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Stratégie maitre-esclave et approximation polynomiale

Résumé

De nombreux problémes de minimisation consistant a couvrir les sommets ou les arétes
d’un graphe par des sous-graphes sont classiquement modélisés par un probléme de set co-
vering. Si le nombre de sous-graphes est polynomial en n, ces problémes peuvent alors étre
approchés a rapport logarithmique par 'algorithme glouton standard pour le set covering.
Nous étendons la classe des problémes approximables par cette approche & des problémes
de couverture et de partitionnement ou le nombre de sous-graphes peut étre exponentiel
en n, en revisitant une technique appelée « maitre-esclave » et en ’étendant & des problémes
pondérés. Nous appliquons finalement 'approche maitre-esclave a deux problémes de dimen-
sionnement de réseau et un probléme de conception de circuits électroniques afin de produire
des résultats positifs d’approximation pour ces problémes.

Mots-clé : problémes combinatoires, complexité, algorithme polynomial d’approximation,
NP-complétude, couverture d’ensembles, dimensionnement des réseaux, graphe, arbre, foret.

Master-slave strategy and polynomial approximations

Abstract

A lot of minimization covering problems on graphs consist in covering vertices or edges
by subgraphs verifying a certain property. These problems can be seen as particular cases
of set-covering. If the number of subgraphs is polynomial in the order n of the input-graph,
then these problems can be approximated within logarithmic ratio by the classical greedy
set-covering algorithm. We extend the class of problems approximable by this approach
to covering problems where the number of candidate subgraphs is exponential in n, by
revisiting an old technique called “master-slave” and extending it to weighted master or/and
slave problems. Finally, we use the master-slave tool to prove some positive approximation
results for two network-design and a VLSI-design graph-problems.

Keywords: combinatorial problems, computational complexity, polynomial-time approxi-
mation algorithm, NP-completeness, set-covering, network design, graph, tree, forest.
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1 Introduction

Given an NP-hard optimization problem II, one is interested in finding a polynomial time ap-
proximation algorithm (PTAA) A with a good performance ratio, this ratio being usually defined
as the worst, over all instances of a given size, of the values of the fraction “measure of the
solution returned by algorithm A over the measure of an optimal solution”.

Let us restrict ourselves to NP-hard minimization covering graph-problems consisting in
covering vertices or edges by subgraphs verifying a certain property. Some of these problems can
be approximated by the following thought process: at each step, one tries to cover a maximum
number of elements (vertices or edges, depending on the definition of the problem) among the
uncovered vertices or edges. The maximization problem solved at each step is called “the slave”
which serves “the master”, the (original) minimization problem. The terms “slave” and “master”
are due to Simon ([13]) who points out the fact that if the slave-problem is polynomial then the
master one is approximable within O(logn). Then it uses this fact in order to prove that if some
master problems are approximate-equivalent, so are the corresponding slave ones (two problems
are said approximate-equivalent if they are linked by approximation-preserving reductions, i.e.,
reductions along which approximation bounds and inaproximability results are transferred from
one to the other).

A classical example of master-slave approximation is the one given by Johnson (in [8], algo-
rithm D3 at the end of section 7 devoted to graph-coloring). At each iteration this algorithm
computes a maximum independent set of the surviving graph, it colors its vertices by a new
color and removes them from the graph. The master problem in this case is the minimum
graph-coloring, while the slave one is the maximum independent set (for reasons of economy we
do not define here well-known NP-complete problems such as graph-coloring, independent set,
set-covering, set-packing, dominating set, hitting set, etc.; their definitions are given in [6]). The
drawback of D3 is exactly that it is not polynomial, since it uses a maximum independent set
computation. In any case, it achieves approximation ratio O(Inn) at worst.

Here, we first extend the master-slave strategy to NP-hard weighted covering and partitioning
problems. But our main purpose is to add a contribution towards a systematic classification of
NP-complete problems with respect to their approximability and, also, to bring to the fore a
unified way to obtain approximation results for a certain class of problems for which achievement
of logarithmic ratios is not obvious. For this, we define the class M-ST of master-slave tractable
problems, approximable, in polynomial time, within logarithmic ratio. Informally speaking,
given a particular unweighted NP-hard graph-covering problem II, we try to show that IT can be
modeled as a set-covering problem, no matter if the size of the obtained set-covering instance is
exponential in the size of the generic instance of II. The set-covering instance obtained includes as
ground set the set of objects (vertices or edges) to be covered, and as set-system all the subgraphs
able to be included into a feasible solution. Via this modeling, II can be solved by the following
kind of greedy iterative procedure G: at each iteration try to cover the maximum number of the
uncovered objects. If one can model the problem at hand in terms of set-covering, and if one can
prove that covering the maximum number of uncovered objects can be performed in polynomial
time (even if the explicit construction of the set-covering instance is exponential), then one has
proved that IT belongs to the class M-ST. Since G is a kind of “simulation” of the greedy set-
covering algorithm, one can conclude that II, as well as every M-ST problem, is approximable
within approximation ratio equal to the one of the greedy set-covering algorithm; this ratio
is O(logn) ([14]). In other words, instead of developing and analyzing a proper approximation
algorithm for every graph-covering problem, we rather try to prove that it satisfies the conditions
of inclusion in M-ST (let us note that proof of the inclusion of a problem in class M-ST is not
trivial at all). Then, approximability of IT within logarithmic ratio ensues immediately. Using this



method, we study three natural network-design problems and we prove them M-ST. Once again,
we note that achievement of logarithmic approximation ratios for them is, to our knowledge, new
and seems non-trivial. At the end of the paper, we try to inscribe the master-slave game into
the formal framework of a new kind of reduction, by means of which we show that, in some way,
set covering is complete for the class M-ST. Finally, let us note that inclusion in class M-ST is
interesting, not only for proving logarithmic ratios, but also for proving lower approximability-
bounds (inapproximability results). Plainly, as it is proved in [1]|, two of the problems studied
are not approximable within (1 —¢)Inn, Ve > 0. Inclusion of them in M-ST constitutes a proof
that master-slave approximation is the best one can do in order to approximately solve these
problems.

