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Une Méthode Hybride pour le Probléme
Général de Construction de Grilles

Résumé

Construire des grilles consiste & planifier les horaires de travail du personnel
pour couvrir une demande opérationnelle tout en respectant un ensemble de régles
plus ou moins flexibles. Cet article introduit le Probleme Général de Construction
de Grilles. Nous considérons une population homogene en termes de qualifications
et mixte en termes de durées hebdomadaires de travail, affectée & des grilles cy-
cliques multi-vacations. La complexité du probléme impose une méthode en trois
phases olt ¢’associent différentes techniques de résolution.

Dans une premiére phase, nous utilisons un modéle de couverture d’ensembles
pour sélectionner, dans de larges ensembles de vacations, celles qui couvrent une
courbe de charge & moindre coiit. Ensuite, nous déduisons leffectif nécessaire pour
effectuer ces vacations et le nombre de grilles & construire. Enfin, nous associons
Programmation Linéaire en Nombres Entiers et Programmation Par Contraintes
pour placer les vacations sélectionnées et les jours de repos dans des grilles tout en
vérifiant des contraintes d’enchainement et de durée de travail hebdomadaire.
Mots-clés . grilles de travail, construction de vacations, Programmation Linéaire

en Nombres Entiers, Programmation Par Contraintes

A Hybrid Method for the General Rostering
Problem for a Mixed and Homogeneous
e Wo.rkforce S .

Abstract

Rostering is the problem of scheduling manpower resources to meet operational
demands while satisfying a variety of work policy constraints and goals. This paper
introduces the General Rostering Problem for a workforce composed of full-time
and part-time employees that rotate on cyclic rosters, made of multiple shift types.
The complexity of this problem forces a decomposed process combining different
solution techniques.

We first use a set-covering model to select, among large sets of shifts, the ones
that cover fluctuant requirement curves with a minimal cost. Then, we deduce the
necessary workforce size and the number of rosters to generate. Finally, we com-
bine Integer Linear Programming and Constraint Logic Programming to assign the
selected shifts and days-off into rosters so as to respect working constraints includ-
ing no isolated days-off, a maximum of m consecutive shifts, a minimum of # hours
rest between two consecutive shifts and an average working time corresponding to
the weekly working rate of the workforce.

Key-words: rostering, shift scheduling, Integer Linear Programming, Constraint
Logic Programming



1 Introduction

Most service delivery systems have to face a demand varying from one period
to the next within the day and from one day to the next across the week.
For such services, where the operational span {requently extends beyond the
employees working time, efficient personnel scheduling is essential to achieve
productivity goals and to provide adequate service. Over the last twenty
years, labor scheduling problems have motivated a large research effort in
many domains including hospital nurses {Warner, 1976; Smith, 1976; Siferd
and Benton, 1992; Berrada, 1993), bus drivers (Martello and Toth, 1986; Blais
et al., 1990), postal employees (Malhotra et al., 1992), telephone operators
(Segal, 1974; Keith, 1979; Henderson and Berry, 1976, 1977), and airport
ground crew (Ilolloran and Byrn, 1986; Chew, 1991; Partouche, 1996).

The general rostering problem is one of the most general labor schedul-
ing problem since it includes shift scheduling, days-off scheduling and tour
scheduling. The goal of rostering is to generate schedules that meet staffing re-
quirements and respect working rules. The planning horizon of the schedules,
the level of flexibility allowed and the diversity in the working constraints lead
to a large range of problems.

The classical approach for rostering is to determine first a lower bound on
the workforce size so as to satisfy constraints and then to propose an optimal
algorithm which constructs rosters using exactly this necessary workforce.

First works on rostering considered only single shift problems assuming
thus a constant demand all day long. This problem corresponds to the
days-off scheduling problem, i.e., the assignment of employees to work-days
~ and days-off on a planning horlzon Brownel. and Lowerre (1976), followed
by Lowerre (1977), considered the same requirement on cach week-day and
a lower requirement on weekends and determined the minimum workforce
size under different alternative days-off policies: two days-off per week, two
adjacent days-off each week, every other weekend off and four days-off every
two weeks, ... Baker and Magazine (1977) introduced a cyclic dimension by
assuming that individual schedules as well as requirements will repeat over
an extended period of time. Baker et al. (1979) examined the case having
any A out of B weekends off whereas Burns and Carter (1985) supposed a
variable demand from day to day.

Some other works integrate a hierarchical workforce (Emmons and Burns,
1991; Hung, 1994; Narasimhan, 1996), i.e., workers are classified into quali-
fication categories and a hlgher qualified can substitute for a lower one but
not vice versa.

When services operate around the clock or when the demand for service
fluctuates during the day, multiple shift types must be scheduled (a shift
type is defined by a start time, an end time and placement of breaks), lead-
ing so to multiple shift rostering problems. Multiple shift problems can be
characterized by the diversity of shift types allowed, yielding to more or less
flexibility. The shift diversity leads to consider restrictions on the changing
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of shifts from one day to the next (see Koop (1988)). The main cases of shift
change constraints are:

e when a change in shift types can only occur after a day-off (chain shift
change constraint};

¢ when there exists an ordering of the shift types such that a shift can
only be followed by a shift type with a greater rank in the list (ordered
shift change constraint).

Several researches only considered three labelled shifts: day, evening and
night. This means that requirements may vary during the day, but only on
every eight-hour periods. For instance Smith (1976) scheduled nurses with
three 8-hours shift types. The shift change constraint is ordered (night, day,
evening), that is a minimum of 16 hours rest between two consecutive shifts
is imposed and at least 24 hours rest between any shift change.

