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Une nouvelle représentation de tours pour le probléme du voyageur du
commerce et son utilisation dans des heuristiques

Résumé

Nous présentons une nouvelle approche pour le probléme du voyageur du commerce basée
sur une représentation originale gloutonne de I'espace des solutions. Ce type de représenta-
tion induit une définition différente des structures du voisinage, la notion de voisinage étant
une notion-clé dans plusieurs méthodes utilisant des approches de recherche locale ou aléa-
toire. Nous proposons aussi une stratégie parallélisable de recherche qui s’appuie sur une
recherche locale avec des ré-initialisations aléatoires et qui exploite les caractéristiques de la
représentation proposée. Des résultats expérimentaux préliminaires sur plusieurs problémes-
tests montrent que cette représentation, couplée avec la stratégie de résolution établie, donne
des solutions trés proches de I'optimum en des temps d’exécution modérés.

Mots-clé : voyageur du commerce, optimisation combinatoire, heuristique.

A new representation of traveling salesman tours and its use in heuristics

Abstract

A new approach is presented to the traveling salesman problem relying on a novel greedy
representation of the solution space and leading to a different definition of neighborhood
structures required in many local and random search approaches. Accordingly, a paralleliz-
able search strategy is proposed based upon local search with random restarts that exploits
the characteristics of the representation. Preliminary experimental results on several sets
of test problems, among which very well-known benchmarks, show that the representation
developed, matched with the search strategy proposed, attains high quality near-optimal
solutions in moderate execution times.

Keywords: traveling salesman, combinatorial optimization, heuristic.
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1 Introduction

The traveling salesman problem (TSP) is stated as: given the distances between N cities, find
the shortest (in the sense of total distance) closed tour through the set of N cities so that each
city is visited exactly once (|7]). TSP is one of the most known NP-complete problems and has
strongly influenced the emergence and evolution of domains as complexity theory, operations
research, combinatorial optimization. In most published scientific works about TSP, the matrix
of intercity distances is considered symmetric. This is the version of symmetric TSP with which
we deal in this paper.

Since exact TSP-algorithms require excessive computation times on powerful machines, many
approximation algorithms have been developed that aim at providing, for any instance, near-
optimal solutions (a few percent from optimum) in reasonable computation times. But even
this aim is far from being always achieved. In fact, one of the first negative results in polyno-
mial approximation theory (the chapter of complexity theory dealing with finding, in polyno-
mial time, sub-optimal solutions for NP-complete problems), is that for every polynomial time
approximation algorithm for TSP, there exists a TSP-instance for which the worst-case approx-
imation ratio “objective value of approximate solution over optimal TSP-value” is arbitrarily
large (|3]). This strongly negative approximation context has been lightened by some positive
approximation results for restrictive TSP-cases. We quote here the classical Christofides’ algo-
rithm achieving worst-case approximation ratio bounded above by 3/2 for metric TSP (|2]), the
Papadimitriou and Yannakakis’ algorithm achieving worst-case approximation ratio 7/6 for TSP
with edge-distances 1 or 2 (|9]) or, even, the polynomial time approximation schema of Arora
for Euclidean TSP ([1]).

Let us note that modeling natural problems in terms of TSP instances arises not only in
economy, complex systems administration, decision making, etc., but also in mechanics, physics,
chemistry or even in biology. This multiplicity and diversity of problems having TSP as common
mathematical ground explains the great scientific interest that researchers (both mathematicians
and computer scientists) always have for TSP and the intensive research-work about effectively
solving it.

In general, TSP-heuristics can be classified as: tour construction procedures, tour improve-
ment procedures and composite procedures based upon both construction and improvement
techniques ([10]).

