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Exploitation d’une approximation de la relation de surclassement

Résumé

Etant donné un ensemble A d'actions évaluées selon une famille de critéres,
nous considérons une information préférentielle en forme d’une table des
comparaisons par paires (PCT) comprenant des actions d’un sous-ensemble
BcAxA décrit par des relations de préférences graduées et par une relation
globale de surclassement. En appliquant ’approche de la théorie des ensembles
approximatifs A I’analyse de la PCT, nous obienons une approximation de la
relation de surclassent en termes d’une relation graduée de dominance. Des
régles de décision générées A partir de cette approximation sont ensuite
appliquées & un ensemble McA d’actions. En résultat, nous obtenons une
relation de surclassement A quatre valeurs de vérit€ sur Iensemble M, qui
constitue un modele de préférences sur cet ensemble. La définition d’une
procédure adéquate A I'exploitation d’un tel modele en vue d’obtention d’une
recommandation est, dans ce contexte, un probléme ocuvert. Nous proposons une
procédure d’exploitation pour des problémes du choix et du rangement
multicritére, et prouvons que c’est la seule procédure qui satisfait quelques
propriétés désirables.

Exploitation of a rough approximation of the outranking relation
Abstract

Given a finite set A of actions evaluated by a family of criteria, we consider a
preferential information in the form of a pairwise comparison table (PCT)
including pairs of actions from a subset BCAxA described by graded preference
relations on particular criteria and a comprehensive outranking relation, Using
the rough set approach to the analysis of the PCT, we obtain a rough
approximation of the outranking relation by a graded dominance relation.
Decision rules derived from this approximation are then applied to a set MCA
of potential actions. As a result, we obtain a four-valued outranking relation on
set M. The definition of a suitable exploitation procedure in order to obtain a
recommendation within this context is an open problem. We propose an
exploitation procedure for choice and ranking problems and prove that it is the
only one which satisfies some desirable propertics.



1. Introduction

A rough set approach to multicriteria decision analysis has been proposed by .
Greco, Matarazzo and Slowinski (1996). This methodology operates on a
pairwise comparison table (PCT) (Greco, Matarazzo and Slowinski, 1995 and
1997), including pairs of actions described by graded preference relations on
specific criteria and by a comprchensive preference relation, It builds up a rough
approximation of the comprehensive preference relation using graded
dominance relations, Furthermore, some decision rules in the “if ...then...” form
are derived from the rough approximation of the preference relation. If the
comprehensive preference relation is an outranking relation, the application of
these decision rules to a set of actions gives a four-valued outranking relation
(Tsoukias and Vincke, 1992, 1995), i.c., a binary relation which, with respect
to any pair of actions (a,b), characterises the proposition “a is at least as good as
b” as true, contradictory, unknown or false. Finally, in order to obtain a
recommendation (Roy, 1993) for the decision problem at hand a suitable
exploitation procedure of the four-valued outranking relation should be applied.
This paper is focused on this exploitation procedure. Motre precisely, we
consider multicriteria ranking and choice problems, and we propose an
exploitation procedure, called scoring procedure, which we characterise by
proving that it is the only one ensuring some desirable properties.

The paper is structured as follows. In section 2, we introduce the tough
approximation of a preference relation and the generation of decision rules. In
section 3, we describe the four-valued outranking relation, In section 4, we
introduce the application of decision rules, showing how it defines a four-vatued
outranking relation. Furthermore, the scoring procedure is presented. Section 5
proposes a characterisation of this scoring procedure. Section 6 groups
conclusions.

2. Rough set analysis of a preferential information

2.1 Pairwise Comparison Table

In order to represent preferential information provided by the decision maker
(DM) in form of a pairwise comparison of some actions, we shall use a pairwise
comparison table introduced in Greco, Matarazzo and Slowinski (1995 and
1997).

Let A be a finite set of actions (feasible or not), considered by the DM as a
basis for exemplary pairwise comparisons. Let also C be the set of criteria
(condition attributes) describing the actions.

For any criterion qeC, let V, be its domain and T, a finite set of binary
relations defined on Vq such that, V(V'q,v"q)e quVq, exactly one binary relation



te Tq is verified. For interesting applications it should be card(Tq)z 2,
YqeC.
Furthermore, let T, be a set of binary relations defined on set A

{comprehensive pairwise comparisons) such that at most one binary relation
te T, is verified, V(x,y)e AxA.

The pairwise comparison table (PCT) is defined as information table
Spcr=(B, Cu{d}, T.JT,, g) where BCAXA is a non-empty sample of pairwise

comparisons, Tc=U Ty, d is a decision corresponding to the comprehensive
qeC

pairwise  comparison (comprehensive  preference  relation), and
g:Bx(Cu{d})—>T LT, is a total function such that g[(x,y).qle Tq Y(x,y)e AXA

and VqeC, and g[(x,y).d]e T, V(x,y)eB. It follows that for any pair of actions
(x,y)eB one and only one binary relation te T, is verified. Thus, T, induces a
partition of B. In fact, information table S, can be seen as decision table, since
the set of considered criteria C and decision d are distinguished.

