Table of Contents
Résumé
Abstract

1 Introduction
1.1 The framework of the paper and the problems studied . . . . .. . ... ... ..
1.2 Our main contributions . . . . . . . .. .

2 Reducing the weighted case to the unweighted one
2.1 Hereditary induced-subgraph problems . . . . . . .. .. ... ... 0oL
2.2 A first improvement for the approximation of the maximum-weight independent set

3 Towards (1/A)-approximation for IS and WIS

4 Further improvements
4.1 A weighted version of Turén’s theorem . . . . . . . ... ... ... ... .. ...
4.2  Graph coloring and the approximation of WIS, . . . .. ... .. ... ... ...
43 Themainresult . . . . . . . . ..

5 Approximating maximum-weight clique

6 Maximum l-colorable induced subgraph and minimum chromatic sum
6.1 Maximum l-colorable induced subgraph . . . .. ... ... ..o
6.2 Minimum chromatic sum . . . . . . . . . ... L

ii

iii

—

10
13

14



Le stable maximum pondéré est approximable « aussi bien » que le stable
maximum non-pondéré

Résumé

Nous présentons tout d’abord une réduction d’expansion O(logn) (o n est 'ordre du
graphe) préservant le rapport d’approximation entre les versions pondérée et non pondé-
rée d’une classe de problémes de maximisation consistant & trouver un sous-graphe induit
de poids maximum vérifiant une propriété héréditaire. Cette réduction nous permet d’ef-
fectuer une premiére amélioration du meilleur rapport connu pour le probléme WIS du
stable maximum pondéré. Ensuite, en s’appuyant sur la réduction proposée, nous concevons
un algorithme approché polynomial dont le rapport est égal au minimum de O(logk n/n)
et O(log i/ (k*u(loglog 1)?) ot u désigne le degré moyen du graphe pour toute constante k.
Dans les deux cas, ’amélioration du rapport est significative : dans le premier cas, le rapport
pour WIS surclasse O(log2 n/n), le meilleur rapport connu pour IS (le probléme du stable
non-pondéré) tandis que, dans le second cas, nous obtenons le premier rapport de lordre
de Q(1/A) pour WIS (ot A est le degré maximum du graphe; le meilleur rapport connu
en fonction de A valait jusqu’ici 3/(A + 2)). Par la suite, a partir du probléme de colora-
tion, nous trouvons un algorithme approché polynomial pour WIS ayant pour rapport le
minimum entre O(n~%/°) et O(loglog A/A). Ainsi, 4 moins que WIS ne soit approximable
a O(n=*°) (ce qui est peu probable, "approximation de IS a rapport n<~! étant difficile
pour tout € > 0), notre algorithme obtient le premier rapport en 2(loglog A/A) pour WIS
(pour tout A). Notons que 'approximation du probléme du stable pondéré ou non pondéré
a rapport Q(1/A) demeurait pendant longtemps un probléme ouvert. Enfin, nous proposons
les premiers rapports non triviaux en §2(1/A) pour les problémes de la clique maximum
pondérée et non pondérée, le probléme du sous-graphe induit /-colorable de poids maximum
et le probléme de la somme chromatique.

Mots-clé : problémes combinatoires, complexité, algorithme polynomial d’approximation,
NP-complétude, probléme héréditaire, stable, clique, graphe induit I-colorable, somme chro-
matique.
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Maximum-weight independent set is as “well-approximated” as the
unweighted one

Abstract

We first devise an approximation-preserving reduction of expansion O(logn) (where n
is the order of the input-graph) between weighted and unweighted versions of a class of
problems called weighted hereditary induced-subgraph maximization problems. This allows
us to perform a first improvement of the best approximation ratio for the weighted inde-
pendent set problem (WIS). Then, using the reduction developed, we propose a polynomial
time approximation algorithm for WIS achieving as ratio the minimum between O(log" n/n)
and O(log p/(k?u(loglog i1)?) where ;i denotes the average graph-degree of the input-graph,
for every constant k. In any of the two cases, this is an important improvement since
in the former one, the ratio for WIS outerperforms O(log2 n/n), the best-known ratio
for (unweighted) independent set problem (IS), while in the latter case, we obtain the
first Q(1/A) ratio for WIS (where A is the maximum graph-degree; the best-known ra-
tio in terms of A was 3/(A + 2)). Next, based upon graph-coloring, we devise a polyno-
mial time approximation algorithm for WIS achieving ratio the minimum between O(n~=%/%)
and O(loglog A/A). Here also, except for the very unlikely case where WIS can be ap-
proximated within O(n~*/%) (approximation of IS within n°~! is hard for every e > 0),
our algorithm is the first Q(loglog A/A)-approximation algorithm for WIS (for every A).
Let us note that approximation of both independent set versions within ratios Q(1/A) is a
very well-known open problem. Finally, we propose the first non-trivial (1/A) ratios for
maximum-size and maximum-weight clique, for maximum-weight I-colorable induced sub-
graph and for chromatic sum.

Keywords: combinatorial problems, computational complexity, polynomial-time approxi-

mation algorithm, NP-completeness, hereditary problem, independent set, clique, I-colorable
induced subgraph, chromatic sum.
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1 Introduction

1.1 The framework of the paper and the problems studied

Given a graph G = (V,FE) and a set V! C V, a subgraph of G induced by V' is a graph
G = (V',E'), where E' = (V' x V') N E. We consider NP-hard graph-problems II where the
objective is to find a maximum-order induced subgraph G’ satisfying a non-trivial hereditary
property w. For a graph G, anyone of its vertex-subsets specifies exactly one induced subgraph.
Consequently, in what follows we consider that a feasible solution for II is the vertex-set of G’.
Let G be the class of all the graphs. A graph-property 7 is a mapping from G to {0, 1}, i.e., for a
G € G, n(G) = 1 iff G satisfies m and 7(G) = 0, otherwise. Property = is hereditary if whenever
it is satisfied by a graph it is also satisfied by every one of its induced subgraphs; it is non-
trivial if it is true for infinitely many graphs and false for infinitely many ones ([4]). Hereditary
induced-subgraph maximization problems have a natural generalization to graphs with positive
integral weights associated with their vertices (the weights are assumed to be bounded by 2" —
the order of the input-graph — so that every arithmetical operation on them can be performed
in polynomial time). Given a graph G, the objective of a weighted induced subgraph problem is
to determine an induced subgraph G* of G such that G* satisfies m and, moreover, the sum of
the weights of the vertices of G* is the largest possible among those subgraphs. In what follows,
we denote by WII the weighted version of II.
More particularly, we consider in this paper the following induced-subgraph problems.

