CAHIER DU LAMSADE

Laboratoire d’ Analyse et Modélisation de Systémes pour I’ Aide a la Décision
{Université Paris-Dauphine)
Unité de Recherche Associée au CNRS ESA 7024

THE GREEDY APPROACH FOR
THE CREW PAIRING PROBLEM:
SOME CASES OF POLYNOMIAL SUBPROBLEMS

CAHIER N° 159 Laurent ALFANDARI *
janvier 1999

received: October 1998.

Y LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16,
France (alfanla@lamsade.dauphine fr).

CONTENTS

Pages

RESUME e e e e e e e e e e e e e e i
ADSIEACE . . . o e e e e e e e e e e e e e e e e e i
1. The crew pairing problem i 1
2. Linear programming and column generation 2
3. The greedy approach 3

3.1 Case without constraints it e et e e e e 4

3.2 Case of resource CORSIAINS o vt ittt et e et e et et e 5
A, ConClUSION .« o o e e et s e et e e e e e e e e 7
R eremCes . . . ot e e e e e e e e e e 8

L’approche gloutonne pour le probléme de construction de rotations:
cas de polynomialité du sous-probléme

Résumé

Nous reprenons ’algorithme glouton classique pour le Set Covering en I'appliquant au probléme
de construction de rotations et montrons que, dans certains cas, la résolution du sous-probleme -
consistant & sélectionner itérativement la rotation minimisant le ratio “coiit / nombre de téches non
couvertes” - s’effectue polynomialement en le nombre de tiches par un algorithme de plus court
chemin & étiquettes multiples dans un graphe. Nous discutons également des liens qui unissent
I’approche gloutonne et 'approche génération de colonnes, cette derniére pouvant également faire
appel & la résolution d’un sous-probléme de plus court chemin.

Mots-clés : construction de rotations, glouton, plus court chemin, génération de colonnes.

The greedy approach for the Crew Pairing Problem:
some cases of polynomial subproblems

Abstract

We apply the usual greedy algorithm for the set covering to the Crew Pairing Problem and
show that in some cases the subproblem - which consists of selecting the pairing minimizing a
ratio “cost / number of uncovered tasks”- is solvable in polynomial time by a multi-label short-
est path algorithm in a graph. We also discuss the links between the greedy approach and the
column generation approach, as this latter one also often requires the solving of a shortest path

subproblem.

Keywords : crew pairing, set covering, greedy, shortest path, column generation.

1 The Crew Pairing Problem

Given a set of tasks V = {1,2,...,n} to be covered by crews (flights by stewards and hostesses,
bus lines by drivers,...) 1, and given, for every task j € V,

- a starting time £g(7) and an arrival time ¢4(5),

- a starting place pg(7) and an arrival place p4(j),

given a place B called “base”, one constructs an acyclic oriented graph G = (VU{b} U {b'},) with
a cost function on arcs d : E — N, and (7,) € E iff one of the following three conditions is satisfied:

(£,7) € V2 and task j can be performed after task 4,
izb et ps(j)=B,
j="b et pa(i)=B.

A crew pairing is a feasible sequence of tasks of V, starting and arriving in B, i.e, a path from
source b to sink ' in graph G. The Crew Pairing Problem (CPP) consists then of finding a subset
of pairings which covers V' and minimizes the sum of the costs of the pairing. Let V(p), £(p) and
c(p) denote the set of tasks, the set of arcs and the cost of a path p, respectively; we formally define
the problem in the following way.

