower scheduling problems focuses on three kinds
of problems: the shift scheduling problem, the days-off scheduling problem and
the tour scheduling problem. The first problem consists of finding the best
set of allowable shifts to cover the staff requirement for each time period.
The planning horizon is usually a day. The second and third problems aim
at constructing schedules for several consecutive weeks, indicating if each
day is a working day or not for the days-off problem and determining the
working hours for the tour scheduling problem. This paper deals with the
Shift Scheduling Problem {SSP).

As early as 1954, Dantzig formulated the SSP as a set-covering problem.
He solved it without the integrity constraints and noticed that, even if the
optimal solution might be fractional, it hardly was. He also noted that the
insertion of breaks causes a large increase in the number of decision vari-
ables. Moreover, Bartholdi (1981) showed that this problem is NP-complex.
Although solving the relaxed problem is relatively easy, finding an optimal
integer solution can become very difficult for realistic problems.

Many approaches for solving the SSP have been proposed since Dantzig.
As shown by Segal (1974), the problem ignoring breaks can be modeled as a
network-flow problem, for which the variables are guaranteed to be integral as
long as the requirements are. But this formulation is far from most real world
situations and researchers have worked on problems including breaks. Segal
himself considered a scheduling problem for telephone operators in which the
shifts may include one lunch break and up to two relief periods, depending on
their length. Ile solved separately the shift assignment by his network-flow
formulation and the break placement by a heuristic approach.

Another kind of approach is to consider the relaxed linear program and
round the solution by a more or less sophisticated heuristic. Keith’s heuris-
tic (1979) for instance, starts with a rounded solution of the relaxed LP,
allowing understaffing, and adds an agent on the shift which maximizes the
understaffing reduction, until no understaffing persists. The last step consists
of dropping an agent from a shift if it reduces overstaffing while simultane-
ously creating no understafling.

Other heuristic approaches to this problem, mainly heuristics based on lin-
ear programming but also some construction heuristics, can be found in Hen-
derson and Berry (1976, 1977); Morris and Showalter (1983); Bailey and Field
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(1985); Bechtold and Showalter (1987)... Bechtold et al. (1991) conducted a
comparative analysis of several heuristics and showed the superiority of the
heuristics of Keith (1979) and Morris and Showalter (1983). Morris and
Showalter also suggest different ways to round the relaxed LP solution.

The different approaches found in the literature usually suppose no un-
derstafling. Jacquet-Lagréze and Meziani (1988) worked on allowable under-
stafling. Looking for a balance between cost and service quality, they pointed
out the bicriteria aspect of the problem. Easton and Rossin (1991) suggested
equivalent alternate solutions to integrate several criteria.

In his thesis, Thompson (1988) compared a procedure that starts with
a break-less LP formulation and insert the meal breaks in a second step to
a LP formulation which includes only a single break position. As the first
approach gave very poor results, Thompson concluded that more flexibility
in the allowable break options is essential for the minimisation of the labor
amount scheduled.

Bechtold and Jacobs (1990) pointed out that the explicit representation
of the shifts in Dantzig’s model implies a dramatic increase of the number of -
alternate shifts when a higher flexibility is desired (starting time, shift length,
assignment of breaks). For this reason, they present an implicit formulation
of the breaks to match explicitly represented shifts. Their model, tested with
four different labor requirement patterns and ten shift-length combinations
proved to be better than the Dantzig’s model in terms of execution time and
memory size requirements. Thompson (1995) improved this latter model by
implicitly matching meal breaks to implicitly represented shifts. His variables
represent first the number of shifts from the same shift pattern that begin (or
end) at any period, and second, the number of breaks for each shift pattern,
beginning at each period. He considers thus about 15,000 alternate shifts
and succeeds solving the problem. Recently, Aykin (1996) proposed another
implicit approach to treat the problem with multiple break windows. All the
possible shifts are enumerated explicitly without breaks, and for each shift
and break window, he defines a set of variables, each one representing the
number of shifts that begin their break at each possible start time of the
break window. Compared to the explicit formulation, this approach can save
a large number of variables when shifts involve several breaks as opposed to
one. Note, however, that due to the problem size, all these models are solved
by heuristic procedures. ,