Maximum independent set. Given a graph G = (V, E) of order n, an independent set is
a subset V' C V such that no two vertices in V’/ are linked by an edge in F, and the
maximum independent set problem (IS) is to find a maximum-size independent set.

Maximum clique. Consider a graph G = (V, E). A clique of G is a subset V' C V such
that every pair of vertices of V'’ are linked by an edge in F, and the maximum clique
problem (KL) is to find a maximum size set V' inducing a clique in G (a maximum-size
clique).

Maximum [-colorable subgraph. Given a graph G = (V,E) and a positive constant [,
the problem of the maxzimum [-colorable induced subgraph (denoted by Cl) is to find a
maximum-order induced subgraph G = G[V'] of G (V' C V) such that G’ is I-colorable
(i.e., there exists a coloring for G’ of cardinality at most [).

Property “is an independent set” is hereditary (the subset of an independent set is an independent
set). The same holds for property “is a clique” (the vertex-subset of a clique induces also a clique),
as well as for property “is ¢-colorable” (if the vertices of a graph G can be feasibly colored by at
most ¢ colors, then every subgraph of G induced by a subset of its vertices can be colored by at
most ¢ colors).

We also consider the following minimization problem and its weighted version.

Minimum chromatic sum. Given a graph G = (V, E), an [-coloring is a partition of V'
into independent sets Cy,...,C;. The cost of an I-coloring is the quantity >°_;i|Cy| (in
other words, the cost of coloring a vertex v € V with color i is 7). The minimum chro-
matic sum problem, denoted by CHS is to determine a minimum-cost coloring. For the
weighted version of CHS, denoted by WCHS, every vertex v € V' is weighted by a rational
weight w,, the cost of coloring v with color ¢ becomes iw,, the value of an [-coloring be-
comes Y°!_; iw(C;), where w(C;) = > wec; Wy, and the objective becomes now to determine
a coloring of minimum value.



Given a problem II defined on a graph G = (V| E), and its weighted version WII, we denote by
@ € INIV! the vector of the weights, by w, the weight of v € V' and by wax(G) and wpyin(G) the
largest and the smallest vertex-weight, respectively. Moreover, we adopt the following notations:

w(V'): the total weight of V' C V| i.e., the quantity >, oy wy;

Buw(G): the value of an optimal solution for WII;

A(G): the maximum degree of G,

w(G): the average degree of G;

uo(G): the quantity %pey w(T())/w(V)

I'(v): the neighborhood of v € V;

X(G): the chromatic number of G (the minimum number of colors with which one can

feasibly color the vertices of G);

G: the complement of G defined by G = (V, E) with E = {ij € V x V,i # j,ij ¢ E}
(obviously, G = G);

G[V']: the subgraph of G induced by V' C V;

n(k): the order of the graph G[V®] V¥ C v;

S*(G[V®M]): an optimal (maximum-size) IT-solution in G[V®¥)] V¥ C V.

Especially for IS and WIS, using standard notations, we will denote the size of a maximum
independent set by «a(G) and the value of a maximum-weight independent set by au,(G).
Moreover, when no ambiguity can occur, we will use A, p and p,, instead of A(G), u(G)
and pu,(G)
Given a square matrix B = (mj;); j=1,.n, we denote by Tr(B) and ’B the trace and the
transpose of B, respectively. Finally, given a vector @, we denote by |i| its Euclidean norm.

1.2 Owur main contributions

We are interested in devising polynomial time approximation algorithms (PTAAs) computing
solutions, the values of which are as close as possible to the value of an optimal one. The
quality of a PTAA is expressed, for every instance G, by the ratio of the size (resp., weight) of
the computed solution to the optimal size (resp., weight). Given a PTAA A, this ratio will be
denoted by p,(G). For a maximization (resp., minimization) problem II, A is said to guarantee an
approximation ratio p(QG) if for every instance G, py(G) is bounded below (resp., above) by p(G)
(p(G) denotes approximation ratios depending on some parameters of G). It is assumed that
p(G) < p(G) (resp., p(G) > p(G")), for any subgraph G’ of G. Finally, we denote by pri(G) the
best approximation ratio known for II.

In what follows, we will denote by f],(G) the weight of an approximated WII-solution of G.
Once more, this weight will be denoted by «/, (G) when dealing with WIS.

For IS, which is the most famous among the problems studied here, the strongest inapprox-
imability result is the one in [11] affirming that 0 < ¢ < 1, IS is not approximable within n!
unless NP=ZPP. Concerning positive approximation results for IS, we give in [5] a PTAA guar-
anteeing asymptotic (A(G) — oo) approximation ratio min{k/u(G), k' (loglog A(G))/A(G)}
(where k" depends on k) for every constant k. For WIS, the best-known approximation in terms



of maximum degree is 3/(A(G) + 2) (|8]). A particularly interesting question frequently men-
tioned in the relative literature about WIS-approximation is if it can be as well-approximated
as IS. Here we prove that the answer is not so far from being true.

