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Approximation de problémes héréditaires de maximization portant sur la
recherche de sous-graphes induits pondérés

Résumé
L bt central déTeét articls est Tettide de Iapproximation” polymnomiale de problémes
héréditaires de maximisation portant sur la recherche de sous-graphes induits pondérés.
Ayprés avoir donné un résultat général d’approximation pour cette classe de problémes, nous
montrons que celui-ci a plusieurs corollaires importants, par exemple, il améliore d’un fac-
teur d’Ofloglogn) le meilleur rapport d’approximation connu pour le stable maximum pon-
déré, :

Mots-clé : problémes combinatoires, complexité, algorithme polynomial d’approximation,
NP-complétude, stable, probléme héréditaire.

Approximation of weighted hereditary induced-subgraph maximization
problems

Abstract

The main purpose of this paper is to study polynomial approximation of weighted hered-
itary induced subgraph problems. After giving a general approximation result for this class
of problems, we show that the result has many important corollaries since, for instance, it
allows improvement of the best-known approximation ratio for weighted independent set by
a factor of O(loglogn).

Keywords: combinatorial problems, computational complexity, polynomial-time approxi-
mation algorithm, NP-completeness, independent set, hereditary problem.
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1 Preliminaries

We consider NP-complete optimization graph-problems II where the objective is to find a
maximum-order induced subgraph! satisfying a non-trivial hereditary property =. Let § be
the class of all the graphs; a graph-property = is a mapping from G to {0,1}, i.e., fora G € G,
m(G} =1 iff G satisfies 7 and #(G) = 0, otherwise; 7 is hereditary if whenever it is satisfied by
a graph it is also satisfled by every one of its induced subgraphs; it is non-trivial if it is true for
infinitely many graphs and false for infinitely many ones ([2]). The property “m: is a clique”, or
“mr: is an independent set” are typical examples of such non-trivial hereditary properties and the
maximum clique-problem or the maximumn independent set are in their turn typical examples of
hereditary induced subgraph problems. A generalisation of the class of problems just introduced
is the one where we consider that positive weights are associated with the vertices of the input-
graphs. Given a graph G, the objective of a weighted induced subgraph problem is to determine
an_induced subgraph G* of G _such _that G* satisfies 7w and, moreover, the sum of the weights of
the vertices of G* must be the largest possible.

Remark 1. By definition of 7 (as a mapping from the class of graphs to {0,1}), it is obvious
that 7 is context-free; in other words, if a graph G satisfies , then G satisfies 7 into every graph
whose ( is an induced subgraph. 1

Given a polynomial-time approximation algorithm (PTAA) A that solves a maximization NP-
complete problem II (we denote by WII the weighted version of II), the quality of its approxi-
mation behaviour is expressed by the ratio p of the value (size, or weight, or whatever} of the
solution found by the algorithm to the optimal (objective) value of II; the smallest such ratio
over all graphs is the approximation ratio py of the algorithm; the best-known ratio pyp over
all PTAA’s solving 11 is the approximation ratio for II. Instance-depending approximation ratios
for NP-complete graph-problems are commonly expressed by means of (one or more) the three
standard graph-parameters, namely the order n of the input graph, the maximum vertex-degree
and the average vertex-degree of the input graph. In what follows, we will denote by pr(n)
(resp., pwn(n)) the best-known n-depending approximation ratio for II (resp., for WII). Note
that since we deal with maximization problems ratio p is non-increasing in n.

Given a vertex-weighted graph G = (V, E,w) of order n with weight-vector @, we denote
by w; the weight of a vertex v; € V, and by wWmax(G) and wmin(G) the largest and the smallest
vertex-weights, respectively. We denote by 5,(G) and by §,,(G) the weight of a best WII-
solution and the weight of a maximal? TI-solution of G, respectively. For a V! C V, we denote
by G[V'] the subgraph of G induced by V* and by n' its order. Given a subgraph G[V®)] of G,
we denote by S*(G[V*}]) a maximum-size II-solution of G[V®)]; also, given any [I-solution S’
of a subgraph G’ of G, we denote by w(S") the weight of S’

2 The generic result

This section is mainly devoted to the proof of the following theorem.

Theorem 1. Consider a hereditary property m, an induced subgraph problem Il stated with
respect to m and the weighted version WII of Il {we suppose that weights are positive). Let

In other words, a feasible solution of TT is a subset of the vertices of the input-graph.