Laporte et al. (1980) introduced cyclic rosters with again three shift types
and imposed a chain shift change constraint. They also consider constraints
on position of days-off, number of week-ends off and maximum work stretch
(i.e., maximum number of consecutive shifts). These conditions enable to ex-
plicit all possible sequences of work days and days-off, and to assign a degree
of desirability to each one. The problem is then modeled as a linear program
in which the total desirability is maximized subject to covering exactly the
workload. With the same assumptions, Burns and Koop (1987) proposed
an algorithm that combine ‘minischedules’, sets of weekly assignments of
shifts and days-off, to form a roster. Both approaches, since they need to
~explicit all feasible sequences, would be -invalidated whenever flexibility in
shifts increases: more shift types and less constrained shift changes.

More recently, Jacques (1993) and Partouche (1996) presented a con-
straint programming approach to solve a rostering problem considering three
shift types and ordered changing shift constraint.

If we can find in the literature many works on the determination of work-
force lower bounds and several algorithms to tackle the rostering problem,
they are essentially limited to very few shift types and most of them can only
be applied to very specific situations. Khoong et al. (1994) constitute one
of the first work done on general models. A large diversity in shift types is
allowed to cover a fluctuant curve of requirements. They present a generic
manpower rostering toolkit based on a decomposition of the general roster-
ing problem. The first subproblem is the determination of shifts to meet the
requirements. Then, they position days-off into the roster and finally assign
the shift types to a particular location in the roster. If the complete method
is general enough to be applied in many operational contexts, the heuristic
for shift assignment (Khoong, 1993) assumes that the number of shift types
is lower than the workforce size and that shift change constraint is ordered.

Besides, considerations concerning the total number of hours worked are not
debated.



We propose in this paper a complete method for the cyclic rostering of a
mixed workforce, which was not envisaged by Khoong cf al.. We also admit
a large number of shift types so as to cover a very varying requirement curve
with an excellent productivity. To solve the rostering problem, also including
constraints on the total working time, we combine linear programming with
constraint logic programming.

The paper is organized as follows. In section 2, we describe the general
rostering problem that we consider. Section 3 presents an original approach
to decompose a very complex problem into subproblems easier to solve. Sec-
tions 4, 5 and 6 propose models and hybrid solution approaches for each
subproblem. Finally, some conclusions are provided in section 7.

2 The General Rostering Problem

In this paper, we examine the problem of scheduling working hours and
days-off in seven-day-a-week operations. We assume that the staff demands
and scheduling constraints are the same every week, i.e., are cyclic with a
cyclic length of one week. Hence, seven daily requirement curves represent,
for each planning period, the need for employees. Our problem belongs thus
to a general class of cyclical workforce allocation problems, as defined by
Baker (1976). Depending on the problem context, the planning period, also
called ‘period’; can be several hours or ten minutes long.

The requirements are covered by a homogeneous workforce, i.e., all work-
ers have the same qualifications. We consider in the following that the work-
force may be mixed, i.e., composed of a full-time and various part-time work-
ing classes and that the relative proportion of each class is constrained, Of
course, a workforce composed of only one class can be considered as a special
case of our problem.

Each workforce class is characterized by a weekly working rate and some
specific working rules. TFor example, full-time workers work 39 hours per
week, half-time workers work % hours per week, and so on for other classes.
Working rules include the working legistation and rules specific to the orga-
nization. These rules concern:

e the shifts: minimum and maximum duration, number and position of

breaks, ...

e the ‘days-off:  average number of days-off on a given horizon, posi-
tion on week-days and on weekends, minimum number of consecutive
days-off,...

o the sequence of shifts and days-off: maximum number of consecutive
shifts, minirmnum time interval between two consecutive shifts, ...



A tour, also called ‘shift pattern’ (Khoong et al., 1994) or ‘shift assign-
ment’ (Bailey, 1985), is a sequence of shifts and days-off over a planning pe-
riod stretch. We consider the planning period to be one week from monday
to sunday. A roster is a set of tours. Rosters can be cyclic or individualized.
A cyclic roster consists of an ordered list of tours that is rotated across the
employees over time. Individual rosters consist of tours that are unique for
each employee. We generate here cyclic rosters.

Table 1 represents an example of a cyclic roster of length 12, for 12
full-time workers. The first week, each employee e works on tour e. The
following week, employee e will work on tour e+ 1 if e < 12 and on tour 1 if
e = 12, and so on the next weeks. For each working day, start time and end
time are precised. ‘O’ denotes a day-off. ‘J-8’ corresponds to a particular
shift called joker for which the length is defined (8 hours here) but start time
and end time are not already known. The justification of jokers will be given
in section 3.