Definition 1. Let C denote the set of paths from b to ¥ in graph G, and let C4 C C denote the
subset of paths from b to & that satisfy some set of constraints A. The problem CPP(A) consists of
finding in G a set of paths €' C C4 such that Upee'V(p) = V and the sum of the costs of the paths
Y opect ¢(p) is minimum.}i

The possibility of connecting two tasks ¢ and j is obviously constrained by the chronological
order of the tasks (¢s5(7) > t4(¢)), and by the social regulation of the company (minimum rest time
between two tasks, minimum lunch period, etc.). Let us remark that, for some sets of constraints
A, connections (4, j) and (7, k) do not induce the feasibility of the subpath (%, 7, k), and even finding
a feasible path can be NP-hard (resource constraints for instance}. For the rest of the paper, we
assume that the cost of a path is an additive function of the valuations on the arcs.

Definition 2. The cost of a path p € C4 is ¢(p) = Fecp(p) d(e)

Let T'(:) (resp., ['"1(4)) denote the set of successors (resp., predecessors) of vertex 7 in G, and
consider a path p = (b,iy,4g,...,i;, ') of C4. Define the Total Rest Time of path p TRT(p) =
Sicici—1 ts(tip1) — ta(4), and the Total Absence Time TAT(p) = t4(i1) — ts(iy). If the total rest
time is to be minimized, i.e, c(p) = TPT(p), we set d(i, 1) = ts(j) — ta(s), (3,7) € V2, (4,5) € E,
d(b,j) = 0 Vj € T(b), d(i,b) = 0Yi € T~1(¥). Generally speaking, if the cost of a path is a
linear function of TAT and TRT, i.e, Iw, 8,7) € R3, ¢(p) = aT AT (p) + BTPT(p) + 7, we can set
406, 5) = ot () - £ () + B(ta(i) — () for (i) € V2, (5, 5) € By d(b,) = Bta(i)— ts(3) +7
for j € T'(b), and d(4,8") = 0 for 1 € 71 (¥).

Now we briefly present the more common approach to solve CPP, the “column generation”
approach, as this technique presents interesting similarities with the greedy approach we develop
further.

'These tasks may be composed of sub-tasks, cf. [9]

2 Linear programming and column generation

For p € C4, we define variable z, = 1 if path p is chosen in the solution, 0 otherwise, and parameter
vector Cy, called “column”, with components Cp,; = 1if vertex ¢ € V belongs to path p, 0 otherwise,
t=1,...,n. The Crew Pairing Problem (CPP) is defined by the following integer linear program:

min Z CpTyp
PpEC 4
se.Vi=1,...,n Z Cpity > 1 (P)
pECa
Ty € {Oa 1}: peE CA

The continuous relaxation of problem P will be noted P. Let us remark that exhaustive explic-
itation of C4 is impossible for large-scale problems, as the total number of paths |C4} usually grows
exponentially in n. The column generation approach can get round this obstacle by solving P, at
each step ¢, on a restricted subset of columns ; C Cg4, by an adaptation of the simplex algorithm.
A convincing example of this technique can be found in {9]. The key idea is the following. Given a
feasible solution Cy C C4 for P, one solves the continuous program P, which is the restriction of P
to the set of columns Cp:

mn E Cpdp

pECH
se.¥i=1,...,n Z Cpity > 1 (Bo)
peCo
z, € [0;1], p € Co
Solving P produces a vector of simplex multipliers (79, #3,...,72) associated to tasks 1,2,... ,n.

One looks then for the column with smallest negative reduced cost among all columns of C4 (so that
the optimality of the procedure is guaranteed), i.e, column

n

— : 0

Cpr = arg Jmin ¢y - Z 7; Cpi
pERA i=1

For some sets of contraints A, the column with smallest negative reduced cost Cpx can be found in
time polynomial in n, without expliciting the whole set Ca of columns, by a shortest path algorithm
in G %, where a new cost d°(4,§) = d(i,7) — 7 is associated to arc (i,5) € E. The column Cis
is added then to the set Cy - or even better, all columns with negative reduced cost are added -,
forming a new set of columns Cy, and the relaxed program is solved again on this new set of columns.