For several years the authors of this paper have been working on the
SSP for major French companies including Air France and Aéroports de
Paris. The emergence of Constraint Logic Programming (CLP) methods
(see Esquirol et al. (1995); Ilog (1995)) provided an opportunity to test an
implicit formulation of the problem, avoiding the difficulty of dealing with the
huge number of alternate shifts that are generated in the classical approach.
Section 2 describes the SSP. Section 3relates our experience with the implicit
formulation for which we compare two resolution methods: CLP and Integer



Linear Programming (ILP). Both methods lead to very disappointing results
when compared to the classical approach as it is shown in Section 4. Section
5 presents research work done on the classical set covering formulation in
order to solve large scale industrial problems whose size increases with the
demand of companies for more flexibility and efficiency. First, we propose
a heuristic yielding an almost optimal integer solution. Second, we conduct
an experimental study to evaluate the quality of the solutions as flexibility

increases.

2 Description of the Shift Scheduling Problem

2.1 Definitions

The planning period. is the smallest time interval for which the staff re-
quirement is defined. This is often simply called period.

A shift describes the presence of one or more employees on a day, indicating
the work and break periods. 1t is characterized by a beginning time, an
ending time, up to three break times, all corresponding to the beginning
of a planning period. Each shift has a certain cost.

The shift length is the number of planning periods (often expressed as a
number of hours) between the shift beginning and ending times, includ-
ing the break lengths.

The length step is the minimum difference in possible shift lengths. It is
a multiple of the planning period.

The beginning window is the time interval during which a shift should
begin.

The beginning step is the minimum time interval between two consecutive
shift beginnings. It is a multiple of the planning period.

A break is a succession of planning periods during which the employee does
not cover the requirement.

The break window is the time interval during which the break can be
assigned.

The break step is the minimum time interval between two consecutive al-
ternate breaks. It is a multiple of the planning period.

2.2 Assumptions for the experimental study

The following assumptions correspond to the experimental study conducted
at Aéroports de Paris.



1. The planning period is 10 minutes (requirement is given for each 10
minutes period).

2. The shift length is limited by a minimum length and a maximum length.

3. All breaks are of the same length, an integer multiple of the planning
period (meal-breaks only, up to two per shift).

4. The break windows are the same for all shifts. There is mainly one
break window for each shift but some very long shifts cover two break
windows and some short ones do not cover any.

5. The shift cost 1s a linear function of the shift length.

6. Understaffing is not allowed.

3 Testing an implicit formulation of the SSP

3.1 The implicit model
3.1.1 Introduction to the model

Our implicit formulation of the problem aims at finding a set of individual
shifts, assuming two main decision variables for each employee: beginning
and ending times of his shift. In order to model the breaks, we need for
each shift one additional variable per break (since we assume that all breaks
are of the same length). Typically, for a situation involving 100 employees
and allowing a high level of flexibility scheduling (10 minutes for all steps),
number of main decision variables rises here to only 300 against about 100,000
in the classical set covering approach (see section 4). However, to test the
formulation, we started this work with a simplified break-less version.

Both the CLP and ILP resolution methods require additional technical
variables. First, the number of shifts in the solution is not known. We thus
have to consider a maximum number of shifts and the possibility for the
model to generate a smaller number (thanks to binary veriables b;). Second,
we must introduce binary variables for the requirement covering constraints
(variables a;j, which are data in a classical set covering formulation).

3.1.2 Data
n = number of planning periods 1,
m = maximum number of shifts g,
w; = requirements for period ¢,
Wmee = MaXimum requirement,
dmirn = minimum shift length,
dmae = maximum shift length, :
€mer = mMmaximum total surplus for the entire requirement curve.