The paper is organized as follows. In section 2, we devise a reduction of expansion O(logn)
from weighted hereditary induced-subgraph problems to unweighted ones. This expansion can
be improved when dealing with particular problems; for example, it is O(loglogn) when dealing
with the pair IS-WIS (paragraph 2.2). Based upon this reduction we draw first improvements
for the ratio of WIS. In section 3, we propose new improved approximation results for IS. Next,
always based upon the reduction of section 2, we further improve approximations for WIS and
obtain an approximation ratio for WIS with value greater than the minimum between O(log* n/ n)
and O(log (@) /(k*1(G)log®log 11(@))). This is an important improvement since if the WIS-
ratio obtained is O(log®n/n), it outerperforms O(log?n/n), the best-known ratio for IS. On
the other hand, if the ratio obtained is O(log u(G)/(k?u(G) log? log 1u(G))), then we achieve the
first Q(1/A(G)) ratio for WIS. Let us note that this is the first time that non trivial results
for WIS are produced by a reduction to IS. In section 4, we propose another PTAA for WIS
which further improves results of section 3. Next, we generalize a result of [1] by linking the
approximation of the class WIS, of WIS-instances with weighted independence number greater
than w(G)/k to the approximation of a class G; of graph-coloring instances including the I-
colorable graphs. Combining this result with recent works of [12, 15] about G;, we obtain the
main result of the paper, i.e., an approximation ratio for WIS of value greater than the minimum
between O(n~%/°) and O(loglog A(G)/A(G)). Consequently, except for the very unlikely case
where WIS can be approximated within O(n=%/°) (recall that approximation of IS within n¢~! is
hard for every e > 0, unless NP=ZPP (|11])), our algorithm is the first (loglog A(G)/A(G))-
approximation algorithm for WIS. In section 5, we devise a new reduction between KL and WKL
and, based upon it and using our results on WIS, we deduce the first (1/A(G)) approximation
ratio for the maximum-size and maximum-weight clique problems. We note once more that the
results of this paper work even for unbounded values of A(G). Finally, in section 6 we improve
recent approximation results for WCI and WCHS.

2 Reducing the weighted case to the unweighted one

2.1 Hereditary induced-subgraph problems

Theorem 1. Consider a hereditary property w, an induced subgraph problem Il stated with
respect to ™ and the weighted version WIIL of I1 (we suppose that weights are positive). For every
fixzed M > 2, every PTAA for 11 achieving ratio pri(G) can be transformed into a PTAA for WII

achieving
G
pwi(G) = © (M> :

logy; n

Proof. Set, fori=1,...,

7 Wm, X(G) Wm X(G)

r = sup {f P <G :1<LiJ<£V(i)]> = w}

G, = G[ U V<i>}

1<i<x

_ @]
Gat1 G [1§igx+1 v ]



Gy = G[V\ U V@')].

1<i<z

Of course, 5,(Gq) > Buw(G)/2 and By(Grt1) > Buw(G)/2.
We first remove vertices vy such that the graph ({vy},0) does not satisfy w. Then, the
following lemma holds.

Lemma 1. There exists a PTAA for WII achieving approzimation ratio M*/(2n).

Proof of lemma 1. The algorithm claimed consists of simply taking v* € argmax, oy {w;} as
WIlI-solution. Then, f3,,(G) = wmax(G) and

Bu(G) < 20y (Ga) < 215" (Ga)| winax (Ga) < 215" (Ga)l me(G)
Consequently,
Pu(G) M? M® M*
5,(@) = 25 G = 2 =5y v
q.e.d.

Remark 1. For every i > 1, the weight of any II-solution S® of G[V(®] lies in the interval
(15D [timase (G) /M, |SD |t (G)/MI=1]: it is at least [ SO [winin(GIV D)) > |SD [wiax(G) /M
and at most [S® [wmax (G[V?]) < [SO [wmax (G) /M1 &

Let us now prove the following lemma which is the central part of the proof of the theorem.

Lemma 2. Assume x > 0.

1. Let By(GQ)/2 > Buw(Gz) > (M — 2)/2M)B,(G) and p € argmaxlgigx{ﬁw(G[V(i)])}. If
there exists a PTAA for 11 guaranteeing approzimation ratio pr(G[V ®))) in G[V®)], then
one can solve WII in G, in polynomial time, within ratio (M — 2)/2xM?)pn(G).

2. Let By(Gz) < (M — 2)/2M)By(G). If there exists a PTAA for 11 guaranteeing ra-
tio pri(G[V @) in G[VEHD]] then one can solve WII in G, in polynomial time, within
ratio (1/M?)pn(G).

Proof of item 1. Obviously,

remark 1

Bu (Ga) < 2B, (GIVP]) < x5*<G{V(P)D‘wLX(G)

Mpr—1

and, by the hypothesis of the item,

T

5 (@ Vo)) )

2M
Pu(G) < Mp-1

< mﬂw (Ge) <

M -2

On the other hand, application of a PTAA guaranteeing approximation ratio pr(G) < 1 for II
in G[V®)] constructs a solution S® of WII of weight at least

®)] ») (p)| Wimax(G)
59 s (6 [10]) 2 5] ),
Note that S® is II-feasible for G. Moreover, starting from this solution, one can greedily
augment it in order to finally produce a maximal WII-solution for G. This final solution verifies

Bly(G) > |SP |wimax (G) / MP.



Combination of the above expressions for 3/, (G) and (,(G) yields

By (G M —2 S@) Mo ) I
5wEG; - <2xM2) (|S* (‘G WL)M) Z o2 (G [V( )D 2 5 @)

and, consequently,

pwn(G) = 52 pu(G). @)

This concludes the proof of item 1. i

Proof of item 2. We now suppose that 5,(Gz) < (M —2)/2M)3,(G). Note that since z is
the largest ¢ for which B, (G[U1<i</V®]) < By (G)/2, set V@) is non-empty.

