CAHIER DU LAMSADE

Laboratoire d’Analyse et Modélisation de Systémes pour I’ Aide a la Décision
(Université Paris-Dauphine)
Unité de Recherche Associée au CNRS ESA 7024

MULTICRITERIA METHODOLOGY CONTRIBUTION
TO THE SOFTWARE QUALITY EVALUATION

CAHIER N° 155 Marie-José BLJN !
mai 1998 Alexis TSOUKIAS !

regu: janvier 1998.

! LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16,
France (e-mail: {blintsoukias] @lamsade.dauphine.fr).

CONTENTS

Pages
Résumé e 1
ADSIIact . . . e 1
Infroduction 2
1. Evaluation of software quality 2
1.1 Twotypesof evaluation 0., 2
1.2 Standards about quality 3
1.3 The software industry challenges 3
2. Using the standards to evaluate COTS software 4
2.1 Basic principles of quality evaluation developed in the standards 4
2.2 The difficulties to use the standards for concrete evaluations
of COTS software i e e 7
3. Applying the multicriteria methodology for concrete quality evaluations
of COTS software i e e 9
3.1 The evaluation problem, 9
3.2 Ordinal aggregationttt i 10
3.3 Geometric MEANS . . . oo i i et e e 12
3.4 Comments on the experience 12
A DISCUSSION & 4 v e e e e e e 13
4.1 General 1SSUESt 13
4.2 Drawbacks of aggregation 14
4.3 Software evaluation e 15
5. Related work e 18
6. ConcluSiOn . ..t e e e e e 23
References 23
Appendix: ELECTRE II method applied to the experiment 26

Expériences d’utilisation de la méthodologie
multicritére pour évaluer la qualité des logiciels

Résumé

Les modéles d’évaluation de la qualité des logiciels possédent des caractéristiques pro-
pre: une structure hiérarchique induisant Iutilisation de méthodes d’agrégation pour cal-
culer des évaluations a différents niveaux d’abstraction, I’aspect prédictif des évaluations
et le mélange de mesures de différentes natures et de préférences nécessitant des procédures
d’agrégation spécifiques. Par ailleurs, ils sont formalisés par des normes internationales
utilisées couramment par les responsables d’évaluations.

Ces modeles présentent des difficultés d’application et ne sont pas entiérement satis-
faisants. L’utilisation de la méthodologie multicritere offre une alternative. Les résultats
de différentes expériences menées sur des cas réels sont exposés et une discussion critique
est proposée.

Mots elés: qualité logiciel, méthodologie multicritére, évaluation de la qualité,
modéles de qualité, processus d’évaluation, méthodes d’agrégation, mesures et préférences

Multicriteria Methodology Contribution to the
Software Quality Evaluation

Abstract

The quality software evaluation models present some specific characteristics: a hierar-
chical structure and the use of aggregation methods to calculate the evaluations at different
abstraction levels, the presume aspect of the evaluations and the mixture of measures of
different types and of preferences requiring suitable aggregation procedures. In addition,
they are formalized by international standards largely used by practitioners as guidelines
for the evaluations. _

In reality, such models are difficult to apply for concrete evaluations and are not
completely satisfactory. The use of the multicriteria methodology allows to solve some of
the problems these models present. Such a methodology was experimented on several real
cases already processed with the traditional method. The results are presented in this
paper and a critical discussion is proposed

Key words: software quality, multicriteria methodology, quality evaluation, quality
model, evaluation process, aggregation methods, measures and preferences

Introduction

Software quality is one of the most important enterprises’ challenges of 2000's. A great
number of standards about software quality have been edited by ISO [ISO 8402, 1994],
[ISO 9000, 1987}, [ISO 9000-3, 1991], [ISO 9001, 1994], [ISO 9126, 1991], [ISO 12119,
1994] for several years. In ISO standard about definitions (ISO 8402), the quality of
software is defined as the set of properties and characteristics which define the capability
of the software to satisfy expressed or implicit needs. Such characteristics deal with the
product’s functions and the product’s non functional qualities and constraints (like costs
and availability).

In fact, two important concepts are hidden under the term “quality”: insurance of
quality and evaluation of quality. The quality insurance is the set of pre-established
and systematically executed activities for insuring that an entity will fulfill the quality
requirements. The quality insurance is a set of precautionary measures.

The evaluation of quality is a set of attributes and measurement methods for describing
and measuring the quality of a software. Unlike insurance quality, the evaluation of the
quality is realized afterwards.

During the development of a specific software, both quality insurance and quality eval-
uation can be used: quality insurance as precautionary measures and quality evaluation
as control.

In this paper, we are only interested by the quality evaluation of ”commercial off the
shelf” software (COTS software) [Kontio, 1996). This process is defined by ISO 9126
and 1EEE 1061 [IEEE, 1992) standards which propose to define the quality as a set of
attributes, organized in a tree in which each attribute has a weight and the weighted sum
is used to aggregate the measures. We studied three existing industrial cases of software
evaluation calculated in accordance with the standards and, faced with the difficulties to
really exploit the results, we experimented the use of multicriteria methodology. This
work allows us to understand some of the problems generated by the application of the
standards, to propose new principles for evaluating software quality and to suggest future
rescarch for adapting multicriteria methodology to software quality evaluation.

Section 1 of the paper discuss two ways to evaluate a software, the-pre and the post-
evaluation, the concerned ISO standards and the software industry challenges about qual-
ity. Section 2 presents the basic principles of quality evaluation developed in the standards
and the difficulties to apply the standards to concrete evaluations of COTS software. Sec-
tion 3 describes three quality evaluation existing cases already processed in accordance
with ISO 9126 standard and explains how we applied the multicriteria methodology. Sec-
tion 4 comments the experiment. Section 5 presents some significant work in the software
quality evaluation area and section 6 concludes.

1 Evaluation of software quality

1.1 Two types of evaluation

A software can be evaluated in two ways. It can be pre-evaluated (the software itself does
not exist or it is not available, at least in an executable version), or it can be post-evaluated
(running version of the software is available besides working experience)

A pre-evaluation is calculated from a model of quality which: 1°) defines a set of
measures like number of different screens, number of data in a screen, number of global
variables used in the code, number of code modules or existence of specific functions, 2°)
establishes relationships between measures and some global characteristics of the software
like maintainability or usability. A post-evaluation is made by measuring some interesting

evaluation

resumed .
gvaluation real evaluation

to choose a software to control the quality of to update the
among several ones the development of a new evaluation
software process

Figure 1: the two types of software quality evaluation

aspects of the software seen like a black box, for instance the time spent to realize a specific
treatment or the reply time in a particular context.

A pre-evaluation may be used: 1°) to choose a ready-made software adapted to the
needs of a specific user among several software supposed to fulfill the same kind of needs,
2°) during the successive development phases of a specific software to control that the
specifications, the design, the programming and the tests fulfill the quality requirements
of the phases and as a result, that the final software will be conform to the needs.

A post-evaluation allows to compare the presumed results with the real ones. It also
allows to understand how the evaluation process can be modified and how to introduce
any correcting factors in the pre-evaluation.

1.2 Standards about quality

Works about quality began during the last world war in the military domain in United
States of America. A few years later, in Japan, the national quality policy was initiated.
During the 60°s, then the 70%s, in United States of America and in France, standards have
been created to control the quality of software development, first in the space research
programs and after in the nuclear power ones. Now, every industrial and economic sector
is concerned. Several ISO and IEEE standards have been created from the existing work
in the quality area. The most important ones concerning the software domain are: ISO
9001, ISO 9000 - 3, ISO 12119, ISO 9126 and IEEE 1061.