T Mon Tue Wed Thu Fri Sat Sun

1 5:10-13:40 5:30-13:30 10:10-18:40 J-8 o} 8] J-8

2 5:50-13:50 5:60-13:50 10:10-20:40 @] o J-8 J-8

3 6:50-14:50 6:50-14:50 O O J-8 J-8 6:50-17:20
4 7:50-19:20 Q O J-8 J-8 " 5:50-13:50 9:50-20:20
5 0] Q 5:50-13:50 4:30-15:00 J-8 7:10-15:10 O

6 O 10:30-18:30 J-8 4:30-15:00 5:10-13:10 @] 0]

7 | 12:10-20:40 | 11:50-20:50 J-8 8:30-20:00 o O 9:60-20:20
& | 13:50-21:50 15:30—23:‘.30 0] (o] . 0] 7:10-15:10 | 10:10-21:40
g J-8 -0 - 0 Q - -5:30-13:30 .| 9:50-17:50 12:50-21:50
10 J-8 0] o} 4:30-16:00 6:30-14:30 15:10-23:10 O

11 O &) 10:50-20:20 | 10:50-20:20 9:10-20:10 Q O

12 (0] J-8 14:10-22:10 { 10:50-20:20 | 15:10-23:10 0 O

Table 1: Example of a full time roster

As each tour is assigned to one employee each week, altogether the shifts
of all tours must cover the requirements for each period of each day in the
week. Moreover, the roster length is bounded. This induces to generate
several rosters per working class, the number of rosters depending on the
size of the class. Not only each roster built must respect the working rules
specific to the class but also there must be as much equity as possible among
rosters of the same class.

Therefore, our problem consists in building one or several rosters per
working class so as to meet the requirements each day, to satisfy the rules
of the class and to ensure equity among rosters of the same class, while
minimizing staffing costs.



3 A hybrid method for the general rostering
problem

In recent years, Constraint Logic Programming appeared as an interesting al-
ternative to Integer Linear Programming in tackling combinatorial optimiza-
tion problems (VanHentenryck, 1989). Several researchers have compared or
combined ILP with CLP for solving difficult problems (Smith et al., 1995; Par-
touche, 1996; Darby-Dowman et al., 1997; Jacquet-Lagreze et al., 1997). In
particular, CLP proved to be more adapted than ILP to the rostering problem
in terms of modeling and solving strategies, as shown in Partouche (1996).
On the opposite, Jacquet-Lagreze et al. (1997) who compared an implicit
CLP model and a set-covering ILP approach to solve the shift scheduling
problem, concluded that the latter was much more efficient.

The purpose here is not to oppose again ILP to CLP, but to propose a
method where ILP and CLP are combined. Each approach will be used for
the part of the problem where it is more efficient. The combination of the
two techniques thus allow the resolution of large-scale rostering problems in
real world contexts.

We propose to decompose the general rostering problem in three main
phases, as showed in Figure 1.

Phase 1: Shift scheduling

The first aspect of the problem is to determine the set (or sets) of shifts
that will cover the requirement curves while minimizing staffing costs. Since
‘several workforce classes combine to cover the requirements, we consider one
set of alternate shifts, defined by the working rules, per class.

We admit that requirements are discontinuous, that is each day can be
tackled separately. So we first solve the shift scheduling problem for each
day of the week (Phase 1). The modeling of this problem as a particular
set-covering has proved to be very efficient when solved by linear program-
ming (Jacquet-Lagréze et al., 1997) and thus will be used here.

Phase 2: Workforce size

Relying on resulting shifts as well as rules concerning working time and
days-off, we determine for each class, the minimum necessary workforce and
the number of days-off requested. For each class, the workforce size is then
increased to integrate a certain rate of absenteeism, Finally we deduce the
number of rosters to build in each class to assign every employee (Phase 2).

The supplementary workers, added to compensate the absences of some
others, are not directly useful to cover the shifts selected in phase 1. Thus, we
need to create for them some new shifts and some new days-off, both called
jokers. The joker-shifts will serve to compensate the absence of an employee



Working Conditions

Sl eheduling
Shifts set Shifts set
class s class §
Phase 2 y

« # of rosters
« list of posts { shifts,
days-off, jokers

Phase 3 /
ist of posts
Raster 1

ist of posts
Rosterr

N | o

Figure 1: Decomposition into 3 phases

that was supposed to work on a ‘real-shift’. The joker-days-off ensure that
the planning for supplementary employees follow the same rules as the other
employees of the class.

Phase 3: Rostering

The previous phases have determined, for each class, the number of rosters
to be generated as well as the list of shifts, the number of days-off and
jokers to assign to the rosters. The problem for each class may be tackled
independently. Frow now, we use the generic term posts, to represent shifts,
days-off or jokers. The phase 3 consists then, for each class, in assigning
posts to one roster and to one week of the roster.

In a previous study, we showed that CLP was well-adapted to generate
a single roster (Partouche, 1996). Therefore, we first tried to tackle directly



this multi-rosters problem with a CLP model. We need then one variable per
cell, i.e., per day, per week and per roster. The variable domain corresponds
to the list of posts that could be assigned to this cell. I each roster contains
g cells and [ posts can be assigned to each cell, the size of the search space,
for the n-rosters problem, is O({"?).

The order of the variables we considered, lead to construct all rosters
almost sequentially. Therefore, and even if backiracks between rosters were
possible, the choices made to build the first rosters often prevented from
generating the last rosters in a reasonable time.

Instead of trying to develop efficient reduction heuristics or search strate-
gies, we took advantage of the fact that each roster is an independent entity
to partition the problem into several single rostering problems. If many so-
lutions may be lost from this decomposition, it also permit to reduce the
search space size to O(nl?).

The multi-rosters problem for one class (Phase 3) is thus decomposed into
three subphases that combines ILP with CLP models.

Phase 3a: Assighment A first linear model shares posts between the ros-
ters of the class. The assignment of a subset of posts to each roster
has to be constrained enough to ensure that if a feasible solution ex-
ists for the n-rosters problem, a feasible solution also exists for the n
single-roster problems.