In the case of construction procedures, a tour is built gradually by selecting one city at
each step and by appropriately inserting this city into the current tour. The local improvement
techniques are based upon perturbations of the current solution that aim to generate a new
improved tour. The most widely used techniques are the k opt exchange heuristics and in
particular the 2 opt, 3 opt and Lin-Kernighan heuristics (|8]). The k_opt heuristics generate
a new tour from the current one by replacing k edges in the tour by k& new edges. Usually,
these heuristics are used as perturbation mechanisms in local search procedures, i.e., they are
applied iteratively until no further improvement is possible. They have also been employed meta-
heuristics, e.g., simulated annealing, tabu search and genetic algorithms. Finally, the composite
heuristics are more recent and were developed from the combination of characteristics of the
previous categories ([4, 5]). A detailed and very interesting presentation of the most-known
techniques used to approximately solve TSP can be found in [6].

The approach proposed in this paper belongs to the category of composite heuristics. The
current solution is not directly represented as a sequence of cities as it happens in most heuristics,
rather each string encodes the strategy that will be used for tour construction. Therefore, the
search is oriented towards the identification of tour construction strategies that lead to near-
optimal solutions. Such strategies result as appropriate modifications to the greedy heuristic
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strategy which assumes that the best decision is made at each step during tour construction. The
proposed representation allows for significant improvements over the greedy heuristic by allowing
the possibility of inferior decisions at each step of tour construction that may finally lead to tours
of optimal length. The identifications of the appropriate decisions to be made at each step of
tour construction constitutes the objective of the search algorithms that are based upon local
improvements. Nevertheless the perturbation principle (i.e., the way new solutions are generated
from the current one) is totally different from the k£ opt principle. In general, heuristics working
in a very satisfactory way when dealing with the classical representation (sequence of cities) may
be unsatisfactory or even senseless dealing with our representation. Consequently new heuristics,
compatible with this novel representation need to be developed.

2 The greedy-solution representation

Consider a general TSP (symmetric or asymmetric) with NV cities. In the proposed method each
tour is described by a string S = (s1,...,sny-1) with0 <s; < N—i—1foreachi=1,...,N—1
which encodes a modified greedy search strategy. In order to map this string to a valid tour and
evaluate the corresponding tour length, the following procedure is used:

e a city is randomly selected that will always correspond to the first city in the tour specifi-
cation procedure; we shall refer to this city as the initial city;

e the remaining N — 1 cities are ordered with respect to their distance from the initial city
and we select the second city of the tour according to the value of si; if 51 = 0 we select
the closest city, if s1 = 1 we select the second closest, and so on; the city selected according
to the s; value is added to the tour and becomes the new current city;

e in the same way, in order to specify the ith city of the tour, we rank the remaining N — ¢
cities with respect to their distances from the current city (selected at step ¢ —1) and select
one of them according to the value of s;, 0 < s; < N —i — 1.

Example 1. Consider the TSP-instance of Figure 1 and suppose that the tour is described by
the string (0,2,1,0); finally, suppose that the initial city is A.

Following the representation string, starting from A we move to its closest city, £. Then,
starting from E, we will move to its third-closest city (excluding A); this city is B. From B, we
move to its second-closest city (excluding A and E); this city is D. Finally, from D, we move to



its closest city (excluding A, E and B); this city is C. Thus, given that the initial city is A, the
tour represented by the string (0,2,1,0) is (A, E,B,D,C, A). |

Remark 1. Under the above interpretation schema, the tour corresponding to the string with
s; = 0 for each 7 is the greedy solution starting from the specified initial city. We shall call this
string zero_State. I

Remark 2. The above interpretation schema works for asymmetric TSP as well. Il

Remark 3. The evaluation of a string under the proposed representation is computationally
more expensive compared to the conventional descriptive approach since at each step a sorting
of the remaining cities is required with respect to their distances from the current city. il

Nevertheless, complexity can be significantly reduced by adding a preprocessing stage in which
a list is constructed for each city that contains the other cities sorted according to their distance
from that city. During tour construction, if s; = k, we scan the list of the current city and ignore
the entries of the list corresponding to cities that have already been allocated. The kth entry in
the ordered list of unallocated cities corresponds to the city that will be added to the solution
tour.