The last two standards are specifically relevant to the software quality evaluation. ISO
9126 standard presents a model to describe and to evaluate software quality. IEEE 1061
standard details a methodology to establish software quality requirements, to identify and
implement software quality metrics, to analyze the software metrics results and to validate
the software quality metrics.

1.3 The software industry challenges

Now, firms are engaged in a cut-throat world competition and bringing a certification
process into play allows to guarantee the skill of the firm or the conformity of a product,
of a service or of an organization to a predefined reference. Two kinds of certification
exist: the certification of enterprises and the certification of products.

The certification of enterprises provides references for the customer. It guarantees that
an enterprise is concerned by quality all along the production process.

The certification of a product or of a service attests that the characteristics of the
product or of the service is in accordance with technical specifications,

No general certification of specific software exists, only certification of software relevant
to a particular domain, for instance the critical software used in aeronautical domain.

Concerning COTS software in France, the “NF logiciel” [AFNOR, 1996] label certifies
that: the functions of the software match their description in the software documeniation
provided to the customer before purchasing, the software was tested by a registered labora-
tory, the software quality level is in accordance with the ISQ 12119 standard requirements,
the quality policy and practices of the supplier are verified, an after-sale service is provided
and the software characteristics are durable.

2 Using the standards to evaluate COTS software

In the last section, we presented two ways to evaluate a software and the relevant standards.
Both ways of evaluation described may be used to choose an appropriate COTS software
or to control the development quality of a specific software. In this paper, we are only
interested by the pre-evaluation of COTS software. This section describes the major
principles developed in the ISO 9126 and IEEE 1061 standards, and the difficulties to use
these standards for concrete cases.

2.1 Basic principles of quality evaluation developed in the standards

ISO 9126 and IEEE 1061 standards, based on research work in software quality [Boehm,
1978} [Mc Call, 1977} propose: 1°) a common definition of the concept of quality which
is "the set of properties and characteristics of a software which defines its capability to
satisfy some expressed or implicit needs”, 2°) a common quality model (figure 2.a) which
defines the quality as an expression of several elements named quality factors.

Quality factors are defined from the user’s point of view. As the measures of the
quality are made on the components of the software, each quality factor is associated
with several quality criteria which express the quality from the software point of view.
One or several metrics are finally associated with each quality criterion. For example, in
figure 2.b, the quality of a word processing package is defined as: 1°} the capability of the
software to execute some specific functions, 2°) the effort needed to learn its using and
3°) its user-friendliness. Three quality factors are thus defined: functionality, learning,
user-friendliness. The factor ”functionality” is expressed by the criteria: editing, text
formatting, data recording, printing. The criterion ”editing” is measured by the metrics:
granularity of the searching (character, word, line, page), integration of objects (schemes,
pictures, texts from another source, hypertext pointers), undoing (number of undoing
levels), cutting (with or without the possibility to transfer the information to another
software), pasting (with or without the possibility to paste information from another
software, to change or to keep the format of the information, the size and the type of
characters), copying (with an only one operation or with two operations).

IEEE 1061 and ISO 9126 standards propose six quality factors: efficiency, functionality,
maintainability, portability, reliability and usability, a list of quality “criteria” for each of
these factors (figure 3) and a list of metrics associated with each “criterion” (figure 4).

quality

quality of a word processing software

functionality learning conviviality

editing formatting recording printing

search integration "undo” co astin
processing of objects possibilities Py | [Pastng

presumed measure | factor* real measure
1} \\
criterion*
correlation
calcuiation [)
metric*
key : aggregation function
* one or several

— presumed calculation

a. theoretical model

b. an example of a part of a quality model

Figure 2: a quality model in accordance with the ISO 9126 and IEEE 1061 standards

Factors Criteria

functionality completeness

correctness

security

compatibility
interoperability
maintainability | consistency

correctness

modularity

traceability

expandability

efficiency time economy

hardware resource economy
software resource economy
communication economy

Figure 3: example of quality factors and associated criteria proposed by standards

Criteria Metrics

completeness | - ratio of number of completed documents to
total number of documents

- ratio of number of completed software
components to total number of software
components

- ratio of number of implemented functions to
total number of required functions

- ratio of number of implemented user interfaces
to total number of required user interfaces
traceability | - ratio of number of software components of

this phase that can be traced to the previous
phase, to total number of software components of
this phase

- ratio of number of documents of this phase that
can be traced to the previous phase, to total
number of documents of this phase

- ratio of number of functions that can be traced
to the requirements, to total number of
functions

- ratio of number of user interfaces that can be
traced to the requirements, to total number of
user interfaces

Figure 4: example of metrics proposed by quality standards

A complex hierarchy is so defined, producing a tree where the root is the global quality
evaluation and the leaves are the metrics available on specific features of the software. The
intermediate nodes represent “criteria” and sub-criteria depending on the detail and depth
of the quality model,

In the primary work from Mc Call [Mac Call, 1977), the measure of each metric was

measure scale

Excellent

Good

Fair

Poor

L ||||1l [}

Figure 5: example of scale used in the standards

calculated from answers to a set of questions: the number of positive answers to the set of
questions were divided by the total number of questions and the result, which was between
0 and 1, was the measure of the metric.

But, in practice, evaluators need measures of different types: qualitative, quantitative
or Boolean. So, scales are used to transform them into an unified score (figure 5).

An aggregation method calculates the measure of each quality criterion using the rela-
tive importance of the metrics associated with the criterion and the measure of each quality
factor using the relative importance of the criteria of the factor. Finally, the aggregation
method calculates the measure of the global quality using the relative importance of the
factors. The aggregation method widely used is the weighted sum.

In fact, this process allows to predict the measure of quality factors of either a software
that an enterprise wants to buy or of a software development in progress. When the
software is bought or finished and is used, factors can be directly measured and correlation
between predictive and direct measures can be calculated to control the evaluation model
and to adapt it for future uses.

2.2 The difficulties to use the standards for conerete evaluations of
COTS software

In this section, we make treasure of the difficulties encountered in the practical use of the
standards. These results can be completed by the reading of [Fenton, Schneidewind, 1996]
who discuss weak and strong points of standards.

A COTS software is generally largely used in the organizations which purchase them
and it is impossible to define and to simulate all the applications the software will go
through. Therefore, the evaluation has to consider mainly the software features rather

definition of the set of the alternatives

definition of the set of the actors

J

for each actor

™| final evaluation

evaluation result from the actor point of view

Figure 6: the iterative quality evaluation process

than their behaviour in a real context.

The evaluation of a COTS software is often a long process evolving in time and usu-
ally several actors are implied, for example, the final users, the purchase manager, the
maintainers of the software, the manager responsible for the integration of the software in
the organization or in the technical environment. Each of the actors has his own point of
view and his own quality model. Several models have, often, common parts. Generally,
each actor builds an a priori quality model with a great number of factors, sub-factors and
criteria from his knowledge of domain and from his experience. But it is very difficult for
him to determine the decisive elements of the model and to associate“weights” to factors,
sub-factors and criteria. Moreover, the different elements forming a quality model are not
always independent. For example, a same criterion may be associated with several factors.
As a result (using the weighted sum aggregation procedure), this criterion has a greatest
weight in the quality model than another one.

Usually, the evaluators proceed by trial and error in order to determine the right
choices. So, in fact, the using of a quality model comes within an iterative decision process
throughout each actor determine the relevant quality model in refining and adapting the
original one (figure 6). But, the standards do not provide means to validate the model
and to simplify and customize it.

In addition, a software is not a monolithic block but it is composed, bought and
delivered in several parts depending on the needs of the users and it is complemented by
services like assistance to its use or maintenance.