Phase 3b: Arrangement The remaining problem is then to arrange the
posts in their roster using a constraint programming approach. In order
to guarantee that a solution can always be found, some constraints are
modeled as soft binary constraints, that is we tolerate these constraints
not to be always respected but maximize the number of times they are.
At this stage, we get rosters still containing jokers.

Phase 3c: Ajustement A last CLP model will turn some jokers into shifts
and set their duration to adjust the roster average working duration to
the weekly working rate of the class.

4 Phase 1: An ILP model to select the shifts

In a first phase, we need to determine, for each day of the week, the best set
of shifts operated by the mixed workforce, that covers the requirements and
minimizes costs. Our model is based on a set covering formulation initially
suggested by Dantzig (1954). As in the Dantzig model, the variables z;
correspond to the number of employees assigned to shift #, included in a set
of feasible shifts. However, since we consider a mixed workforce, we define a
particular set J,(s € §), S being the set of classes.

An major component of productivity enhancement is the flexibility in
the shifts definition (possible lengths, various start times, ...). Hence, some
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given shifts (for instance a 6-hours length shift) could be assigned to several
working classes (full-time and different part-times in our example). To avoid
the sharing of such shifts among the classes when they heve been selected,
we generate them once for each class it could be assigned to. The same shift
will thus appear in several sets J,. Therefore, the different sets of shifts form
a partition and the output of this phase is expressed independently for each
class.
The set-covering model is described as follows:

min Z > ¢jz; (1)

SES jed,
subject to : ~
Z Z Q%5 2 w;, V?, € T (2)
3€8 jeJ.s

b;’;n.'in S Z w.’;‘ S b:na:r:! VS € S (3)

jeds
Oin S D %305 < 8y VsES (4)
jeds .
z; >0, integer, Vied,, VseS§ (5)

where ¢; is the cost of one employee assigned to shift j, §; is the duration of
shift j, w; are the requirements for period ¢ € Z, set of periods of the day
and a;; = 1 if period ¢ is covered by shift 7, 0 otherwise. The sum of selected
shifts from all sets must cover the requirements (Constraints (2)). Additional
constraints force a certain shift structure that will follow the conditions con-
cerning the workforce repartition between classes and also anticipate the
roster construction: constraints (3) bound the workforce size for each class
and constraints (4) bound the total shift duration for each class. We suppose
that these bounds are chosen not to lead to infeasibility.

This NP-complete problem can be solved almost optimally by a heuristic
rounding the relaxed solution. Once the continuous solution found, we set all
the variables whose value is zero and limit the domain of the others (integer or
not) to --/- 2. Then we start a branch and bound procedure. The algorithm
is stopped when the first integer solution is reached (for more details, see
Jacquet-Lagraze et al. (1997)).

5 Phase 2: Evaluation of the workforce size and
number of rosters to build

In this phase, we use the total amount of hours to be worked and several
working rates, to calculate the necessary workforce size of each classe and
to decide the number of rosters to huild. The integration of absenteeism



introduces enough flexibility to enable the respect of all working policies,
while generating rosters in the next phase.

Workforce size and days-off

The shift scheduling phase has determined, for each day d € D = {1,...,7},
the number of employees assigned to shift j denoted by w?. Let V¥ be the
corresponding number of shifts that has to be performed by each working
class 5, V¥ = > el :c?. From now, we can then treat each class independently.

If we add the duration of all selected shifts on the seven days, we get the
total number of hours to be worked in a week by the class. Since this class
corresponds to a given weekly working duration (A® in hours), and since the
workforce size can’t be lower than the number of shifts to execute each day,
we deduce the number of workers, denoted by W!, necessary to operate the

shifts:

W} = max (’72@1 i % 3-’ , TNAX Vf) Vse§S (6)
As deD
where the symbol [.] is used for the next greatest integer function. Since we
know the number of selected shifts each day, we can deduce from the number
of necessary workers, the number of days-off each day for each class (O9):

0l=W!-Vi VdeDVseS (7)

The integration of absenteeism

To ensure that the requirements will be met in spite of absenteeism, repre-
sented by a certain rate 7%, we must increase the necessary number of workers.
The needed workforce size then becomes W,:

Wl
1—172

W, = " ] \ Vse§ (8)
Note that W, corresponds also to the number of tours that have to be
generated.
As explained in section 3, we create jokers for the supplementary workers.
The number of jokers to generate each day (J2), including joker-shifts and
joker-days-off, is expressed by:

JE=W,—(Vi+ 0%, VdeDVses 9)
Number and length of the rosters

The workforce size of each class s is divided into n, rosters. For each roster
r€Rs=1{1,...,n,}, the length I, corresponds to the number of weeks after
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which a worker operates the same schedule. This period is limited by the law
(bounds denoted by L and Liye,). We thus have to define the number of
rosters to generate per class and the length of each roster such that:

SNol=W, with Ly <l < Lipas, Y5€S8, VreR, (10)

r=1
It appears clearly that several solutions are possible. The scheduler may
- decide to construct either few long rosters or many short ones or any solution
in between. This flexibility enables to construct personalized rosters for some
employees of a class that need particular working conditions: for instance,
some people prefer working early shifts whereas some other ones prefer late
shifts, some women do not want to work on wednesdays because their children
do not go to school,... Besides these specific employees, all other workers
of a same class are assigned to several rosters, well-balanced in terms of
the features that make a roster more or less difficult (number of very early
mornings, of very late evenings, number of days-off,...).