In what follows, given an instance I of an NP-hard problem IT and a PTAA A for II, we
denote by OPT(I) the optimal value of I, by A(I) the value of the solution of I provided by A, and
we say that algorithm A approximates IT within ratio p if A(I)/OPT(I) < p, for every instance I
of II.

2 Master-slave tractable problems

We denote by Sp the set of subgraphs of a graph G = (V, E) satisfying a property or a pred-
icate P, by V(G) (resp., E(G)) the vertex-set (resp., edge-set) of G, by n its order (|V|) and
define the following class.

Definition 1. Consider an NP-hard minimization graph-problem II and a property P; suppose
that (i) a feasible solution of II is an element of 257 and (ii) a cost function ¢ computable
in polynomial time, is associated with S € Sp such that the cost of a solution & of II is
c(S8") = Y ges €(S). Then II is master-slave tractable (M-ST) iff it satisfies the following
conditions:

[M-ST-1] a solution &’ of II is

e cither a P-cover (i.e., a subset 8’ C Sp such that Uges/V(S) = V),

e or a P-partition (i.e., a subset S’ C Sp such that Uges/V(S) = V and for
S8 e 8, V(S)NnV(S) = 0), and every P-cover of G can be polynomially
transformed into a P-partition of at most the same cost;

[M-ST-2| given a binary vector @ € {0,1}" associated with V| the (slave) problem of finding the
subgraph S* = argmaxgegs, {3 ,cv(s) ulv]/c(S)} is in P.

For the case of edge-cover or partition, we simply replace v by e and V by E. 1

The above definition generalizes the classical master-slave method ([13]) where, VS € Sp, ¢(5) =
1, i.e., where ¢(S’") = |S’|. Note that in the case of partitioning, if property P is hereditary (i.e.,
every subgraph of S satisfies P whenever S satisfies P), then condition [M-ST-1] of definition 1
is always satisfied. However, any partitioning problem does not satisfy condition [M-ST-1]; for
instance, from a set-cover one cannot systematically obtain a set-partition of the same weight,
or cardinality.

We now show that M-ST problems are approximable within logarithmic ratio by the following
“simulation” of the classical greedy weighted set-covering (WSC) algorithm.

BEGIN /*MSGREEDY*/

(1) FOR veV DO ufv]«<— 1 0D
(2) 8§ —0;

(3) WHILE JveV:u[v]=1 DO



(4) $* « argmaxsesp{Xvev(s) u[v]/(8)};

(5) S — S U{s*};
(6) FOR v € V(S*) DO u[v] « 0 OD
(7) 0D

(8) OUTPUT S'; (*OUTPUT h(S');*)
END. /*MSGREEDY*/

In the above algorithm, u[v] indicates wether vertex v is uncovered (u[v] = 1) or not (u[v] = O)
at the current step of the WHILE loop. Function h at line (8) polynomially transforms a P-cover
into a P-partition (when dealing with a partitioning-problem). For edge-covering or partitioning
problems, simply replace v (resp., V') by e (resp., E).

Theorem 1. IfII is M-ST, then MSGREEDY polynomially approximates I within min{l +
In A, Inn—Inlnn+0.78} if the costs of every subgraph satisfying P are all identical, and within
1+ InAq otherwise, with A = maxges,{|S|}.

Proof. We prove the theorem for vertex-covering and partitioning problems, the proof being
quite similar in case of edge-covering or partitioning. Let us transform an instance G = (V, E)
of II into an instance ¢(G) = (C,S) of WSC in the following way. Let C = V be the ground
element set in ¢(G), and for every subgraph S € Sp, add a set S = V(.S) with weight w(S) = &(.9)
in S (note that the number of sets |S| can be exponential in n). Under this transformation,
there is a 1-1 correspondence between the solutions of IT on G and the solutions of WSC on ¢(G)
constructed as above, i.e., {S1,92,...,5;} is a P-cover for G iff {S1,S5,...,S;} is a set-cover
for ¢(G) and, moreover the cost of the P-cover of G is the same as the total weight of the
set-cover of ¢(G). Hence, OPT(G) = OPT(p(G)). Now, the greedy algorithm for the WSC-
instance (C,S) can be re-written in the following way.

BEGIN /*WSCGREEDY*/
FOR ¢ €C DO ufc] < 1 0D
S —0;
WHILE Jc € C:uf[c|] =1 DO
§* — argmaxs.s{Tces ule)/w(S)};
S — S U{S*};
FOR c € S*NC DO ufc] < 0 OD
0D
QUTPUT &
END. /*WSCGREEDY*/

Since subgraph S € Sp (resp., vertex-set V) in G corresponds to set S (resp., ground set C')
in p(G), then solution &’ = {51, Sa, ..., St} computed by algorithm MSGREEDY for G corresponds
to the cover S’ = {S1,5,,...,5:} for ¢(G), and ¢(S') = w(S’). Hence, ¢(S')/OPT(G) =
w(S)/OPT((G)).

If a feasible solution for II is not a P-cover but a P-partition, then by condition [M-ST-1]
P-cover S’ can be transformed in polynomial time into a P-partition S” satistying ¢(S”) < ¢(S").

The approximation ratio of WSCGREEDY is bounded above by 1 + In Agc, where Age =
maxges{|S|} in the weighted case ([4]), and by In|C| — Inln|C| + 0.78 in the unweighted
case ([14]). Since in ¢(G), Agc = A and |C| = n, the proof is completed.