In this paper, we consider Sp.p related to the choice and ranking problems

(Roy, 1985) and assume that the exemplary pairwise comparisons provided by
the DM can be presented in terms of binary graded preference relations (for a
substantially equivalent representation see Moreno and Tsoukias {1996)):

Ty= {p], heH }
where H = {he Z: he [-p, r ]} and p,, 1€ Z*, VqeCand V(x,y)e AxA
- xpgy, h>0, means that action x is preferred to action y by degree h with
respect to criterion g,

- xpg y, h< 0, means that action x is not preferred to action y by degree h with
respect to criterion g,

- xpgy means that x is similar (asymmetrically indifferent) to y with respect to
criterion q.

Of course, xPix Vxe AandVqeC,ie. Pg is reflexive, and
[xPyy, 1201 & [ypix, k<0].

Therefore, V{(x,y),(w,z)e AxA and Vge C:
-if xPjy and wpgz , k>h>0, then w is preferred to z not less than x is
preferred to y with respect to criterion q;

- if xpgy and wPkz,k<h<0, then w is not preferred to z not less than x is
not preferred to y with respect 10 criterion q.



The set of binary relations T, is defined analogousty, however, xPy means
that x is comprehensively preferred to y by degree h.

Since qeC is a criterion, ie. there exists a function ¢ :A—R such that,
Vx,yeA, cq(x)ZCq(y) means ,X is at least as good as y with respect to g (Roy,
1985), then, in order to define the set of graded preference relations Tq, one

can use a function k: R 2 3R satisfying the following properties Vx,y,ze A:
¢, (X)> c =k [c,(0,c(2))> k [ (v).c (2)1
¢ ®)> e ek [c(2).c RI< K e z).c, (I,
¢ (%) = ¢ Nk Ie (0).c,(y]=0.

The function kq[cq(x),cq(y)] measures the strength of positive (when
cq(x)>,cq(y)) or negative {when cq(x)<cq(y)) preference of x over y with respect
to q. Typical representatives of k_ are

ke, (x).c(y)] = ¢ (%) - ¢y(¥)

and, if cq(z)> 0, Vze A,
(x)

Cq
Cq (y)

k[e (e (y)] =

The strength of preference represented by k, is then transformed into a specific
binary relation Pﬁ using a set of thresholds

Ag={ AL, J=p L, Py e L Lty Ty +10 AL <OF <0, AL S0if j>0, Al > AR Visp 1}
where

agpt= min fiofeac, ]

and

At = (x,ﬁ%A{kq [eatc .

On the basis of the thresholds of the set Aq , a set of intervals Iq is obtained:

Iy =((AT, A7), (A7, AR, (A A0 (A%, A1)



where “(” and *)” can mean “[” or “]” according to the constraint that if an
interval is open (closed) on the right, the next interval (if it exists) is closed
(open) on the left.

Then we can state :
h h+1
k [c (x).c (y)le (A ,Aq+ ) xp‘;y for heH, and h>0,
h-1 sh
k [e,(0,cMIe(A7 . 4q) & xpgy for he H, and h<0
and

K Lo (0.c,M1e (A7, 45) & xpy.

The above definition of graded preference relations is not the only one which
could be considered for the Sy-. Any system of binary preference relations can

be used to express the pairwise comparisons (see Roubens and Vincke, 1985).

2.2 Rough approximation of a preference relation

Let Hp= ﬂPHLl VPcC. Given x,ye A, PcC and he H,, we say that x positively
qe

dominates y by degree h with respect to the set of criteria P iff xpf1 y with
f2h, VqeP. Analogously, Vx,ye A, PcC and he H,, x negatively dominates y by
degree h with respect to the set of criteria P iff xply with f<h VqeP.
Thus, Vhe Hj, every PcC generates two binary relations (possibly empty) on A,
which will be called P-positive-dominance of degree b, denoted by Df}p, and
P-negative-dominance of degree h, denoted by D', , respectively. The relations
DIp and DB satisfy the following properties:

(P1) if (x,y)e DIp . then (x,y)e DX;, for all RCP and for every k<h;
(P2) if (x,y)e D%, then (x,y)e DX, for all RCP and for every k=h,

In the following, we consider a PCT where the decision d can have only two
values on BCAxA:

1) x outranks y, which will be denoted by xSy or (x,y)€S,
2) x does not outrank y, which will be denoted by x8% or (x,¥)eS¢,

where “x outranks y”’ means ,x is at least as good as y” (Roy, 1985). Let us
remember that the minimal property verified by the outranking relation S is
reflexivity (see Roy, 1991; Bouyssou, 1996).



We propose to approximate the binary relation S by means of the DY, binary

dominance relations. Therefore, S is seen as a rough binary relation (see.
Greco, Matarazzo and Slowinski, 1995 and 1997).

The P-lower approximation of S, denoted by PS, and the P-upper
approximation of S, denoted by P S, are defined, respectively, as:

ps= U {(ohnB)cs).

PS= DipNB)2S;.
hQ}p {( +P ) }

Taking into account property (P1) of the dominance relations D", P S can
be viewed as the dominance relation DB, which has the largest intersection

with B included in the outranking relation S, and P S as the dominance relation
D including S which has the smallest intersection with B.

Analogously, we can approximate S¢ by means of the DY binary dominance
relations:

PS= U {(DPme)gS"},

heHp

Ps= n {(phnB)osc].

heHp

The interpretation of PS¢ and PS¢ is similar to the interpretation of P S
and P S. Taking into account property (P2) of the dominance relations DY,
P 8¢ can be viewed as the dominance relation D!, which has the largest

intersection with B included in the negation of S, and P 8¢ as the dominance
relation DY including the negation of S which has the smallest intersection

with B,

2.3 Decision roles

We can derive a generalised description of the preferential information
contained in a given PCT in terms of decision rules.