As we have seen, the standards propose to transform the measures on the leaves of
the hierarchy in homogeneous numerical evaluations (in order to use the weighted sum
as aggregation procedure). However, such transformations are often arbitrary and the
result is therefore meaningless. Some research have pointed out such a drawback (for a
discussion see [Kitchenham, Pfleeger 1996]) on which we will come back in section 4.

efficiency | | practical tests |

each element of the hierarchy
has a weight

from 2 to 10 per chapter

about 10 per sub—chapter
boolean, count, numerical scale

Figure 7: the quality model of the studied cases

3 Applying the multicriteria methodology for concrete qual-
ity evaluations of COTS software

In the last section, we explained the main principles of ISO 9126 and IEEE 1061 standards
and we stated the difficulties to use these standards to evaluate the quality of COTS
software. We present now an experiment of the use of different aggregation procedures
(instead of the usual weighted sum) in three real software quality evaluations. The three
cases were already gone through an ISO 9126 based evaluation which is first described.
Then, the use of ordinal and geometric aggregation is explained. Finally, the results of
the experiment are discussed.

3.1 The evaluation problem

The cases studied belong to a French Laboratory which provides comparative studies of
COTS software and of computer materials for publishing.

Each of these cases involves six or seven software and two or three actors. They are
processed in accordance with ISO 9126 standard using a five level hierarchical quality
model (figure 7). The different actors use the same hierarchy but give different weights to
the elements. We worked only on a sub-tree of the quality model which contained from
200 to 300 leaves.

The measures of the metrics may be: counts, Booleans or ranges of numerical scales.
To normalize them, measures are transformed in marks by the formula below:

mark = (measure / the highest measure of the metric) / the sum of the weight of the
metrics of the sub-chapter) * the weight of the metric

For example, Figure 8 represents the measures and their normalization of the metrics
of the sub-chapter “Calendars” for two products A and B. Three metrics are defined:
last year of the permanent calendar, maximum number of official holidays, definition of a
specific calendar of a task. The first metric is a count, the second one is a range of the
numerical scale {0, 5,10}, the last one is a Boolean.

metrics type weight product A product B
measure | mark | measure | mark

last year of the count 1 2049 % X % 2129 % X %

permanent calendar

maximum number of range 2 b =X £ 10 I X &

official holidays

definition of a specific | Boolean 5 0 Ix3 1 IX3

calendar of a task

Figure 8: example of measure normalization in the cases studied

3.2 Ordinal aggregation

This section briefly presents the use of an ordinal aggregation procedure belonging to the
family of the ELECTRE methods [Roy, 1991]. A detailed description of the method can
be found in Appendix.

Such a procedure was applied from the leaves to the root of the quality model. At each
level of the tree, an ordering of the alternatives (the software to evaluate) is calculated
for each node of the level. These orderings are used at the next level to calculate new
orderings and so on (aggregation of preferences) (figure 10).

The concordance formula was only used. The responsible of the evaluation in the
Laboratory was not able to indicate any veto condition on the criteria. Moreover, as most
of the criteria were ordinal, it was very difficult to state any veto threshold. Finally the
responsible considered that the existence of a veto could act as an “apriori” elimination
in which case the set of products to evaluate should be considered as badly chosen.

In order to be able to repeat the calculation at each level of the quality model, the
outranking relation obtained at each node of the hierarchy was transformed into a weak
order using the “Score method”. This method consists, for each alternative, in subtracting
the number of times this alternative outranks the others and the number of times it is
outranked (“final score” of each alternative) (figure 9). The weak order is established on
the basis of the final score of each alternative.

Al | A2 | A3 | Ad | # of alternatives outranked by =

Al 1 0 010 1

A2 1 1 1 1 4

A3 1 0 1 1 3

Ad 1 0 0|1 2
of alternatives outranking = 4 1 2 3
tinal score -3 | 3 1] -1

final order used in the next level of hierarchy | 4 | 1 | 2 [3 (1 being the best)

Figure 9: using the Score method to order alternative at each node of the quality model

The ordinal aggregation may conceal situations of incomparability which have to be
analysed before calculating the final order of the alternatives at each level of the hierar-
chy. When incomparable alternatives were detected, a sensitivity analysis was applied.
Every alternative better or worst than the incomparable alternatives was kept away. The

10

n is the level of metrics in the tree representing the quality model

Y

L

calculation of an ordering relation for cach
node at level n—1 from the ordering relations
of linked nodes at level n

is (n—1) the root of the tree representing
the quality model?

(n-1) —n the last calculated ordering is the final ordering

Figure 10: applying ELECTRE II for comparing software

11

incomparable alternatives and every alternatives ordered between them were retained and
the calculation were remade with a new concordance threshold until all incomparabilities
disappeared. The idea of the sensitivity analysis is to verify at what confidence level all
the alternatives can be compared. In fact, the decision maker wanted to verify if the
incomparability was due to the imposition of high confidence or to intrinsic characteristics
of the alternatives.

3.3 Geometric means

Another experiment was conducted using the geometric and dual geometric means as
aggregation procedures. So, we substituted the weighted sum of the scores used in the
existing evaluation procedure for first, the weighted product of the scores and then, for
the weighted product of the complement of the scores. More specifically, the two formulas
below were used:

u(z) = [J(u;(2))* geometric mean

J

w(z) =1 - [J(1 - u;(z))*” dual geometric mean

3

where:

- u(2): score of alternative z on the parent node;

- uj{z): score of alternative z on the son node j;

- w;: relative importance of the son node j;

Obviously the formulas make sense when all evaluations are expressed in the interval [0, 1].
However, in our experiment we avoided the extreme values 0 and 1 since the presence of
just one of them in the son nodes will keep the global score to 0 or 1 independently from
the rest of the evaluations (in other words we attenuated the non compensation effect of
the formula).

3.4 Comments on the experience

The use of the ordinal aggregation methods presented two positive features and a negative
one.

1. It enables to handle homogeneously non homogeneous information in a meaningful
way, since it does not impose any restriction on the information expressed on the
criteria (sub-criteria, etc.).

2. It enables to put in evidence situations of incomparability which otherwise could be
concealed during the aggregation. Therefore, the ordinal aggregation can be a way
to validate the quality model.

3. The information contained in each criterion (sub-criterion, etc.) is often richer than
the simple order of the alternatives. It is sometimes a ratio or interval information
on the comparison of the alternatives, other times an external measurement or a
qualitative judgment, but in all such cases it contains knowledge about a metric
and its properties. A purely ordinal aggregation in every level eliminates these
information since it focuses on the order of the alternatives. This may lead to a
poor conclusion from the point of view of the decision maker. Particularly, in our
case, although he was aware that a large part of his criteria was purely ordinal, the
decision maker would like to have measures of the distances between the alternatives.

12

Geometric mean brings out specific “bad” performances of the alternatives since the
global score deteriorates exponentially with respect to the importance of the criterion
on which the “*bad” score is expressed (conversely the dual geometric mean will bring
out alternatives with “good” evaluations). Under such a perspective, these both means
introduce a non linear compensation effect among the criteria and therefore can be used
as measures of “attractiveness” in the interval [0, 1] in the presence of ordinal information
also. They may also be replaced with other kinds of ordered statistics and triangular
means meaningful as “attractiveness” measures.

4 Discussion

Section 3 describes how we applied the multicriteria methodology to three real cases
of quality evaluation and comments the results., This section discusses different issues
relevant to quality evaluation: what a measure is, the determination of a measurement
scale, the difference of a measure and an evaluation, the drawbacks of aggregation, the
properties of the elements of a software quality model and the consequences of the choice
of an aggregation method.