Let us remark here that all problems linked to set-covering by approximation-preserving
reductions as, for example, the dominating set, the hitting set, a version of the coloring problem
where the input graph has stability number bounded above by a fixed positive constant, etc.,
are M-ST ones. Algorithm D3 of [8] mentioned above is indeed a simulation of WSCGREEDY for



coloring, but coloring is (unfortunately) not M-ST since the (independent set) slave problem is
not in P.

Simon, in [13]|, mentions that if the (unweighted) slave-problem is not solvable in polynomial
time, but is approximable within a factor p < 1, then the (unweighted) master can be polyno-
mially approximated with a ratio (1/p)Inn. Of course p can depend on an instance-parameter.
Note that a “naive” application of this result to graph-coloring, where at each round one colors a
maximal independent set instead of a maximum one, does not improve the best approximation
ratio for coloring. Plainly, the best ratio — (logn)?/n ([3]) - for the maximum independent set
implies a ratio n/logn for coloring. This ratio, obtained by Johnson ([9]) in 1974, has been re-
peatedly improved since then. We can extend Simon’s result to the weighted case where the costs
of the subgraphs in Sp are not constrained to be identical. Let us first transform definition 1 to
include a larger class of minimization problems.

Definition 2. A minimization graph-problem I is eztended master-slave tractable (EM-ST) iff
it satisfies condition [M-ST-1] of definition 1 and if, given a binary vector @ € {0,1}" associated
with V| the problem of finding the subgraph S* = maXSGSp{ZUeV(S) ufv]/€(S)} is polynomially
approximable within ratio p < 1. 11

Theorem 2. An EM-ST problem II is polynomially approzimable within (1/p)(1 4 In Ag).

Proof. Consider the transformation of an instance G = (V, E) of II into a set-covering in-
stance (C,S) as shown in the proof of theorem 1; now, denote by WSCGREEDY? the version of
WSCGREEDY where, at each iteration, instead of the set maximizing the ratio 3 .cgulc]/w(S), a
set, the associated ratio of which is at least p times the maximum one (p < 1) is chosen, and revisit
the analysis of WSCGREEDY presented in [4]. Suppose, without loss of generality, that the solution
computed by WSCGREEDY? is, after r iterations, the set {S7,5s,...,S5,.}. Now let ul = Zcegj u[c]
at step r of WSCGREEDY?, m = |S| and w; = w(S;); let #* = (});=1,..n denote the incidence
vector of an optimal cover and let s; be the largest superscript r such that u} > 0. The same
analysis as Chvatal’s leads to the following assertion:

WSCGREEDY’(C, S) < (i: (uf = ujtt) <%)> o

.
J=1 \r=1 Uy

Now, set S, selected at step r satisfies u’ /w, > p(uf/wj), Vj, then

m Sj r_ ,r+l

3 <Z M) Wi
u’; I

In [4] it is shown that Zi;l(ug - u?“)/u? < H(|S;|), where H(k) = % ,(1/i). Consequently,

WSCGREEDY’(C, S) <

1 m
WSCGREEDY’(C, S) < —Z (1S, w;jz%

| < H(As)OPT(C.S),
As H(Agc) =~ 1 + InAgc, we get the ratio of the claim for WSC and transfer this ratio to
problem II thanks to the 1-1 correspondence between solutions of IT and solutions of (C,S), as
shown in the proof of theorem 1. Il

In the next section, we use the result of theorem 1 to study the approximation of some
network-design problems consisting of covering or partitionning vertices or edges by subgraphs,
the number of candidate subgraphs being exponential in the size of the input-graph.



3 Master-slave tractable network-design problems

3.1 Minimum spanning tree of depth 2

Consider the following communication problem. Given a set V of cities and an extra city r, find
a subset V/ C V (where one wishes to construct relay stations), such that every city in V' is
connected to r and every city in V' \ V’ is connected to a city of V', and such that the total
length of connections is minimum. Formally, the problem is the following.

Minimum-weight rooted spanning tree of depth 2 (RST2).
Given a complete graph G = (V U {r}, E) with positive integer distances d on its edges,
find a tree T spanning V U {r}, minimizing quantity D ecE(T) d(e), and such that, for any
vertex v € V', the number of edges in T in the path connecting v to r is at most 2.

Recall that a star S, x is a tree spanning v U X such that all vertices of X have degree 1 in the
tree. Let v be the “center” of the star and call the quantity |X| the “degree” of the star. We
claim that RST2 is equivalent to the following problem.

Minimum-weight spanning star-forest.
Given a complete graph Ky, a cost-vector d on edges and a weight vector w on vertices,
find a spanning forest of stars, i.e., a collection of stars F' = {5y, x,,Svs,Xo»- - s v, X: |
partitioning V' and minimizing ¢(F) = i [w(v;) + X ,ex, d(vi, )]

In fact, given G = K|y yyy)|, one can consider the (complete) subgraph of G induced by V' and
set w(v) = d(vr), v € V. In the sequel, when speaking for RST2, we will refer to the latter
problem. The proof of the NP-completeness of RST2 as well as further positive and negative
approximation results about it can be found in [2]. Finally, Note that the total number of stars
in a complete graph of order n is n2"~!, exponential in n.

Theorem 3. RST2 is M-ST; consequently, it is approzimable within (14 Inn).

Proof. We first prove condition [M-ST-1]. Consider a star-cover F' = {S,, x, : j = 1,...,|F|[}
and the following procedure.