3.1.3 Variables

t; = first period of shift j (beginning period),.

f; = first period after the end of shift 7 (not included in the
shift),

dj; = shift length j (dj = fj - fj),

b = 1 if shift y is selected

o 0 if not,

1 if period ¢ is covered by shift 7
g = 0 if not
H
e; = surplus in period i,

3.1.4 Objective

We want to minimize the overall work time:

min Fo = Z djbj
i=1

Note that for any solution which covers the requirements, we have:

F0=ng:+26i

i=1 i=1

Therefore, it is equivalent to minimize Fy or the overall surplus Fy:

n
min F| = Z €
=1

3.1.5 Constraints

Constraints for variables definition:
Shift length:
dm:in < f_? - tj S dma:z: VJ

Covering indicator definition a;; :

if bj =1 and (tj S i and 1 < f_,) then ai; = 1 Vi,j,
else a; =0 Vi3

Regquirement covering constraints:

m
Zaij_eg' = w; VZ
-1



3.2 The ILP approach

The use of LP leads us to model the problem in a specific way. We assume
here that if a shift is not selected, its length is null.

¢ The criterion minimized Fy then becomes 3 7. ; d;;

e The formulation of the shift length constraint must allow null length
for non selected shifts (b; = 0). Thus (4) becomes:

dmmb_',‘ S fj - tj S dma:na VJ (7)

Note that it is not necessary to introduce b; in the right hand side of
the constraint since optimizing Fy will give automatically null length
for non selected shifts.

¢ The definition of the covering indicator a;; is slightly different compared
to constraint (5). For a selected shift 7 (b; = 1), a;; = 1 if shift j
includes the planning period 7 and is useful to cover the requirement
w;. On the opposite, a;; = 0 if shift ; does not include period ¢ or
creates surplus in this period, i.e.,

| 1 if4 € [t;, f;] and shift j is useful in period ¢,
% =10 otherwise. '

This is expressed by:

1. the constraint:

ti—T(l—ay) i< fi+T(1—ay)— 1 (8)
where T is a constant large enough. In the linear model with
T = n, this constraint becomes:
t;+na; <it+n, Vij (8.1)
and
fi—na;>i—n+1, Vij (8.2)
(8.1) makes a;; = 0 for ¢ < ¢; and (8.2) makes a;; = 0 for 1 > f;.
2. When 7 is in the interval [t;, fi[, the requirement covering con-

straints (6) force a;; to be equal to 1 if it is necessary.

3. Moreover, to make sure that all a;; = 0 for a non-selected shift,
we add:

Zaij S dmuwbj VJ (9)

i=1



3.3 The CLP approach

The model as defined in section 3.1 can be directly applied as CLP offers
many modeling facilities. With Ilog Solver, constraint (5) will be simply
formulated as follow:

a;; = (b; =1) and (¢; <) and (i < f;) (10)

If the model as described in section 3.1 is logically sufficient in order to
describe the whole problem to a CLP solver, it is necessary to add some con-
straints which help to get better performance by reducing the combinatorial
aspect. Such constraints are:

¢ Elimination of symmetrical equivalent solutions by forcing the solver
to create all shifts by increasing beginning time:

tj 2t (11)

¢ Bounds restriction: the number of shifts is at least equal to the maxi-
mum requirement

Z bj' Z Wmazr (12)

i=1

¢ Help for shift generation on the first ascending part of the requirement
curve: if w; > w;_; and ¢ is in this part of the curve, then we need at
least w; — w;_; shifts to start at period i. Otherwise, we can say that,
for each i, the number of shifts to start should be less than w;. To
formulate this, we define some new variables:

o 1 if shift j starts at period 4,
%= 10 if not.

This starting shift indicator is defined as follow:

si;=(b;=1)and (t; =1), Vi,J (13)

and the constraint is:

s w; — w;—y for each ¢ on the first ascending part of the curve,
2 s < for the others i
rt W or the others .