At each step t, one solves then the following restricted program F;:

min Z Cpp
pECe
se.Vi=1...,nY Cpip>1 (P)
PEC,
zp € [0; 1], p € C;
where €, = C_1 U{C, €Ca: cp— S m 1Cpy < 0} 3.
=1

=

“pest time constraints in [9] require the computation of shortest paths in an expanded graph G', but the algorithm
remains the same
®where nf denotes the simplex multiplier associated to task ¢ at step ¢

The columns added at step ¢ correspond to the paths with negative reduced cost computed by a
shortest path algorithm in graph G with valuations on arcs d'(i,) = d(4, §) — n}. The continuous

T
optimum is obtained as soon as, Vp € C4, ¢, — 3 7iCp; > 0 (all reduced costs are non negative),

=
i.e as soon as the label of sink ' is positive in the shortest path computation.

Let us remark that the above procedure is nothing but the simplex algorithm, with the partic-
ularity that the column with minimum reduced cost is not found by exhaustive enumeration of the
set of columns, but by solving a polynomial optimization subproblem (shortest path). By the way,
this method solves the continuous version of the problem; in case of a non-integer solution, finding
an optimal integer solution from the continuous solution may require much extra time computation.
We now use the greedy master-slave technique in order to construct a feasible integer solution with
performance guarantee. This greedy approach shares with the column generation approach the nice
property that in both cases, the “master” problem calls a “slave” subproblem, polynomial in n for
some sets of constraints, by implicitely exploring the set of feasible paths.

3 The greedy approach

Consider the following greedy heuristic (Greedy in short) for the problem CPP, At each step, find
a path minimizing the ratio “cost of the path / number of uncovered tasks of the path”, add this
path to the solution and reiterate until all tasks of V are covered. We set, for i € V, u(¢) = 1 if
vertex (task) ¢ is covered at current step of Greedy, u(i) = 0 otherwise, and we define the following
subproblem for CPP.

Definition 3. Given u: V — {0;1} identifying if vertex v is covered or not at some step of Greedy,
the subproblem of finding a path p* minimizing the ratio ¢(p) / 3 iev(y) u(i) over all paths p of Cyg
is called the “slave” problem. 1

The greedy algorithm for the master problem is then the following:

ALGORITHM /Greedy/
C' O
for i € V do u(i) + 1;
while 31 €V : u(i)=1do
find path p* = argmin pec, { €(p) / Tievp ult) b5
C'+C'U{p*}h
for i € V(p*) do u(i) « 0;
end
output C';
END OF /Greedy/

This algorithm provides a performance bound given in the following proposition.

Proposition 1. For an instance I of CPP, let Greedy(I) and OPT(I) denote the cost of the
solution given by Greedy and the cost of an optimal solution, respectively. Then, for all I,

Greedy(l) < (1+1ns)OPT(I)

where s is the mazimum number of tasks of ¢ path, i.e, s = maxyec, [V (p)|.

This bound is derived from the analysis of the classical greedy algarithm for the Set Covering
Problem by Chvétal ([5]). Greedy is, to our knowledge, the only heuristic for CPP with worst-case
performance guarantee. Baker implemented Greedy for some Crew Pairing problems applied to air
transportation([4]); his results are reported in the following table.

n | |Cal | OPT | Greedy | %
36 | 506 | 4424 | 4424 | O
180 | 4534 | 27 803 | 28 564 | 2.7
~200-]-3208 | 30 110 { 32095 | 6.5-
335] 5290 [48 089 | 51 344 | 6.7
376 | 1245 | 74 679 } T4 679 0
426 | 2780 { 35974 | 36 550 | 1.6
180 | 2275 | 28 759 | 29 876 | 3.8
180 | 3431 | 27 936 | 33 217 | 18.8
376 | 4802 | 72 935 | 81 979 | 124

The computational results above look convincing enough to show the practical efficiency of
Greedy. Our contribution is more of theoretical order : whereas the set of feasible paths C4 was a
data in [4], and the complexity of Greedy was polynomial in |C4l, i.e in O(2") at worst case (the
optimal path p* of definition 3 was found by exhaustive enumeration of C4), we exhibit cases where
the set of feasible paths C4 is not known a priori, and where Greedy is computed in time polynomial
in n, the number of tasks, by solving the slave in time polynomial in n.