?Throughout the paper we use the notation “maximal set” to denote a set which is maximal for the inclusion
with respect to a given property m; in other words, a set .S of items is maximal with respect to = if (a) 5 fulfils =
and (b} if we add any item in S, then the resulting set does not fulfil =; a set is “maximum” with respect to « if
it is the largest between the maximal sets {with respect to ).



M > 2 be an integer and let VI = {v; € V 1 wpax(G)/M? < wj < wm%x(G)/M“'_l}, i=1,...
Finally, let ¢ = sup{f : Bu(GU1<i<eV z)] ) < Bu(G)/2, Bu( [U19-5g+1V(”)]) > Bu(G)/2}. Then,

M*® M-2 1
>  min{ = s :
pw(n) 2 max{ o ,mln{ sarEs i), Mgpn(ﬂ)}}

Proof: For the sequel, we set G, = G[UlSinV(i)], Gy = G[U;S,-Sw_;,lv(i)] and Gy = G[V'\

Ur<i<a V@] (of course, B (Ga) > Bu(G)/2).
We first remove vertices vy such that the graph ({vg},#) does not satisfy . Then, the
following lemma holds.

Lemma 1. There exists a PTAA for WII achieving approzimation ratio M*/(2n).

Proof: The algorithm claimed consists of simply taking v* = argmax,, oy {w;} as Wll-solution
- and-then-adding vertices-in-such-a-way-that the-solution finally-obtained-remains-feasible! for G—--

‘Moreover, note that, since vertices vy such that the graph ({vz},#) does not satisfy 7 have been
removed, the graph ({v*},0) is already a feasible solution. Consequently, 5,(G) 2 wmax(G),
Buw(@Q) £ 28, (Ga) < 2|15™(Ga)|wmax(Ga) < 215%(Gg)|wmax(G)/M®. Consequently,
Bu(G) M*® M®

> >
Bu(G) ~ 2[5*(Gy)|l — 2n

p(n) = (1)

g.e.d. I

Remark 2. For every i > 1, the weight of any Il-solution §@ of G[V®)] lies in the interval
[15) |wimax(G) /MY, | 8D |wmax (G) /M), It is at least |S® wmin(GIVE]) > |S® wma (G) /M
and at most | SO [wmax(G[V®]) < |5 wmex(G) /M1 K

For the rest of the proof, we distinguish two cases with respect to By (Gy), namely 3,(G)/2 >
Bu(Ge) > (M —2}/2M) By (G) and By(Gs) < (M — 2)/2M) 5, (G), respectively.

We first consider the case 8,(G)/2 > Bu(Gy) = (M — 2)/2M)3,(G). Then the following
[emma holds.

Lemma 2. Let fu(G)/2 2 Bul(Ga) > (M —2)/2M)B,(G), p = argmax; iz {Bu(GIVOD),
|V®)| = n®) and §*(G[VP)]) be the mazimum-size T-solution in GV )], If there erists o PTAA
for I providing o mazimal solution S®) such that |S®)| > pp(n®h|S*(G[V®))|, then one can
solve WII in G, in polynomsial time, within ratio (M — 2)/2zM?)pn(n).

Proof: Obviously, 8,(Gz) < 38,(GVP]) and 8,(Gs) < z|S*G[VP)])|wmax(G)/MP~T (by
Remark 2). S0, fu(G) < (2M /(M — 2))z|S*(G[VP))| (winax (G)/MP™1).

On the other hand, application of a PTAA guaranteeing approximation ratio pg(n) < 1
for IT in G[V®)] constructs a solution S® of WII of weight at least |S%jwm,(GIVE)]) >
|8®) |wrgax (G) /MP. Note that (by Remark 1) S is T-feasible for G. Moreover, starting from
this solution, one can greedily augment it in order to finally produce a maximal WIl-solution
for G. This final solution verifies 3,(G) > |S® [winax(G)/MP.

Combination of the above expressions for 3,,(G) and 58,(G) yields

BulG) 2 15| M -2 M-2
P(ﬂ) ﬁw(G) (29:M2) (lS*(G[V(p)])l) 2 92 M2 PH(n(P)) > TE pn(n) (2)

and this concludes the proof of the case G,(G)/2 > Bu(Gg) 2 (M — 2)/2M)3,(G) and of the
lemma. fi .
We now suppose that 8,(G;) < (M — 2)/2M)3,,(G) and prove the following lemma.

*In other words, this solution satisfies .



Lemma 3.  Let By(Gz) < (M ~ 2)/2M)8,(G) and S*(GVEHD]) be o mazimum-size 11-
solution of G[V@tV]. If there exists a PTAA for 11 providing o mazimal II-solution S+ of
cardinality ot least pr(n(®t1))-times the cardinality of S*(GIVED)), then one can solve WII
in G, in polynomial time, within ratio (1/M?%)pn(n).

