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Stratégie maître-es
lave et approximation polynomialeRésuméDe nombreux problèmes de minimisation 
onsistant à 
ouvrir les sommets ou les arêtesd'un graphe par des sous-graphes sont 
lassiquement modélisés par un problème de set 
o-vering. Si le nombre de sous-graphes est polynomial en n, 
es problèmes peuvent alors êtreappro
hés à rapport logarithmique par l'algorithme glouton standard pour le set 
overing.Nous étendons la 
lasse des problèmes approximables par 
ette appro
he à des problèmesde 
ouverture et de partitionnement où le nombre de sous-graphes peut être exponentielen n, en revisitant une te
hnique appelée (( maître-es
lave )) et en l'étendant à des problèmespondérés. Nous appliquons �nalement l'appro
he maître-es
lave à deux problèmes de dimen-sionnement de réseau et un problème de 
on
eption de 
ir
uits éle
troniques a�n de produiredes résultats positifs d'approximation pour 
es problèmes.Mots-
lé : problèmes 
ombinatoires, 
omplexité, algorithme polynomial d'approximation,NP-
omplétude, 
ouverture d'ensembles, dimensionnement des réseaux, graphe, arbre, f�ret.
Master-slave strategy and polynomial approximationsAbstra
tA lot of minimization 
overing problems on graphs 
onsist in 
overing verti
es or edgesby subgraphs verifying a 
ertain property. These problems 
an be seen as parti
ular 
asesof set-
overing. If the number of subgraphs is polynomial in the order n of the input-graph,then these problems 
an be approximated within logarithmi
 ratio by the 
lassi
al greedyset-
overing algorithm. We extend the 
lass of problems approximable by this approa
hto 
overing problems where the number of 
andidate subgraphs is exponential in n, byrevisiting an old te
hnique 
alled �master-slave� and extending it to weighted master or/andslave problems. Finally, we use the master-slave tool to prove some positive approximationresults for two network-design and a VLSI-design graph-problems.Keywords: 
ombinatorial problems, 
omputational 
omplexity, polynomial-time approxi-mation algorithm, NP-
ompleteness, set-
overing, network design, graph, tree, forest.
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1 Introdu
tionGiven an NP-hard optimization problem Π, one is interested in �nding a polynomial time ap-proximation algorithm (PTAA) A with a good performan
e ratio, this ratio being usually de�nedas the worst, over all instan
es of a given size, of the values of the fra
tion �measure of thesolution returned by algorithm A over the measure of an optimal solution�.Let us restri
t ourselves to NP-hard minimization 
overing graph-problems 
onsisting in
overing verti
es or edges by subgraphs verifying a 
ertain property. Some of these problems 
anbe approximated by the following thought pro
ess: at ea
h step, one tries to 
over a maximumnumber of elements (verti
es or edges, depending on the de�nition of the problem) among theun
overed verti
es or edges. The maximization problem solved at ea
h step is 
alled �the slave�whi
h serves �the master�, the (original) minimization problem. The terms �slave� and �master�are due to Simon ([13℄) who points out the fa
t that if the slave-problem is polynomial then themaster one is approximable within O(log n). Then it uses this fa
t in order to prove that if somemaster problems are approximate-equivalent, so are the 
orresponding slave ones (two problemsare said approximate-equivalent if they are linked by approximation-preserving redu
tions, i.e.,redu
tions along whi
h approximation bounds and inaproximability results are transferred fromone to the other).A 
lassi
al example of master-slave approximation is the one given by Johnson (in [8℄, algo-rithm D3 at the end of se
tion 7 devoted to graph-
oloring). At ea
h iteration this algorithm
omputes a maximum independent set of the surviving graph, it 
olors its verti
es by a new
olor and removes them from the graph. The master problem in this 
ase is the minimumgraph-
oloring, while the slave one is the maximum independent set (for reasons of e
onomy wedo not de�ne here well-known NP-
omplete problems su
h as graph-
oloring, independent set,set-
overing, set-pa
king, dominating set, hitting set, et
.; their de�nitions are given in [6℄). Thedrawba
k of D3 is exa
tly that it is not polynomial, sin
e it uses a maximum independent set
omputation. In any 
ase, it a
hieves approximation ratio O(lnn) at worst.Here, we �rst extend the master-slave strategy toNP-hard weighted 
overing and partitioningproblems. But our main purpose is to add a 
ontribution towards a systemati
 
lassi�
ation ofNP-
omplete problems with respe
t to their approximability and, also, to bring to the fore auni�ed way to obtain approximation results for a 
ertain 
lass of problems for whi
h a
hievementof logarithmi
 ratios is not obvious. For this, we de�ne the 
lass M-ST of master-slave tra
tableproblems, approximable, in polynomial time, within logarithmi
 ratio. Informally speaking,given a parti
ular unweighted NP-hard graph-
overing problem Π, we try to show that Π 
an bemodeled as a set-
overing problem, no matter if the size of the obtained set-
overing instan
e isexponential in the size of the generi
 instan
e of Π. The set-
overing instan
e obtained in
ludes asground set the set of obje
ts (verti
es or edges) to be 
overed, and as set-system all the subgraphsable to be in
luded into a feasible solution. Via this modeling, Π 
an be solved by the followingkind of greedy iterative pro
edure G: at ea
h iteration try to 
over the maximum number of theun
overed obje
ts. If one 
an model the problem at hand in terms of set-
overing, and if one 
anprove that 
overing the maximum number of un
overed obje
ts 
an be performed in polynomialtime (even if the expli
it 
onstru
tion of the set-
overing instan
e is exponential), then one hasproved that Π belongs to the 
lass M-ST. Sin
e G is a kind of �simulation� of the greedy set-
overing algorithm, one 
an 
on
lude that Π, as well as every M-ST problem, is approximablewithin approximation ratio equal to the one of the greedy set-
overing algorithm; this ratiois O(log n) ([14℄). In other words, instead of developing and analyzing a proper approximationalgorithm for every graph-
overing problem, we rather try to prove that it satis�es the 
onditionsof in
lusion in M-ST (let us note that proof of the in
lusion of a problem in 
lass M-ST is nottrivial at all). Then, approximability of Π within logarithmi
 ratio ensues immediately. Using this1