On the other hand, the method described above has the advantage of incorporating knowledge
about the relative values of the intercity distances. So, we almost always know from the begin-
ning (unless the problem is a very strange one) that near-optimal solutions are expected in the
neighborhood of zero State. In fact, as experiments indicate, even simple local search starting
from strings in the neighborhood of zero State is sufficient for obtaining solutions about 5-10%
from optimal in a relative small number of iterations for many problem instances with up to 200
cities. In the case where local search is repeated (random restarts) much better results are
obtained as shown in the next sections.

Dealing with the neighborhood of a given state (used in local improvement techniques), the
proposed representation leads to a more natural definition than the ones used in common TSP-
heuristics like the two or three city exchange heuristic ([8]). In our case, since the representation
is numerical, it is natural to define the neighboring states as those that differ from the current
one in the values of one or more string positions. In the case where only one string position ¢ is
allowed to change its value, but can take any value in the range [0, N — i — 1], the size of the
neighborhood is O(N?). In our tests we have considered a stricter neighborhood definition: the
value s; of a string position i is allowed to take integer values in the range R; = [max{0,s; —
a},min{s; + a, N — i — 1}] with a < N, since from the representation definition it must always
hold that 0 <'s; < N —i — 1. This leads to a neighborhood definition with size O(NN), since two
neighboring strings are allowed to differ in the value of only one position ¢, and the number of
allowable different values for s; is less than, or equal to, 2a.

Another issue that must be emphasized deals with the initial city specification that is neces-
sary in order to evaluate a given string. Obviously, different assumptions about the initial cities
lead to different tours of different lengths. It is possible to make the evaluation of a given string
independent of the initial city selection as follows: we evaluate all the N tours that result by
considering every city 4, ¢ = 1,..., N, as the initial one, and find the tour of minimum distance
which will constitute the final evaluation of the given string. Of course, this evaluation schema
leads to solutions of better quality at the expense of being N times slower. Another possible
approach is to perform N different local searches, each one assuming a different initial city for
string evaluation. In the last two cases, it is natural to use parallel processors in order to face
up with increasing computational times.



3 An optimization strategy with random restarts

Once a solution representation and a neighborhood structure have been defined, there are many
alternative search schemas that can be used for exploration of the state space. For example, it
is possible to test several variants of local search, various kinds of random search, e.g., simulated
annealing, tabu search, genetic algorithms, etc.

In our case we have considered an optimization strategy based upon local search with random
restarts where the initial state of each restart was not selected completely at random, but in a
more specific way in order to deal with the special characteristics of the solution space. Moreover,
a search phase, called phase 1, takes place at the beginning of the procedure in order to specify a
promising initial city that will be subsequently used for the construction of the tour corresponding
to each solution string.

Concerning local search starting from an initial state, we have considered the steepest descent
approach according to which the whole neighborhood of the current state is visited at each step
and we move to the state of minimum cost if this cost is lower than the cost of the current state,
otherwise we consider that a local minimum state has been encountered. In all our experiments
the value of the parameter a, described in the previous section, which determines the neighbor-
hood size, was set equal to 4. If the local minimum state is of lower cost than any other previous
local minimum state, then we consider it as the current best state. The global search terminates
if no state better than the current best one is found for a prespecified number of restarts.

The proposed search algorithm proceeds in two phases: In phase 1 we perform local search
with random restarts, where at each restart a different city is considered as the initial one.
Moreover the initial state for each restart is obtained through small perturbations of the zero
state. All cities are sequentially considered as initial ones and the city that leads to better results
is permanently considered as the initial one in the computations of the next phase. In phase 2,
each tour is constructed by considering the same initial city and the starting state at each restart
is obtained through small perturbations of the current best state.