3.1 Case without constraints

Let us assume that every path from b to b’ is feasible in graph G. We congider then the set of paths
Ca, = C. This case is not a trivial case: the rest time constraints in [9] refer to the present case via
transforming the initial graph. Now we prove that the slave problem is solvable in time polynomial
in n by showing that, graph G being acyclic, the following extension of Bellman’s sub-optimality
principle holds for CPP(A1): #f (b,i1,%2,... %,]) 48 a shortest path among the paths from b to j
containing ezactly k uncovered vertices, then (b,i1,13,...,0;) is a shortest path among the paths
from b to i; containing exactly k — w(j) uncovered vertices.

Consider the following variant of the classical shortest path algorithm for acyclic graphs (cf. [7],
p.49), where label A¥(4) is the value of a shortest path among paths from b to j containing exactly
k uncovered vertices of V, k= 0,...,s, with s = maxyec, [V(p)| *.

ALGORITHM /S1(u)/
S« {b};
AO(B) — 0; M (B) =00, k=1,...,8
while there exists a vertex § ¢ S such that I'"!(j) C S do
S« Su{ih
compute, for k=1,...,s, label A*(j) + min ier-1(5) XD (G 4+ d(i, N
compute A°(j} ¢ min jep-1(;y {A°(8) + d(i,)} if u(s) = 0, else A°(5) ¢ oo
end
output path p* minimizing A*(#)/kfor k =1,...,s;
END OF /Si(u)/

*the value s can be computed by a longuest path algorithm in G

Theorem 1. Algorithm S1 solves in O(n®) the slave problem associated to CPP(A;).

Proof: The complexity of algorithm $1is in O(nsA), where A = max;cy gy} [T~1(5)], Le in O(n®).
It remains to prove that the algorithm is optimal. As the cost of p* is ming *(#")/k, optimality is
proved if, for j € V U {¥'}, label A®(j) is indeed the value of a shortest path among paths from b to
j containing exactly k uncovered vertices. We shall first show that A%(5) is a lower bound of this
value, then we show this bound is achieved. Let p = (b,41,%2,...,%,j) be a path from b to j in &
satisfying 3o, s w(r) +u(j) = k. As V3, Vi € I71(5), Yk, A(j) < M4 (5) 4 d(4, 5), it follows
. that '

,\k_”(j}(it) <)\k—u(j)"”(i‘)(it_ﬂ + d(it—l'n it)

/\k—...——u(ia)(i2) <)\k—---—u(‘i2)(3'1) + d(il,’iz)
AF=mulia) (3) < AR=emulin) (5) 4 d(b, 4y)

Summing these ¢ + 1 inequalities term by term we get
Xe(g) < N0 Zoaarse O (1) 1 a(h,i1) + dlia, i) + .+ dlios, i) + (i,)
Since u(f) + i<t u(z;) =k and A°(b) = 0, we obtain for every path p from b to 7,

M) <e(p)

The value A*(j) is then a lower bound of the value of a shortest path among paths from b to j
containing exactly & uncovered vertices. Moreover, this bound is attained; we construct a path p*
from b to § of value A*(4) the following way, classical when dealing with shortest path problems: start
from j and, going back to the root b, connect j to the predecessor ¢ of j such that Me=uld) (5Y £ d (4, 5)
is minimum, then connect i to the predecessor & of i such that M—#d}-%() 4 d(h,) is minimum,
and reiterate until b is attained. il

Let us consider now the case when all paths from b to &' are not feasible.