Let S°PY(G,11) be an optimal WIl-solution in Gzy1 (i.e., By (Gary1) = w(SP(Gyt1))). Let
S(Gy) = S°PY(Gpr1) NV (G,) (where V(G,) denotes the vertex-set of G) and S(G[V@+D]) =
SOPY (Gl 1)NV @D (in other words, {S(Gy), S(G[V #+D])} is a partition of S°*(Gp1)). Since 7
is hereditary, sets S(G,) and S(G[V®+D]), being subsets of S°P*(G,,1), also verify 7 (and,
consequently they are feasible WII-solutions for G, and G[V (1], respectively). We then have:

w(S(Gz)) < PBuw(Ga)
w(s(ever])) < s (e[ver])
Buw (Gat1) w (S (Gy)) +w (S (G [V(‘”“)D) < Bu (G) + Bu (G [V(erl)})

ST PwlG) -+ B (6 [V))

IN

and also By (Gry1) > Buw(G)/2. Tt follows from the above expressions that (3, (G[V@+D]) >
Bw(G)/M and this together with Remark 1 yield, after some easy algebra,

s (a [anm Winax(G)

B,(G) < i

As previously, suppose that a PTAA provides, in polynomial time, a solution S@*1 for II
in G[V(@+1] the cardinality of which is at least pr(G[V@+D))|S*(G[V#*+D))|. Then, 8. (G) >
ST win (GIV D)) > [SEHD o (G) / MFL

Combination of expressions for 3,,(G) and (3,(G) yields

(z+1)

5(G) ( L > ‘S ‘ 1 (2+1)

> (— oL _ L |
B.(G) = \22) \ [s=(G vy | = a2t (G [vE]) = spem(@)
Therefore,

1
pwi(G) = W,OH(G) (3)

and this concludes the proof of item 2 and of the lemma. il

Remark 2. For the case where z = 0, i.e., 8,(G[VV]) > B,(G)/2, arguments similar to the
ones of the proof of item 2 in lemma 2 lead to pwn(G) = 5,,(G)/Bw(G) > pr(G)/2M, better
than the one of expression (3). 1

Consider now the following algorithm where we take up the ideas of lemmata 1 and 2 and where,
for a graph G’, we denote by A(G’) the solution-set provided by the execution of the IILPTAA A
on the unweighted version of G’.



BEGIN (*WA*)
fix a constant M > 2;
partition V in sets V) «— {vy : Wpay/M < Wy < Wgay /M 71}
S — v* € {argmax,,cy{wi}};
OUTPUT argmax{w(s(o)),w(A(c[v(i)]))’ i=1,..};

END. (*WA%)

Revisit expressions (1), (2) and (3). It is easy to see that

pwi(©) = pun(@) 2 max {5 min {2 on(@), 15 n(@) - (4)

By expression (1) and by the fact that the approximation ratio of any PTAA for WII must be
less than 1 (WII being a maximization problem), x = O(log,,; n). Taking this value for z into
account in expression 4, concludes the proof of the theorem which, obviously, works also in the
case where weights are exponential in n. I

2.2 A first improvement for the approximation of the maximum-weight indepen-
dent set

It is well-known ([16]) that, Yk > 1, the general weighted independent set problem polynomially
reduces to PWIS(k) (the WIS-subproblem where the weights are bounded by n*), by a simple
scaling and rounding process. This reduction preserves (within a factor of (1 — €)) the ratios
for WIS and PWIS, and works also for instance-depending ratios. On the other hand, the
following approximation preserving reduction from PWIS to IS working only for constant ratios
is established in [16].

Definition 1. Given a weighted graph (G = (V, E),w) an unweighted graph G,, = (Vi, Fy)
can be constructed in the following way:

Vi = {(wi):ueVie{l,...,w,}}
Ey, = {(uw,i)(v,5):i€{l,...,w,}, j€{l,...,wy}, u#v, uww e E}.

In other words, every vertex u of V' is replaced by an independent set of size w,, in G, and every
edge of F corresponds to a complete bipartite graph in Gy,. 11

One can easily show that every independent set S of G of total weight w(S) induces, in G, the
independent set {(s,7) : s € S,i € {1,...,ws}} of size w(S), and conversely, for every indepen-
dent set Sy, of Gy, the set S ={u eV : 3 € {1,...,w,},(u,i) € Sy} is an independent set
of weight w(S) > |Sy|. Consequently, a,,(G) = a(G,,) and, by applying a p(G)-approximation
[S-algorithm to G, one can derive an approximated WIS-solution of (G,w) guaranteeing ra-
tio p(Gy).

By the above reduction, a ratio p(n,A), non-increasing in A, for IS transforms to a ra-
tio p(w(V), Wmax(G)A) for WIS and, except from the case of constant approximation ratios, the
reduction above results in WIS-ratios depending on the weights. More precisely, the following
result can be easily proved.

Proposition 1. For every € > 0 and every constant k > 0, there exists a polynomial reduction
from WIS to IS transforming every IS-approzimation ratio p(n, A, u) (where p is non increasing
with respect to its variables) into an approzimation ratio p(n'tew (V) /wmax(G), n A, py) >
p(n?Te n!T<A A) for WIS.



Unfortunately, the approximation results known for IS do not allow achievement of interesting
approximation ratios for WIS using the reduction of proposition 1.
Revisit expression 4 and let II be IS. Set, for every k, M = 6. Then:

o if 2 > kloglogn/log M, then pwis(G) > logh n/2n;
o if x < kloglogn/log M, then pwis(G) > 0.099015(G)/(k loglogn)
and the following theorem holds.