4.1 General issues

The problem of quality evaluation (of a service, a product or whatsoever) is often addressed
in a confusing way. The basic confusion arises between the “measurement” of quality and
the choice (of an alternative) based on quality attributes. These are two completely
different activities and have to be treated as such.

The construction of a “measure” requires:

1. the definition of the semantics of the measure (what we measure?);
2. the definition of the structure of the metric (what scale is used?);

3. the definition of one or more standards (how the measure is performed?).

On the other hand, evaluating a set of alternatives under a decision perspective requires
to answer questions of the type:
- who evaluates?
- why is the evaluation necessary?
- for what purpose is the evaluation?
- how the evaluation has to be done?
- who is responsible for the consequences?
- what resources are available for the evaluation?
- is there any uncertainty?

A measure is a unary function m ;: A — M mapping the set of objects A to the set of
measures M. The set M is equipped with a structure £ which is the scale on which the
measure is established. Such scales can be ordinal, ratio, interval or absolute [Roberts,
1979]. Each type is univoquely defined by its admissible transformations. Measuring the
elements of A can be done only if M is defined. So, an external reference system and
standards are necessary (represented by M).

A preference (for decision reasons) is usually represented by a binary relation R, B C
A X A, so that the set A is mapped to itself. We obviously need to know under which
conditions r{z,y) =,y € A is true, but there is no need of external reference system.
When R is a complete binary relation (Vz,y € A r(z,y)vr(y,z)), then it admits a

13

numerical representation which depends on what other properties R fulfills. For instance,
if R satisfies the Ferrers property and semi-transitivity (for such concepts, see [Roubens,
Vincke, 1985]), then it is known that Jv : A = R : r(z,y)ev(2) > v(y)+k (k being a real
constant). A typical confusion is to consider the function v as a “measurement” applied
on the set A. Actually there exist an infinity of functions v representing the relation R
and anyone could be chosen. Since there is no standard (or metric) any of such functions v
is just a numerical representation of R, but not a measure {(although we may use a special
“preference measurement” concept). For instance, if z is indifferent to y, y is indifferent
to z, but x is preferred to z, then two numerical representations of such preferences are
w(z) = 10, u(y) = 12, u(z) = 14,k = 3 and v(z) = 50, v(y) = 55,u(z) = 60,k = 6.

Finally if for a given set A a2 measurement function exists, it is always possible to
infer a preference relation from the measurement. However, such a preference relation is
not unique (the fact that two objects have a different length, which is 2 measure, does
not imply a precise preference among them). Suppose that 3/ : A — R (a measurement
mapping the set A to the reals, let us say a length}, then the following expressions are all
admissible:

)

- r(z, yyel(z)

r(z, y)i(z)
S S+

(z,y)el(z) > 2i(y), etc

These are all admissible preference relations, but with an obvious different semantic.
The choice of the “correct” one depends on the answers on the evaluation questions. An
evaluation is therefore always a part of a decision aid process and represents its subjective
dimension.

The other way around is not always possible to obtain a measurement scale from a
preference relation. First of all the preference relation needs to be a complete binary
relation (otherwise there is no guarantee that the numerical representation exists), but
this is not always the case. Secondly, if the numerical representation exists, it is not
necessarily unique. In such a case it is difficult to choose the “correct” measure since we
need to know all the possible sets on which such a measurement could apply. Finally it is
necessary to build an external metric and this may not be always possible.

The differences between measurement and evaluation (seen as preference modelling)
reflect also the possibilitics we have to obtain aggregated measures or preferences from
sets of attributes or criteria.

> I
<Y
<

4.2 Drawbacks of aggregation

Aggregating measures or preferences is a very common activity. Observations and/or
evaluations provide measures or preferences on several distinct attributes or criteria. But
we need a comprehensive measure or preference relation which may represent all the
different dimensions we want to consider. It is surprising how often the choice of the
aggregation operator is done without any critical consideration about its properties. Let
us take two examples.

Example 4.1 Suppose one has two three dimension objects a,b, for which their dimen-
sions are known (I(a),l(b),h(a),h(b),d(a),d(b)). In order to have an aggregale meq-
sure of each object dimension, one may naturally compule their volume, that is v(a) =
l(a)h(a)d(a) and v(b) = I(b)h(b)d(b). If the three dimension are prices, one may use,
however, an average, that is p(a) = l(a) + h(a) + d(a)/3 and p(b) = L(b) + k(D) + d(b)/3.

From a mathematical point of view, both operators are admissible (when I(z), k(z), d(x)
are ratio scales as in our example). However, the semantics of the two measures are quite

14

different. It will make no sense to compute a geometric mean in order to have an idea of
the price of a, b as it will make no sense to compute an arithmetic mean in order to have
an idea of the dimension of a,b. The choice between the geometric and the arithmetic
means depends on the semantics of the single measures and of the aggregated ones.

Example 4.2 Suppose one has two objects a, b and two criteria (in the Multicriteria Deci-
sion Aid Methodology, a criterion is a preference relation with a numerical representation)
g1 and gz such that, Vz,y p;(z,y)eg;(z) > g;(y). Moreover g1 : A [0,1] and g1(a) =0
and g1(b) = 1 and g5 : A~ [0,2] and g2(a) = 2 and g,(b) = 1. Under the hypothesis that
the both criteria are of equal importance, many people will compute the average and infer
the global preference relation. In our case, one has i(a,b) (i(z,y) representing indifference)
since g(a) = g1(a) + g2(a)/2 = 1 and g{b) = ¢1(b) + g2(b)/2 = 1. However if an average
is used, it is implicitly assumed that g, and g2 admit ratio transformations. Therefore it
is possible to replace g2 by gb : A — [0,1] so that gy(a) = 1 and g4(b) = 1/2 (known as
scale normalization). Under the usual hypothesis of equal importance of the two criferia,
we obtain now p(b,) since g(a) = 1/2 and g(b) = 3/4. Where is the problem?

The problem is that the average aggregation was chosen without verifying if the con-
ditions under which, are admissible hold. First of all, if the values of @ and b are obtained
from ordinal evaluations (of the type good, medium, bad, etc.), then the numerical repre-
sentation does not admit a ratio transformation (in other words we cannot use its cardinal
information). Secondly, even if the ratio transformation was admissible, the concept of
criteria importance is misleading. In a “weighted arithmetic mean” (as the average is)
the “weights” are constants representing the ratio between the evaluation scales. In the
example, if we reduce g, to g5, we have to give to g5 twice the importance of g; in order
to keep true the concept of “equal importance”. In other words, it is not possible to
speak about importance of the criteria (in the weighted arithmetic mean case) without
considering the cardinality of their co-domains.

Example 4.8 Let us take an ezample from the case discussed in section 3.1, Consider
two software a and b, a set of n “evaluation dimensions” where n — 1 dimensions are of
Boolean type (a software fulfills or not a certain property) and one dimension indicates
the time horizon of the internal clock (in the example of section 3.1, the years 2049 and
2129). If all the evaluations are reduced in the [0, 1] scale, then the information of the lust
dimension is completely destroyed since it is an absolute scale which does not admit any
transformation. Further on, a weighted sum on such evaluations is meaningless since the
ordinal information of the n—1 Boolean dimensions is transformed into a ratio evaluation
in an arbitrary woy.

From the above examples, we can induce a simple rule. In order fo choose appropriately
an aggregation operator, il is necessary to take into consideration the semantics of the
operator and of each single preference or measure and the properties (aziomatics) of the
aggregation operator. In other words, if the aggregation operator is chosen randomly,
neither the correctness of the result, nor its meaningfullness can be guaranteed.