BEGIN /+POSTPROCESS(F)*/
let Ve={vy:j=1,...,|F|};
FOR j <— 1 TO |F| DO
consider Sy;x;;
IF dx € X5, (x € Vc) OR (X €X;, i< J) THEN Sy, x; < Svj,(Xj\{x}) FI
IF 3i < j,vi =v; THEN F — (F\ {Sy, x,,Sv;.5,}) U {Su, xyuxy)} FI
oD
OUTPUT F;
END. /*POSTPROCESS(F)*/

The above procedure is a kind of post-processing transforming a star-cover to a star-partition of
at most the same cost. Star-adjustment operations performed here consist of edge-removals or
star-groupings which do not increase the cost of the final solution obtained. So, the second part
of condition [M-ST-1] in definition 1 is satisfied.

Let us denote by ¢(Sy x) = w(v) + >, x d(v, ) the cost function associated with star S, x.
We now prove that, given a binary vector @ on |V | components, the slave problem of finding star

ulv] + 3 ulz] w(v) + 3 d(v,z)
Sy x* = argmax - zeX U argmin veX
Sy.x ¢(Sy,x) S, x ulv] + qu[x]
xe



is polynomial (condition [M-ST-2|). Let us denote by R(S, x;#) the last of the above ratios.

Observe first that if a vertex x € X* satisfies u[z] = 0, then removing = from X* does not
change the value of R(S,+ x+;); so, suppose without loss of generality, that u[z] =1, Vo € X*.
Also suppose that the vertices in V are labelled by v;, ¢ = 1,...,n, and consider the following
procedure finding, given @, star Sy« x+ = argming,  {R(Sy,x;7)}.

BEGIN /*SLAVE_RST2(u)*/
min_ratio « oo0;
FORi«< 1 TO n DO
Vi —{vev\{vi}: ulv]=1};
FOR j < |Vi| DOWNTO 1 DO
let X5 = {Vll,V/Q,...,VS-} be the list of vertices of V;
sorted in such a way that d(vi,v}) <d(vi,vh) <...< d(vi,vg);
oD
30
Xo — 0;
WHILE R(Su, x,,,;T) < R(Sv,x,;@) AND j < [V;| DO j — j+1 OD
IF R(Sy, x;;U) < min_ratio THEN
min_ratio « R(Sy, x;;1);
SOL < Sy, x;3
FI
0D
OUTPUT SOL;
END; /*SLAVE_RST2(u)*/

In order to prove that procedure SLAVE_RST2 correctly finds in polynomial time the star minimiz-
ing ratio R over all stars of GG, we first prove that, for a fixed v;, it correctly finds in polynomial
time the star minimizing R over all stars with center v;. Then the correctness-result follows
immediately since all vertices are examined as possible star-centers. For reasons of simplicity, we
restrict ourselves to the case where u[v;] = 1, the proof for the case u[v;] = 0 being completely
analogous. Consider first the problem of determining, for a fixed | X| =j, 7 = 0,1,...,|V;|, the
quantity minx {(w(vi) + Xpex d(vi; #))/(|X] + 1)}. Since the list (v}, v5,...,v}y,) is sorted in
increasing order with respect to the distances of its elements from v;, we get (setting vj = v;):

w(v) + 3 d(vg,v})
k=0

min {R(Sy, x; @)} =

|X|=4 Jj+1
J
w(vy) + > d(vi, x) w(v;) + > d(vi, vy,)
min zeX = min k=0
X (IX]+1) §=0,...,|Vi] Jj+1

Let Uj = R(Sy,;,x;; 1) = (w(v;) + S;)/(j + 1) with S; = Z;:l d(vj,v},). Procedure SLAVE_RST2
increments j while U; decreases in j and stops as soon as Uj increases. In order to complete
the proof, we now prove that when U; starts increasing, it will never decrease again, i.e., if
Ujt1 —U; >0, then Uj 9 — Ujiq1 > 0. Let us study the sign of U; 11 — Uj.

w(vi) + Sj + d(vi,U;-Jrl) B w(vi) + Sj
j+2 j+1
1

= GEGTy 0D )+ 85+ )] - G+ D) + 5)]

U1 —U; =



1

_ ;) [+ Do, vf10) = w(w) = 8] = =5 [dlo 1) = U]

G+ +2
Suppose now that Uj;1 — U; > 0; we shall show that Uj o — Ujy1 > 0.

1 ) (j + DU + d(vi, vf4)
Ujyo —Ujp1 = i+3 (d(vi’v§+2) - UJ'“) T j+3 (d(vi’%”) . e
. |+ 1D)Uj + d(v;, v}
> —— | d(vi,v};q) — ury - et
Jj+3 J+2

_ 1 Jj+1 / (it ' '

= (573) s (s -0)] = (55) G-ty 2 0
and the correctness of SLAVE_RST2 follows; since it runs in O(n?), condition [M-ST-2] is satisfied.
Consider now the following algorithm for RST2.

BEGIN /*MASTER_RST2x%/
F—0;
FOR v €V DO ufv] < 1;
WHILE dv € V such that ul[v] = 1 DO
Sy x+ < SLAVE_RST2(4);
F—FU {Sv*,x*}Q
FOR v € Sy»x+ DO u[v] <+ 0 0OD;
oD
OUTPUT POSTPROCESS(F) ;
END. /*MASTER_RST2x%/

Obviously, the complexity of algorithm MASTER_RST2 is O(n?®). In all, we have proved that
definition 1 applies for RST2; furthermore, Argte < n and the result of the theorem follows. Il

The result of theorem 3 can be slightly modified to apply even in the restricted case of RST2
where the degree of a star in any solution has to be bounded by a positive integer constant k.
It suffices to add, in the WHILE loop of procedure SLAVE_RST2, an exit-criterion if the number j
of uncovered (i.e., having u-values equal to 1) neighbours of v; becomes greater than k and the
following corollary holds.