We will consider the following kinds of decision rules:

1) D, ,-decision rule, being a statement of the type: x DY y=xSy;

2) D, ~decision rule, being a statement of the type: not x Dfp y=xS°;



3) D_,-decision rule, being a statement of the type: not x D% y=x8y;

4) D_-decision rule, being a statement of the type: x D% y=x8¢y.

Speaking about decision rules we will simply understand all the four kinds of
decision rules together,

If: © (P3) [(PS)] there is at least one pair (w,z2)éB such that wDY, z
[w D" 2] and wSz [wS°z], and

(P4) [(P6)] there is no (v,u)e B such that v D u [v D% u] and vSeu [vSu]

then xD% y=xSy [xD&y=xS%] is accepted as a D, -decision rule
[D_-decision rule].

Analogously, if:

(P7) [(P9)] there is at least one pair {w,z)eB such that not wD"p z
[nof w D% z1 and wS°z [wSz], and

(P8) [(P10)] there is no (v,u)eB such that not vDY%u [nof vD%u]

and vSu [vS¢]
then not x D y=xS% [nof x D% y=xSy] is accepted as a D, -decision rule

[D, -decision rule].

A D_,~decision rule [D, -decision rule] x D, y=xSy [not x DI y=>xS°y] will
be called minimal if there is not any other rule x D¥g y=>xSy [not x DX y=x5°%]
such that RcP and ksh [k2h]. A D_-decision rule [D_-decision rule]
not x DY, y=xSy [x DY y=x8°y} will be called minimal if there is not any other
rule not x D& y=>xSy [x DX y=>x5°1 such that RCP and k<h [k=h].

Let us observe that, since each decision rule is an implication, the minimal
decision rules represent the implications such that there is no other implication
with an antecedent at least of the same weakness and a consequent of at least
the same strength.

Theorem 2.1. {Greco, Matarazzo, Slowinski, 1996). If

1) x Dipy=>xSy is a minimal D, -decision rule, then PS=pipM B,
2) x D% y=>xS8% is a minimal D_-decision rule, then PS° =pip B,
3) not x Dhp y=>x8% is a minimal D, -decision rule, then PS= DB,

4) not x D% y=>x8y is a minimal D_ -decision rule, then Ps® = DipB.
¥ +



3. Four-valued outranking

The basic idea of the four-valsed outranking model of preferences (Tsoukias
and Vincke, 1995, 1997) is connected with the search of “positive reasons” and
“negative reasons” supporting a hypothesis of the truth of a comprehensive
outranking relation for an ordered pair (x,y) of actions. The combination of
presence and absence of the posilive and (he negative reasons creates four
possible situations for the outranking: :

1) true outranking, denoted by xS"y, if there exist sufficient positive reasons to
establish xSy and there are not sufficient negative reasons to establish xS°%;

2) contradictory outranking, denoted by xS%y, if there exist sufficient positive
reasons to establish xSy and sufficient negative reasons to establish xS°y;

3) unknown ouiranking, denoted by xS'y, if there do not exist sufficient
positive reasons to establish xSy and there are not sufficient negative
reasons to establish xS°%;

4) false outranking, denoted by xSy, if there do not exist sufficient positive
reasons to establish xSy and there exist sufficient negative reasons to
establish xS°y.

Table 1 summarises the four outranking relations.

Table 1. Four outranking relations

cy) |8 s s s
xSy 1 1 0 0
xS 0 1 0 1

By combining the four types of outranking binary relations for ordered pairs
(x,y) and (y,x) of actions, we get the following ten preference situations for
compariscn of x and y:

1) strict preference, denoted by xPy, if x is strictly better than v, i.e., if xSTy
and ySFx;

2) weak preference, denoted by xHy, if x could be better than y, but we are not
sure because of some evidence against it, i.e., if xS"y and yS¥x;

3) semi-preference, denoted by xly, if x could be better than y, but we are not
sure due to the lack of all the necessary information, i.c., xS'y and ySUx;

4) semi-weak preference, denoted by xLy, if x is possibly better than y, but we
have both contradictory information and lack of all the necessary
information, i.e., xS¥y and yS'x;



5) indifference, denoted by xly, if x and y are strictly equivalent, i.c., xSTy and
¥8'x;

6) ambiguity, denoted by xKy, if x and y could be indifferent, but there exist
contradictions in both directions, i.e., xS¥y and y$¥x;

7) ignorance, denoted by xUy, if we cannot establish what holds between x and
y, i.e., xSUy and ySUx;

8) incomparability, denoted by xRy, if x and y are in strong opposition, i.e.,
xSFy and yS™x;

D weak incomparability, denoted by xQy, if x could be incomparable to y, but
there is some contradictory information, i.e., xSKy and ySFx;

10)semi incomparability, denoted by xVy, if x could be in opposition with y, but
we are not sure due to the lack of all the necessary information, ie., xSy
and ySFx.

The above binary relations can be gathered in a symmetric preference
modelling matrix (Table 2).