Random perturbations were carried out in a manner analogous to the mutation operation in
genetic algorithms, i.e., by deciding for each string position ¢ with low probability p,, whether its
value will change or not. In the case of positive decision, the new s;-value is randomly selected
in the interval [max{0,s; — 3},min{s; + 3, N — i — 1}]. The mutation probability was taken
equal to p,, = 0.15 * (#Restarts/max_ Restarts) + 0.05, where #Restarts denotes the number
of restarts already performed for the current best state. If a new best state is found then we set
#Restarts = 0 and we start counting restarts from the beginning.

An overall specification of the whole search strategy is described in what follows.

e Phase 1: search for a good initial city

— Initializations

* #Restarts < 0
best State < zero State
best Initial City < 0
max _Restarts « 2 x NV
1=0

— repeat steps 1-5 below until #Restarts = max _Restarts

* X X X

1. initial City « i;

N

define Initial State by mutating zero State

b

starting from the Initial State perform local search to find Final State
if Final State better than best State then

e~



* best State < Final State
* best Initial City « ¢
* F#Restarts < 0

5. 4+—14+1mod N

e Phase 2: global search using best Initial City as the initial city

— Initializations
* #Restarts «— 0
* max _Restarts < 500
x initial City <« best Initial City
— repeat steps 1-3 below until #Restarts = max Restarts

1. define Initial State by mutating best State
2. starting from the Initial State perform local search to find Final State
3. if Final State better than best State then

* best State « Final State

* F#Restarts < 0

4 Experimental results

The proposed method has been tested on two categories of TSP-instances.

The first category concerns small instances with 10-15 cities, for which the optimal solution
was obtained using a branch-and-bound technique. Here we have tested three kinds of random
instances:

1. 209 randomly generated T'SP-instances, i.e., complete graphs on 10-15 vertices, with ran-
dom integer edge-distances from the interval [1,150];

2. 202 Euclidean TSP-instances, i.e., complete graphs of order 10-15, vertices of which are
points of the rectangle [0, 1] x [0, 1] with random (z,y)-coordinates; edge-distances are,
obviously, the Euclidean distances between points;

3. 173 TSP-instances with edge distances randomly chosen in {1,2}.

Ten experiments were performed for each instance and the method exhibited excellent perfor-
mance. More specifically, in 95% of the instances all 10 runs were successfully terminated at
the optimal solution, while in the remaining 5% of the instances, at least 7 of the 10 runs gave
the optimal solution and the remaining runs terminated at solutions less than 1% from optimal.
Moreover the execution time was very small (less than 2 seconds of CPU time) for all graphs.

The second category of experiments have been conducted with 14 benchmark-problems from
the TSP data library (TSPLIB, [11]). For these benchmarks, the number of cities ranged from 100
to 200. For each instance 10 runs have been performed.

The solution-quality criterion is the so-called optimality ratio, defined as:

solution Cost — optimal Cost

p =100 ( =0 OPVIE > %
optimal Cost

where solution Cost denotes the cost of the obtained solution and optimal Cost is an estimate

of the value of the optimal tour (available in [11]). For each of the problems tested, three ratio-

values are retained, namely, the minimum over all runs, called best p, the maximum one, called



Problem Best p (%) Average p (%) Worst p (%)

eil101 0.6 1.2 1.7
kroA100 0.4 0.8 1.1
kroA150 0.8 1.8 1.1
kroA200 1.9 2.1 2.5
kroB100 0.4 0.8 1.5
kroB150 1.0 3.3 4.1
kroB200 3.1 4.0 5.2
kroC100 0.5 0.8 1.3
kroD100 2.3 3.2 3.6
kroE100 0.2 1.0 1.8

lin105 0.3 0.6 1.0

rat99 0.9 1.7 2.5

rat195 2.2 3.4 3.6

rd100 0.4 2.2 3.2

Table 1: Optimality ratios for several test problems from the TSPLIB library.

worst p, and finally, the average one, called average p, computed as the sum, over all runs, of
the ratio-values divided by the number of runs.