6 Phase 3: Building rosters for each class

We now consider a single class. From the two previous phases, we know
exactly the list of shifts, the number of days-off and the number of jokers to be
sequenced as well as the number of rosters to be generated. As we explained
in section 3, building all rosters with a direct CLP model is illusory and we
need to divide the multi-rosters problem into several single roster problems.
. Phase 3 is decomposed into three sub-phases.

6.1 Assignment phase: an ILP model

The first subphase is ‘to assign each post p (shift, day-off or joker) to a
particular roster (see Figure 2).

By reducing thus the search space, we also lose many alternate solutions.
Hence, this assignment must be conceived to ensure that, if a feasible solu-
tion exists for the multi-roster problem, a solution will still exist after the
decomposition. Moreover, we strive for equity between rosters, on criteria
such as the number of morning shifts, the number of night shifts, the number
of days-off each day.

- The notations defined in section 5 for a certain class s will now be used
without the index s: let W be the workforce size, n the number of rosters to
build.

The shift set is partitionned, according to the start time of the shift, into
three subsets: morning, day and evening. We then define K, the set of post
types including morning (mor), day (day), evening (eve), jokers (jok) and
days-off (off).

Let:
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Monday = {p¥, pX,p¥.....p¥} 3 os

Roster 1 Rosterr Rostern

Figute 2: Assignment of posts to rosters

o P} be the set of posts of day d and type k with |P¥| = w%, (|.| denotes
cardinality).

o Py be the set of posts of day d. Py = Uyex P and |Pyl = wg =W, Vd €
D.
6.1.1 The assignment constraints

The assignment problem can be éasily formulated with a linear program.
Forall pe Py, foralld € D and r € R = {1...n}, let the decision variables
be:

(11)

| 1 if post p is assigned to roster r
=10 otherwise

Constraints (12) ensure that each post is assigned only once:
¥ am=1  Vpe€ Py VdeD (12)
r=1 .

Constraints (13) ensure that, for any day, the number of posts assigned to

any roster equals the roster length:

Y op=l, YdeDVreR (13)

pEF;

6.1.2 Additional constraints

Besides the assignment constraints, the model must be completed by addi-
tional constraints that ensure:

1. feasibility

2. equity.
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Feasibility While sharing posts among rosters, we must also ensure that
the arrangement of posts in the roster they have been assigned to, will be
feasible. Experiments had shown that one of the most constraining rules
while arranging shifts into rosters concerns the changing of shifts, expressed
here in the most general way: a minimum time interval & must separate two
consecutive shifts.

To be able to satisfy this rule in the next phase (3b), we add a set of
constraints to balance repartition of shifts depending on their start time and
end time. First we note that a working shift on day d, ending at time £, can
be followed on day d + 1 by another working shift, starting after & + 0, a
day-off or a joker. Second, we note that a shift ending at time A’ < 4 can
be followed by any post that could follow the shift ending at A or by a shift
starting between A’ + 8 and h + 4.

Therefore, we impose that, for each end time » on day d concerning s > 0
shifts, there must be, on day d+1, at least s posts when adding shifts starting
after h 4 0, days-off and jokers, that have not been already associated with
shifts on day d ending after 2. To model this constraint, we need:

e to define hsta(p) and hend(p) to be start time and end time of post
p € P respectively. If p is a day-off or a joker, by convention Asta(p) =
hend(p) =0:00 AM ;

e to rank in increasing order the end times of posts in F; denoted by
R§, hY, ..., B} hY corresponds to days-off and jokers, k] to the earliest
shift end time on day d, h7*" to the latest.

" The constraints are then written in a recurrent way:
For all r € R, for all d € D,
for finish time A% = h3"

Z Tpy = Z Tt Z Tpp-t Z mpr—rest?imm

p€ Pafhend(p)y=hyos pEPuy hstalp)2hT=*+0 pepell  pepith

(14)
for all finish time A% # AT and h? # hS

3 L = > Ty — resthy + restiy, (15)
pEFPihend(p)=h}, pEF 41 |)‘zfi+£9§hszfa(p)<h:;|'l +4

where restd; represents-the number of shifts, days-off or jokers that are not
necessary on day d+ 1 to follow the shifts on day d finishing at A% and thus,
can be used to follow earlier shifts.

These constraints are necessary to guarantee that a solution to the n
rostering problems exists but it is not sufficient because of the conjonction
of all constraints.
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Equity The assignment phase should preserve as much equity as possible
between rosters corresponding to a same clasgs. For this purpose, we add soft
constraints, that balance the repartition of each type of post among rosters,
proportionally to their length. This balance should be achieved both at a day
level (constraints (16)), ensuring a fair repartition of the numbers of posts of
type k on day d among all rosters and at an overall level (constraints (17)),
ensuring a fair repartition of the total numbers of posts of type & among all

rosters.
At the day level, we set:
k
Y p=—Lxl, VieDVreRVYkeck (16)
: W
pEF

and at the overall level;

7 k
_ Zd:l Wy

7
S Yoz, === e RVEEK (17)

d=1 IJEP‘f _ w

Since the fraction of posts of type k that is to be assigned to a roster
is not necessarily an integer, we introduce goal variables that represent the
slack to minimize:

k
Z:cp,,—f-sﬁ;—sﬁ:':%xlr, VdeDYreRVEEK  (18)

k
pepd

u 2 k Zﬁhlwﬁ
Y tpts T —stt =X, WreRYkeK  (19)

or . T,
d=1 pEPf W

where s&F 55~ correspond to positive and negative slack variables for the

repartition of posts of type k on day d for roster r, and s*t,s*~ correspond
to positive and negative slack variables for the overall repartition of posts of

type k for roster r.