Theorem 2. For every fized ¢, every PTAA for IS achieving ratio pis(G) can be transformed
into a PTAA for WIS achieving

~ [logfn 0.099015(G
pw1s(G)2mm{ g pis( )}_

2n  floglogn

In terms of n, the best-known approximation ratio for IS is, to our knowledge, ©(log? n/n)
achieved by the IS-PTAA of [3]. Embedding it in pig(G)-expression of theorem 2, we obtain the
following concluding theorem.

Theorem 3.

log? n
pwis(G) >0 [ —2 " ),
nloglogn

The above result improves by a factor O(loglogn) the best-known approximation ratio function
of n for WIS (O(log? n/(n(loglogn)?)), due to [8]).

3 Towards §)(1/A)-approximation for IS and WIS

In this section we show how one can use the clique-removal method of [3] to obtain, for every A,
Q(1/A)-approximations for IS and WIS. The authors of [3| repeatedly call a procedure computing
either a k-clique (clique of order k), or an independent set of expective size. At most n/k cliques
can so be detected, while at each clique-deletion the independence number decreases no more
than 1. If the independence number of the initial graph is large enough, a large independent
set is necessary detected during one execution of the procedure. In all, the following theorem
summarizes the thought process of [3].

Theorem 4. ([3]) There is a constant k and an O(nm) algorithm (denoted by LARGEIS in
what follows), computing, for every graph G of order n with a(G) > n/k + m and every k such
that 2 < k < 2logn, an independent set of size kO(m'/ (k1)

In [3] & is not supposed to be constant; ratio log? n/n for LARGEIS is obtained for k = O(log n). If
we set k = (logn/(¢(n)loglogn))+1, where £ is a mapping such that, Vo > 0,0 < {(z) < loglog x
and m = n/k?, then an analysis similar to the one for theorem 4 leads to the following.

Theorem 5. For every function ¢ with 0 < {(x) < loglogx, YV > 0, there exist constants C
and K such that algorithm LARGEIS computes, for every graph G of order n > C', an independent
set S such that if «(G) > {(n)nloglogn/logn, then |S| > K log"™ n.

Let now ¢, C and K be as in theorem 5, denote by GREEDY the natural greedy IS-algorithm
and by EXHAUST an exhaustive-search algorithm for maximum independent set, and consider the
following algorithm.



BEGIN (*STABLE*)
IFn<C
THEN OUTPUT S «+ EXHAUST(G);
ELSE QUTPUT S « argmax{LARGEIS(G),GREEDY(G)};
FI
END. (*xSTABLEx)

If n < C, then EXHAUST computes in constant time a maximum independent set for G. So,
suppose n > C and consider cases a(G) > £(n)nloglogn/logn and o(G) < ¢(n)nloglogn/logn.

e If (G) > £(n)nloglogn/logn, then, by theorem 5, STABLE guarantees |S| > K log"™ n;
since a(G) < n, the approximation ratio obtained is at least K logt™ p /n;

o if a(G) < l(n)nloglogn/logn, then by Turan’s theorem ([17]) |S| > n/(x + 1), and the
approximation ratio obtained is logn/(¢(n)(pn + 1) loglogn).

Since GREEDY is of time linear in | F/|, STABLE has the same worst-case time-complexity as LARGEIS.
So, the following theorem concludes the above discussion.

Theorem 6.  Consider { such that, Yz > 0, 0 < ¢(x) < loglogz. Then STABLE achieves
approximation ratio

log“™ n logn
G) > min{ K :
pstape(G) > mm{ n " 4(n)(p+1)loglogn

Ifloglogn > £ > 2 (in particular if £ is constant), either log/™ n/n, or log n/(¢(n)(141) log log n)
corresponds to a significant improvement with respect to O((log®n)/n) and k/p, respectively.
In terms of graph-degree, it is, to our knowledge, the first €(1/x) approximation result for IS.
Also,
logn S log log log A
{(n)(p+1)loglogn = (u+ 1)log®log u A

Ratio loglog A/A for IS was, up to now, the only known Q(1/A) ratio for IS (presented in [10]).
But the algorithm of [10] has the drawback to be polynomial only if A is bounded above.
Moreover, the complexity of algorithm STABLE is O(nm), whereas the O(k/u) ratio of [5] is
obtained by a PTAA of complexity O(n*). Of course, our result does not guarantee a ratio always
bounded below by logn/(¢(n)(x + 1)loglogn), but in the opposite case, the ratio guaranteed
is superior to the best-known n-depending ratio for IS (for instance, consider the case ¢(n) =
loglogn). In fact, if Klog®™ n/n < logn/(¢(n)(i + 1)loglogn) and n > Cj, for a fixed Cp,
then n/p > K/0(n)(loglogn)log®™ ' n and in this case GREEDY guarantees ratio bounded below
by logé(”)_1 n/n. In all, the following corollary can be deduced.

Corollary 1. Given a graph G and ¢ such that 2 < {(n) < loglogn, at least one of the two
following conditions holds:

£(n)—

1. GREEDY guarantees ratio bounded below by log Yn/n (improving the best known p(n)-

ratio if £ > 3);

2. STABLE guarantees ratio bounded below by logn/(¢(n)(u + 1)loglogn) (achieving so ra-
tio Q(1/p)).



The discussion above draws an interesting remark about the instance-parameters expressing non-
constant approximation ratios. Until now, studies about the approximation of IS were limited in
expressing ratio using one parameter (either the size or the degree). The results of this section
show that considering both parameters, it is possible to reach tighter approximation ratios.

Combination of theorem 6 with theorem 2 allows to obtain important approximation results
also for WIS.

Theorem 7. For every constant k,

. [loghn 0.099log n
pwis(G) > mind — & 5
nk(k+1)(n+1)log“logn
_ [logFn 0.099 log 1
> min , 5 .
nk(k+1)(pn+1)log®log p

In other words, theorem 7 guarantees for WIS the existence of PTAAs achieving either n-
depending ratios much better than the ones known for IS (and comparable with the ones of
corollary 1), or the first £2(1/u) ratios for WIS (recall that the best-known p(A)-ratio for WIS —
without restrictions on A — was, until now, the one of [8], bounded below by 3/(A + 2)).