4.3 Software evaluation

As already discussed in the previous sections, software evaluation uses a complex hierar-
chical quality model. Moreover, the evaluation may concern parts of the software itself (or
the whole), different dimensions and can be done for different purposes [Morisio, Tsoukias,
1997], [Stamelos, Tsoukias, 1998].

15

Provided that a first idea of the evaluation to be performed is outlined, it is necessary to
establish an evaluation model. Following the IUSWARE specifications [Morisio, Tsoukias,
1997], we may consider that a set of alternatives A (a set of software, or parts to be
evaluated), a set of dimensions or “points of view” V under which the evaluation has to
be done and a problem statement II describing the purpose of the evaluation are available.
We call such a triple a “problem formulation” at time ¢ I'; = (A, V, II).

An evaluation model consists in a n-uple M = (4%, D, M, €, G, R, where A* is the
set of alternatives to evaluate after an eventual preliminary screening, D is the set of
attributes considered instantiating V, M and £ are any measures and relative scales to
be used, G is a coherent set of criteria to represent any preferences and R is a set of
aggregation operators to apply on M and/or G. As we already said, the construction of
such a model may be a long process including different activities, feedbacks and revisions.
In the present, we will concentrate our attention on two specific activities.

Build the sets M and (. This is usually inferred from D which provides an explicit
representation of the different points of view (set V') introduced in the problem formulation.
Usually the set D is obtained using international standards (as the ones included in ISO
9126 and IEEE 1061) and/or the client’s specific knowledge about the kind of the software
to evaluate.

Two processes are performed in a parallel way. The first, top-down, in which general
dimensions (factors in the IEEE terminology) are disaggregated to specific sub-dimensions
and so on until sub™ dimensions are reached on which the client is able to express or gather
for or build up some information. The second, bottom-up, from the client’s specific knowl-
edge who identifies subsets of evaluation dimensions as sub-dimensions of a dimension on
a higher level. The result of the two processes is the definition of a hierarchy of the type
presented in the previous sections.

However, in such an activity it is necessary to pay attention not only to the semantic
relevance of the son nodes of a parent node, but also in verifying their independence.
The basic and necessary independence condition to meet is the “separability” of the “son-
nodes” (the nodes to be aggregated in a parent node). Intuitively the notion of separability
means that if two objects are perfectly equivalent on all son-nodes except one, then the
difference on such single son-node should be reflected to the parent node. In other words,
every single son-node should be able to discriminate two objects alone. If such a condition
is not verified, then the set of son-nodes has to be reconsidered. Further independence
conditions can be imposed, but they deal with specific aggregation operators and will
not be discussed here (see, however, [Roberts, 1979], [Von Winterfeldt, Edwards, 1986,
[Vincke, 1992] and [Roy, 1996]).

Summarizing, given a more or less intuitively created evaluation hierarchy, both a
semantical and independence verification has to be performed before it can be included in
the evaluation model M.

Define the set R. Associating a subset of nodes to a parent node implicitly assumes that
an aggregation operator is also associated to the parent node such that the information
contained in the son-nodes is propagated to the parent node. As already observed at the
beginning of the section, the choice of an aggregation operator is not neutral and has to be
done appropriately. A first distinction to be done is between preference and measurement
aggregation.

1. Preference aggregation. If the parent node is expected to represent preferences on
the set A*, then the son-nodes have to carry such an information. If it is not
the case, then a preference relation has to be associated to each son-node. If any

16

measures are available and if they are at least expressed on an ordinal scale, then a
preference relation can be inferred applying such a measurement on the set A* (for
instance, if the measure m; is available, we can define p;(z,y)o@m;(z) > m;(y) + &
or p;(z, y)em;(z) > 2m;(y), etc.).

If the measures available on a son-node are just nominal, then an ad-hoc preference
model has to be established on the set A*. Once each son-node is equipped with
a preference model, a preference aggregation method can be used, acting either on
the numerical representations of the preference relations (if they exist), or directly
on the binary relations. Some basic rules can be remembered.

e If at least one of the numerical representations is obtained from an ordinal scale,
then only ordinal aggregation operators can be used.

e If a linear multiattribute value function is going to be used, then linear pref-
erential independence on the set G hag to hold, a compensation principle is
accepted and weights are trade-offs.

e If an ordinal aggregation has to be used and a complete global preference re-
lation is required, then either it will be dictatorial, or it will not respect the
independence from irrelevant alternatives [Arrow, 1951].

For a comprehensive discussion, see [Keeney, Raiffa, 1976] and [Vincke, 1992].

2. Measurement aggregation. If a new measurement scale is defined on the parent
node, then the basic operation is to establish the semantics of the new scale and
its structure. Once a metric has been chosen, the most appropriate aggregation
operator can be identified. Again some basic rules can be remembered.

e A result of an aggregation cannot carry more information than the one con-
tained in the aggregated nodes (for instance, it is not possible to construct a
ratio scale aggregating ordinal scales).

o If the aggregation operator requires scale transformations, these have to be
compatible with the admissible transformations of any single aggregated mea-
surement (for instance, an interval transformation is not admissible on a ratio
scale).

o If weighted statistics are used, weights should respect scale ratios (provided
that such a ratio makes sense).

In order to give an example, let us consider a scale whose values are 10, 20 and 30.
If it is a ratio scale, then a linear transformation of the type az 4 3, with & = 1 and
3 = 5, will give the new scale with values 15, 25 and 35 where the ratio information
is lost. Such a problem is particularly relevant when a normalization of the scales
is required due to different reasons. Unfortunately this is possible only if the scales

are of the same type.

Once an evaluation model is constructed, a validation process should be performed in
order to verify if the model effectively turns out the expected results. As far as the aggre-
gation operators are concerned, from our experience, two types of results are questionable
and have to be discussed with the client.

1. Unexpected measures for some objects on some nodes are obtained. Clearly, the
aggregated measure, as defined in the model, does not apply well to the set A* and
the measures on these nodes have to be redefined.

17

2. An incomparability emerges for a couple of objects in a node. If it is unexpected,
we have to look for the reasons: 1°) perhaps, very different objects are considered
and the set A* has to be discussed and eventually redefined, 2°) the quality model
may represent strongly conflicting evaluations and a new compromise has to be
established, 3°) the information available is not sufficient and further investigation
is necessary.

5 Related work

A great number of papers present experiences of application of ISO 9126 and IEEE 1061
standards to evaluate COTS software or to evaluate the productions of the different soft-
ware development phases. Such papers focus on different aspects of quality evaluation:
definition of the model to use, control of the quality obtained and comparison with the
required quality, introduction of the concept of point of view and of software component,
representation of dependencies between elements of the model and simplification of the
model. In the following, we present and discuss some of these papers related with our
research.

Two additional aspects of quality evaluation - the aggregation methods used to calcu-
late the quality of factors, sub-factors and entire software and the evolution of the quality
model - are not yet really studied by researchers in software quality but researchers in other
communities propose solutions which may be efficiently reused. Some of these propositions
are also presented and discussed in the following.

A final aspect of software quality evaluation is not yet studied: the correlation between
predictive qualities and real ones measured on the operating software. ISO 9126 and IEEE
1061 standards claim that measures have to be taken on the operating software in order to
calculate the correlation between the predictive measures and the real ones so that to be
able to correct the quality model or to add corrective parameters for future evaluations.
On this point and up to our knowledge, no literature exists. Under the same perspective,
two questions are asked in [Kitchenham, Pfleeger, 1996] but left without answer. The
first question concerns the fact that some companies take a product-based approach while
others focus on process. Presently, there is no proof that the improvement of the quality of
the process enhances the quality of the product. The second question is: the quality of a
product is evaluated in measuring internal quality indicators, but how can we be sure that
internal quality assures external one and how is it possible to determine which aspects of
internal gquality really affect the final quality of the product?