6.1.3 Objective function

Unlike in the classical; assignment problem, there is no cost related to the
main decision variables x,, since there is no preference or objection for the
assignment of a post to a particular roster. The objective represents then a
weigthed sum of the goal variables defined in the additional constraints:

n 7 n
min 30> ei(sih + sk )+ Y, D ch(sE + 587 (20)

hEK r=1d=1 keK r=1
where ¢f and ¢f correspond to the relative importance of a good repartition
of posts of type k. Very different costs may permit a lexicographic ranking
of the different post types repartition according to the scheduler priorities.

13



6.2 Arrangement phase: a CLP approach

In the previous phase we have assigned posts to rosters. Therefore, we can
consider independently each roster with its corresponding 7 sets of posts.
Each problem is thus a single roster problem which is solved by a CLP
approach.

Monday" = {pfu,PﬁuspsfM,---,wa}

s .8 S ‘
Sundayr ={p1 =p2 !p3 u"'!pf}

Rosterr

Figure 3: Arrangement of a posts subset into a roster

Unlike in LP, there'is currently no standard representation for CLP prob-
lems (see Darby-Dowman et al., 1997). We will describe our model as a
combination of algebraic form, similar to ILP models, within logic syntax
that CLP enables to model.

Considering a roster of length {, { € T = {1...[} corresponds to a tour of
the roster, i.e., a week. For each day d € D, a set of [ posts has been assigned
- to this roster. The problem is now to-assign-each post, which concerns a
particular day, to a certain tour. This problem can also be seen as ranking
the | posts of each day in a particular order such that all rules concerning
the succession of shifts and days-off over the tours are respected (see Figure
3). We consider in the following some typical constraints that are often met
in rostering problems.

6.2.1 The CLP formulation

The principal variables y represent the index of post of day d assigned to
the tour ¢. The domain of each y¢ is the set of post indices:

we{l,...,l} VdeDVieT (21)

The constraints stating that there must be exactly one post per day and per
tour are automatically satisfied by any solution to the problem since each
variable y¢ must have exactly one value.

Logic programming languages provide some high level constraints called
global constraints. These constraints embed a conjunction of elementary con-
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straints and a constraint handling method for them. In particular, the con-
straints that all posts of day ¢ must be assigned to a particular tour and only
one, can be expressed by a single constraint:

vt yd,. .., yi are all different, Yde D (22)

This global constraint abstract the modelling and solving of a set of Ii(;_—ll
binary disequation constraints.

Legal rules impose at most m consecutive working days. This constraint
can be interpreted saying that there must be at least one day-off on m + 1
consecutive days. We need here to introduce new constrained 0-1 variables,
of = 1 if there is a day-off on day d tour ¢, 0 otherwise. The relationships
between these variables and the principal ones are specified by the 7 x [
boolean constraints:

y? = p and, in the set of posts of day d,
the index p corresponds to a day-off

=1 = { (23)

As soon as y¢ will be instantiated, i.e., gets its value, the value of o¢ will be
deduced. On the other hand, if of is instantiated first, the domain of ¢ will
be reduced. The order in which the variables are instantiated is a main part
of the searching strategy that is developed to solve a CLP model (see 6.2.3).
The maximum-consecutive-working-days constaints are thus expressed

by:

T

S oftt>1, VdeD, VteT, - (24)

h=0
Since rosters are cyclic, note that o* becomes o?j_'f""7 when (d+h > 7 and
t <) or ot 7 when (d+h > 7 and t = I).

6.2.2 Introducing soft constraints

Scheduling rules to build a roster can be divided in two categories: the hard
ones that must always be satisfied (classically law rules) and the flexible ones
that can be relaxed (generally rules specific to the organisation that increase
employees satisfaction). Whereas hard constraints may lead to infeasability,
this is not the case with soft constraints. Therefore, besides the real flexible
- rules, it might be useful also to model some ‘difficult’ hard rules as soft
constraints so as to get a first imperfect roster. This roster will be manually
corrected afterwards to make it statutory.

In the CLP literature, flexibility in constraints may express the possibility
to violate some constraints (Freuder and Wallace (1992)) or to get distance
from ideal solutions (Fargier et al. (1995); Fortemps (1997)). We consider
here the former conception, that is binary soft consiraints that can be vio-
lated but are to be respected as often as possible.

15



We introduce two séts of soft constraints. The first one concerns the mini-
muin time interval § between two consecutive shifts. Actually, this constraint
is hard in the reglementation but we model it as soft to ensure that a roster
can be generated. Remember that the additional constraints in the assign-
ment phase were necessary but not sufficient to ensure that the minimum
time interval between two consecutive shifts can always be respected. The
second set of soft constraints models the unpopularity of isolated days-off.

To deal with the minimum-time-interval constraints, we introduce new
0-1 variables: ¢? = 1 if the constraint is satisfied between the post on day d
tour ¢t and the following day, 0 otherwise. The constraint is satisfied if the
two consecutive days are worked and the time interval between the two shifts
is more than 4 or if, at least one of the two days is a day-off. Since jokers do
not correspond to shifts or days-off yet, they are considered here as days-off
and we suppose that they can follow any shift. The minimum-time-interval
constraint will be considered again while defining start times and end times
of joker-shifts.