Proof: Note that since z is the largest £ for which 8,(G[U1<i<eV®]) < 8,(G)/2, set V=D is
not empty.

Let S°P*(Gr41) be an optimal WIl-solution in Gey (i€, Buw(Gat1) = w(SPHGyy1))); let
S{Gz) = 8°PY(Gyy1) N V(Gy) (where V(G,) denotes the vertex-set of Gy) and S(G[V+H]) =
8P (G 1)NVEHD) (in other words, {S(Gy), S(G[VE+D])} is a partition of $°P¢((y41)). Since 7
is hereditary, sets S(G.) and S(G[V)]), being subsets of SPH(G,.1), also verify 7 (and,
consequently they are feasible WIl-solutions for G, and G[V®+1)], respectively). We then have:

— WS £ BulG) - R
w(S(G[V($+1)])) ﬁw(G[V(m+1)]) 7
B (Grt1) w(S(Gy)) + w(SGVEI) < Bu(Gy) + Bu(C[VE))
Y =26,(6) + BulGIV )

PulG)

ﬁw(Gm+1) 9

It follows from the above expressions that G, (G[V®tY]) > 8,(G)/M and this together with
Remark 2 yield, after some easy algebra, 8,(G) < |8*(GIV ) [winax (G)/M>1.

As previously, suppose that a PTAA provides, in polynomial time, a maximal solution S@+1)
for IT in G[V{#+1)], the cardinality of which is at least p{n(®+1})|$*(G[V & *+1])|, Then, one can
greedily augment this solution in order to produce a maximal llI-sclution for ¢ of total weight
B(G) 2 15D wmax (G) /M.

Combination of expressions for 8),(@) and 3, (G) yields

_ (@) 1 ENa L (@+1)y > L
o) = 3165 2 (55) (o) 2 aene=”) 2 o) @
and this concludes the proof of the case 8, (Gz) < (M —2)/2M)53,,(G) and of the lemma. I

Remark 3. For the case where z = 0, i.e., B (GIVI)) > 8,(G)/2, arguments similar to
the ones of the proof of Lemma 3 lead to an approximation ratioc pwn(n) = 8,(G)/Bs(G@) >
pr(n)/2M, better than the one of expression (3). I
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Consider now the following algorithm where we take up the ideas of Lemmata 1, 2 and 3 and
where, for a graph G’, we denote by A(G') the solution-set provided by the execution of the
II-PTAA A on the unweighted version of a graph .

BEGIN (*WAx)
fix a constant M > 2;
partition V in sets VI « {vy : wpar /MY < wy < v /M1
5O + {argmazy,ev{ws}};
OUTPUT argmax{w(SCM),w(a(cvM])),i =1,...};
END. (*WA*)
Revisit expressions (1), (2) and (3). It is easy to see that, since M is fixed, worst cases for the
respective ratios are represented by expressions (1) and (2); so,

M-2 1

pwn(n) = pua(n) = max {%,min{mm (n), Wﬂn(n)}} (4)



and this concludes the proof of Theorem 1 which, obviously, works also in the case where weights
are exponential in n. I

The proof of Theorem 1 can be seen as a reduction transforming every PTAA A achieving
ratio pyy) for IT into a PTAA for WII achieving, at worst, ratio e = Q(py(n)/z). Quantity 1/
is usually called expansion of the reduction (see [7]}. By expression (1) and by the fact that
the approximation ratio of any PTAA for WII must be less than 1 {WII being a maximization
problem), z = O(logy, n) (in fact, as we will see in the next section, it can be much smaller
depending on the form of pg(n)). But even such an expansion is a meaningful improvement
with respect to expansions induced by reductions between weighted — no-weighted versions of
problems which do not admit constant-ratioc PTAA’s. For example, for the case of IS, if we
take into account that no PTAA can guarantee fixed constant ratio for it, reductions of [7] have
expansion 1/n?.

3 Important corollaries of Theorem 1

3.1 Maximum-weight independent set and maximum-weight clique

Consider now one of the most classical NP-complete problems, the mazimum independent set.
Given a graph G = (V, F), an independent set is a subset V' C V such that whenever {v;,v;} C
V', vw; ¢ B, and the mazimum independent set problem (IS) is to {ind an independent set
of maximum size. As we have already noted in section 1, property “is an independent set” is
hereditary (the subset of an independent set is an independent set); moreover, it is non-trivial
(not all sets V' C V are independent). A very well-known and largely studied generalization of IS
is its weighted version (denoted by WIS); here, we associate positive weights with the vertices
of G and the objective becomes to maximize the sum of the weights of an independent set.