(14)

Since the CLP approach does not optimize a function, we have to intro-
duce a bound e,,,,; and the following constraint:

n
S e < emas (15)
i=1 .
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The bound will be iteratively decreased until the problem appears to be
infeasible.

We stress the importance of the tuning strategy in order to achieve accept-
able performance. It is necessary to finely control the order of the valuation
of the variables. The most efficient method consists of giving values first to
variables which should have a causal effect on others. In the present case, we
gave values to the variables in the following order: b;,%;, f;.

3.4 Experimental results
3.4.1 Test on a very small problem with 10 periods
Data:

o break-less shifts may start at each period,

o shift length from 4 to 6 periods,

e table of requirement

—
=

period
requirement

b | =
[N )
S Y]
Qo]
Tt en
w| o
—l -3
[Nl e
[\ N
—_

e the total requirement is 24

Results:

¢ an optimal solution given by both approaches:

number of shift begin/end times length
1 from1io5 )
1 from 2 to 5 4
2 from 3 to 6 4
1 from 5 t0 9 )
1 from 7 to 10 4

¢ the total length is 26, i.e., a surplus of 2

e execution times on a P486 100Mhz:
LP 220 seconds
CLP 4 seconds



3.4.2 Test on a small problem with 48 periods

Three tests were performed with different bounds on the shift lengths.

The ILP approach was not able to produce any feasible solution within 20
minutes. The CLP found, for the 3 tests, a first solution in about 7 seconds
but these solutions have no reason to be optimal ones since the resolution
was stopped when the first solution was found. On the 3 tests, this first
solution happened to be optimal one time. For the two other ones, they were
far from the optimum (see table 1). Moreover, the CLP showed no ability to
prove optimality or non-optimality in a reasonable time.

Both approaches were thus very disappointing even if CLP showed a
capacity to generate feasible solutions quickly. Without going further with
more examples, these first results were so bad compared to the classical
approach that we conclued that the implicit formulation could not compete
with the classical one.

4 Testing two resolutions of the set covering
formulation

In this section, we first introduce the classical set-covering formulation and
then compare the performances of ILP and CLP approaches on its resolution.
Finally, we give an overall comparison of the two formulations (implicit and
set-covering) and the two resolution approaches (ILP and CLP).

4.1 The model SC

The set-covering approach consists of two steps:
1. generate a set of potential shifts;
2. select a subset of shifts which covers the staff requirement.

Note that in this approach, more than one employee can be assigned to
any potential shift. Therefore, the decision variables represent the number
of employees assigned to each shift.

) |
min Z €;T; (16)

€T
s.t.:
Z aijT; 2 wi, Viel, (17)
JeT
z; >0, integer, VjeJ (18)
where



n = number of planning periods,

T = set of planning periods (z = 1,2,...,n),

m = number of feasible shifts,

J = set of feasible shifts (7 = 1,2, ...,m),

z; = number of employees assigned to shift 7,

¢; = cost of one employee assigned to shift 7,

I { 1 if period : is covered by shift j
o 0 if not,

w; = requirements for period i.

4.2 The ILP approach

This formulation of the SSP can be solved using a standard MIP package.
For small problems, we obtain easily an optimal integer solution. Further-
more, in many larger problems, no branch and bound is required since the
relaxed problem solution is integer. This can be explained by the almost uni-
modularity of the matrix. However, when the relaxed solution is fractional,
it may be difficult to solve large scale problems without introducing some
heuristic procedures. Such an heuristic is proposed in section 5.

Because of the usual difficulties met by branch and bound on large scale
problems and to complete our comparison, we compared again the perfor-
mances of this classical resolution method and the newer resolution approach
which is the CLP, on the same formulation of the SSP. Some comparative
results are given in section 4.4. '

4.3 The CLP approach

We present here the CLP resolution of the set-covering formulation. For the
needs of the method, the model is slightly different than the previous one.
Note that, in a first time, we did not integrate the breaks in this approach.