Corollary 1. There exists a PTAA with ratio 1 + In (k + 1) for the restriction of RST2 where
the degree of a star in any solution has to be at most k.

Since a tree of depth 2 is of diameter 4, application of algorithm MASTER_RST2 considering every
vertex of V' as a potential root leads to the following corollary.

Corollary 2. The j-diameter minimum spanning tree problem is approzimable within ratio
1+1Inn.

3.2 Minimum bounded-diameter spanning forest

In this section we prove that the minimum k-diameter spanning forest problem, called k-DSF
in what follows, is M-ST and, since it is an unweighted problem, it admits a PTAA achieving
ratio Inn — Inlnn + 0.78.

Minimum k-diameter spanning forest.
Given a graph G = (V, E), find a minimum-cardinality partition of V into trees of diameter
at most k, (the diameter of a tree T is the maximum number of edges in a path between
any pair of vertices in T').



This problem is NP-hard (reduction from minimum dominating set for k = 2, [6]). The rest of
the section is devoted to the proof of the following theorem.

Theorem 4. k-DSF is M-ST and, consequently, approzimable within Inn —Inlnn + 0.78.

Proof. Let us first prove satisfaction of condition [M-ST-1]; consider the following procedure,
receiving as inputs a set Vy C V' and a positive integer 7.

BEGIN /*SPANF (Vo, ) */
F—20;
Ve« Vo3
FORi«< 1 TO r DO
Vi «— T(Vioq) \ VS
FOR v € V; DO
let v/ be a vertex of I'(v)NV;i_j;
add vv' in F;
0D
Ve — VO UV,
0D
OUTPUT F;
END; /*SPANF (Vq,r)*/

In the output F' of procedure SPANF, every vertex of V; is linked to a unique vertex of V) by a
unique path of length . Consequently, F' is a forest of size |Vp| and of depth r. Moreover, this
forest is maximal, in the sense that it contains all vertices of V linked to some vertex of V4 by
a path of at most r edges. Now, let F' = {T1,...,T;} be a cover of V by trees of diameter at
most k (cover in the sense that a vertex of V' can belong to more than one tree of F').

e If k =2r, let r; be a root of T; (i.e., a vertex of V(T;) such that any other vertex in 7 is
linked to r; by a path of at most r edges) and consider Vy = {r; : ¢ = 1,...,t}. For this
case, procedure SPANF(Vy,r) polynomially transforms tree-cover F' into a tree-partition of
at most the same cardinality, satisfying condition [M-ST-1].

e For the case where £k = 2r + 1, a tree of diameter at most k can be seen as composed
of two rooted trees of depth at most r having their roots connected by an edge which we
will call “edge-root” in the sequel; let ;7 be an “edge-root” of T; (i.e., an edge of E(T;)
such that any other vertex in T; is connected either to r;, or to r} by a path of at most r
edges) and consider Ey = {ryr} : i« = 1,...,t}; moreover, let Vj be the set of vertices
endpoints of an edge in Ey. A modified version of SPANF can be used here. It consists
of first calling SPANF(Vo, r) to normally produce a set of trees of depth r, next of finding
in Ey a maximal matching M C Ej and, finally, of unifying trees having edges of M as
edge roots; let us denote by MSPANF(Eo, r) this modified version of SPANF and by F’ the
forest computed. Since every vertex of V not in Vj is within distance at most r from Vj, F’
is indeed a partition of V' into trees of diameter at most k = 2r + 1, containing |M]| trees
having edges of M as edge roots, and |V’| other trees (V' C V) denoting the set of vertices
of V unsaturated by M). Now, since M is maximal for Fy, every vertex of V' is connected
by an edge (in Ep) to a vertex of Vp \ V'. Hence, |Ey| > |M| + |V'], i.e., |F| > |F’| and
condition [M-ST-1] is satisfied.

Consider now the following algorithm for k-DSF. Instructions between parentheses refer to
the case K = 2r + 1; in this case, remark that, when called from a single edge e, procedure
MSPANF (e,r) constructs a maximal tree of depth r and edge-root e, i.e., a tree containing all
vertices of V' lying within distance at most r from an endpoint of e.



BEGIN /*MASTER_k-DSFx*/

(1) < [k/2];

(2) F«0;

(3) Vo« 0;

(4) FOR veV DO ufv]«<—1 0D
() WHILE Jv € V,u[v] =1 DO

(6) max « 0;

(7) mark all vertices of V (% all edges of E *) as unvisited;
(8) WHILE Jvo € V (x Jvovy € E *) unvisited DO

(9) T « SPANF({vo},r) (* MSPANF({vov)}, 1) *);
(10) IF Y ,erul[v] > max THEN

(11) T* «— T;

(12) max < Y cpufv];

(13) FI

(14) mark vo (*vovy *) as visited;

(15) oD

(16) F—FU{T"};

(17) Vo «— Vo U{vo}; (* EoU{vovp} *)

(18) FOR v € V(T*) DO u[v] < 0 OD

(19) 0D

(20) OQUTPUT SPANF(Vo,r); (% MSPANF(Eo,r) %)

END.

We shall finally prove that lines (6) to (15) of algorithm MASTER_k-DSF correctly solve the
slave problem, hence satisfying condition [M-ST-2|, i.e., that tree 7% at line (16) maximizes
quantity > ,cv(7) ulv], where T ranges over all trees of diameter at most k. We shall call T,
an optimal tree. Since Tpy; has diameter at most k, then if k is even (resp., odd) there exists a
vertex vope (resp., an edge eqp:) such that every vertex of Ty, is linked to vep: (resp., to one of the
endpoints of eqy) by a path of length at most = [k/2]. On the other hand, procedure SPANF
(resp., MSPANF), called by algorithm MASTER_k-DSF from every vertex vy (resp., edge vouv() of G
produces a maximal tree of root vy (resp., edge-root wgvj) and depth r. Let T be the tree
computed by SPANF (resp., MSPANF), when called from wvop (resp., eop). As T is maximal, it
contains all the vertices linked to vy (resp., eopt) by paths of length at most r; consequently,
V(Top) C V(T) and 3,y (r,,,) ulv] < Zvev(f)u[v] < Yvev(r+) u[v]; hence, tree T is also
optimal.