Table 2. The ten preference situations

Gy | yTx  y8%  y8%  yS%x
xSty | xly xIly xJy xPy
xSy | yHx  xKy xLy xQy
xS'% ylx  yLx xUy xVy
xS'y yPx  yQx yVx xRy

Note that in the classical outranking approach only two relations (ST and SF)
are used, directly defined with respect to the pair (x,y) and its symmetric
counterpart (y,x). Thus only four relations are obtained: preference (xPy, yPx),
indifference (xIy) and incomparability (xRy), displayed in the four corners of
the preference matrix, shown in Table 2.

In the main diagonal of the preference matrix, four symmetric relations are
grouped: the above mentioned indifference I (xS"y and yS'x) and
incomparability R (xSFy and xSy} and the two new relations of ambiguity K
(xS%y and yS¥x) and ignorance U (x8"y and yS"x).

The two hesitations between preference and indifference are all named from
preference, and the two hesitations between preference and incomparability are
all named from incomparability. All these relations could be considered having
a common degree of preference, between that of strict preference refation and
that of symmetric relations. Moreover we use “semi” only for hesitations due to
unknown states, and “weak”™ only for hesitations due to contradictory states.



Thus, other five different (strictly, semi, wecakly) asymmetric relations and
another one (semi-weakly) symmetric relation are built up (see Table 2).

This way of preference modelling allows us to consider three different levels
of preference, instead of only two states obtained using the traditional
outranking approach (P,IR) or the classical model (P,I).

By such definitions it is possible to apply the rough approximations of
oulranking relations S and S¢ defined on B, in order to build a preference model
on MxM, where McA, which coold further be exploited to get a
recommendation with respect to a set of actions from M (choice or ranking). In
other words, we are able to move from a descriptive model of decision maker’s

preferences expressed on B to a prescriptive model on MCA.

4. Application of decision rules and definition of a final
recommendation

Given a set I of decision rules, obtained in the way described in section 2, and
two actions v,ue 4, if

1) x DY, y=>xSy is a D, -decision rule and v Dp u, we conclude that vSu,
2) not x DVp y=>xS% is a D,_-decision rule and nof v Dl u, we conclude that vS°u,
3) not x D% y=xSy is a D._,-decision rule and not v D' u, we conclude that vSu,

4) x P, y=x8% is a D_-decision rule and v D, u, we conclude that vSu.

According to the four-valued logic, from the application of the decision rules
to the pair of actions (x,y)e AxA there may arise one of the four following
states:

* {rye outranking, denoted by x §Ty: this is the case when there exists at least
one D, -decision rule and/or at least one D_-decision rule stating that xSy,

and no D_-decision rule or D, -decision rule stating that xS¢y;

s false outranking, denoted by x SFy: this is the case when there exists at least
one D_-decision rule and/or at least one D, _-decision rule stating that xS°y, and

no D_,-decision rule or D_,-decision rule stating that x3y;

e contradictory outranking, denoted by x S¥y: this is the case when there exists
at least one D, -decision rule and/or at least one D_ -decision rule stating that

10



xSy, and at least one D _-decisicn rule and/or at least one D, -decision rule
stating that x8¢y;

e unknown outranking, denoted by x SY: this is the case when there is no
D, ,-decision rule or D_ -decision rule stating that xSy, and no D_-decision

rule or D, -decision rule stating that x8°y.

Theorem 4.1. (Greco, Matarazzo, Slowinski, 1996) The application of all the
decision rules obtained for a given Sy on any pair of actions (v,u)e AXA
“results in the same outranking relation as obtained by the application of the
minimal decision rules only.

From Theorem 4.1, we conclude that the set of all decision rules is completely
characterised by the set of the minimal rules. Therefore, only the latter ones are
presented to the DM and applied in the decision problem at hand.

In order to define a recommendation with respect to the actions of McA, we
can calculate a particular score based on the oniranking relations S and S°
obtained from the application of these rules to the actions of M.

VYMcA and VxeM, let

e M) ={yeM-{x}: there is at least one D,, -decision rule and/or at least
one D_.-decision rule stating that xSy},

¢ M(x)" ={yeM-{x}: there is at least one D,,-decision rule and/or at least
one D_-decision rule stating that ySx},

s M(x)* ={yeM-{x}: there is at least onc D, -decision rule and/or at least
one D._-decision rule stating that yS°x},

¢ M(x)" ={yeM-{x}: there is at least one D, -decision rule and/or at least
one D_-decision rule stating that xS°}.

To each xe M we assign a score
Sx,M) = S™(x,M) - $*(x,M) + §™(x,M) - $7(x,M)

where ST(x,M)=card[M™(x)], S*&,M)=card[M*(x)], S"(x,M)=card[M*(x)],
S7(x,M)=card[M(x)].

We can use this score to work out a recommendation in the ranking and
choice problems. For the ranking problem, S(x,M) establishes a total preorder
on M. For choice problems, the final recommendation is x'eM such that
S M)= max S(x,M). We call these exploitation procedures scoring

Xe

procedures.

With respect to the conventional scoring procedure, where the balance
between arcs leaving an action a (i.e. all arcs between a and y such that aSy)
and arcs entering a (i.e. all arcs between a and y such that ySa) is performed,
our exploiting procedure enables a higher granularity of the result. Since

11



negative outranking is explicitly represented (not as a complement of positive
outranking), the scoring computes the balance between positive and negative
reasons. Unknown situations are not considered (they carry no information) and
contradictory situations are equilibrated (they carry information in both
directions), This is compatible with the semantics of the four-valued logic
underlying our approach, where the concept of negation is kept separated from
the one of complement.