4 Further improvements

In this section, we propose a polynomial approximation result for maximum-weight independent
set problem which is not deduced by reduction from the unweighted case. It improves all the
approximation results of section 3, for both weighted and unweighted cases, but the corresponding
complexity is higher.

4.1 A weighted version of Turan’s theorem

Recall that 1, (G) = >, ey w(I'(v)) /w(V) (note that j,,(G) < A(G)) and consider the following
algorithm for WIS.

BEGIN (*WGREEDY*)
S« 0;
WHILE V # () DO
v — argming{u(T(v)) /u(v)};
S —SuU{v};
Ve v\ ({v}UT(v));
update E;
0D
END. (*WGREEDYx)

Then, the following easy theorem holds (an unweighted version of it — see also [9] — is the famous
Turén’s theorem).

Theorem 8. For every weighted-graph with mazimum degree A, algorithm WGREEDY computes
an independent set of weight at least w(V')/(pw(G) +1) > w(V)/(A +1).

Proof. Consider algorithm WGREEDY and suppose that its WHILE loop is executed ¢ times. For
i €{1,...t} let us denote by G; = (V;, E;) the surviving graph, by v; the vertex selected during
the ith execution and by I';(v) the neighborhood of v in G;. Then, Vi € {1,...t},

w (I (v;))

Wy,

k3

Y. wlE)= Y wli(v) >

vE({v; JUT'(v;)) vE({v; JUL; (v;))

(wy, +w (T (v:)))



and, consequently, by adding side-by-side the expressions above, for i = 1...t, we get (note that
V = Uizt {{vi} UTi(vi)}),

w2 3 TE D (1 ).
i=1 i

On the other hand,
¢
w(V) = (wy, +w (T (v)))
i=1
and by Cauchy-Schwarz inequality we get

! ()2
W(V) (o + 1) > 37 L 0L (00))

i=1

 (w(v))?

¢
' . Wy,
i=1

Wy

which concludes the proof since the weight of the greedy solution is 25:1 Wy, - 1

An easy corollary of theorem 8 is that whenever a,,(G) < w(V')/k, then WGREEDY achieves
in G ratio k/(A+1) for WIS. Consequently, in order to devise O(k/A)-approximations for every
graph, one can focus him /herself on the approximation of WIS in graphs with large weighted
independence number. For an integer function k(n) < n, we denote by WISy, the class of graphs
with au,(G) > w(V)/k; for reasons of simplicity we assimilate this class with the corresponding
WIS-subproblem. The work of [3] and its improvement by [1| show how IS (the unweighted
version of WIS;) can be approximated within O(n*~!) where ¢, depends only on k (note that
using the reduction of [16], one immediately gets a ratio O(w(V)*~!). Here, we perform a
further improvement by generalizing the algorithm of [1] to the weighted case.

4.2 Graph coloring and the approximation of WISy

In this section, we adapt the method of [1] to the weighted IS-case and relate the approximation
of WISy, to the coloring of a class of graphs (called Gi41 in the sequel) containing the (k + 1)-
colorable graphs. We first recall two notions very closely related, the Lovdsz 0-function and the
orthonormal representation of a graph.

Definition 2. ([14]) Consider a graph G = (V,E), V ={1,...n}:

the Lovasz 6-function 0(G) of G is the maximum value of > i j=1bij where B = (bij)ij=1..n
ranges over all positive semidefinite symmetric matrices with trace 1 and such that b;; = 0
for every pair (i,j), i # j,ij € E;

the orthonormal representation of G is a system of n unit vectors (uj)i=1., in a n-
dimensional Euclidean space, such that for every (i, j) such that ij ¢ E, 4; and uj are
orthogonal. I

Proposition 2. ([14]) Given a graph G, the following holds:

e given an orthonormal representation (4;)i=1..n of G, and a unit vector ci; di € {1,...n}

such that 0(G) < 1/(J u;)?;

e a(G) <6(G) < \(G).

10



For an integer function ¢ = ¢(n) < n, set G = {G : (G) < (}; by proposition 2, every /-
colorable graph belongs to G,. In [12] it is shown that every graph in Gy with order n and
maximum degree A can be colored with O(min{A'~2/¢1og®?n,n!=3/(+1) 10g"/2 n}) colors in
randomized polynomial time ([12]. The algorithm of [12] has been derandomized later by [15].

Theorem 9. Let k = k(n) < n be an integer function and fi(z,y) be a function from
IN x IN to IN, non-decreasing with respect to both x and y. If there exists a O(T(n)) algo-
rithm A computing, for every graph G € Gii1, |V| < n, a fr(n,A)-coloring, then there exists
a O(max{n3,T(n)}) PTAA for WIS guaranteeing ratio 1/(k(k + 1) fr(n,A)).