Obviously, the above algorithm is polynomial; moreover, Axpgr < n and this completes the
proof of theorem 4. i

3.3 Edge-covering by trees

The last problem studied in this paper, denoted by ECT, is an edge-covering problem frequently
met in VLSI-design whenever one tries to minimize the cost of the circuit connexions ([11]).

Edge-covering by weighted trees.
Given a graph G = (V, E) and positive integer valuations d on its edges, find a collec-
tion of trees F' = {T4,...,T;} satisfying U;—1_+{E(T;)} = E and minimizing c¢(F) =
doi<i<t ¢(T;), where ¢(T') = maxeeE(T){d(e)}.

To our knowledge, the complexity of ECT is still open. Therefore, since no exact polynomial
algorithm is known, we devise a PTAA achieving approximation ratio O(lnn).



Theorem 5. FECT is M-ST. Consequently, it is approximable by a PTAA achieving approzi-
mation ratio bounded above by 1+ Inn.

Proof. Condition [M-ST-1] of definition 1 is satisfied since every feasible solution of ECT is a
cover of E by trees (the cost of which is the sum of the costs of the solution-trees).

We shall now show that condition [M-ST-2] is also satisfied. Given a 0-1 vector @ associated
with E, we show that solution of the slave-problem, i.e., computation of

:,
ec

T = R(T;4) = —F5—
arg;nax (T'; 1) 2T

can be performed in polynomial time.

Let Es = {e € FE : d(e) < ¢}, and G5 = (V, Es). Moreover, we denote by d(G) the
quantity maxecg{d(e)}, and by d(G), the quantity min.cg{d(e)}. Consider now the following
procedure optimally solving the slave problem.

BEGIN /*SLAVE_ECT (@) */
(1) max« 0;
(2) 6—4(G);
(3) WHILE § > d(G) DO

(4) argmaxr{d ecg(r) u[e]} = T* < KRUSKAL(Gs) ;
(5) § — (T —1;

(6) IF R(T*; W) > max THEN

(7 max < R(T*;U);

(8) retain T*;

(9) FI

(10) 0D

(11) output T*;
END; /*SLAVE_ECT (&) */

Algorithm KRUSKAL in line (4) is a modified version of the classical minimum weight spanning
tree algorithm ([10]) where, instead of a minimum-distance edge, a maximum-distance one is
selected at each step in graph Gs. Moreover, let us note that KRUSKAL(Gs) treats ule]’s (and
not d[e]’s) as edge-distances (e € Ej). Since KRUSKAL runs in time O(|E|log |E|), and the WHILE
loop will be executed at worst |E| times, then the whole procedure is polynomial.

We now prove that procedure SLAVE_ECT correctly solves the slave problem for ECT, i.e.,
the output-tree T* satisfies T* = argmaxy R(T;@). Suppose that the WHILE loop of the above
procedure is executed p times and denote, for ¢ = 1,...,p, by J; the value of ¢ considered in
line (3) and by T}, the tree T computed in line (4), at the ith execution of the WHILE loop.
We have, for i = 1,...,p, ¢(T}) = ;41 + 1. Moreover, set §,11 = §, — 1, and observe that
dp = d(G) and §; = d(G). Consider now, at some execution ¢ of the WHILE loop, 1 <1i < p —1,
a tree T such that 6;11 +1 < ¢(T) < 6;. We have 3 cp(p) ule] < YeeB(T?) ule], otherwise T'
would have been selected instead of T;* by KRUSKAL. Since ¢(T") > ¢(T7¥), one immediately gets
R(T;;u) > R(T;4). So, T; = argmaxs, | 1<a1)<s, {12(1; %)} and for the final tree T obtained
at line (11), the following holds:

T* = argmax { R(T}; @)} = argmax max R(T; %) ; = argmax {R(T;u)}.
i:1,...,p{ (T} i=1,....p {5i+1+1§C(T)§5i ( )} 5p§a(T)§51{ ( )}

So, since 9, = d(G) and 6; = d(G), the optimality of procedure SLAVE_ETC for the slave problem
is concluded.
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In order to complete the proof of theorem 5, it suffices to consider the following algorithm
for ECT.

BEGIN /*MASTER_ECT*/
C —0;
FOR e €E DO ufe] «— 1 0D
WHILE Je € E with u[e] =1 DO
T* « SLAVE_ECT(i) ;
C—CU{T*};
FOR e € E(T*) DO ule] « 0 OD
0D
QUTPUT C;
END. /*MASTER_ECT*/

Let us note that, if all edge-distances are identical, ECT consists in finding the minimum-
cardinality edge-cover by trees. In this case, procedure SLAVE_ECT is nothing else but a single
call of KRUSKAL(G) (line (4)). 1

Before closing this section, let us recall our introductory remark that the first two problems
are provably inapproximable within (1 — €)Inn ([1]), and thus lie among the hardest problems
of the class APX(logn). Consequently, the ratio attained here is asymptotically optimal.