To define precisely the ¢f variables, we thus need variables that indicate
if the day d on tour ¢ is assigned to a joker or not. The constraint linking
the new variables to the original ones are:

yf = p and, in the set of posts of day d,

d
w=le= { the index p corresponds to a joker (25)

We also need hsta(yf) and hend(yy), the start time and end time respectively,
of the post assigned to day d on tour 7.
Finally, for all t € T and for all d € D

hsta(ys*!) — hend(y?) > 0
=14 { orol=1oroft =1 (26)

or j2=1orjt =1

Note that the couple of index (¢,d + 1) becomes (¢ + 1,1) when d = 7 and
t<lor(l,1) whend="7and t=1.
Maximizing the number of times the constraints are satisfied leads to the

following objective:
max Y Y o)
teT deD

The second kind of soft constraint concerns the number of consecutive
days-off and more particularly the isolated days-off'. We thus minimize the

11t hardly appears that the minimum number of consecutive days-off is more than 2
but it could also be modeled as a soft constraint.
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number of times isolated days-off appear. Here again we introduce new 0-1
variables ¢/ that indicate if the day d on tour ¢ is an isolated day-off, i.e., if
d is a day-off and both (d — 1) and (d + 1) are worked.

The constraint variables are defined by:

di=1 = ot —0tt -0 >0, WVteT VdeD (28)

Again, special cases must be distinguished when d = 1 or d = 7, and when
t =1 or t ={. The resulting objective will then be:

Il’liIlZ Z c;d (29)

teT del

6.2.3 Solving the problem

The key to success of CLP in tackling combinatorial search problems involv-
ing constraints lies in the combination of:

L. constraints handling methods, i.e., constraint propagation methods
that aim at reducing the search space and

2. search heuristics, i.e., rules for choosing which variable to consider next
and which value to assign to it.

Constraints handling methods The constraints described above are suf-
ficient to model the problem but we add some simple constraints to reduce
the search space. In particular, we bound, per tour, the number of days-off,
as well as the number of jokers and also the total working time.

Search heuristics Since all variables described above derive from the prin-
cipal variables y?, it is sufficient to instantiate those to arrive at a solution.
However, it appears to be more efficient to place the days-off first, i.e., to
instantiate first the of variables that reduce the domains of y%. The vari-
ables yf are considered next and then the constraint variables cf. Value of -
other variables are deduced by constraint propagation. This search strategy
corresponds to the decomposition suggested by Khoong et al. (1994) which
position days-off into roster before assigning shift. However, in our approach,
a bad assignment of days-off can be backtracked since both shifts and days-off
are instantiated in the same model. ‘

The domain of variables y{ is described in the following order: first the
shifts ranked in increasing order of their start times, then the days-off, then
the jokers. The choice of the value corresponds to the first available value in
the remaining domain. '
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Optimization The optimization in CLP is an iterative process. An ad-
ditional constraint bounds the criterion by an initial value. If no solution
can be found, the value is modified so as to find a first solution. When a
solution is found, the value is increased by one (decreased by one) in case of
maximization (in case of minimization) and a new solution is searched; when
no better solution can be found, the process stops. The last solution found
corresponds to the optimum.

In our case, the two criteria, corresponding to the two types of soft con-
straints, are ranked in a lexicographic order (minimum-time-interval con-
straint as a main criterion and isolated day-off constraint as a secondary
criterion). The optimization process is started with initial values of both
criteria set to zero (no soft constraint violated).

6.3 Adjustment phase: a CLP model

At this stage, rosters are almost built. However, constraints concerning the
total working time have not been considered yet and jokers are still not
defined. The purpose of this last phase is precisely to select which jokers are
to be transformed in working shifts and determine their durations so that
the average working time of the roster corresponds ezactly to the weekly
working time of the class. The remaining jokers become days-off. While
changing jokers into shifts or days-off, all rules concerning the sequencing of
shifts and days-off, that were considered in the previous phase, must still be
taken into account.

5¢ denotes the duration of the post assigned to day d on tour . When
the post is a shift or a day-off, -its duration is-known. However, when the
post is a joker, its duration is to determine.

The principal variables of this model are thus §%, when the post assigned
to day d on tour ¢ is a joker. The domain of the variables consists of the set
of all possible shift durations from &,,;, t0 d4e and the value 0. If the value
0 is selected, this means that the joker becomes a day-off:

(5f € {{8mins Omaz), 0} Vd € D,Vt € T such that jf =1 (30)

The constraints of this model are of three kinds. The first constraints
impose that the average work duration of the roster equals the weekly working
rate A;

Y s =ax (31)

teT deD

The second type of constraints ensures that there is at least one joker-shift
per day so that, any day, an absence could be compensated:

S 8> bmin, VdED (32)

el |j¢=1
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Some other constraints concern the placement of the ‘new shifts’ or ‘new
days-off’ so as to respect the sequencing rules considered in phase 3b: maxi-
mum-consecutive-shifts, minimum-time-interval and no isolated days-off.

1. Since jokers were considered as shifts when we modeled the maxi-
mum-consecutive-shift constraint (24), transforming a joker into a shift
cannot lead to a violation of this constraint.

2. Since joker-shifts are used to compensate an absence on a ‘real shift’,
their start time and end time are not to be explicited here but only
their durations. Thus, the minimum-time-interval constraint cannot
be considered.