In terms of n, the best known approximation ratio for IS is, to our knowledge, achieved
by the IS-PTAA of Boppana and Halldérsson ([1]): prs(n) = @(log?n/n). Embedding it in

expression (2), we get
M-2 log?n log?n
> | —— = .
pln) 2 (259M2)®( n ) 6( nIT (5)

For instance, if 2 < loglogn, expression (5) induces p(n) > ©(log?n/(nloglogn)), while, if
z > loglogn, then expression (1) guarantees p(n) > ©((logn)98™ /n); on the other hand,

expression (3) always guarantees p(n) > ©(log? n/n). So, by expression (4), the approximation
ratio guaranteed by algorithm WA (supposing M > 8) called when used to solve WIS is, at worst,

pual(n) > © (ngf-"—) . (6)

nloglogn
Expression (6) and the discussion above introduce the following corollary.
Corollary 1. pwis(n) = Q(log? n/(nloglogn)).

The above result improves by a factor O(log logn) the best-known approximation ratio (function

of n) for WIS (0(log® n/(n(loglogn)?)), due to Halldérsson ([5])).
Finally, let us note that the same approximation result holds for another famous NP-complete

problem, the maximum weighted clique (see [2] for the statement of this problem).



3.2 Maximum-weight ¢-colorable induced subgraph

Given a graph G = (V, E) and a positive constant £, the problem of the mazimum £-colorable
induced subgraph (denoted by Cf) is to find a maximum-order induced subgraph G’ = G[V'] of G
(V' C V) such that G’ is £-colorable (i.e., there exists a coloring for G’ of cardinality at most £).
In the weighted version of C¢, denoted by WCE, positive weights are associated with the vertices
of G and the objective becomes to find the maximum-weight £-colorable induced subgraph. Once
more, property “is £-colorable” is hereditary (if the vertices of a graph G can be feasibly colored
by at most £ colors, then every subgraph of G induced by a subset of its vertices can be colored
by at most £ colors) and non-trivial (given a number ¢ every graph is not £-colorable).

The best-known ratios for C£ are the ones of [4]: ©((logn)?/n) (as function of n) and of [3]:
min{x/u, ©((loglog A)/A)}, for every fixed x € INT, where A, u are the maximum and the
average degrees of the graph, respectively (as degree-function). For WC¢, no approximation

Tesult i, to OUr Knowledge, mentioned until now.

Application of Theorem 1, using the algorithm of [4] as approxinia.tion algorithm for C£ (the
algorithm A in algorithm WA of section 2), leads to the following corollary.

Corollary 2. pwcz = Xlog? n/(nloglogn)).

4 About continuous reductions between weighted and unweighted versions
of independent set

In what follows, we use the term “continuous reduction”, introduced by Simon ([7]), to denote
the approximation-ratio-preserving reductions. Informally, given two maximization problems II
and II', a reduction IT o< IT' is called continuous with an ezpansion of e if each polynomial-time
p'-approximation algorithm A’ for II' can be converted into a polynemial-time p-approximation
algorithm A for II such that p > ep’. The corresponding notation is I == II'. It is very well-
known and largely noted until now by many authors that the concept of continuous reductions is
strongly based upon the very restrictive hypothesis that the approximation ratio p’ of 4’ has to
be a fixed constant. Since IS does not admit such algorithms (in 1996 it has been proved that it
is hard to approximate IS within 1/n!~¢, for any € > 0, [6]), continuous reductions proposed until
now between IS and WIS fail to produce WIS-ratios as good as the ones known for IS. In fact, the
best known ratios for IS are ©(log® n/n) (in terms of n, [1]) and min{x/u, ©((loglog A)/A)}, for
every fixed k € INT, where A, y are the maximum and the average degrees of the graph, respec-
tively ([3]). On the other hand, the best corresponding ratios for WIS are ©{log? n/(n loglogn))
(proved in this paper) and 3/(A -+ 2) (see [5] for this last ratio), respectively. We think that
devising a continuous reduction of constant expansion between IS and WIS, or proving that
such a reduction does not exist, is a very interesting open problem, the solution of which is far
from being obvious. In what follows, we give some easy cases of such reductions for restrictive
WIS-classes recognizable in polynomial time. We denote by a,,(G) and by o), (@) the weight
of a maximum-weight independent set and the weight of an approximately maximum-weight
independent set of G, respectively.