method, we study three natural network-design problems and we prove themM-ST. On
e again,we note that a
hievement of logarithmi
 approximation ratios for them is, to our knowledge, newand seems non-trivial. At the end of the paper, we try to ins
ribe the master-slave game intothe formal framework of a new kind of redu
tion, by means of whi
h we show that, in some way,set 
overing is 
omplete for the 
lass M-ST. Finally, let us note that in
lusion in 
lass M-ST isinteresting, not only for proving logarithmi
 ratios, but also for proving lower approximability-bounds (inapproximability results). Plainly, as it is proved in [1℄, two of the problems studiedare not approximable within (1− ǫ) ln n, ∀ǫ > 0. In
lusion of them in M-ST 
onstitutes a proofthat master-slave approximation is the best one 
an do in order to approximately solve theseproblems.In what follows, given an instan
e I of an NP-hard problem Π and a PTAA A for Π, wedenote by OPT(I) the optimal value of I, by A(I) the value of the solution of I provided by A, andwe say that algorithm A approximates Π within ratio ρ if A(I)/OPT (I) ≤ ρ, for every instan
e Iof Π.2 Master-slave tra
table problemsWe denote by SP the set of subgraphs of a graph G = (V,E) satisfying a property or a pred-i
ate P, by V (G) (resp., E(G)) the vertex-set (resp., edge-set) of G, by n its order (|V |) andde�ne the following 
lass.De�nition 1. Consider anNP-hard minimization graph-problem Π and a property P; supposethat (i) a feasible solution of Π is an element of 2SP and (ii) a 
ost fun
tion c̄, 
omputablein polynomial time, is asso
iated with S ∈ SP su
h that the 
ost of a solution S ′ of Π is
c(S ′) =

∑

S∈S′ c̄(S). Then Π is master-slave tra
table (M-ST) i� it satis�es the following
onditions:[M-ST-1℄ a solution S ′ of Π is
• either a P-
over (i.e., a subset S ′ ⊂ SP su
h that ∪S∈S′V (S) = V ),
• or a P-partition (i.e., a subset S ′ ⊂ SP su
h that ∪S∈S′V (S) = V and for
S, S′ ∈ S ′, V (S) ∩ V (S′) = ∅), and every P-
over of G 
an be polynomiallytransformed into a P-partition of at most the same 
ost;[M-ST-2℄ given a binary ve
tor ~u ∈ {0, 1}n asso
iated with V , the (slave) problem of �nding thesubgraph S∗ = argmaxS∈SP

{
∑

v∈V (S) u[v]/c̄(S)} is in P.For the 
ase of edge-
over or partition, we simply repla
e v by e and V by E.The above de�nition generalizes the 
lassi
al master-slave method ([13℄) where, ∀S ∈ SP , c̄(S) =
1, i.e., where c(S ′) = |S ′|. Note that in the 
ase of partitioning, if property P is hereditary (i.e.,every subgraph of S satis�es P whenever S satis�es P), then 
ondition [M-ST-1℄ of de�nition 1is always satis�ed. However, any partitioning problem does not satisfy 
ondition [M-ST-1℄; forinstan
e, from a set-
over one 
annot systemati
ally obtain a set-partition of the same weight,or 
ardinality.We now show thatM-ST problems are approximable within logarithmi
 ratio by the following�simulation� of the 
lassi
al greedy weighted set-
overing (WSC) algorithm.BEGIN /*MSGREEDY*/(1) FOR v ∈ V DO u[v]← 1 OD(2) S ′ ← ∅;(3) WHILE ∃v ∈ V : u[v] = 1 DO 2



(4) S∗ ← argmaxS∈SP
{
∑

v∈V(S) u[v]/c̄(S)};(5) S ′ ← S ′ ∪ {S∗};(6) FOR v ∈ V(S∗) DO u[v]← 0 OD(7) OD(8) OUTPUT S ′; (*OUTPUT h(S ′);*)END. /*MSGREEDY*/In the above algorithm, u[v] indi
ates wether vertex v is un
overed (u[v] = 1) or not (u[v] = O)at the 
urrent step of the WHILE loop. Fun
tion h at line (8) polynomially transforms a P-
overinto a P-partition (when dealing with a partitioning-problem). For edge-
overing or partitioningproblems, simply repla
e v (resp., V ) by e (resp., E).Theorem 1. If Π is M-ST, then MSGREEDY polynomially approximates Π within min{1 +
ln ∆Π, lnn− ln lnn+0.78} if the 
osts of every subgraph satisfying P are all identi
al, and within
1 + ln∆Π otherwise, with ∆Π = maxS∈SP

{|S|}.Proof. We prove the theorem for vertex-
overing and partitioning problems, the proof beingquite similar in 
ase of edge-
overing or partitioning. Let us transform an instan
e G = (V,E)of Π into an instan
e ϕ(G) = (C, S̄) of WSC in the following way. Let C = V be the groundelement set in ϕ(G), and for every subgraph S ∈ SP , add a set S̄ = V (S) with weight w(S̄) = c̄(S)in S̄ (note that the number of sets |S̄| 
an be exponential in n). Under this transformation,there is a 1-1 
orresponden
e between the solutions of Π on G and the solutions of WSC on ϕ(G)
onstru
ted as above, i.e., {S1, S2, . . . , St} is a P-
over for G i� {S̄1, S̄2, . . . , S̄t} is a set-
overfor ϕ(G) and, moreover the 
ost of the P-
over of G is the same as the total weight of theset-
over of ϕ(G). Hen
e, OPT(G) = OPT(ϕ(G)). Now, the greedy algorithm for the WSC-instan
e (C, S̄) 
an be re-written in the following way.BEGIN /*WSCGREEDY*/FOR c ∈ C DO u[c]← 1 OD
S̄ ′ ← ∅;WHILE ∃c ∈ C : u[c] = 1 DO

S̄∗ ← argmaxS̄∈S̄{
∑

c∈S̄ u[c]/w(S̄)};
S̄ ′ ← S̄ ′ ∪ {S̄∗};FOR c ∈ S̄∗ ∩ C DO u[c]← 0 ODODOUTPUT S̄ ′;END. /*WSCGREEDY*/Sin
e subgraph S ∈ SP (resp., vertex-set V ) in G 
orresponds to set S̄ (resp., ground set C)in ϕ(G), then solution S ′ = {S1, S2, . . . , St} 
omputed by algorithm MSGREEDY for G 
orrespondsto the 
over S̄ ′ = {S̄1, S̄2, . . . , S̄t} for ϕ(G), and c(S ′) = w(S̄ ′). Hen
e, c(S ′)/OPT (G) =

w(S̄ ′)/OPT (ϕ(G)).If a feasible solution for Π is not a P-
over but a P-partition, then by 
ondition [M-ST-1℄
P-
over S ′ 
an be transformed in polynomial time into a P-partition S ′′ satisfying c(S ′′) ≤ c(S ′).The approximation ratio of WSCGREEDY is bounded above by 1 + ln ∆SC, where ∆SC =
maxS̄∈S̄{|S̄|} in the weighted 
ase ([4℄), and by ln |C| − ln ln |C| + 0.78 in the unweighted
ase ([14℄). Sin
e in ϕ(G), ∆SC = ∆Π and |C| = n, the proof is 
ompleted.Let us remark here that all problems linked to set-
overing by approximation-preservingredu
tions as, for example, the dominating set, the hitting set, a version of the 
oloring problemwhere the input graph has stability number bounded above by a �xed positive 
onstant, et
.,are M-ST ones. Algorithm D3 of [8℄ mentioned above is indeed a simulation of WSCGREEDY for3