4 Discussion: introducing a new kind of reduction

A usual way for transferring (positive or negative) approximation results from a problem to
another is by approximation-preserving reductions (A-reductions [12], P-reductions [5], contin-
uous reductions [13], etc.). In these reductions the general underlying idea is that, given two
problems IT and II' (let us suppose wlog that these problems are minimization ones), one can
polynomially transform a generic instance I of II into an instance I’ of II'; next, on the hy-
pothesis that a p-approximation PTAA A exists for IT', one shows how a II'-solution S’ for I’
can be polynomially transformed to a II-solution S for I such that if |S’|/OPT(I') < p then
|S|/OPT(I) < ¢(p), for some ¢ : [1;00[— [1;00[, where |S’| = A(I’) and |S| denotes the size
(cardinality or value) of solution S. Usually people call approximation-preserving the reductions
where ¢(p) = p.

Intuitively, theorem 1 (as well as the results of section 3) describes, in some sense, a kind of
“reduction” from an M-ST problem to WSC. Of course, since this “reduction” is not polynomial
(the number of sets is in all the cases studied exponential in n, the order of the graph), it is not
approximation-preserving in the common sense. However, we feel that there still exist strong
approximation links between these problems and the greedy algorithm for set covering, and that
these links can be written in a formal way. We thus introduce the following kind of reduction.

Definition 3. Let IT and II’ be two minimization problems, and Ay be a PTAA for IT'. A
pseudo-reduction from II to (I, Ayy) is a triple (¢, 4, Arr) such that

[1] o transforms an instance I of II into an instance I' = o(I) of IT';

[2] 9 transforms a II'-solution S’ for I’ into a II-solution S = ¢ (S’) for I such that e : [1; 00[—
[1350], |8']/OPT(I") < p = |S|/OPT(I) < c(p):

[3] Arp is a PTAA for IT and, if S and S” denote the solutions returned by A and A on [
and I', respectively, then S = ¢ (S").

We will denote by IT — (II', Aryr) the fact that IT is pseudo-reducible to (I, Ary) with ¢(p) = p. I

11



Pseudo-reduction differs from classical reductions by the fact that functions ¢ and ¢ are not
constrained to be computable in time polynomial in |I], and that, given a PTAA Ap, for IT', we
are only interested, in solutions computed by algorithm A in I’. Another meaningful difference
is also that solution S = ¢(5”) for I is not contructed polynomially from S’ (I’ is not, in general,
constructible in polynomial time), but it is constructed directly on I by a kind of “simulation”
of algorithm Ary. Since Ay (I')/OPT(I") < p = An(I)/OPT(I) < ¢(p), if ¢(p) = p, then the
pseudo-reduction can be considered as approximation-preserving. We thus have the following
proposition.

Proposition 1. IfII — (I, Ary) and Ay approzimately solves (in polynomial time) II' within
ratio p, then 11 is polynomially approrimable within p.

We have seen in the proof of theorem 1 that, for covering (resp., partitioning) M-ST problems,
triple (¢, 1), MSGREEDY) (resp., (p, 1 o h,MSGREEDY)) satisfies definition 3. We can thus recover a
concept of completeness to our pseudo-reduction.

Proposition 2. WSC is M-ST-hard, in the sense that VII € M-ST, 11 — (WSC, WSCGREEDY).
From propositions 1 and 2 we find again our former result, namely every M-ST problem is
approximable within logarithmic ratio.
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Appendix
A Pseudo-reduction and maximization packing problems

A.1 Dual master-slave approximation

Let us now consider the dual master-slave game where one tries to approximately solve a max-
imization NP-hard problem by iteratively solving a minimization slave problem. A typical
instantiation of this game is the greedy maximum independent set algorithm where one itera-
tively introduces in the solution the minimum-degree vertex and removes from the input-graph
the selected vertex and its neighbours.

In the sequel, we will try to answer to the following question: “can one use pseudo-reductions
to produce approximation results for graph-problems where the objective is to find a maximum
packing of the input-graph into subgraphs satisfying given properties?”. For this, we will link
the approximation of this type of problems to the approximation of another classical NP-hard
optimization problem, the maximum set-packing (SP).

Definition 4. Consider an NP-hard minimization graph-problem II and a property P; suppose
that (i) a feasible solution of IT is a subset of 257 and (ii) a cost function ¢ computable in polyno-
mial time, is associated with S € Sp such that the cost of a solution &’ of I is ¢(S”) = Y geg €(5).
Then P is dual master-slave tractable (DM-ST) iff it satisfies the following conditions:

[DM-ST-1] a solution &’ of II is a P-packing (i.e., a subset S’ C Sp such that for 5,5 € &,
V(S)nV(s') =0);

[DM-ST-2] given a binary vector @ € {0,1}" associated with V, the (slave) problem of finding
the subgraph S* = argminges, {> vev(s) ¢[v]/(miney (s){u[v]}é(9))} is in P.

For the case of edge-packing, we simply replace v by e and V by E. 1

Consider now the following algorithm for weighted SP (WSP_) operating on a SP-instance
(S,Ug,es5:) where weights w(S;) are associated with every set S; € S.

BEGIN /*WSPGREEDY*/

S —0;
REPEAT
) argming s{|Si]/w(51)
S — 3 Uis);
S—S\({S51u{sS;:sins; #0});
UNTIL S = 0;
QUTPUT S';

END. /*WSPGREEDY*/
The above algorithm achieves worst case ratio 1/Agp for WSP, where Agp = max§ieg{|§i|} (7).

Theorem 6. If I is a DM-ST problem, then II — (WSP,WSPGREEDY); consequently, II is
polynomially approzimable within 1/Ar.