Theorem 2. Consider a fized constant £ and graphs G = (V, E) of order n where ot least one
of the following conditions is verified:

1. there exist at most £ distinct weights,
2. wrna.x(G)/wmin(G) < Ea

3. weights are rationael and fized constants,



4. Wmax(G) > nw', where by w' we denote the second largest verter weight.

For all these graph-families, there exist continuous reductions of constant ezpansion between IS
and WIS, Consequently, in all the ebove families of graphs, WIS can be approzimated in polyno-

mial time within
1 2
PWIS = PIS = max{@ ( o8 n) ,min{ﬁ,@ (w)}}
n L A

for every fized k € IN*.

Proof: We consider the £ subgraphs, .G’(l), ...,GB of G, induced by the vertices of the same
weight. Let p = a,rgmaxlsigg{aw((}'(z))} and w, be the weight of the vertices of G(P); then,
(@) < Lo, (GP) = fw,|S*(GP)|. On the other hand, one can easily take o/ (G) =

gorithms of [1] and of [3] for IS. It is easy to see that, in this case, pwis = o, (G)/ 0w (G) >
wp|S®)|/ (P10, S* (GPN|) > p15/£ and that this ratio verifies the final statement of the theorem,
concluding so the proof of item 1.

For item 2, it suffices to remove weights from the vertices of graph and to solve IS in G.
Let S(G) be the largest among the independent sets provided by the algorithms of [1} and of [3}
for IS and S*(G) be the optimal one in G. Then, it is easy to see that pwis = &, (G}/ 0 (G) 2
Winin (G)|S(GY/ (wmax(G)|S*(G)|) = pi1s/f. Once more the final statement of the theorem is
verified and the proof of item 2 is concluded.

The proof of item 3 is standard and already used by many authors (see for example [7] for
the proof of the result WIS(k) 12¢ 1S, where WIS(k) denotes the version of WIS where vertex-
weights are bounded above by n*, k > 1; this proof unfortunately works only for fixed-constant
ratios). Given an instance G, of WIS, one can construct an instance G of IS by replacing every
vertex v; of weight w; by an independent set Wi of size w;; next, if two vertices v»; and v; are
linked by an edge in G, one draws a complete bipartite graph between the two independent
sets W; and W of sizes w; and wy, respectively (in the case where weights are rationals we simply
replace each weight by itself multiplied by the LCM of the weight-denominators). Now, note
that if an algorithm delivers a solution for G (instance of IS), one can directly obtain a solution
of G, by simply replacing the independent sets of the former by the corresponding vertices of
the latter, this operation leading to a solution for G, with the same value as the cardinality of
the solution for G. Denoting by n, and A, the order and the maximum vertex-degree of G,
respectively, and by n and A the corresponding parameters of G, we have n < Wma{G)nw,
A £ wmax(G)Ay. Tt is easy to see that following the discussion just above and thanks to the
fact that the integral weights are fixed constants, applying the algorithms of [1} and [3] in G and
retaining the best of the computed solutions, achieves for WIS in G, the same orders of ratios
as for IS in @, concluding so the proof of item 3.

For the proof of item 4, let us denote by Gy, the subgraph of G induced by the vertices of
weight wmax(G) and by S(Gm) the best of the solutions provided when running the algorithms
of [1] and [3] on Gy,. Obviously o, (G) > &, (Grm) > Wmax(G)|S(Gm)|. On the other hand,
ay(G) € aw(Gr)+(n—|5(Gn) )" < Wnax(G)|S*(Gm)|+ (n—|5*(Gm)|)wWmax (G) /n. Divising,
member-by-member, the above expressions for of,(G) and a,{(G), we get

) J (<2 N - 25 I
ay(G) ~ |S* (G| + = S;Gm TS (Gr) +1

PWIS =

Let us now consider any fixed € > 0. The above expression for pwig is greater than, or equal to,
pis{l — ¢€) for |S*(Gp}| = (1 — €)/e. On the other hand, if |5*(Gp)| < (1 — €) /¢, then |5*(Gyy)|

6

fmax—lgggg{wi'|S@H}7~wheref‘S—@Afis~theflargestkamongﬂthe independent-sets provided-by the-ale-—-



being a fixed constant, it can be computed in polynomial time by exhaustive search. In this
case, o, (G)/o(G) = |S*(G)l/((S*(Gm)l +1) > 1/2 (since |8*(Gp)| > 1). Consequently,
once more, the final statement of the theorem is verified and this concludes the proof of item 4
and of the theorem. Nl
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