The shifts library is represented as an object with three vectors: vector
of beginning times, vector of ending times, vector of shift lengths, Variables
z; represent, as in the LP formulation, the number of employees assigned to
shift 7. The domain of allowable values incorporates the integrity constraints.
Unlike the LP formulation, a;; is here a variable:

z; 1if planning period i is covered by shift j,
Aig — .
0 if not.

We also define a vector of variables A; with: A; =37, ay;.
The constraint (17) becomes then:

Ai>w;  VYiel. (19)
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We define ¢;, the surplus as the difference between A: and w;. We add
some helpful constraints for the purpose of aiding the solution process by
constraint propagation:

i < emas Viel (20)

Z & < Enax (21)

The last constraint corresponds to the objective function being minimised.
The optimisation in CLP is performed by an iterative procedure. The proce-
dure first obtains feasible solution and then add a new constraint to bound
the objective function according to the last value found. Then it tries to find
a new solution and so on.

4.4 Experimental results

4.4.1 Set-covering model tested on a very small problem with 10
periods

Data: correspond to 3.4.1. There is 18 alternate shifts.
Results:

¢ both approaches give a surplus of 2

e execution times on a P486 100Mhz:
ILP <1 second
CLP 41 seconds (12 iterations to find the optimal solution)

4.4.2 Set-covering model tested on a small problem with 48 peri-
ods '

Three tests were performed with different bounds on the shift lengths, yield-
ing to about 400 alternate shifts.

For the 3 tests, the ILP finds an optimal solution in less than I second.
The CLP is much less efficient. For two tests out of three, a first solution was
found ‘within 1 second but no better one can be found within 20 minutes.

4.4.3 Comparison of the 4 approaches

Table 1 shows clearly that, among the 4 considered approaches, only the
set-covering model, solved by ILP seems efficient for the SSP. The following
section aims then at improving this approach to allow, at the same time,
a high level of scheduling flexibility and a quasi-optimal resolution of the
problem.
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SC ILP | SC CLP | Implicit ILP | Implicit CLP
CPU | obj | CPU | obj | CPU| obj | CPU ob]
test 1(10 per.) | <1™ | 2 | 41" | 2 | 220V 2 4" 2
test 2(48 per.)
2.1 <1" [ 171 (1) (1) 7" 171 (2)
2.2 <1" {211 | (1) (1) ™ 1225 (2)
23 <M 1447 ) ) 6" | 474 (2)

run time in seconds on ¢ PCYSE6 100Mhz
(1) no results were obtained within 20 minutes (2) first solution found

Table 1: Execution time and objective values compared

5 Improvement of the set covering formulation
solved by ILP for large scale applications

5.1 Introducing flexibility

The first stage, before solving the SSP as a set-covering problem, is to build
the library of shifts. For this, we first define all allowable shift patterns
according to the initial assumptions described in section 2.2. Then, for each
shift pattern, we generate exhaustively the allowable shifts. The size of this
library is function of many parameters and especially the three steps defined
in section 2: the length step, the beginning step, the break step.

Table 2 compares library sizes corresponding to different sets of steps,
with or without breaks. We notice here that the break assignment, following
rules 2 and 3 given in 2.2 and parameters given below, increases the number
of feasible shifts about 35 times. The parameters used to build these libraries
are those used at Aéroports De Paris:

e The minimum shift length is 4 hours, the maximum length is 12 hours.

e The beginning window starts at 4:30 and ends so that no shift ends on
the next day (discontinuous problem).

o Break length is 40 minutes, break step is 10 minutes and break windows
are (11:00-3:30) for lunch and (18:00-20:00) for dinner.

Note also that the planning period is here 10 minutes.

The sharper the steps are, the larger the library is and the better we may
cover the requirements as it will be shown in table 4. However, the planning
period is a lower bound for the sharpness of the steps. Indeed, the library
generated with all the steps corresponding to one planning period (B10-10)
is exhaustive and would assure the optimality of a solution found by an exact
method*.