The difference between the conventional scoring procedure and our scoring
procedure can also be captured in the following way. In conventional scoring
procedure, value 1 is assigned to each arc present (xSy holds) and 0 to each arc
absent (xSy does not hold). Given any two actions a and b, the balance in favour
of a will give either 1 (strict or weak preference: asymmetric part of the
outranking relation in favour of a), or 0 (indifference or incomparability:
symmetric part of the outranking relation) or -1 (inverse strict or weak
preference: asymmetric part of the outranking relation in favour of b). In our
case, given x€ A, we may assign instead:

* value 1 to a “positive arc in favour of x”, i.e., xSy, and to a “negative arc in
favour of x”, i.e. y§%,

* value -1 to a “positive arc against x”, i.e., ySx and (o a “negative arc against
X7, i.e. x8%,

¢ value 0 to the absence of arcs.

With respect to the four outranking relations we have:

e the true outranking gives a value of 1: in fact, xSy means that there is a
positive arc in favour of x (xSy, i.e., a value of 1) and that there is not a
negative arc against x (not xS°%, i.e., a value of 0),

e the contradictory outranking gives a value of 0: in fact, xS*y means that
there is a positive arc in favour of x (xSy, i.e., a value of 1) and that there is
a negative arc against x (xS°%y, i.e., a value of -1),

e the unknown outranking gives a value of 0: in fact, xS'y means that there is
1ot & positive arc in favour of x (not xSy, i.e., a value of 0) and that there is
not a negative arc against x (not x8°, i.e., a value of (),

o the false ontranking gives a value of -1: in fact, xSFy means that there is not
a positive arc in favour of x (not xSy, i.e.,, a value of 0) and that there is a
negative arc against x (not xS8°%, i.e., a value of -1).

The final resnlt is that ¥x,ye A the balance in favour of x will give five
possibilities: 2 (strict preference: case 1 of section 3; strong asymmetric part of
the four-valued outranking in favour of a), 1 (doubtful preference: cases 2, 3, 9,
10 of section 3; weakly asymmetric part of the four-valued ouiranking in favour
of a), 0 (indifference and/or incomparability: cases 4,5,6,7 and 8 of section 3;
symmetric part of the four-valued outranking), -1 {inverse doubtful preference;
weakly asymmetric part of the four-valued outranking in favour of b), -2

12



(inverse strict preference; strong asymmetric part of the four-valued ontranking
in favour of b). The following Table 3 shows these five possibilities.

Table 3. The value of the score in favour of x from the ten preference sitvations
oMy w8 1 Tys%% 0 Pys% 0 [y -1

xSy 1 | xly 0 ixHy 1 ixly 1 ixPy 2
xSy 0 | yHx -1 ixKy 0 ixly O [xQy 1
xS% 0 |yx 1 iylx 0 ixUy O ixvy 1

0

xSy -1 | yPx 2 iyQx -1 fyvx -1 xRy

5. A characterisation of the scoring procedure

The use of a score-based procedure in presence of a four-valued outranking
relation is a problem which goes beyond the exploitation of rough
approximations (see Tsoukids and Vincke, 1997). For this reason we start with
some general remarks concerning the use of such procedures.

We want also to stress that such procedures are not the only possibility when
four-valued outranking relations have to be exploited. Moreover, the reader may
notice that the use of the score, as defined in this paper, conceals the difference
between uncertainty due to contradictions and uncertainty due to lack of
information, since it gives a single value (1 or -1) to any situation of hesitation.
However, in our opinion, any exploitation procedure results in a loss of
information since it reduces the rich form of knowledge contained in the
outranking relation (o a poorer one which is the final choice or ranking. In
favour of the scoring procedure play its intuitive nature (it is easy to understand
by decision makers), its clear and straightforward caracterization (as it will be
demonstrated in the following} and its easiness in implementation. In other
words, we sacrify some richness of the information to the operationality of the
final result.

Finally, we wish to point out that the scoring procedure is consistent with the
interpretation given in section 3 concerning the three different levels of
preference allowed by the four-valued outranking relation.

5.1 Some previous results

The scoring proceduore proposed in the previous section can be considered as an
extension o the four-valued logic of the well-known Copeland ranking and
choice method (see Goodman, 1954 ; Fishburn, 1973).

These procedures have been characterised by Rubinstein (1980) and Henriet
(1985) and, with respect to valued binary relations, by Bouyssou (1992a and b).
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The ranking procedure was also used in the Multiple Criteria Decision Making
method PROMETHEE 1I (Brans and Vincke, 1985).

In this subsection we remember synthetically the results of Bouyssou,
while in the following subsection we extend them to the four-valued outranking
relation,

A valued (binary) outranking relation on A is a function R associating an
element of [0,1] with each ordered pair of actions (a,b)e AxA with a=b. Let
R(A) be the set of all valued relations on A and 2* the set of all nonempty
subsets on A. A ranking method (RM), denoted by 2, is a function assigning a
ranking >(M,R) on MCA to any valued relation ReR(A) and to any McA.
A choice function (CF) on A is a function

C: 2* xR(A)—2*
such that C(M,R)cM, for each Me2* and Re R(A).