Proof. Let (G = (V, E),w) be an instance of WISy of order n and G,, be as in definition 1 of
section 2. Since the weights are supposed to be integral and a,,(G) > w(V')/k, we have
w(V) w(V) 1

(@) =alCu) 2 Fm it e

In [7] it is shown that:
e 0(Gy) is equal to the maximum value of szzl JW;w;b;j, where b;; are as in definition 2;

e one can compute, in O(n3) by the ellipsoid method, a positive semidefinite symmetric
matrix B = (bij)i,jzl...n satisfying

n n
{ i;jgl VWb > 0(Gy) — 5 >0 -
bij =0 ijeF
Given that B is symmetric and positive semidefinite, there exist n vectors 4;,i € {1,...n}
in IR™ (seen as Euclidean space) such that, V(i,j) € {1,...n}?, 4, - 4; = b;;; in particular, we
have b;; > 0. For our purpose we just need to compute n vectors wu; satisfying the following
expression (6) for e = 1/(2knw(V)):

w; - uj = by i F

|7IZ|2 =b;+e>0

n

S |#;]? = Tr(B) 4+ ne = 1+ ne (6)
=1

| n . 2 n n

Elx/wiui > ‘21 Zly/wiwjbij

1= 1=197=

Such vectors can be seen as non-zero approximations of 4;, ¢ = 1...n. The system of vec-
tors (u;)i=1..n can be computed (|6]) by applying Cholesky’s decomposition to the symmetric
positive definite matrix B + el (where I is the identity matrix); one gets (in O(n?®)) an n-
dimensional triangular matrix U such that B = 'UU — el. Let then (4});=1.., be the columns
of U; they clearly satisfy expression (6).

Set, for i € {1,...n},

M=
b
&

&

I
I
I

NgE
b
&

S
I
_

s

—

zZ; =

&

and note that Z;, constitutes an orthonormal representation of G. Without loss of generality, we
can assume that (d- )2 > (d-%)? > ...(d- z,)?.
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Lemma 3. Let

. . < w(V)
j = maX{ZE{l,...,n}:;wlgm}
K = G{vi:i=1,...,5}].
Then, (d - 7)2 > 1/(k + 1) which implies K € Gpy1.
Proof of lemma 3. By Cauchy-Schwarz inequality and expressions (5) and (6), we get:

n 2

(l—i-ne)Zwi(cf'z_;)Q = (i[uJ)sz(d zz) > <zn:g\/ﬁll;>

n
> Vwit;
i=1

=1
n n 1 1
> E E b > _ > _
w(V) w(V) 1

S T

On the other hand, since for i € {1,...n}, d-z < 1, (recall that d and Z;, 1 =1...n are unit
vectors),
1

n) S (4-5)" < S (72" +
Consequently,

w(V) w(V)
sz( 2) —k;+1+k(k:+1)' @

Recall that (d-71)2 > (d- )2 > ...(d- 7,)2. We have (d - Z;)% > 1/(k + 1) > 0 since, in the
opposite case,

wV) _wlV)

n R j—1 n .
;wi<d-5)2§;wi+;wi (d.z—3)2< E +k(k+1)

which contradicts expression (7).

As noticed in [1], (d - z;)2 > 1/(k + 1) > 0 implies that the subgraph K of G induced by
vertices v, i = 1...j, satisfies §(K) < k + 1; this follows from the fact that %, i € {1,...j},
is an orthonormal representation of K with value (see [14]) less than 1/(d - z;)> < k+ 1. Note
that this expression holds for the unweighted #-function of G; so, K € Giy1. This completes the
proof of lemma 3. 1

Lemma 3 is originally proved in [1] for the case of (unweighted) IS. As one can see from the
above proof, extension of it for WIS is non-trivial.

Let us now continue the proof of theorem 9. By lemma 3, algorithm A (claimed in the
statement of theorem 9) computes a f(n, A)-coloring of K. Then, the maximum-weight color
is an independent set of K = (Vi, Ex) (and of G) of total weight at least w(Vik)/ fir.(4, A(K)).
Since w(Vk) > w(V)/(k(k + 1)) (see the definition of j), j < n and A(K) < A, the maximum-
weight color is an independent set of G of weight at least w(V)/(k(k +1)fx(n,A)). On the
other hand a,,(G) < w(V'), and consequently the following algorithm WIS_k guarantees ratio
1/(k(k + 1) fr(n,A)) for the WIS-subproblem WISy.

12



BEGIN (*WIS_k*)

(1)  compute the matrix B = (bjj)ij—1,.n by the ellipsoid method;
(2) e« 1/(2knw(V));

(3) compute the Cholesky’s decomposition of B+ €I;

(4) compute vectors d and zj,i € {1,...n};

(5) sort vertices in decreasing order with respect to (d-z})?;
(6) compute j and K;

(7) IF(d-zj)?>1/(k+1)

(8) THEN

(9 call A to compute a coloring (Ci,...Cy) of K;

(10) S « argmax{w(C;) :i=1...1};

(11) complete S to obtain a maximal independent set of G;
(12) ELSE S « 0;

(13) FI

(14) OUTPUT S;
END. (*WIS_k*)

To conclude the proof, let us note that lines (1) and (3) are executed in O(n?), line (5)
in O(nlogn) and line (11) in O(n?). Finally, the time-complexity of line (9) is bounded above
by T'(n). 1l

Of course, unless P=NP, inclusion of a graph in WIS, cannot be polynomially decided.
However, algorithm WIS_k runs on every graph within the same complexity; in fact (by instruc-
tion (7)), if K € Giy1, then algorithm A is called to return a non-empty independent set S;
otherwise, S = (). Consequently, if S # 0 (in particular if G € WISg), algorithm WIS_k guar-
antees the ratio claimed by theorem 9; in the opposite case, the input-graph does not belong
to WISg.

Using for A, the derandomized version of [12] presented in [15], theorem 9 leads to the following
approximation result for WISy, for 2 < k(n) < n.

Corollary 2.

1
>0 .
PWISk = (k(k + 1) A1-2/(k+1) 1og3/2 n)

4.3 The main result

Consider now the following algorithm, the worst-time complexity of which is the same as the one
of WIS_k.

BEGIN (*WIS*)
OUTPUT S « argmax{w(WIS_k(G)), w(WGREEDY(G))};
END. (#WISx*)

By theorems 8 and 9, 3¢’ such that

k d
> mi .
Puis = mm{A—l—l’ Tk + 1)A1*2/(’f+1) log3/2n}

By an easy but somewhat tedious algebra, one can prove that the righthand side of the above
inequality is at least as large as

) k ck

for a constant c. Let us suppose k constant. Then, the following theorem holds.
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Theorem 10. For any fized integer k > 2 and for t = 3(k + 1)/4

pWIS(G) > min {ﬁ, 0] (log*t n)} .