Definition of the quality model

Most of the software quality evaluations use models inspired from ISO 9126 and IEEE
1061 standards. But the question is: how to determine relevant elements of the model
and their relative weight? In the system described in [Meskens, 1994], an ISO 9126 like
quality model (including factors, sub-factors, criteria, weights and aggregation methods)
is dynamically built and proposed to the evaluator who may adapt it. The process uses a
knowledge base testing the domain of the application and the target software environment.
Each criterion is associated with metrics which concern different elements of the code and
elements of check lists like the uniqueness of the meaning of each variable, the indentation
of the code, the use of a programming method. The measure of each element of the check
lists is calculated from elementary metrics using rules of the knowledge base. Aggregation
methods are defined by other rules of the base which specify how to calculate the quality of
each criterion from its associated metrics, of each sub-factor from its associated criteria, of
each factor from its associated sub-factors and of total quality from the factors. However,

13

no discussion concerning the relevance of the aggregation methods for the different possible
evaluations is presented.

In [Erikkson, McFadden, 1993], the Quality Function Deployment method (a Japanese
method introduced in 1972) is used. The main purpose of this method is to allow all
employees in the organization to participate in the design of new products. The higher level
of the model defines customer quality requirements. Each of these requirements is linked
to software characteristics which are themselves linked to software sub-characteristics. At
the two lower levels, design and implementation of product features relevant metrics are
proposed. The model is represented at each level by matrices.

In [MacDonell, 1993], the Goal/Question/Metric paradigm is used to determine a set of
metrics associated with the most used specification representations: entity-relationships,
data flow diagrams, transaction model, user interfaces and functional decomposition hier-
archy.

In [Dromey, 1996], the author proposes, for each phase of software development (re-
quirement, design and implementation), relevant ISO 9126 high-level quality factors, the
components of the phase and for each of them, its quality attributes and their relationships
with quality factors.

In fact, it is very difficult to define a quality model because, even if the enterprise has
already made other evaluations of the same type, the situations are always different. So,
the quality model has to be changed and it is important to provide the evaluators with
means to validate their model.

. Control of the quality obtained and comparison with the required quality

In this area, concerned researchers try to answer to the questions: how to build a soft-
ware with specific qualities? How to control that a software has some specific qualities?
The papers which try to answer to these questions provide means to determine the ac-
ceptable values of the different elements of the model and to include them into the model.
In [Meskens, 1994], rules are included in the knowledge base to compare the calculated
quality of each criteria, of each sub-factor and of each factor with allowed values, to pro-
vide diagnoses using a bad, medium and good scale and to propose actions to the user for
improving the quality.

In [Spinelli and al., 1995], the authors present a model and a related tool which, using
the ISO 9126 standard quality model, allow to compare quality requirements to measured
qualities. The standard quality model is completed by a quality matrix which provides
a required evaluation of each quality factor (functionality, portability, efficiency,...) for
each component of the software. As the measurement process may be long and costly, the
authors focus on the pruning of the model. So, they try to reuse measurement apparatus
from the literature, consider only the characteristics for which non-low value is required
and stop measurements as soon as further measurements would not change the final result.
They underline the need to tune the model in trying to correlate the a priori estimates
(measurements on the product) with a posteriori facts (data on the program use, faults,
maintenance costs,...}.

In [Tervonen, 1996], a tool to help and to guide design choices and design inspections
is described. It is based on ISO 9126 quality model where the standard quality factors
are decomposed in sub-factors adapted to object-oriented design. Specific metrics relevant
to class and sub-class design are associated to each sub-factor. Factors and sub-factors
are associated to a ISO 9126 like scale. Nothing is said about aggregation of measures
and calculation of the scores of factors and sub-factors. During inspections, inspectors
record measures about each metric in the tool. Replies from developers are also recorded
in the tool. During design, developers can use the mode! to evaluate the quality of design

19

alternatives.

[Khoshgoftaar and al., 1996] present a discriminant analysis based method for predict-
ing quality of software modules from their design. The method uses metrics of the call
graph and of the control graph of modules representing 1,3 million lines of code of a very
large communication system.

[Drake, 1996] presents an initiative of the National Security Agency of USA to re-
duce maintenance costs while improving software development. Measures on 25 millions
lines of C, C++, FORTRAN and ADA code have been coliected and correlated to the
results of dynamic testing of executable programs in a real-world environment. Metrics
include Halstead’s software measures (purity ratio, volume and effort), Mac Cabe’s cyclo-
matic complexity, functional density, number of executable paths per function, number
of segments per path, comments and span of references for variables. Results concern
productivity, maintainability, testability and performance. For each metric, an ideal value
and a range of satisfactory values are statistically calculated. An example of measures of
two programs coding the same function is described: an untestable and low-performance
program and a good one.

[Ogasawara and al., 1996] present a tool that automatically measures the number
of procedures per module and the number of conditions, of loops, of arguments and of
comments per procedure. These different measures are recorded all along the design, the
programming and the test phases and their progression are calculated. The tool also
allows to record the number of faults discovered during the test phase. The paper reports
experiences of using the results of measures during programming and testing reviews to
take necessary actions for keeping the measures under a certain level and to examine the
progression of detected faults.

In [Dromey, 1995], a model based on the ISO 9126 standard makes clear and direct links
between high level quality attributes (those of the standard), the different components of a
software (variables, modules, statements, expressions,...), explicit product characteristics
(complete, consistency, used, generic,...) and metrics. A rule-based tool detects defects
on product characteristics and quality attributes per thousand-lines-of-code. It provides
measures of the global quality or of a specific quality attribute. In addition, the proposed
model provides direct guidance for building quality into software. It was applied on C
source codes, but it can also be adapted for defining and controlling the quality of the
requirements.

Introduction of the concept of point of view and of software components

In ISO 9126 and IEEE 1061 standards, the model is static and does not integrate
the concepts of point of view and of software component. Some authors introduce them.
Generally, they propose to build several models, each of them being adapted to an actor
of the evaluation and to add a level “component” to the models. But, even though both
the notions of point of view and of software component have to be considered in some
evaluations, the authors generally introduce only one of them. In [Verner and al., 1996],
the current state-of-practice for software quality in Information Systems Departments
in Hong Kong is analyzed from replies to 175 questionnaires sent to a wide variety of
occupation groups and eaterprises. The authors underline the importance to consider
several points of view in defining software quality, for example, the developer, the buyer,
the user, the maintainer, the project manager, the accountant and different specialists like
lawyers, and the need to adapt the quality model to the evaluator. In fact, the authors
report that: 1°) most of the quality factors proposed in the [SO standards were important
for the asked people, but a few of them are ignored, while new factors are added, 2°) if
some of the factors used by the different groups to evaluate the software quality are the

20

same like reliability, maintainability and functional correctness, other ones are specific and
the relative importance of the factors is always different.

In [Feuk and al., 1995], the metrics are disconnect from the model to allow the building
of different quality models using the same metrics and the same results of metrics. The
structure of the model is equivalent to the structure proposed in the ISO and IEEE 1061
standards, except that the model does not have only one root, but as many roots as
different points of view.

In [Paulussen, 1995], the author underlines that a software interests several groups of
people, for example the users and the maintainers and that each of these groups does not
consider the same characteristics of the software as essential. Only one quality model is
defined but it is the result of the merged opinions of the people concerned.