The following propertics of ranking and choice exploitation procedure are
considered (Bouyssou, 1992a and b):

1) strong monotonicity: an exploitation procedure is strongly monotonic if it
responds in the right direction to a modification of R. More formally,

1a) RM 2 is strongly monotonic if ¥a,be MCA and VRe R(A)
a>(M,R)b = a >(M,R"b,

where >(M,R) is the asymmetric part of 2(M,R) and R' is identical to R except
that R(a,c)<R'(a,c) or R(c,a)>R'(c,a) for some ceM-{a};

1b) a CF C is strongly monotonic if VRe R(A) and all Me 24
' ae CMMR) = {a} = COM,R)
where R' is defined as previously.

2) neutrality: an exploitation procedure is neutral if it does not discriminate
between actions just because of their labels. More formally,

2a) a RM 2 is neutral if for all permutations 6 on A, VRe R(a) and Va,be MCA
2(M,R)b © c(@)=(c(M),R%)o(b)

where R® is defined by R%o(a), ob)<R(ab) Vabed;

2b) a CF C is neutral if for all permutations ¢ on A, VRe R(a) and YMe 2"
ae C(M,R) & o{a)e C(o(M),R%).

3) independence of circuits: a circuit of length q in a digraph is an ordered
collection of arcs (u; , Wy, ..., Ug) such that for i=1, 2, ...,q, the initial extremity
of w is the final extremity of u;; and the final extremity of u; is the initial
extremity of vy, , where uy is interpreted as u; and ugy as vy A circuit is
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elementary if and only if each node being the extremity of cne arc in the
circuit is the extremity of exactly two arcs in the circuit. A transformation on an
elementary circoit consists of adding the same quantity to the value of the arcs
in the circuit, A transformation on an elementary circuit is admissible if all the
transformed valuations are still between O and 1. An exploitation procedure is
independent of circuits if its results do not change after an admissible
transformation of R. More formally,

3a) a RM Zz is independent of circuits if RR'eR(A), R’ is obtained from R
through an admissible transformation on an elementary circuit of length 2 or 3
and Va,be MCA

a>(M,R)b = a=(M,R)b;

3b) a CF C is independent of circuits if VMe 2* and VR,R'e R(A), such that R’
is obtained from R through an admissible transformation on an elementary
circuit of length 2 or 3 on M,

CMR)=C(M,R").

The property of independence of circuits makes an explicit use of the cardinal
properties of the valuations R{a,b). This is not the case of the neutrality and
monotonicity (Bouyssou, 1992a and b).

Given Re R(A) and McA, a net flow Sys(x,M,R) can be associated to each
xeM as follows:

Swr(xMR)= ¥ (R{b)-RD.x)).
beM-(x]
More specifically, the RM 2 such that
az(M,R)b iff Syr(a,M,R)2 Syp(b,M,R)
is called net flow ranking method, and the CF C such that
C(M!R) = {aE M: SNF(a’M!R)ESNF(b’M;R) VbEM}‘

is called net flow choice method.

Theorem 5.1. (Bouyssou 1992a), The net flow method is the only RM that is
neutral, strongly monotonic and independent of circuits.

Theorem 5.2. (Bouyssou 1992b). The net flow method is the only CF that is
neutral, strongly monotonic and independent of circuits.

5.2 ﬁoperti of the exploitation procedures for the four-valued outranking

In order to characterise the scoring procedure we consider a four-valued
outranking relation as a function R,y associating an element of {S¥, 8",
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Sk, SF} with each ordered pair of actions {a,b)e A. Now, RM = and CF C are
defined analogously for a four-valued outranking relation, i.e., for R4.(A) being
the set of all possible four-valued relations on A, RM 2 is a function assigning a
ranking >(M,R,,} on MCA (o any Ry,e Ry{A) and lo any McA, and CF C on
A is a function

C: 2 xRy (A)— 24

such that C(M,R.,)CM, for each Me2* and each Ry,e Ri(A).

Moreover, the property of neutrality maintains the same formulation as
in the exploitation procedure for the valued outranking relation, i.e.

e aRM 2 is neutral if for all permutations 6 on A, VMCA, VRy, € R4 (A)
and VabeM

a>( M,R,)b < ofa) >(c(M),R%.)o(b)
e a CF C is neutral if for all permutations ¢ on A, YMe2* and VR4,€ Ry(A)
| ac CMRy) & o(@)e COMR%)
where for any permutation ¢ and Va,be A, R, is defined by
R°:(c(a),6(b))=Ru(ab).

Tnstead, the strong monotonicity and the independence of circuits
properties have a formal definition which is slightly different from the
previons definition and requires some new concepis.

A 4v-transformation on the pair (a,b)e AXA consists of changing the
outranking relation $* into the outranking relation SY, where 8%, $¥e {87, 8¢,
SX, 8"}, and it is denoted by

aS*b — aS"b.

Let us denote by S¥ — SY the class of all the transformations aS*b — aS™
with (a,b)e AxA and 8%, S¥e{S", 8, §% S°}.

Let T be the set of all dv-transformations on the pairs (a,b)e AxA. We
introduce an equivalence binary relation E on T. More specifically,

[4S%b — aS¥b] E [aS¥b — aS%h]

means that the transformation [a$*b — aS¥b] has the same “strength” as the
transformation [aS%b — aS¥b], where S*,8%,8%,8% {87, Y, 8%, §F}.