Table 1 displays statistical results for several benchmarks, where 10 experiments were run
for each problem. As one can see from this table, the proposed method provides high quality
solutions to several problem categories with very good best case and worst case ratios and, in
addition, relatively low standard deviation values. Finally, it must be noted that all ratios were
computed by considering as optimal values those provided by the TSPLIB library which are
often estimates (lower bounds) of the optimal solution values ([11]). So, the real approximation
ratios for the problems tested are in some cases even better than the ones presented in table 1.

Dealing with execution time, the average values were up to 1000 CPU seconds for 200-city
problems. Experiments were carried out on a ULTRA SPARCstation with 512Mb RAM. Let us
note that it is possible to obtain results of better quality by increasing the neighborhood size
and performing more than 500 random restarts from the current best state, which will lead to
an increase of the required CPU time. This is not a matter for problem sizes up to 150 cities,
but leads to increasing CPU times for larger problem-instances. Therefore, we have decided to
specify the parameters of the search strategy under the constraint that the execution time will be
less than 1000 CPU seconds for the largest problems examined (200-city problems). Moreover,
we have chosen to use the same number of restarts (in phase 2) regardless of the problem size.

Finally, observe that the neighborhood exploration phase exhibits high degree of parallelism,
since the cost of each neighboring state is computed independently and therefore a pool of
processors can be easily employed to perform this task, leading to the expectation of high speedup
values and therefore significant improvements in execution time.

5 Conclusions

We have proposed and studied a new state space representation for the TSP that is based upon
a ranking of the intercity distances, in order for the corresponding tour to be specified. The



method is general and can be applied to any kind of TSP, even asymmetric one. Experiments
have been conducted (on problems with up to 200 cities) by performing local search with random
restarts where a simple neighborhood definition has been used (leading to neighborhood size less
than 8N) and a specific strategy for specifying restart states has been developed in order to
exploit the characteristics of the new representation. Of course, a systematic validation of our
method, by conducting further experiments is needed. But our preliminary experimental results
show that this approach provides solutions of high quality in relatively small execution time.
Moreover, as mentioned above, the devised algorithm is easily parallelizable.

There are many open problems which can be addressed concerning the proposed representa-
tion and which will constitute the subject of our future work. First of all, we aim at integrating
the proposed representation with global optimization techniques (tabu search, simulated anneal-
ing, genetic algorithms and others) that have already been successfully employed for the solution
of the TSP using the conventional representation and the corresponding heuristics. In addition,
we alm at examining alternative neighborhood definitions that may lead to solutions of better
quality. Finally we are interested in implementing the method on parallel machines following the
directions suggested in previous sections.

Another promising direction of future research is the use of the proposed greedy representa-
tion to tackle other combinatorial optimization problems for which greedy heuristic approaches
exist. So, further studies are to be performed concerning the application of the method to prob-
lems, structurally different from TSP, for which tailored heuristics (as the Lin-Kernighan one for
the T'SP) have not been developed. Such studies, except their evident operational interest, will
render clearer the importance and effectiveness of the greedy representation, as well as its field
of applicability.

For example, for the maximum independent set, instead of constructing the greedy solution
(minimum-degree heuristic) by including in the solution set the best vertex at each step (the
one minimizing the number of the immediately excluded vertices), we could use the proposed
representation and rank the vertices according to the number of the remaining neighboring
vertices that will be excluded in the case where the specific vertex will be added to the solution
set. From the string representation, a solution is constructed by selecting at each step i the vertex
suggested by the corresponding s; value. An analogous thought process could be followed for
minimum set-covering, where the ranking criterion could be the number of remaining elements
of the ground-set in the case where a specific subset will be included in the solution.

Finally, let us conclude this paper with a very interesting theoretical problem, namely the
achievement of theoretical approximation guarantees for the proposed method. This kind of
theoretical analysis is all the more interesting since such results are very rare for the scientific
area dealing with meta-heuristics.
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