oloring, but 
oloring is (unfortunately) not M-ST sin
e the (independent set) slave problem isnot in P.Simon, in [13℄, mentions that if the (unweighted) slave-problem is not solvable in polynomialtime, but is approximable within a fa
tor ρ ≤ 1, then the (unweighted) master 
an be polyno-mially approximated with a ratio (1/ρ) ln n. Of 
ourse ρ 
an depend on an instan
e-parameter.Note that a �naïve� appli
ation of this result to graph-
oloring, where at ea
h round one 
olors amaximal independent set instead of a maximum one, does not improve the best approximationratio for 
oloring. Plainly, the best ratio � (log n)2/n ([3℄) � for the maximum independent setimplies a ratio n/ log n for 
oloring. This ratio, obtained by Johnson ([9℄) in 1974, has been re-peatedly improved sin
e then. We 
an extend Simon's result to the weighted 
ase where the 
ostsof the subgraphs in SP are not 
onstrained to be identi
al. Let us �rst transform de�nition 1 toin
lude a larger 
lass of minimization problems.De�nition 2. A minimization graph-problem Π is extended master-slave tra
table (EM-ST) i�it satis�es 
ondition [M-ST-1℄ of de�nition 1 and if, given a binary ve
tor ~u ∈ {0, 1}n asso
iatedwith V , the problem of �nding the subgraph S∗ = maxS∈SP
{
∑

v∈V (S) u[v]/c̄(S)} is polynomiallyapproximable within ratio ρ ≤ 1.Theorem 2. An EM-ST problem Π is polynomially approximable within (1/ρ)(1 + ln ∆Π).Proof. Consider the transformation of an instan
e G = (V,E) of Π into a set-
overing in-stan
e (C, S̄) as shown in the proof of theorem 1; now, denote by WSCGREEDYo the version ofWSCGREEDY where, at ea
h iteration, instead of the set maximizing the ratio ∑c∈S̄ u[c]/w(S̄), aset, the asso
iated ratio of whi
h is at least ρ times the maximum one (ρ ≤ 1) is 
hosen, and revisitthe analysis of WSCGREEDY presented in [4℄. Suppose, without loss of generality, that the solution
omputed by WSCGREEDYo is, after r iterations, the set {S̄1, S̄2, . . . , S̄r}. Now let ur
j =

∑

c∈S̄j
u[c]at step r of WSCGREEDYo, m = |S̄| and wj = w(S̄j); let x∗ = (x∗j )j=1,...,n denote the in
iden
eve
tor of an optimal 
over and let sj be the largest supers
ript r su
h that ur

j > 0. The sameanalysis as Chvatal's leads to the following assertion:
WSCGREEDYo(C, S̄) ≤

m
∑

j=1

( sj
∑

r=1

(

ur
j − u

r+1
j

)

(

wr

ur
r

)

)

x∗j .Now, set S̄r sele
ted at step r satis�es ur
r/wr ≥ ρ(u

r
j/wj), ∀j, then

WSCGREEDYo(C, S̄) ≤
1

ρ

m
∑

j=1

( sj
∑

r=1

ur
j − u

r+1
j

ur
j

)

wjx
∗
j .In [4℄ it is shown that ∑sj

r=1(u
r
j − u

r+1
j )/ur

j ≤ H(|S̄j |), where H(k) =
∑k

i=1(1/i). Consequently,
WSCGREEDYo(C, S̄) ≤

1

ρ

m
∑

j=1

H(|S̄j|)wjx
∗
j ≤

1

ρ
H(∆SC)OPT (C, S̄).As H(∆SC) ≈ 1 + ln ∆SC, we get the ratio of the 
laim for WSC and transfer this ratio toproblem Π thanks to the 1-1 
orresponden
e between solutions of Π and solutions of (C, S̄), asshown in the proof of theorem 1.In the next se
tion, we use the result of theorem 1 to study the approximation of somenetwork-design problems 
onsisting of 
overing or partitionning verti
es or edges by subgraphs,the number of 
andidate subgraphs being exponential in the size of the input-graph.4



3 Master-slave tra
table network-design problems3.1 Minimum spanning tree of depth 2Consider the following 
ommuni
ation problem. Given a set V of 
ities and an extra 
ity r, �nda subset V ′ ⊂ V (where one wishes to 
onstru
t relay stations), su
h that every 
ity in V ′ is
onne
ted to r and every 
ity in V \ V ′ is 
onne
ted to a 
ity of V ′, and su
h that the totallength of 
onne
tions is minimum. Formally, the problem is the following.Minimum-weight rooted spanning tree of depth 2 (RST2).Given a 
omplete graph G = (V ∪ {r}, E) with positive integer distan
es ~d on its edges,�nd a tree T spanning V ∪ {r}, minimizing quantity ∑e∈E(T ) d(e), and su
h that, for anyvertex v ∈ V , the number of edges in T in the path 
onne
ting v to r is at most 2.Re
all that a star Sv,X is a tree spanning v ∪X su
h that all verti
es of X have degree 1 in thetree. Let v be the �
enter� of the star and 
all the quantity |X| the �degree� of the star. We
laim that RST2 is equivalent to the following problem.Minimum-weight spanning star-forest.Given a 
omplete graph K|V |, a 
ost-ve
tor ~d on edges and a weight ve
tor ~w on verti
es,�nd a spanning forest of stars, i.e., a 
olle
tion of stars F = {Sv1,X1
, Sv2,X2

, . . . , Svt,Xt}partitioning V and minimizing c(F ) =
∑t

i=1[w(vi) +
∑

x∈Xi
d(vi, x)].In fa
t, given G = K|V ∪{r}|, one 
an 
onsider the (
omplete) subgraph of G indu
ed by V andset w(v) = d(vr), v ∈ V . In the sequel, when speaking for RST2, we will refer to the latterproblem. The proof of the NP-
ompleteness of RST2 as well as further positive and negativeapproximation results about it 
an be found in [2℄. Finally, Note that the total number of starsin a 
omplete graph of order n is n2n−1, exponential in n.Theorem 3. RST2 is M-ST; 
onsequently, it is approximable within (1 + lnn).Proof. We �rst prove 
ondition [M-ST-1℄. Consider a star-
over F = {Svj ,Xj