‘' We define the following equivalence classes for E:

1) E’=(§"= SHUE™ - SHUEY > SHUEE - SHuS® - SHuUS” — 89,
i.e. the class of the transformations from an outranking S* to an outranking
SY of the same strength;
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2) E'=(8" - SHUES® - SHuEH — SHUST — S¥), ie. the class of the
transformations from an outranking $* to an outranking S” having a greater
strength;

3) E'=(ST — §HUES" - SHUE? = SHUESE - S, ie. the class of the
transformations from an outranking S* to an outranking S” having a weaker
strength;

4) E*=(SF — 8Y), i.e. the class of the transformation from an outranking S* to
an outranking SY having a far greater strength (from total absence of
outranking to sure presence of outranking);

5) E2%=(8" — 8B, i.e. the class of the transformation from an outranking S* to
an outranking S having a far weaker strength (from sure presence of
outranking to total absence of outranking}.

Within the context of a four-valued outranking relation,
1'a) a RM 2 is strongly monotonic if VMcA and Va,be M
a>(M,Ry)b = a >(M,R'y, )b

where >(M,R,,) is the asymmetric part of 2(M,R,,) and R' 4, is identical to Ry,
except that R, is obtained from Ry, by means of a 4v-transformation
aS%c — aS”c with (S*—SNE'UE? or c§¥a—cS¥a with (S*—=SY)cE'UE? for
some ceM-{a};

1'b) CF C is strongly monotonic if YMe 2* and Ryye Rey(A)
aeC(M, Ry) = {a} = C(M, R'y)
where Ry, is defined as previously.

A 4v-transformation on an elementary circuit consists of performing a
Avy-transformation of the same equivalence class in the arcs of the circuit, A 4v-
transformation on an clementary circuit is admissible if all the transformed
ontranking relations belong to the set {87, S, 8%, 8} ; e.g., if we have aS™,
bSY%, cSTa, an admissible transformation on the elementary circuit {(a,b),
(b,c), (ca)} is asS’b, bSfc, c¢S®a. Let us point out that the elementary
transformation on the arcs are aSTb—aS'h, bSYc—bSTc, cSTa-scS*a.
Therefore a RM 2 is independent of circuits if Ry, R'e€Ra(A), Ry being
obtained from Ry, through an admissible transformation on an elementary
circuit and

a2(M.R4)b = a2(M,R'4)b.

Analogously, a CF C is independent of elementary circuits if, under the same
hypotheses, YMe 2* and YRy, R 1€ Ry(A)

C(Mstv) = C(M,R'4).
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Let us remark that the four-valued outranking R,, expresses some possible
preference situations without using any numerical evaluation. Therefore, the
property of independence of circuits makes no use of cardinal properties of the
relations, similarly to the property of nentrality and monotonicity.

5.3 An extension of the previous results to the four-valued outranking
To extend the results of Bouyssou (1992a and b), we associate an element of

{0, 1/2, 1} with each (a,b}e AxA introducing the valued binary outranking
relation R, : AXA—[0,1] by stating:

0 if aSFh
R, Gab=11/2 if aS"b or aS*b
1 it aS™b.

This is a reduction to the [0,1] interval of the lattice of the four truth values,
where the values S”and S* are incomparable (no numerical value is used there).
Such a reduction could be judged arbitrary, but the following result shows that

f{w satisfies some desirable properties allowing us to say that R 4v 18 the onty

value relation which faithfully represents Ry, Let us consider F: {ST, 8%, 85
SF15[0,1]. From cach RyeR.(A) we can obtain onc ReR(A) by stating
R(ab)= F(R4(a,b)) V(ab)e AxA.

Let us consider the following properties V(a,b)e AxA:
R1) FR,, (a,b)=1 iff aS™,
R2) F(R4, (a,b))=0 iff aS™,
R3) F(R}w(a,b))—F(Riv(a,b))=F(Riv(C,d))-F(R‘jv(c,d)) iff aS*b according to
R%,, aS"b according to R3,, cS™d according to R},, ¢S°d according to Rf,
and
[aS*b — a$"b] E [cSVd — cS%).

Property R1) says that V(a,b)e AxA the transformation of the four-valucd
outranking Ry, in the valued outranking R should give the maximum value,
ie., R(a,b)=1, iff aS™h. Analogously, property R2) says that, ¥(a,b)e AxA, the
same transformation should give the minimum value, i.e., R(a,b)=0, iff aS*b.
Finally, property R3) says that, if 4v-transformations S*—S* and S¥—8” are
of the same strength, then we should have F(SS-F(SH= F(SM)-F(SH.
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Theorem 5.3, Properties R1), R2) and R3) are satisfied if and only if
FRue (ab)=R 4, (0).

Proof. Necessity. Let us suppose that aS' according to RY,, aS'b according to
R2,, ¢8d according to R3,, cS°d according to Rf,. Since

[aS™ — aSUb] E [cS"d — cSFd]

then, for property R3), we must have F(S")-F(S")= F(S")-F(S") and, recalling
properties R1) and R2), 2E(SY)=1, i.e., F(SY)=1/2. Furthermore, let us suppose
that eS¥f according to R}, , eS"f according to R?,, g8"h according to R}, gS'h

according to R}, . Since
[eS¥ f— eSYf] E [g8™h — g8'h]

and F(Riv(e,t))-F(ij(e,t))=O (because, of course, F(SH-F(SN=0), then, for

property 3), we must have F(S)-F(S")=0, and therefore, for the previous result,

F(S* )=F(SY=122.