3. On the opposite, we must avoid generating a day-off while transforming
jokers. Several cases are considered, and for instance:

e if a joker is isolated between two shifts, not to create an isolated day-off,
it must become a shift, i.e., with a duration over &,,;,

SJS — S58§|?
j¢=1 and
if { of' =0 and oft =0 then &> ., (33)

§t=0 and jH' =0

o if two jokers are isolated between two shifts, not to create an isolated
day-off, they must become either a couple of shift or a couple of days-off

[SJJS — SSSS ou SO0S|

jfnl =1 and .?td =1 51{51_1 > Omin and 5? > Omin
if { 092 =0 and oft' =0 then or
32 =0 and jH'=0 1=0  and §2=0
(34)

o if a joker is followed by a day-off which is followed by a shift, then the
joker must become a day-off

[JOS — 00S]

. d+1
. jr=1 and of" =1
if { otf“ 20 and j§+2 _ o 'hen 5 =0 (35)
The problem here is only to find a feasible solution. The output of this
last model is a complete roster where every start time and end time as well

as breaks are clearly defined, except for jokers transformed into shifts.

28 denotes a shift, J a joker and O a day-off.
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7 Results and Conclusion

This method was applied in a real world context for scheduling ground staff
in an airport. The demand was described by 7 requirements curves {rom 4:30
am to 24:00 pm with a 10-minutes step. The staff was composed of three
population classes: full-time, 3/4-time and half-time. For each class, a set
of about 20,000 shifts, including up to two breaks, was proposed. The roster
length had to be between 8 and 12 weeks. A maximum of m = 6 consecutive
~ shifts was accepted. The time between two consecutive shifts had to be over
# = 11 hours.

7.1 Evaluation of overall productivity

The productivity is defined by the ratio of the useful hours (sum of demands)
and the paid hours (sum of the selected shift durations). A first level of
productivity is calculated after the shift scheduling phase and appeared to
be around 80%.

Thanks to the flexibility brougth by the integration of absenteeism and
jokers, this productivity is not degraded during the following phases. As a
matter of fact, jokers permit to adjust the average working time of rosters
without generating any useless hour. Employee are thus paid exactly for the
time they have to work, which is exactly the minimum required to cover the
demands and to anticipate absenteeism. Besides, the supplementary workers,
introduced to compensate absenteeism, allow all days-off and sequencing rules
to be respected.

7.2 FEvaluation in terms of social satisfaction

At the level considered here, rosters are not assigned to employees by name
and thus individual preferences or unavailability are not integrated. The
social satisfaction is thus reduced to the respect of soft constraints. As ex-
plained, soft constraints guarantee the problem feasibility, but the less soft
constraints are violated, the better social satisfaction is.

On a complete test, made of 16 rosters, only one isolated day-off was
unavoidable and none interval less than 11 hours between two shifts. This
leads us to conclude that the method was bolted enough since the beginning
to prepare a good situation while arranging posts in rosters.

7.3 Evaluation of overall time process

The whole problem was solved on a PC Pentium. The solver used for linear
programming models is CPLEX (1995) and for constraint programming is
ILOG Solver (1995).

The shift scheduling phase (Phase 1) needs in average 2 minutes per day to
select the best sets of shifts. Phase 2 calculates the workforce size for the three
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classes and the number of rosters to build almost immediately. The full-time
employees were to be 135 people shared on 12 rosters; the 3/4-time employees
were to be 24 people shared on 2 rosters and the half-time employees were
to be 18 people shared on 2 rosters.

For each class, the construction of rosters (Phase 3) is independent. Com-
putation time for the LP model to assign posts to rosters (Phase 3a) is always
less than a minute. Solving the CLP models to arrange and adjust posts
(Phases 3b and 3¢) may be immediate or may last up to 1 minute for one
roster. If a solution with every soft constraints satisfied can be found (always
at least 11 hours between two shifts and no isolated day-off), then the solving
process is very quick. Otherwise, it must be shown that the perfect solution
does not exist before looking for one with a single constraint unrespected,
and so on. The proof of the non-existence of a solution supposes that the
tree search has been entirely considered and thus may require a certain time
(however less than a minute).

Table 2 summarizes the overall computation time. All together, the over-
all process takes about 20 minutes. Note that the rosters finally built will be
in function as long as the requirements stay the same, 1.e., in the air context,
one JATA season (about 6 months).

Phases nb of passages calc. ttme  Total
shift scheduling 7 (days) 2 min 14 min
workforce size 3 (classes) € €
full-time assignment 1 2 min 2 min
arrangement 12 (rosters) Itollsec < 1min
adjustment 12 (rosters) - € €
3/4-time assignment 1 2 sec 2 sec
arrangement 2 (rosters) 13 to 43 sec < 1 min
adjustment 2 (rosters) € €
half-time assignment 1 2 min 2 min
arrangement 2 (rosters) 10 sec <1 min
adjustment 2 (rosters) € €
Total 20 min

Table 2: Overall process computation time

7.4 Conclusion

We have proposed in this paper an overall method for scheduling a mixed
workforce on rosters. . The decomposition into several subproblems, even
if complicated, allowed us to build rosters observing all working rules and
covering the requirements without deficit and with an excellent rate of pro-
ductivity.
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This method constitutes also an example of a successful hybrid approach
that combines linear programming with constraint logic programming.

Further work could be done to try to adapt this method in the case of
individualized rosters, i.e., without the assumption of the cyclic demand.
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