3.2 Case of resource constraints

Assume that a pairing p is feasible if it contains at most one lunch period and one night period,
and if the total number of effective worked hours T AT (p) — T PT(p) is at most 30 hours. Typically,
given g resources, a path is feasible if, for h = 1,..., ¢, the cumulative amount of resource A on this
path is lower than a given threshold my. Let rp(e) € N denote the consumption of resource A on
arc e, m = (my,..., My}, and define the following problem.

Definition 4. The problem CPP(A.) is the restriction of CPP to the set of paths C4, = {p€ C:
Iry:E—N,...,3r,: E— N, 3m € N, EEEE(p)rh(e) <mp, h=1,...,¢}. 1

In the restricted case where all values my, are low, we propose an exact algorithm solving the
slave problem, based on the following extension of Bellman’s sub-optimality principle for CPP{A,):
if (b, 41,42y . .. ,11,) i5 a shortest path among paths from b to j containing k uncovered vertices and
for which the cumulative amount of resource h 18 xp for b = 1,...,q, then (b i1,4s,...,4) i5 @
shortest path among paths from b to j conteining k — u(j) uncovered vertices and for which the
cumulative amount of each resource h is zp — r1(4,§).

5

R _)\k_(‘?) SAk_u(J) (’l:t) + d(it, j) . O

Let us note for (3,5) € E, r;; = (r1(2,7),ro(4,7),... ,74(4, 7)), and for x,y € N¢, x < y iff 2, <
Y, Vh=1,...,¢,and x—y = (21— y1,..., 2 — y). Consider now the following algorithm solving
the slave problem, where label AE(5) is the value of a shortest path among paths p from b to j

satisfying },ev(p) w(v) =k and Loeppyrale) = an, h=1,... ¢

ALGORITHM /82(u)/
S« {b};
Ao (b) 0
)\k(b)<—oo,k—0 , 8, X < m, (kx)#(OD)

- while there-exists-a- vertex j é S-such-that T~ () C S-do T T T e

S« Su{sl;
for x < m do compute labels

)‘fc() + min i€l =1 (3)x>ry; { Ax—:g)()+ d 7.7) }5 voy 8y

A2(7) ¢ min iel—1(j) x2rs {20 r”(O+d)) if u() = 0 else A2(4) + oo;
end

end

output path p* minimizing AS(¥')/kfor k=1,...,s, x < m;
END QF /52(u)/
5 4f %5 € D15}, =(x > ri;), then A(7) « co.

g
Theorem 2. Algorithm S2 solves the slave problem for CPP(As)} in O(n®] (ms +1)).
h=1

Proof: The complexity of 52 is in O(nsAT];cpeq(ma+ 1)), Le, in O(n3 [Ty gpe, (ma + 1)). Now,
the slave problem is solved if A%(5) is indeed the value of a shortest path among paths p from b to 5
satisfying } ey (p) ¥(¢) = k and 3 .cpp) ra(e) = @n, A =1,... ¢ (then a path minimizing YACAVL:
fork=1,...,s x < m,is indeed an optimal path). Let p = (b,41,42,...,%,j) be a path satisfying
the above conditions. As V7,Vi € T=1(5), Yk, AE(4) <)\k_u.w(i) 4 d(i, 7), we get

X—Fij

M (5) < AT89) (i) + din, 5)

e u(f)() < Ak ulj)—ulic) (#—1) + d(ds—1, %)

X—Fiyj — "X T i

)\k—...—u(ﬂa)(,& } <)\ch:______?fzf)(h) + d(i1, é2)

Koo =Tinis

AE=mufiz) gy o ,\i_‘_:‘:;‘gi)(b) + d(b, iy)

X— —[';1 i

By summing these ¢ 4+ 1 inequalities we obtain
Af’c() <)‘X_?Ifa(-?j):- ::‘Lb(:l)(b) + d’(b} ?’1) + d(ila 32) +...+ d(ita j)