Sufficiency. Properties R1) and R2) are trivially verified. With respect to

property 3), V(a,b)e AxA we have:

) R, @b= R, (b if Ry @b) is obtained from Ry (ab) by
means of a 4v-transformation a$<b— aS¥b with (8* — SHE’;

2) R, @b)=R,, ab+1/2if Ry (ab) is obtained from Ry, (a,b) by means
of a 4v-transformation a$*b— aS¥b with (S* — S¥)cE";

3) R, @b=R,, (ab)-1/2if RYy(ab) is obtained from Ry, (a,b) by means
of a 4v-transformation aS¥b— aS™b with (¥ - S")cE™;

4 R, @b=R, @b+l if Ry (ab) is obtained from Ry (ab) by
means of a 4v-transformation aSb— aS™b with (§* — SH)cE;

5) li"w (a,b)=11i4v (a,h)-1 if R, (a,b) is obtained from Ry (a,b} by
means of a 4v-transformation aSb— aS*b with (§* — SV)cE?. #

Moteover, in order to prove the extension of the basic results recalled in
section 5.1, the following notation and Lemma 5.1 are useful.

Va,be A let us introduce the marginal positive s(Ry, )*(2,b), negative s(R4, y(a,0),
and resultant s(R4, )(a,b) score of a in relation to b,

o SRy (ab)=1if aS™ or aSb and s(Ry)*(a,b)=0 otherwise,
o s(Re)(ab)=1if aS' or aS*b and s(R.,Y(a,b)=0 otherwise,
b S(R4\:)(a,b)= S(R4v )+(a7b)_ S(R4\' )-(a!b)-
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In consequence, we have

-1 if aSfb
s(R,, )@ by=<0 it a8 or as¥v
1 it aS™b.

Lemma 5.1, The following relation holds:

S(st)= E (S(R 4\‘)(va) = S(R 4v)(bsx))~

teM—{x}
Proof, In fact, we have that

2 (3R )b - sR 4)(bx)) =

beM~{x}
=b MZ_,{ ) (S(R 4‘;)*(?(,])) = S(R 4\.)‘(X,b) = S(R 4v)+(b:x) + S(R 4v)-(bsx)) =
= 3 sRu)xb)- T sR&)Eb)- T sRe)GX+ I R4
beM—{x} ’ beM—{x} beM-{x} beM—{z}

Since xS'b or xS*b implies that there exists at least one decision rule for
which xSb, then we have

T s8R )(xb)=57(x).

beM-{x]
Analogously, we obtain
T SR ) (®b)=5(),

beM-(x}

Y SR ) (bx)=S"(x),

beM~-[x}

Y sRa)(0x)=5"X

beM-{x}

and, therefore, we have the thesis. #

Lemma 5.2. The following relation between the overall score S(x,M) and the
net flow Sy (x,M, R, ) holds:

S(x,M)= 2 Sxe (x,M, R )
VMcA and VxeM.

20



Proof. Let us observe that, Va,be A, we have s(Ry.)(a,b)= 2R 4y (@b)-1,
Therefore, on the base of Lemma 5.1, we obtain;

S(va)= 2 (S(R.:w)(x,b) - S(R4v)(bax))=

beM-{x}

= ¥ (@R, xb)-1-2R,, 0bx)-1)=
beM-{x}

=2 ¥ (R, (®b)-Ry(b,x) =2 Sw .M, R,,). #
beM-{x}

Lemma 5.2 shows that the overall score S(x,M) is a strictly positive
monotonic transformation of the net flow SNF(x,M,ﬁ4V). Therefore, we
conclude that the ranking and the choice obtained from S(x,M) are the same as
those obtained from Sxr (x,M, R av )

Lemma 5.3. Given R;,R'4;eR4u(A), if Ry, is obtained from Ry, by an
admissible 4v-transformations on an elementary circuit, then ﬁ'4v is obtained

from ﬁ4v by an admissible transformation on an elementary circuit.

Proof. 1t is a direct consequence of property R3). #

Theorem 5.4. With respect to a four-valued outranking relation established by
a set of decision rules, the scoring procedure based on S(x,M) is the only RM
which is neutral, strongly monotonic and independent of circuits.

Proof. Due t0 Lemma 5.2 and to Lemma 5.3, Theorem 5.1 implies also
Theorem 5.4, #

Theorem 5.5. With respect to a four-valued cutranking relation established by a
set of decision rules, the scoring procedure based on 5(x,M) is the only CF
which is neutral, strongly monotonic and independent of circuits.

Proof. Due to Lemma 5.2 and to Lemma 5.3, Theorem 5.2 implies also
Theorem 5.5, #
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6. Conclusions

We have been using the rough set approach to the analysis of preferential
information concerning multicriteria choice and ranking problems, This
information is given by a decision maker as a set of pairwise comparisons
among some reference actions using the outranking relation. The outranking
relation is approximated by means of a special form of dominance relation and
decision rules are derived from these approximations. They represent the
preference model of the decision maker. In result of application of these rules to
a new set of potential actions, we get a four-valued outranking relation.

In this paper, we dealt with the problem of obtaining a recommendation
from the above four-valued outranking relation. With this aim we proposed an
exploitation procedure for ranking and choice problems based on a specific net
flow score. Furthermore, we proved that this procedure is the only one which is
neutral, strongly monotonic and independent of circuits.
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