Proof. Consider a vertex-packing DM-ST problem II (case of edge-packing problems is com-
pletely analogous) and the following transformation ¢ of an instance G of II into an instance ¢(G)
of SP: for every subgraph S € Sp, we add a set S = V() with weight w(S) = ¢(S) in S (note that
the number of sets can be exponential in n). There exists a 1-1 correspondence between the solu-
tions of IT on G and the solutions of SP on ¢(G) constructed as above, i.e., 8" = {S1,59,...,5:}
is a feasible graph-packing for G, iff ¢(S’) = {51, Sa,..., S} is a feasible set-packing in ¢(G) of
the same value. Hence, OPT(G) = OPT(p(G)).
Let us now consider the following “simulation” of WSPGREEDY.
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BEGIN /+*DMSGREEDY*/

(1) FOR veVDOulv]«—10D
2 8§ 0

(3) STOP « FALSE;

(4) WHILE —STOP DO

(5) 8" — argminsesy{Svev(s) ulv)/ (minveys) {ulv]}e(9))}
(6) IF 3 yeu(se) ulv]/(min,ey(se) {ulv]}&(S*)) = oo THEN
(7) STOP « TRUE;

(8) GOTO line (12);

(9) FI

(10) S — S'u{s*};

(11) FOR v € V(S*) DO u[v] « 0 OD

(12) 0D

(13) OUTPUT &';
END. /*DMSGREEDY*/

It suffices now to remark that, in the SP-instance ¢(G), thanks to the IF-block (lines (6)
to (9)), a set intersecting another set already introduced in S’ will never be selected to be put
in §’. Moreover, at line (5), the set minimizing the ratio “cardinality over cost” is selected.
Consequently, algorithm DMSGREEDY works in ¢(G) exactly as algorithm WSPGREEDY works in a
generic SP-instance. This completes the proof of the theorem. Il

In the same way as in section 2, one can define the class of EDM-ST problems where
condition [DM-ST-2]| of definition 4 is relaxed by allowing p-approximated computation (p > 1)
of the quantity argmingeg, {3 ey (s) u[v]/(minyey (s){ulv]}e(S))} (in polynomial time). In this
case, with arguments similar (though much easier) to the ones of section 2, the following theorem
can be proved.

Theorem 7. An EDM-ST problem 11 is polynomially approzimable within 1/(pAm).

A.2 Pseudo-reduction and improved approximations for unweighted graph-packing
problems

Consider a set packing &' C S. A natural (and polynomial) way to improve it is to perform
2-improvements of S', i.e., to search for triples (S;, S;, Sk) such that S; € &', {S;,S:} € S\ &,
8518k =0, {8, 01 (S \{S}) = 0, {54} 1 (S'\ {5:}) = 0. In this case, (S'\ {5,}) U ({S;. 5c})
is a set-packing of cardinality |S'| + 1.

The following algorithm, relying on 2-improvements of an initial SP-solution, approximately
solves SP.

BEGIN /*2_IMPSPx*/
(1) compute a maximal set-packing S';
(2) WHILE there exists 2-improvement (S;,Sj,Sx) DO

(3) S — (8" \ {8:1}) U {S;,5x};
(4) make S’ maximal for the inclusion;
(5) 0D

(6) OUTPUT &';
END. /*2_IMPSPx/

Note that lines (1) and (4) can be very easily computed by a simple greedy algorithm iteratively
selecting a set and removing the ones having non-empty intersections with it.

Algorithm 2_IMPSP is a simplified version of the one of Yu and Goldschmidt ([15]) proposed
for solving IS in k-claw-free graphs (i.e., graphs containing no independent set of k vertices,

15



all adjacent to a common vertex). As it is proved there, when running in k-claw-free graphs
it guarantees, in time O(n?), independent sets, the sizes of which are at least 2/k times the
size of the maximum ones. On the other hand, for SP-instances where the cardinality of the
maximum-size set is Agp, their intersection graphs are Agp + 1-claw-free (the intersection graph
of a SP-instance § = {Si,...,5,} is a graph Gg = (V,E) where V = S and E = {vv; :
{S;,S;} € 8,85;nS; # 0}.) Since an independent set V' of Gg becomes an equal-size set packing
of S, and vice-versa, via the replacement of the vertices of V'’ by the same-index sets of S,
algorithm 2_IMPSP achieves, in O(n3), approzimation ratio 2/(Asp + 1) for SP.

The notion of 2-improvement can be extended as follows in order to fit with general packing
graph-problems.

Definition 5. Let S be a maximal P-vertex-packing in a graph G and V(S) = UgesV (5).
A 2_packing-improvement of S in G is a triple (S;,5;,S) such that S; € S, {S5;,S,} € Sp,
V(S;) C [VA\V(S)]UV(S:), V(Sk) C [V\V(S)UV(S;), V(S;) NV (Sg) = 0. For the case of
P-edge packing, it suffices to replace V() by E(-). I

Obviously, the set (S\ {S;}) U{S}, Sk} is a P-packing of size |S| + 1.
Let us now consider NP-hard maximization graph-problems II satisfying the following con-
ditions:

1. there exists a property P such that any feasible solution of II in G is a P-packing;
2. the measure of each feasible solution is its cardinality;

3. the problems of (i) finding a subgraph of G satisfying property P (if any) and (ii) finding
two vertex-disjoint subgraphs of G satisfying property P (if such a pair exists), are both
in P.

Also, consider the following algorithm 2_IMPGP for II.

BEGIN /*2_IMPGP*/
compute a maximal P-packing S’ in G;
WHILE there exists a 2_packing-improvement (S;,Sj,Sx) DO
S (8'\ {8:}) U {Sy.54};
make S’ maximal for the inclusion;
0D
OUTPUT S';
END. /*2_IMPGPx*/

With arguments very similar to the ones used in the proofs of theorems 1 and 6 and considering
algorithm 2_IMPGP as a kind of simulation of 2_IMPSP for II, then the following theorem can be
proved.

Theorem 8. IfII satisfies conditions 1, 2 and 3, then II — (SP,2_IMPSP) and is approximable
within ratio 2/(Am + 1).
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