*Experimentations described further will not include the B10-10 library since such a

12




Name | Length step | Begin step Number of Shifts

in minutes | in minutes | no break(a) | 1-2 breaks(b) | b/a
B60-60 60 60 113 3678 32.54
B60-30 60 30 199 6879 34.56
B66-20 60 20 303 10,686 35.26
B60-10 60 10 574 20,079 34.98
B30-30 | 30 30 346 12,516 36.17
B30-20 30 20 511 18,421 36.04
B30-10 30 10 992 36,561 36.85
B10-10 10 10 3136 108,183 34.49

Table 2: Size of some shift libraries

5.2 The heuristic method proposed

Because of the integrity constraints, this formulation cannot be solved by
exact methods when the shift library becomes large. For this reason, we
propose an efficient heuristic based on the relaxed LP solution and branch
and bound procedure.

In a first step, we solve the relaxation of problem (P} which we denote as
(P?). After solving the (P’) problem with different shift libraries, we found
approximately 30% of the solutions to be integer. For the other solutions,
approximately half of the non-zero variables were integer. We suppose then
being not far from the integer optimal solution.

The second step consists of fixing all the variables whose value is zero
and limiting the domain of the others (integer or not) to +2. Then we start,
a branch and bound procedure. The algorithm is stopped when the first
integer solution is reached.

We tested this heuristic with different libraries on seven 24 hours require-
ments corresponding to the weekly ground crew requirements at Aéroports
de Paris. For two libraries, a relatively small one and a medium one, the
results are presented in Table 3. Although the mimimum objective value
found for (P’) is a lower bound of the integer optimum objective value, we
compare it to the solution found by our heuristic (H). We indicate also the
number of nodes in the branch and bound procedure and the execution time
on a Unix Station (IBM Risc6000, 25T).

The average difference in the objective function value (obj) between (P?)
and (H) is around 0.3%, which is extremely small considering the initial
imprecision. The heuristic solution is said to be "nearly-optimal". We also
notice that the execution time, with a medium library containing 10,000
shifts, is always around the minute.

large library requires to implement a column generation approach, which was not in the
scope of this paper.
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Test 1 : Library B60-60 (3678 shifts)

Day (P) (H) total | Difference
obj | obj | nodes | CPU(sec) | E=E(%)
Monday | 643.3 | 648.3 5 25 0.78
Tuesday | 669.4 | 669.4 0 29 0
Wednesday | 654 | 657 ) 56 0.46
Thursday | 834.8 | 837.1 4 21 0.27
Friday 636.3 | 638.3 3 35 0.31
Saturday | 651.6 | 651.6 0 17 0
Sunday | 743.3 | T44.7 2 31 0.19
Average 0.29
Test 2 : Library B60-20 (10686 shifts)
Day (P’) (H) total | Difference
obj | obj |nodes | CPU(sec) | 5 (%)
Monday 596 | 597 1 35 0.17
Thuesday | 609 614 3 69 0.82
Wednesday | 612.8 | 616.1 4 43 0.54
Thursday | 782.9 | 783.6 2 52 0.08
Friday 584.9 | 584.9 0 53 0
Saturay | 527.2 | 527.9 3 67 0.13
Sunday 707.5 | 710.5 3 50 0.42
Average 0.31

(P’)= relazed LP; (H) = inieger solution given by heuristic

Table 3: The heuristic efficiency tested with two different libraries

5.3 Quality of solutions relative to the level of flexibility

The large number of shift alternatives increases the complexity but improves
the labor utilisation. We study here, using our heuristic, the improvement of
the solution relative to the library size. We define two ratios of productivity
Pi and P2:

R : Requirement, i.e., total number of hours required.