ISO 9126 and IEEE 1061 standards do not integrate the notion of component. Software
are considered as monolithic blocks. Some authors [Dromey, 1995], [Spinelli and al., 1995]
remark that required qualities and metrics are often different for the different components
of a software and introduce the level ”component” in the quality model. Each component
is linked with quality factors and with metrics.

Representation of the dependencies between the elements of the model

Implicitly, ISO 9126 and IEEE 1061 standards consider that factors and sub-factors
are independent. Especially, the calculation of quality values based on the weighted sum
requires such an independence. In fact, very often, the elements of the quality model
are not all independent. Some authors introduced tools to represent dependencies. In
[Paulussen, 1995], the Quint quality model contains two levels: at the top, characteristics
which are equivalent to factors in the ISO 9126 standard, and at the second level, indica-
tors, each of them being associated with one characteristic. To represent the dependencies
between characteristics, the model adds a correlation table providing the impacts of each
design decision on the quality measures of each characteristic (that provides an answer to
the question: does the design decision increase or decrease the quality?). An algorithm
clusters the characteristics that are affected by the same design decisions. The correla-
tion table is constructed a priori, not with the result of measurement of quality of each
characteristic.

In [Erikkson, McFadden, 1993], matrices represent the dependencies between elements
at each level of the model.

Practically, it is often impossible to introduce the dependencies in the model because
they are not known at the beginning of the evaluation process. So, it is interesting that
the evaluation method provides means to discover them. The explicit identification of the
incomparabilities may allow this.

Stmplification of the model

A quality model is generally complex, but most of the researchers do not try to simplify
it. However, the knowledge of the decisive elements which cause a fall in the quality or
which place a COTS software ahead of others in a league may efficiently help the decision
makers.

A method to calculate a minimal model is presented in [Anderson, Chen, 1997]. The
authors are interested by calculating a statistical evaluation of the software user satisfac-
tion. They present a model to compare several COTS software and a method to reduce the
initial model. Software are categorized and six attributes measure their quality. Several
hundred users of software products were asked to evaluate each attribute of the product(s)
they own, according to their satisfaction using scaled replies ranging between 1 to 10. Each
software is evaluated using the weighted sum of the average measure of each attribute.

21

The weight of the attributes is statistically calculated from the users’ answers. A method
based on principal component analysis allows to discover components of attributes. It also
allows to observe that three components are enough to evaluate software (useful compo-
nents are not necessarily the same for different categories of software). This work allows
the software editors to improve the products or to adapt them to the expectations of the
users.

The consideration of the iterative aspect of the decision process and the providing of
several aggregation methods to the evaluators may allow them, by successive tests, to
bring out significant elements of the model and so to simplify it.

Aggregation methods

Most of the work which focus on the quality model do not reference the aggregation
methods used to calculate the values of the different elements of the model. In fact,
aggregation methods are not really discussed in the papers concerned by software quality.
In [Meskens, 1994], the author precises that the model includes the aggregation method
and the relative importance of factors and of criteria, but unfortunately, every example
described in the paper uses the weighted sum.

Researchers belonging to the multicriteria community have published interesting pa-
pers about aggregation methods but these studies do not congider any quality model.
For example, in [Le Blanc, Jelassi, 1994], the results of using the LWA (Linear Weighted
Attribute) and the MAUT (Multi-Attribute Utility Theory) aggregation methods for the
evaluation of a small set of software are compared. Both methods give the same results but
the statistical analysis of the MAUT method results gives more precise and more detailed
information about the differences of the software to the evaluator. However, in this paper,
no quality model is used for the evaluation.

In the case of software evaluation, if the providing of several aggregation methods is
suitable, it is also important to warn the evaluators about the validity of each of them to
prevent bad use.

FEvolution of the model

In the experiences presented, one or sometimes several quality models are defined at
the beginning of the decision process and they do not evolve during the process. In fact,
a decision process is long, hesitating and iterative. So, the models cannot remain static,
For example, in an other application area, [Ballou, Tayi, 1996] propose a method and a
tool to schedule project maintenance and to assign staff to these projects which consider
the non linear nature of the decision process and that intuitive and no quantifiable factors
influence the decision. The purpose of the method is to provide information that guides the
decision maker in obtaining a satisfying solution. Thus, the method allows the decision
makers, by an iterative process, to modify the problem environment and to generate
different solutions, one of which is ultimately selected. The method is based on an integer
programming formulation, defines the maintenance projects by their priority and cost,
and integrates constraints on projects and on costs (for example, two projects cannot be
simultaneously processed or the total cost of the projects has to be less than a defined
amount). .

A software evaluation system has to allow, like in the example just described, to keep
the measures of the metrics for reusing them with a changed quality model and to compare
the different results obtained.

22

6 Conclusion

We presented in this paper an experiment of applying multicriteria methodology to the
evaluation of COTS software quality. This experiment used real industrial cases already
treated with a traditional method inspired from ISO 9126 and IEEE 1061 standards. We
analyzed the limits of this traditional method and explained the difficulties of its practical
use when the hierarchy of the quality model is deep, the measures are of different types,
the number of elements of the model is great and the elements are not all independent.
The use of three multicriteria methods was experimented: ordinal aggregation procedures
of the ELECTRE type, geometric mean and dual geometric mean. The advantages of the
use of ELECTRE type methods are to allow the handling of non homogeneous information
in a meaningful way and to detect incomparabilities, helping the validation of the model.
One drawback is that the result is only an order of the alternatives without measures of
the distances between the alternatives. Geometric and dual geometric means bring out
specific “bad” or “good” performances of the alternatives and can be used as measures of
“attractiveness” in the [0,1] interval in presence of ordinal information.

In fact, this experiment could be extended in two directions. First, since the validity
of the aggregation method depends on the types and of the semantics of the measures,
it is wrong to integrate only one aggregation method in the quality model. So, it should
be interesting to build a system which considers several aggregation methods, associating
each node of the quality model with one of them, and which helps the user to validate
his choices. Another more thorough investigation should be to experiment the use of
aggregation procedures for sorting purposes which would calculate ordinal scales for each
node of the quality model and thus, would provide more insight about the alternatives
values and their distance.

More long-term interesting research could concern three points. First, the validation
of the model and the iterative aspect of the decision-process. For that, the detection of
incomparabilities has to be exploited to understand the decisive elements of the model and
so to simplify it. Moreover the formal verification of coherence among the criteria could
detect redundancies and repetitions which could again help the decision maker to simplify
his model identifying only the relevant criteria. Second, the problem of incomplete or
partial models: some measures may be impossible or irrelevant for some alternatives. In
such cases, the evaluators are often led to give a meaningless value for some metrics of
some alternatives. Third, the correlation between predictive evaluations and real ones.
Quality models are built a priori and there is no proof that the metrics correspond to
the right measures of the quality of the factors. The points to consider here are how to
measure factors a posteriori, how to determine metrics which are responsible of differences
between predictive and real measures and how to correct the model.

References

Evan E. Anderson, Yu-Min Chen, (1997), Microcomputer software evaluation: An eco-
nomic model, Decision Support Systems 19, pages 75-92, 1997

Arrow K., {1951), Social Choice and Individual Values, J. Wiley, New York.