Since u(i1) +. ..+ u(i:) +u(j) = &, roi; +Tigs, +. . .+ 1, = X, and A (6) = 0, the following inequality
finally holds:
A%(9) < elp)

Hence we showed that A%(5) is a lower bound of the value of the shortest path mentioned above,
and this bound is attained by constructing the path as previously.ll

The complexity of S2 is polynomial if all values my are polynomially bounded, the algorithm
running in O{n?) if these values are fixed constants independent of n. The applicability of algorithm
S2 for resource constraints is thus restricted to “easy” resources (such as the number of stops,
breaks, or nights spent out of the base). The case of time resources is more intricate. For instance,
assume that the total effective worked time of a pairing is constrained by an upper bound, i.e,
dm e N, p € Cy = TAT(p) - TPT(p) < m; as the minute is often chosen as time unit, m can
be quite a high value for weekly pairings. On the opposite, the constraint TAT(p) < m is not an
obstacle as TAT'(p) only depends of the first task and the last task of the pairing (sce [9]). Generally
speaking, the Shortest Path Problem with resource constraints is NP-hard ([6], ND30).

Finally, let us remark that algorithm 52 can be easily madified in order to solve, in a column
generation approach for CPP({A;), the subproblem which consists of finding at step ¢ the path with
smallest reduced cost; simply compute label Ax(j) < minjer-1(j)xory; {Mx—ri; (1) + d(3,5) — 71} in
the while loop, and finally output path of value miny<m Ax(d).

4 Conclusion

The classical greedy algorithm for the set covering problem has showed great efficiency in crew
pairing contexts([4]), as well as interesting complementarity with the column generation approach,
since the greedy provides a good integer solution that can initialize a simplex computation. We also
showed the similarity of the two approaches by exhibiting some simple sets of constraints that make
the subproblem solvable in polynomial time, in both cases, by a shortest path algorithm in a graph,
avoiding exhaustive explicitation of the feasible pairings. Furthermore, we conjecture that, given
a set of constraints A on the feasible paths, the subproblem in the column generation approach
is solvable in polynomial time if and only if the slave problem in the greedy approach is solvable
in polynomial time for CPP(A). This greedy technique can be applied in fact to a larger class
of covering and partitioning problems called “master-slave tractable” problems, by exploiting an
unusual reduction to the set covering problem (see [2], [10] for more details}.

References

[1] Alfandari L. and Paschos V. Th. 1997. Master-slave strategies and polynomial approzimation,
manuscript.

[2] Alfandari L. and Paschos V. Th. 1998. On the approzimation of some spanning arborescence
problems, Proceed. Int. Symp. on Comp. and Inf. Sc. ISCIS 98, 293-301.

!3] Alfandari L. and Paschos V. Th. 1998. Approzimating minimum spanning tree of depth 2,
manuscript.

[4] Baker E. 1981. Efficient heuristic algorithms for the weighted set covering problem, Comput. &
Op. Res. vol.8, No 4, 303-310.

[5] Chvatal V. 1979. A greedy-heuristic for the set covering problem, Math. Oper. Res. 4, 233-235.

[6] Garey M. R. and Johnson D. S. 1979. Computers and intractability. A guide to the theory of
NP-completeness, W. H. Freeman, San Francisco.

[7] Gondran M. and Minoux M. 1979. Graphes et algorithmes, Eyrolles, Paris.

[8] Johnson D. 8. 1974. Approzimation elgorithms for combinatorial problems, J. Comput. System
Sci. 9, 256-278.

[9] Lavoie S., Minoux M. and Odier E. 1988. A new approach for crew pairing problems by column
generation with an application to air transportation, EJOR 35, 45-58.

[10] Simon H. U. 1990. On approzimate solutions for combinatorial optimization problems, SIAM
J. Disc. Math. 3(2), 294-310.

[11] Slavik P. 1996, A tight analysis of the greedy algorithm for set cover, ACM-STOC 435-441.