: j = 1, . . . , |F |}and the following pro
edure.BEGIN /*POSTPROCESS(F)*/let Vc = {vj : j = 1, . . . , |F|};FOR j← 1 TO |F| DO
onsider Svj,Xj;IF ∃x ∈ Xj, (x ∈ Vc) OR (x ∈ Xi, i < j) THEN Svj,Xj ← Svj,(Xj\{x}) FIIF ∃i < j, vi = vj THEN F← (F \ {Svi,Xi , Svj,Xj}) ∪ {Svi,(Xi∪Xj)} FIODOUTPUT F;END. /*POSTPROCESS(F)*/The above pro
edure is a kind of post-pro
essing transforming a star-
over to a star-partition ofat most the same 
ost. Star-adjustment operations performed here 
onsist of edge-removals orstar-groupings whi
h do not in
rease the 
ost of the �nal solution obtained. So, the se
ond partof 
ondition [M-ST-1℄ in de�nition 1 is satis�ed.Let us denote by c̄(Sv,X) = w(v) +
∑

x∈X d(v, x) the 
ost fun
tion asso
iated with star Sv,X .We now prove that, given a binary ve
tor ~u on |V | 
omponents, the slave problem of �nding star
Sv∗,X∗ = argmax

Sv,X











u[v] +
∑

x∈X

u[x]

c̄(Sv,X)











= argmin
Sv,X











w(v) +
∑

x∈X

d(v, x)

u[v] +
∑

x∈X

u[x]









5



is polynomial (
ondition [M-ST-2℄). Let us denote by R(Sv,X ; ~u) the last of the above ratios.Observe �rst that if a vertex x ∈ X∗ satis�es u[x] = 0, then removing x from X∗ does not
hange the value of R(Sv∗,X∗ ; ~u); so, suppose without loss of generality, that u[x] = 1, ∀x ∈ X∗.Also suppose that the verti
es in V are labelled by vi, i = 1, . . . , n, and 
onsider the followingpro
edure �nding, given ~u, star Sv∗,X∗ = argminSv,X
{R(Sv,X ; ~u)}.BEGIN /*SLAVE_RST2(~u)*/

min_ratio←∞;FOR i← 1 TO n DO
Vi ← {v ∈ V \ {vi} : u[v] = 1};FOR j← |Vi| DOWNTO 1 DOlet Xj = {v′1, v

′
2, . . . , v

′
j} be the list of verti
es of Visorted in su
h a way that d(vi, v

′
1) ≤ d(vi, v

′
2) ≤ . . . ≤ d(vi, v

′
j);OD

j← 0;
X0 ← ∅;WHILE R(Svi,Xj+1

;~u) < R(Svi,Xj;~u) AND j < |Vi| DO j← j + 1 ODIF R(Svi,Xj ;~u) < min_ratio THEN
min_ratio← R(Svi,Xj ;~u);
SOL← Svi,Xj;FIODOUTPUT SOL;END; /*SLAVE_RST2(~u)*/In order to prove that pro
edure SLAVE_RST2 
orre
tly �nds in polynomial time the star minimiz-ing ratio R over all stars of G, we �rst prove that, for a �xed vi, it 
orre
tly �nds in polynomialtime the star minimizing R over all stars with 
enter vi. Then the 
orre
tness-result followsimmediately sin
e all verti
es are examined as possible star-
enters. For reasons of simpli
ity, werestri
t ourselves to the 
ase where u[vi] = 1, the proof for the 
ase u[vi] = 0 being 
ompletelyanalogous. Consider �rst the problem of determining, for a �xed |X| = j, j = 0, 1, . . . , |Vi|, thequantity minX{(w(vi) +

∑

x∈X d(vi, x))/(|X| + 1)}. Sin
e the list (v′1, v
′
2, . . . , v

′
|Vi|

) is sorted inin
reasing order with respe
t to the distan
es of its elements from vi, we get (setting v′0 = vi):
min
|X|=j

{R(Svi,X ; ~u)} =

w(vi) +
j
∑

k=0
d(vi, v

′
k)

j + 1

min
X











w(vi) +
∑

x∈X

d(vi, x)

(|X| + 1)











= min
j=0,...,|Vi|



















w(vi) +
j
∑

k=0
d(vi, v

′
k)

j + 1



















.Let Uj = R(Svi,Xj
; ~u) = (w(vi) + Sj)/(j + 1) with Sj =

∑j
k=1 d(vi, v

′
k). Pro
edure SLAVE_RST2in
rements j while Uj de
reases in j and stops as soon as Uj in
reases. In order to 
ompletethe proof, we now prove that when Uj starts in
reasing, it will never de
rease again, i.e., if

Uj+1 − Uj ≥ 0, then Uj+2 − Uj+1 ≥ 0. Let us study the sign of Uj+1 − Uj.
Uj+1 − Uj =

w(vi) + Sj + d(vi, v
′
j+1)

j + 2
−
w(vi) + Sj

j + 1

=
1

(j + 1)(j + 2)

[

(j + 1)
[

w(vi) + Sj + d(vi, v
′
j+1)

]

− (j + 2)(w(vi) + Sj)
]6



=
1

(j + 1)(j + 2)

[

(j + 1)d(vi, v
′
j+1)− w(vi)− Sj

]

=
1

j + 2

[

d(vi, v
′
j+1)− Uj

]

.Suppose now that Uj+1 − Uj ≥ 0; we shall show that Uj+2 − Uj+1 ≥ 0.
Uj+2 − Uj+1 =

1

j + 3

(

d(vi, v
′
j+2)− Uj+1

)

=
1

j + 3

(

d(vi, v
′
j+2)−

(j + 1)Uj + d(vi, v
′
j+1)

j + 2

)

≥
1

j + 3

(

d(vi, v
′
j+1)−

(j + 1)Uj + d(vi, v
′
j+1)

j + 2

)

=

(

1

j + 3

)[

j + 1

j + 2

(

d(vi, v
′
j+1)− Uj

)

]

=

(

j + 1

j + 3

)

(Uj+1 − Uj) ≥ 0and the 
orre
tness of SLAVE_RST2 follows; sin
e it runs in O(n2), 
ondition [M-ST-2℄ is satis�ed.Consider now the following algorithm for RST2.BEGIN /*MASTER_RST2*/
F← ∅;FOR v ∈ V DO u[v]← 1;WHILE ∃v ∈ V su
h that u[v℄ = 1 DO

Sv∗,X∗ ← SLAVE_RST2(~u);
F← F ∪ {Sv∗,X∗};FOR v ∈ Sv∗,X∗ DO u[v]← 0 OD;ODOUTPUT POSTPROCESS(F);END. /*MASTER_RST2*/Obviously, the 
omplexity of algorithm MASTER_RST2 is O(n3). In all, we have proved thatde�nition 1 applies for RST2; furthermore, ∆RST2 ≤ n and the result of the theorem follows.The result of theorem 3 
an be slightly modi�ed to apply even in the restri
ted 
ase of RST2where the degree of a star in any solution has to be bounded by a positive integer 
onstant k.It su�
es to add, in the WHILE loop of pro
edure SLAVE_RST2, an exit-
riterion if the number jof un
overed (i.e., having ~u-values equal to 1) neighbours of vi be
omes greater than k and thefollowing 
orollary holds.Corollary 1. There exists a PTAA with ratio 1 + ln (k + 1) for the restri
tion of RST2 wherethe degree of a star in any solution has to be at most k.Sin
e a tree of depth 2 is of diameter 4, appli
ation of algorithm MASTER_RST2 
onsidering everyvertex of V as a potential root leads to the following 
orollary.Corollary 2. The 4-diameter minimum spanning tree problem is approximable within ratio