ProdH : Productive Hours, i.e., number of hours spent working, exclusive
of the breaks. '

PaidH : Paid Hours, i.e., including breaks.
Ratio P1 = R / ProdH (%).
Ratio P2 = R / PaidH (%).
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Library | # of | R { ProdH | PaidH | P1 | P2 | CPU
name | Shifts % % sec
B60-60 | 3678 | 494 576 634 |85.8(77.9| 20
B60-30 | 6879 | 494 | 549 620 | 90.0|79.7( 38
B60-20 | 10686 | 494 | 532 596 929|829 63
B60-10 | 20079 | 494 521 591 94.9 | 83.7 | 124
B30-30 | 12516 | 494 545 609 | 90.7 | 81.1 | 48
B30-20 | 18421 | 494 529 592 | 934 |83.4| 106
B30-10 | 36561 | 494 513 581 }[96.4|86.0] 199

Note that BX-Y corresponds to a length step of X minutes and begin step of Y minutes.

Table 4: Solutions quality compared to different level of flexibility

Productivity P1 (%)

0 5006 10000 15000 20000 25000 30000 35000 40000
Number of shifts

Figure 1: Productivity as a function of library sizes

Table 4 shows that, as the flexibility increases, it becomes much easier
to meet the requirements generating less and less surplus. With the B306-10
library, the productivity level is already over 96%. Obviously, the B10-10 li-
brary would possibly provide a better solution but with a very small improve-
ment of productivity compared to the increase of the problem size (108,000
variables instead of 36,000). Looking at the requirement and covering curves,
we could also observe that, when the number of feasible shifts allows it, even
the peaks of the staff requirement are covered without generating much sur-
plus around.

Figure 1 shows the productivity evolution (P1 is represented) while length
step and begin step are becoming sharper. This figure leads us to two ob-
servations. First, and that is not very surprizing, the improvement rate is
very strong when flexibility is low and become weaker as flexibility increases.
Second, and this is a more specific result of our experimental study, we can
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notice that precision on the begin step is more efficient than preci-
sion on the length step. That is shown by the fact that the increase rate
is stronger for the plain curve than for the dotted one. Comnsider for instance
results obtained with B60-30. We clearly see that, increasing the size of the
library, it is better to move to B60-20 (more precision on begin step) than to
B30-30 (more precision on the length step). In this particular case, we can
even notice that B60-20 dominates B30-30 with regard to the two criteria,
productivity and number of shifts. If we consider now moving from B60-20,
1t 1s also better, in terms of productivity, to sharpen the begin step (B60-10)
than the length one (B30-20). Even if this time, there is no dominated solu-
tion since B60-10 is a bit larger than B30-20, the improvement brougth by
B60-10 compared to B60-20 is only about 0.5% whereas the number of shifts
is almost double. Of course, execution time increases also with flexibility but
3-4 minutes is still a reasonable time for getting such excellent results.

6 Conclusion

In the first part of this paper, we have compared two models and two resolu-
tion approaches to solve the shift scheduling problem. Even if CLP resolution
may have been improved by introducing additional constraints like cumula-
tive constraints, various symmetry elimination or cut techniques, and may
have benefited from a more complex instantiation strategy, the gap in results
of each approach shows the preponderance of a set-covering formulation using
ILP for this kind of problem.

The ILP success can he explained by the compact representation provided
by the set-covering model and by the quasi-unimodular structure of the ma-
trix. Moreover, constraints like covering constraints or an objective function
which is a weigthed sum of all variables are difficult to integrate in a CLP
resolution since a bound on a sum do not immediately prune the domain of
the variables concerned. Nevertheless, in other studies, CLP had proved to
be an interesting way to solve very constrained problems (see Smith et al.
(1995); Partouche (1996)). In further work, it would be interesting to dis-
play the general characteristics that make a problem more adapted to ILP
or CLP. Both methods may also be associated to solve efficiently complex
problems (see Jacquet-Lagréze and Partouche (1997)).

In the second part, this paper shows the stakes in terms of productivity
of increasing significantly the number of potential shifts, whenever flexibility
is admitted in the organisation. Thanks to the computers power, it is now
possible to solve almost optimally large scale problems with a standard LP
package. Even when optimality is not reached, the potentiel gain on produc-
tivity (from 85% with 3,600 shifts to 96% with 36,600 shifts) is extremely
convincing.
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