Association Frangaise de NORmalisation, (1996), Réglement NF Logiciel, Edition 1.0, 8
mai 1996

Donald P. Ballou and Girl Kumar Tayi, (1996), A Decision Aid for the Selection and

23

Scheduling of Software Maintenance Projects, ILEE Transactions on Systems, Man and
Cybernetics, Volume 26 number 2, march 1996, pages 203 - 212

Barry W. Boehm, (1978), Characteristics of Software Quality, North Holland Publishing
Company

Thomas Drake, (1996), Measuring Software Quality: A Case Study, IEEE Computer
November 1996, pages 78 - 87

R. Geoff Dromey, (1995), A Model for Seftware Product Quality, IEEE Transactions on
Software Engineering, Vol 21, No. 2, February 1995, pages 146 - 162

R. Geoff Dromey, (1996), Cornering the Chimera, IEEE Software, January 1996, pages 33
-43

L. Erikkson, F. McFadden, (1993), Quality function deployment: a tool to improve software
quality, Information and Software Technology, Volume 35, number 9, September 1993,
pages 491 - 498

Norman Fenton and Norman F. Schueidewind, (1996), Do Stendards Improve Quality?,
IEEE Software, January 1996, pages 22 - 24

N. Feuk, R. Whitty and Y. Ilruka, (1995), Applying the Goal/Question Metric paradigm
in the experience factory, International Thomson Computer Press, London, pages 23-44

The Institute of Electrical and Electronics Engineers, (1992), Standard for a Software
Quality Metrics Methodology, December 1992

International Organization for Standardization, (1994), ISO 8402: Management of quality
and insurance of quality (vocabulary)

International Organization for Standardization, (1987), ISO 92000: Quality management
and quality assurance standards - Guidelines for selection and use

International Organization for Standardization, (1991), ISO 9000-3: Guidelines on the
application of ISO 9001 to the development, supply and maintenance of sofiware

International Organization for Standardization, (1994), ISO 9001: Quality systems - Model
for quality assurance in design/development, production, installation and servicing

International Organization for Standardization, (1991) ISO 9126: Information Technology
- Software product evaluation - Quality characteristics and guidelines for their use

International Organization for Standardization, (1994) ISO 12119: Information Technol-
ogy - Software, Package, Quality Reguirements and Testing

Keeney R., Raiffa H., (1976), Decision with multiple objectives: preferences and value
trade-offs, J. Wiley, New York.

Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, Nishith Goel, (1996),

24

Farly Quality Prediction: A Case Study in Telecommunications, IEEE Software, January
1996, pages 65 - 71

Barbara Kitchenham, Shari Lawrence Pfleeger, (1996), Software Quality: The Elusive
Target, IEEE Software, January 1996, pages 12 - 21

J. Kontio, (1996), A Case Study in Applying a Systematic Method for COTS Selection,
Proceedings of the 18th ICSE, 1996, pages 201 - 209

Louis le Blanc, Tawfik Jelassi, (1994), An empirical assessment of choice models for soft-
ware selection: a comparison of the LWA and MAUT techniques, Revue des systémes de
décision vol. 3 - no.2, pages 115 - 126

J. A. Mac Call, (1977), Factors in Software Quality, Journal of General Electric, no. 77,
C15-OL, June 1977

S. G. MacDonell, (1993), Deriving relevant functional measures for automated development
projects, Information and Software Technology Volume 35, number 9, September 1993,
pages 499 - 512

Nadine Meskens, (1994), A knowledge-based system for measuring the quality of existing
software, Revue des systémes de décision vol. 3, no. 3, pages 201 - 220

M. Morisio, A.Tsoukias, (1997), TusWare: a methodology for the evaluation and selection
of software products, IEE.-Softw. Eng. Vol. 144, pages 162 - 174

Hideto Qgasawara, Atsushi Tamada, Michiko Kojo, (1996), Ezperiences of Software Qual-
ity Management Using Metrics through the Life-Cycle, Proceedings of ICSE - 18, March
25 - 29 1996, Berlin, Germany, pages 179 - 188

Robert M.C. Paulussen, (1995), The Quint Approach to the Specification of Software Qual-
ity, 1st World Congress for Software Quality, San Francisco, June 20-22, 1995

Roberts F.S., (1979), Measurement Theory with Applications to Decision Making, Utility
and the Social Sciences, Addison Wesley, New York.

Roubens M., Vincke Ph., (1985), Preference Modelling, LNEMS 250, Springer Verlag

Roy B., (1991), The outranking epproach and the foundations of FLECTRE methods,
Theory and Decision, vol. 31, pages 49-73

Roy B., (1996), Multicriteria Methodology for Decision Aiding, Kluwer Academic Publish-
ers, Dordrecht

Andrea Spinelli, Daniela Pina, Paolo Salvaneschi, Ernani Crivelli, Roberto Meda, (1995),
Quality Measurement of Software Products: An Ezperience About a Large Automation
System, Lecture Notes in Computer Science No. 926, Proceedings of the Second Sympo-
sium on Software Quality Techniques and Acquisition Criteria, Florence, Italy, Mai 1995,
pages 192 - 206

25

Stamelos J., Tsoukids A., (1998), “Software evaluation problem situations”, submitted

Lorenzo Strigini, (1996), Limiting the Dangers of Intuitive Decision Making, IEEE Soft-
ware, January 1996, pages 101 - 103

Ilkka Tervonen, (1996), Support for Quality-Based Design and Inspection, IEEE Software,
January 1996, pages 44 - 54

Dr. June Verner, DR. Trevor Moores, Mr. A.R. Barrett, (1996), Software quality: percep-
tions and practices in Hong Kong, Working Paper Series, City University of Hong Kong,
Faculty of Business Department of Informations systems, WP96/02, April 1996

Vincke Ph., (1992), Ezploitation of a crisp relation in a ranking problem, Theory and
Decision, vol. 32, pages 221-240.

Winterfeldt Von D., Edwards W., (1986), Decision Analysis and Behavioral Research,
Cambridge University Press, Cambridge MA.

Appendix: ELECTRE II method applied to the experiment

ELECTRE II provides a complete or a partial ordering of equivalence classes from- the
best ones to the worst ones. It considers ties and incomparable classes. Equivalence
clagses are composed of alternatives characterized by criteria. ELECTRE II calculates
an ordering relation on all possible pairs built on the alternative set and constructs a
preference relation on such a set.

More precisely for any pair of alternatives (2, y), we have

S(m, y)%($1 y)A_'D(ws y)

where:
S(z,y): the alternative x is at least as good as y (z outranks y);
C(z,y): concordance condition (in our specific case):

&Jg i Yicaz, Wi
—= > cand =0t -

> ¢ an >1
25 ;5 Yiers, Wi

C(z,y) &

with:

J3,: criteria for which S;(z,y) holds;
Joyt criteria for which —8;(y,) holds;
J,+ criteria for which ~S;(z, y) holds;

D(z,y) & Jg;: vi(z,y)

where:

vi(z,y) © g;(y) > gj(e) +vj, or
vj(z,y) & L=p@ >

with:

v;(w,y): veto condition on criterion g;;
v;: veto threshold on criterion g;;

26

¢;: max value of criterion g;;
b;: min value of criterion g;;
The conditions under which S;(s,y) holds depend on the preference structure of each
criterion. If g; is:
- a weak order: S;(z,y)eg;(z) > g9;(y),
- a semi order: S;(z,y)eg;(z) > g;(y) — &,
- and so on with interval orders, pseudo orders, etc.

Once the global outranking relation is obtained, we can deduce:

- a strict preference relation p(z,y) between x and y:
p(z, y)es(z, y)A-s(y, z);

- an indifference relation i(z,y) between x and y:
i(z, y) sz, y)As(y, ©);

- an incomparability relation r(z,y) between x and y:
r(z, y)e-s(z, y)A-s(y, z);

The definition of the relation s(z,y) is such that only the property of reflexivity is
guaranteed. Therefore, neither completeness nor transitivity holds, and thus s(z, y) is not
an order on the set A. In order to obtain an operational prescription, the relation s(z, y)
is transformed in a partial or a complete order through an “exploiting procedure” which
can be of different nature (see Vincke, 1992).

27