1 + lnn.3.2 Minimum bounded-diameter spanning forestIn this se
tion we prove that the minimum k-diameter spanning forest problem, 
alled k-DSFin what follows, is M-ST and, sin
e it is an unweighted problem, it admits a PTAA a
hievingratio lnn− ln lnn+ 0.78.Minimum k-diameter spanning forest.Given a graph G = (V,E), �nd a minimum-
ardinality partition of V into trees of diameterat most k, (the diameter of a tree T is the maximum number of edges in a path betweenany pair of verti
es in T ). 7



This problem is NP-hard (redu
tion from minimum dominating set for k = 2, [6℄). The rest ofthe se
tion is devoted to the proof of the following theorem.Theorem 4. k-DSF is M-ST and, 
onsequently, approximable within lnn− ln lnn+ 0.78.Proof. Let us �rst prove satisfa
tion of 
ondition [M-ST-1℄; 
onsider the following pro
edure,re
eiving as inputs a set V0 ⊂ V and a positive integer r.BEGIN /*SPANF(V0, r)*/
F← ∅;
Vc ← V0;FOR i← 1 TO r DO

Vi ← Γ(Vi−1) \ V
c;FOR v ∈ Vi DOlet v′ be a vertex of Γ(v) ∩ Vi−1;add vv′ in F;OD

Vc ← Vc ∪ Vi;ODOUTPUT F;END; /*SPANF(V0, r)*/In the output F of pro
edure SPANF, every vertex of Vi is linked to a unique vertex of V0 by aunique path of length i. Consequently, F is a forest of size |V0| and of depth r. Moreover, thisforest is maximal, in the sense that it 
ontains all verti
es of V linked to some vertex of V0 bya path of at most r edges. Now, let F = {T1, . . . , Tt} be a 
over of V by trees of diameter atmost k (
over in the sense that a vertex of V 
an belong to more than one tree of F ).
• If k = 2r, let ri be a root of Ti (i.e., a vertex of V (Ti) su
h that any other vertex in Ti islinked to ri by a path of at most r edges) and 
onsider V0 = {ri : i = 1, . . . , t}. For this
ase, pro
edure SPANF(V0, r) polynomially transforms tree-
over F into a tree-partition ofat most the same 
ardinality, satisfying 
ondition [M-ST-1℄.
• For the 
ase where k = 2r + 1, a tree of diameter at most k 
an be seen as 
omposedof two rooted trees of depth at most r having their roots 
onne
ted by an edge whi
h wewill 
all �edge-root� in the sequel; let rir′i be an �edge-root� of Ti (i.e., an edge of E(Ti)su
h that any other vertex in Ti is 
onne
ted either to ri, or to r′i by a path of at most redges) and 
onsider E0 = {rir

′
i : i = 1, . . . , t}; moreover, let V0 be the set of verti
esendpoints of an edge in E0. A modi�ed version of SPANF 
an be used here. It 
onsistsof �rst 
alling SPANF(V0, r) to normally produ
e a set of trees of depth r, next of �ndingin E0 a maximal mat
hing M ⊂ E0 and, �nally, of unifying trees having edges of M asedge roots; let us denote by MSPANF(E0, r) this modi�ed version of SPANF and by F ′ theforest 
omputed. Sin
e every vertex of V not in V0 is within distan
e at most r from V0, F ′is indeed a partition of V into trees of diameter at most k = 2r + 1, 
ontaining |M | treeshaving edges of M as edge roots, and |V ′| other trees (V ′ ⊂ V0 denoting the set of verti
esof V0 unsaturated by M). Now, sin
eM is maximal for E0, every vertex of V ′ is 
onne
tedby an edge (in E0) to a vertex of V0 \ V

′. Hen
e, |E0| ≥ |M | + |V
′|, i.e., |F | ≥ |F ′| and
ondition [M-ST-1℄ is satis�ed.Consider now the following algorithm for k-DSF. Instru
tions between parentheses refer tothe 
ase k = 2r + 1; in this 
ase, remark that, when 
alled from a single edge e, pro
edureMSPANF(e,r) 
onstru
ts a maximal tree of depth r and edge-root e, i.e., a tree 
ontaining allverti
es of V lying within distan
e at most r from an endpoint of e.8



BEGIN /*MASTER_k-DSF*/(1) r← ⌈k/2⌉;(2) F← ∅;(3) V0 ← ∅;(4) FOR v ∈ V DO u[v]← 1 OD(5) WHILE ∃v ∈ V, u[v] = 1 DO(6) max← 0;(7) mark all verti
es of V (* all edges of E *) as unvisited;(8) WHILE ∃v0 ∈ V (* ∃v0v′0 ∈ E *) unvisited DO(9) T← SPANF({v0}, r) (* MSPANF({v0v
′
0}, r) *);(10) IF ∑v∈T u[v] > max THEN(11) T∗ ← T;(12) max←

∑

v∈T u[v];(13) FI(14) mark v0 (*v0v′0 *) as visited;(15) OD(16) F← F ∪ {T∗};(17) V0 ← V0 ∪ {v0}; (* E0 ∪ {v0v
′
0} *)(18) FOR v ∈ V(T∗) DO u[v]← 0 OD(19) OD(20) OUTPUT SPANF(V0, r); (* MSPANF(E0, r) *)END.We shall �nally prove that lines (6) to (15) of algorithm MASTER_k-DSF 
orre
tly solve theslave problem, hen
e satisfying 
ondition [M-ST-2℄, i.e., that tree T ∗ at line (16) maximizesquantity ∑v∈V (T ) u[v], where T ranges over all trees of diameter at most k. We shall 
all Toptan optimal tree. Sin
e Topt has diameter at most k, then if k is even (resp., odd) there exists avertex vopt (resp., an edge eopt) su
h that every vertex of Topt is linked to vopt (resp., to one of theendpoints of eopt) by a path of length at most r = ⌈k/2⌉. On the other hand, pro
edure SPANF(resp., MSPANF), 
alled by algorithm MASTER_k-DSF from every vertex v0 (resp., edge v0v′0) of Gprodu
es a maximal tree of root v0 (resp., edge-root v0v′0) and depth r. Let T̂ be the tree
omputed by SPANF (resp., MSPANF), when 
alled from vopt (resp., eopt). As T̂ is maximal, it
ontains all the verti
es linked to vopt (resp., eopt) by paths of length at most r; 
onsequently,

V (Topt) ⊂ V (T̂ ) and ∑v∈V (Topt) u[v] ≤
∑

v∈V (T̂ ) u[v] ≤
∑

v∈V (T ∗) u[v]; hen
e, tree T ∗ is alsooptimal.Obviously, the above algorithm is polynomial; moreover, ∆kDSF ≤ n and this 
ompletes theproof of theorem 4.3.3 Edge-
overing by treesThe last problem studied in this paper, denoted by ECT, is an edge-
overing problem frequentlymet in VLSI-design whenever one tries to minimize the 
ost of the 
ir
uit 
onnexions ([11℄).Edge-
overing by weighted trees.Given a graph G = (V,E) and positive integer valuations ~d on its edges, �nd a 
olle
-tion of trees F = {T1, . . . , Tt} satisfying ∪i=1,...,t{E(Ti)} = E and minimizing c(F ) =
∑

1≤i≤t c̄(Ti), where c̄(T ) = maxe∈E(T ){d(e)}.To our knowledge, the 
omplexity of ECT is still open. Therefore, sin
e no exa
t polynomialalgorithm is known, we devise a PTAA a
hieving approximation ratio O(lnn).9



Theorem 5. ECT is M-ST. Consequently, it is approximable by a PTAA a
hieving approxi-mation ratio bounded above by 1 + lnn.Proof. Condition [M-ST-1℄ of de�nition 1 is satis�ed sin
e every feasible solution of ECT is a
over of E by trees (the 
ost of whi
h is the sum of the 
osts of the solution-trees).We shall now show that 
ondition [M-ST-2℄ is also satis�ed. Given a 0-1 ve
tor ~u asso
iatedwith E, we show that solution of the slave-problem, i.e., 
omputation of
T ∗ = argmax

T











R(T ; ~u) =

∑

e∈E(T )
u[e]

c̄(T )










an be performed in polynomial time.Let Eδ = {e ∈ E : d(e) ≤ δ}, and Gδ = (V,Eδ). Moreover, we denote by d(G) thequantity maxe∈E{d(e)}, and by d(G), the quantity mine∈E{d(e)}. Consider now the followingpro
edure optimally solving the slave problem.BEGIN /*SLAVE_ECT(~u)*/(1) max← 0;(2) δ ← d(G);(3) WHILE δ ≥ d(G) DO(4) argmaxT{
∑

e∈E(T) u[e]} = T∗ ← KRUSKAL(Gδ);(5) δ ← c̄(T∗)− 1;(6) IF R(T∗;~u) > max THEN(7) max← R(T∗;~u);(8) retain T∗;(9) FI(10) OD(11) output T∗;END; /*SLAVE_ECT(~u)*/Algorithm KRUSKAL in line (4) is a modi�ed version of the 
lassi
al minimum weight spanningtree algorithm ([10℄) where, instead of a minimum-distan
e edge, a maximum-distan
e one issele
ted at ea
h step in graph Gδ . Moreover, let us note that KRUSKAL(Gδ) treats u[e]'s (andnot d[e]'s) as edge-distan
es (e ∈ Eδ). Sin
e KRUSKAL runs in time O(|E| log |E|), and the WHILEloop will be exe
uted at worst |E| times, then the whole pro
edure is polynomial.We now prove that pro
edure SLAVE_ECT 
orre
tly solves the slave problem for ECT, i.e.,the output-tree T ∗ satis�es T ∗ = argmaxT R(T ; ~u). Suppose that the WHILE loop of the abovepro
edure is exe
uted p times and denote, for i = 1, . . . , p, by δi the value of δ 
onsidered inline (3) and by T ∗
i , the tree T ∗ 
omputed in line (4), at the ith exe
ution of the WHILE loop.We have, for i = 1, . . . , p, c̄(T ∗

i ) = δi+1 + 1. Moreover, set δp+1 = δp − 1, and observe that
δp = d(G) and δ1 = d(G). Consider now, at some exe
ution i of the WHILE loop, 1 ≤ i ≤ p − 1,a tree T su
h that δi+1 + 1 ≤ c̄(T ) ≤ δi. We have ∑e∈E(T ) u[e] ≤

∑

e∈E(T ∗

i
) u[e], otherwise Twould have been sele
ted instead of T ∗

i by KRUSKAL. Sin
e c̄(T ) ≥ c̄(T ∗
i ), one immediately gets

R(T ∗
i ; ~u) ≥ R(T ; ~u). So, T ∗

i = argmaxδi+1+1≤c̄(T )≤δi
{R(T ; ~u)} and for the �nal tree T ∗ obtainedat line (11), the following holds:

T ∗ = argmax
i=1,...,p

{R(T ∗
i ; ~u)} = argmax

i=1,...,p

{

max
δi+1+1≤c̄(T )≤δi

R(T ; ~u)

}

= argmax
δp≤c̄(T )≤δ1

{R(T ; ~u)} .So, sin
e δp = d(G) and δ1 = d(G), the optimality of pro
edure SLAVE_ETC for the slave problemis 
on
luded. 10



In order to 
omplete the proof of theorem 5, it su�
es to 
onsider the following algorithmfor ECT.BEGIN /*MASTER_ECT*/
C ← ∅;FOR e ∈ E DO u[e]← 1 ODWHILE ∃e ∈ E with u[e] = 1 DO

T∗ ← SLAVE_ECT(~u);
C ← C ∪ {T∗};FOR e ∈ E(T∗) DO u[e]← 0 ODODOUTPUT C;END. /*MASTER_ECT*/Let us note that, if all edge-distan
es are identi
al, ECT 
onsists in �nding the minimum-
ardinality edge-
over by trees. In this 
ase, pro
edure SLAVE_ECT is nothing else but a single
all of KRUSKAL(G) (line (4)).Before 
losing this se
tion, let us re
all our introdu
tory remark that the �rst two problemsare provably inapproximable within (1 − ǫ) lnn ([1℄), and thus lie among the hardest problemsof the 
lass APX(log n). Consequently, the ratio attained here is asymptoti
ally optimal.4 Dis
ussion: introdu
ing a new kind of redu
tionA usual way for transferring (positive or negative) approximation results from a problem toanother is by approximation-preserving redu
tions (A-redu
tions [12℄, P -redu
tions [5℄, 
ontin-uous redu
tions [13℄, et
.). In these redu
tions the general underlying idea is that, given twoproblems Π and Π′ (let us suppose wlog that these problems are minimization ones), one 
anpolynomially transform a generi
 instan
e I of Π into an instan
e I ′ of Π′; next, on the hy-pothesis that a ρ-approximation PTAA A exists for Π′, one shows how a Π′-solution S′ for I ′
an be polynomially transformed to a Π-solution S for I su
h that if |S′|/OPT(I ′) ≤ ρ then

|S|/OPT(I) ≤ c(ρ), for some c : [1;∞[→ [1;∞[, where |S′| = A(I ′) and |S| denotes the size(
ardinality or value) of solution S. Usually people 
all approximation-preserving the redu
tionswhere c(ρ) = ρ.Intuitively, theorem 1 (as well as the results of se
tion 3) des
ribes, in some sense, a kind of�redu
tion� from an M-ST problem to WSC. Of 
ourse, sin
e this �redu
tion� is not polynomial(the number of sets is in all the 
ases studied exponential in n, the order of the graph), it is notapproximation-preserving in the 
ommon sense. However, we feel that there still exist strongapproximation links between these problems and the greedy algorithm for set 
overing, and thatthese links 
an be written in a formal way. We thus introdu
e the following kind of redu
tion.De�nition 3. Let Π and Π′ be two minimization problems, and AΠ′ be a PTAA for Π′. Apseudo-redu
tion from Π to (Π′, AΠ′) is a triple (ϕ,ψ, AΠ) su
h that[1℄ ϕ transforms an instan
e I of Π into an instan
e I ′ = ϕ(I) of Π′;[2℄ ψ transforms a Π′-solution S′ for I ′ into a Π-solution S = ψ(S′) for I su
h that ∃c : [1;∞[→
[1;∞[, |S′|/OPT(I ′) ≤ ρ =⇒ |S|/OPT(I) ≤ c(ρ);[3℄ AΠ is a PTAA for Π and, if S and S′ denote the solutions returned by AΠ and AΠ′ on Iand I ′, respe
tively, then S = ψ(S′).We will denote by Π →֒ (Π′, AΠ′) the fa
t that Π is pseudo-redu
ible to (Π′, AΠ′) with c(ρ) = ρ.11



Pseudo-redu
tion di�ers from 
lassi
al redu
tions by the fa
t that fun
tions ϕ and ψ are not
onstrained to be 
omputable in time polynomial in |I|, and that, given a PTAA AΠ′ for Π′, weare only interested, in solutions 
omputed by algorithm AΠ′ in I ′. Another meaningful di�eren
eis also that solution S = ϕ(S′) for I is not 
ontru
ted polynomially from S′ (I ′ is not, in general,
onstru
tible in polynomial time), but it is 
onstru
ted dire
tly on I by a kind of �simulation�of algorithm AΠ′ . Sin
e AΠ′(I ′)/OPT(I ′) ≤ ρ =⇒ AΠ(I)/OPT(I) ≤ c(ρ), if c(ρ) = ρ, then thepseudo-redu
tion 
an be 
onsidered as approximation-preserving. We thus have the followingproposition.Proposition 1. If Π →֒ (Π′, AΠ′) and AΠ′ approximately solves (in polynomial time) Π′ withinratio ρ, then Π is polynomially approximable within ρ.We have seen in the proof of theorem 1 that, for 
overing (resp., partitioning) M-ST problems,triple (ϕ,ψ, MSGREEDY) (resp., (ϕ,ψ ◦ h, MSGREEDY)) satis�es de�nition 3. We 
an thus re
over a
on
ept of 
ompleteness to our pseudo-redu
tion.Proposition 2. WSC isM-ST-hard, in the sense that ∀Π ∈M-ST, Π →֒ (WSC, WSCGREEDY).From propositions 1 and 2 we �nd again our former result, namely every M-ST problem isapproximable within logarithmi
 ratio.Referen
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AppendixA Pseudo-redu
tion and maximization pa
king problemsA.1 Dual master-slave approximationLet us now 
onsider the dual master-slave game where one tries to approximately solve a max-imization NP-hard problem by iteratively solving a minimization slave problem. A typi
alinstantiation of this game is the greedy maximum independent set algorithm where one itera-tively introdu
es in the solution the minimum-degree vertex and removes from the input-graphthe sele
ted vertex and its neighbours.In the sequel, we will try to answer to the following question: �
an one use pseudo-redu
tionsto produ
e approximation results for graph-problems where the obje
tive is to �nd a maximumpa
king of the input-graph into subgraphs satisfying given properties?�. For this, we will linkthe approximation of this type of problems to the approximation of another 
lassi
al NP-hardoptimization problem, the maximum set-pa
king (SP).De�nition 4. Consider anNP-hard minimization graph-problem Π and a property P; supposethat (i) a feasible solution of Π is a subset of 2SP and (ii) a 
ost fun
tion c̄, 
omputable in polyno-mial time, is asso
iated with S ∈ SP su
h that the 
ost of a solution S ′ of Π is c(S ′) =
∑

S∈S′ c̄(S).Then P is dual master-slave tra
table (DM-ST) i� it satis�es the following 
onditions:[DM-ST-1℄ a solution S ′ of Π is a P-pa
king (i.e., a subset S ′ ⊂ SP su
h that for S, S′ ∈ S ′,
V (S) ∩ V (S′) = ∅);[DM-ST-2℄ given a binary ve
tor ~u ∈ {0, 1}n asso
iated with V , the (slave) problem of �ndingthe subgraph S∗ = argminS∈SP

{
∑

v∈V (S) u[v]/(minv∈V (S){u[v]}c̄(S))} is in P.For the 
ase of edge-pa
king, we simply repla
e v by e and V by E.Consider now the following algorithm for weighted SP (WSP) operating on a SP-instan
e
(S̄,∪S̄i∈S̄ S̄i) where weights w(S̄i) are asso
iated with every set S̄i ∈ S̄.BEGIN /*WSPGREEDY*/

S̄ ′ ← ∅;REPEAT
S̄j ← argminS̄i∈S̄{|S̄i|/w(S̄i)};
S̄ ′ ← S̄ ′ ∪ {S̄j};
S̄ ← S̄ \ ({S̄j} ∪ {S̄i : S̄i ∩ S̄j 6= ∅});UNTIL S̄ = ∅;OUTPUT S̄ ′;END. /*WSPGREEDY*/The above algorithm a
hieves worst 
ase ratio 1/∆SP for WSP, where ∆SP = maxS̄i∈S̄{|S̄i|} ([7℄).Theorem 6. If Π is a DM-ST problem, then Π →֒ (WSP, WSPGREEDY); 
onsequently, Π ispolynomially approximable within 1/∆Π.Proof. Consider a vertex-pa
king DM-ST problem Π (
ase of edge-pa
king problems is 
om-pletely analogous) and the following transformation ϕ of an instan
e G of Π into an instan
e ϕ(G)of SP: for every subgraph S ∈ SP , we add a set S̄ = V (S) with weight w(S̄) = c̄(S) in S (note thatthe number of sets 
an be exponential in n). There exists a 1-1 
orresponden
e between the solu-tions of Π on G and the solutions of SP on ϕ(G) 
onstru
ted as above, i.e., S ′ = {S1, S2, . . . , St}is a feasible graph-pa
king for G, i� ϕ(S ′) = {S̄1, S̄2, . . . , S̄t} is a feasible set-pa
king in ϕ(G) ofthe same value. Hen
e, OPT(G) = OPT(ϕ(G)).Let us now 
onsider the following �simulation� of WSPGREEDY.14



BEGIN /*DMSGREEDY*/(1) FOR v ∈ V DO u[v]← 1 OD(2) S ′ ← ∅;(3) STOP← FALSE;(4) WHILE ¬STOP DO(5) S∗ ← argminS∈SP
{
∑

v∈V(S) u[v]/(minv∈V(S){u[v]}c̄(S))};(6) IF ∑v∈V(S∗) u[v]/(minv∈V(S∗){u[v]}c̄(S
∗)) =∞ THEN(7) STOP← TRUE;(8) GOTO line (12);(9) FI(10) S ′ ← S ′ ∪ {S∗};(11) FOR v ∈ V(S∗) DO u[v]← 0 OD(12) OD(13) OUTPUT S ′;END. /*DMSGREEDY*/It su�
es now to remark that, in the SP-instan
e ϕ(G), thanks to the IF-blo
k (lines (6)to (9)), a set interse
ting another set already introdu
ed in S ′ will never be sele
ted to be putin S ′. Moreover, at line (5), the set minimizing the ratio �
ardinality over 
ost� is sele
ted.Consequently, algorithm DMSGREEDY works in ϕ(G) exa
tly as algorithm WSPGREEDY works in ageneri
 SP-instan
e. This 
ompletes the proof of the theorem.In the same way as in se
tion 2, one 
an de�ne the 
lass of EDM-ST problems where
ondition [DM-ST-2℄ of de�nition 4 is relaxed by allowing ρ-approximated 
omputation (ρ ≥ 1)of the quantity argminS∈SP

{
∑

v∈V (S) u[v]/(minv∈V (S){u[v]}c̄(S))} (in polynomial time). In this
ase, with arguments similar (though mu
h easier) to the ones of se
tion 2, the following theorem
an be proved.Theorem 7. An EDM-ST problem Π is polynomially approximable within 1/(ρ∆Π).A.2 Pseudo-redu
tion and improved approximations for unweighted graph-pa
kingproblemsConsider a set pa
king S̄ ′ ⊆ S̄. A natural (and polynomial) way to improve it is to perform2-improvements of S̄ ′, i.e., to sear
h for triples (S̄i, S̄j , S̄k) su
h that S̄i ∈ S̄
′, {S̄j , S̄k} ∈ S̄ \ S̄

′,
S̄j ∩ S̄k = ∅, {S̄j} ∩ (S̄ ′ \ {S̄i}) = ∅, {S̄k} ∩ (S̄ ′ \ {S̄i}) = ∅. In this 
ase, (S̄ ′ \ {S̄i}) ∪ ({S̄j , S̄k})is a set-pa
king of 
ardinality |S̄ ′|+ 1.The following algorithm, relying on 2-improvements of an initial SP-solution, approximatelysolves SP.BEGIN /*2_IMPSP*/(1) 
ompute a maximal set-pa
king S̄ ′;(2) WHILE there exists 2-improvement (S̄i, S̄j, S̄k) DO(3) S̄ ′ ← (S̄ ′ \ {S̄i}) ∪ {S̄j, S̄k};(4) make S̄ ′ maximal for the in
lusion;(5) OD(6) OUTPUT S̄ ′;END. /*2_IMPSP*/Note that lines (1) and (4) 
an be very easily 
omputed by a simple greedy algorithm iterativelysele
ting a set and removing the ones having non-empty interse
tions with it.Algorithm 2_IMPSP is a simpli�ed version of the one of Yu and Golds
hmidt ([15℄) proposedfor solving IS in k-
law-free graphs (i.e., graphs 
ontaining no independent set of k verti
es,15



all adja
ent to a 
ommon vertex). As it is proved there, when running in k-
law-free graphsit guarantees, in time O(n3), independent sets, the sizes of whi
h are at least 2/k times thesize of the maximum ones. On the other hand, for SP-instan
es where the 
ardinality of themaximum-size set is ∆SP, their interse
tion graphs are ∆SP +1-
law-free (the interse
tion graphof a SP-instan
e S̄ = {S̄1, . . . , S̄n} is a graph GS = (V,E) where V = S̄ and E = {vivj :
{S̄i, S̄j} ⊆ S̄, S̄i∩ S̄j 6= ∅}.) Sin
e an independent set V ′ of GS be
omes an equal-size set pa
kingof S̄, and vi
e-versa, via the repla
ement of the verti
es of V ′ by the same-index sets of S̄,algorithm 2_IMPSP a
hieves, in O(n3), approximation ratio 2/(∆SP + 1) for SP.The notion of 2-improvement 
an be extended as follows in order to �t with general pa
kinggraph-problems.De�nition 5. Let S be a maximal P-vertex-pa
king in a graph G and V (S) = ∪S∈SV (S).A 2_pa
king-improvement of S in G is a triple (Si, Sj , Sk) su
h that Si ∈ S, {Sj , Sk} ∈ SP ,
V (Sj) ⊂ [V \ V (S)] ∪ V (Si), V (Sk) ⊂ [V \ V (S)] ∪ V (Si), V (Sj) ∩ V (Sk) = ∅. For the 
ase of
P-edge_pa
king, it su�
es to repla
e V (·) by E(·).Obviously, the set (S \ {Si}) ∪ {Sj, Sk} is a P-pa
king of size |S|+ 1.Let us now 
onsider NP-hard maximization graph-problems Π satisfying the following 
on-ditions:1. there exists a property P su
h that any feasible solution of Π in G is a P-pa
king;2. the measure of ea
h feasible solution is its 
ardinality;3. the problems of (i) �nding a subgraph of G satisfying property P (if any) and (ii) �ndingtwo vertex-disjoint subgraphs of G satisfying property P (if su
h a pair exists), are bothin P.Also, 
onsider the following algorithm 2_IMPGP for Π.BEGIN /*2_IMPGP*/
ompute a maximal P-pa
king S ′ in G;WHILE there exists a 2_pa
king-improvement (Si, Sj, Sk) DO

S ′ ← (S ′ \ {Si}) ∪ {Sj, Sk};make S ′ maximal for the in
lusion;ODOUTPUT S ′;END. /*2_IMPGP*/With arguments very similar to the ones used in the proofs of theorems 1 and 6 and 
onsideringalgorithm 2_IMPGP as a kind of simulation of 2_IMPSP for Π, then the following theorem 
an beproved.Theorem 8. If Π satis�es 
onditions 1, 2 and 3, then Π →֒ (SP, 2_IMPSP) and is approximablewithin ratio 2/(∆Π + 1).
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