Furthermore, in the case where min{k/(A + 1),0(log ™" n)} = O(log ' n), A+1 < O(log’ n) and
then algorithm WGREEDY already guarantees a wonderful (given the result in [11]) approximation
ratio.

Corollary 3. Consider a graph G and k > 2. Then, there exists t > 0 such that at least one of
the two following conditions holds:

1. algorithm WGREEDY achieves ratio bounded below by O(log™"n);
2. algorithm WIS achieves ratio bounded below by k/(A + 1).

On the other hand, let us revisit expression

) k ck

and set k = logn/(3loglogn); then, Ing > 1,¥n > ng, (1/¢%)(k + 1)1+38)/2 1og3k+1/4 y < 4/5
and, since instances with n < ng can be solved by exhaustive search in constant time, the
following theorem holds and concludes the section.

Theorem 11.

| logn )
> .
pwis(G) = min { 3(A +1)loglogn’ 0 (n )

5 Approximating maximum-weight clique

We describe in this section a new reduction, working for both weighted and unweighted cases,
between independent set and clique. Let us note that the classical correspondence “independent
set in G - clique in G” preserves constant and p(n) ratios but it does not work for ratios depending
on A.

Let G = (V,E) be an instance of KL and let V' = {1,...,n}. We consider the n graphs
G; =G[{i} UIl'(d)], i =1,...,n and denote by n; their respective orders; we also consider the n
graphs G;. Then, the following proposition holds (recall that in every graph G, the size of a
maximum clique is never greater than A(G)).

Proposition 3. For every i € {1,...,n}, the following three facts hold:

1. n; < A(G) + 1 and A(G;) < A(G);

2. cliques (resp., independent sets) of G; (resp., G;) are also cliques (resp., independent sets)
of G (resp., G); moreover, 3i* such that the maximum clique (resp., independent set) of G
(resp., Gi=) is exactly the mazimum clique (resp., independent set) of G (resp., G);

3. items 1 and 2 hold also for WKL and WIS if we consider weighted cliques and independent
sets.

Let A be a PTAA for WIS achieving ratio p(n,A); we shall use it to produce a WKL-solution
for G. This can be done by the following algorithm.

14



BEGIN (*WKLx*)
OUTPUT K « argmax{w(A(G;i)):i=1,...,n};
END. (*WKLx%)

Since K is an independent set of G, it is a clique (of the same weight) in G. Moreover, by
items 1 and 2 of proposition 3, algorithm WKL achieves, in polynomial time, approximation
ratio p(A + 1, A) for WKL.

The reduction just described is, to our knowledge, the first one preserving p(A) ratios between
independent set and clique (in both weighted and unweighted cases).

Given the IS result of [3] and the one of theorem 3 we conclude the following.

Theorem 12. There exist PTAAs for weighted and unweighted versions of KL such that

log® A
pri(C) > @("gA )

log? A
> —_— .
pwiL(G) = ®<AloglogA>

The results of theorem 12 represent, to our knowledge, the first p(A) ratios for the clique-problem.

6 Maximum l-colorable induced subgraph and minimum chromatic sum

6.1 Maximum l-colorable induced subgraph

Let us note that we can assume [ < A, because, if not, then G’ = G (see the definition of Cl
in section 1 and recall that there exists the polynomial-time coloring-algorithm of [13] always
guaranteeing a A-coloring of G, unless G is a (A + 1)-clique).

Consider now, for I € {1,...,A — 1}, the graph 'G = (‘V,'E) defined as follows:

v = vx{1,...,1}
lp = {(,9)(,5) : [[i =) A € E]V [(i #7)A(v="2")]]}

For WCI the weight of vertex (v, ) equals w,, Vi =1,...,1.

Clearly,
V| = In
AlG) = AG)+1-1
plG) = p+i-1

(in fact, for all (vy,i) € 'V, v, € V, i <, the degree of (vy,1) equals the degree of vy plus I — 1;
the same holds for the average degree u('G)).
The following holds:

e let us consider an independent set S C 'V of !G; the family S; = {v € V : (v,i) € S},
i=1,...,1,1s a collection of mutually disjoint independent sets of G; so the graph G[U;S;]
is [-colorable;

e conversely, for every [l-colorable subgraph G’ = (V’,E’) of G and for every Il-coloring
(S1,...,8)) of G', the set S = {(v,i) :i € {1,...,1},v € S;} is an independent set of 'G.
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Consequently, every independent set (resp., maximum independent set) of a certain size in ‘G
corresponds to an [-colorable induced (resp., maximum-order) subgraph of the same order in G
and vice-versa. Clearly, the same correspondence holds between WIS and WCI if one considers
weights instead of sizes.

By the previous discussion and the results of the previous WIS-sections, one can get the
following concluding theorem.

Theorem 13. Consider f such that, YVx > 0, 2 < f(x) < loglogx. Then (by theorem 6 and

corollary 1),
i logf(”)_1 n logn
> .
rail@) _mm{@ < n " f(n)(p+1)loglogn

Also (by theorem 11),

: logn —4/5 }
> .
rwailG) _mln{S(A+1)loglogn’O(n )

6.2 Minimum chromatic sum

Let us consider the following very common coloring-procedure where by IS we denote an IS-
algorithm.

BEGIN (*IT_IS*)
i+ 0;
WHILE V # () DO
i—i+41;
C; < IS(G);
V—V\Cs;
remove from E the edges adjacent to vertices of Cj;
END. (*IT_IS%)

In other words, algorithm IT_IS iteratively colors the vertices of an independent set by an unused
color and removes them from the current graph.
The following results are proved in [2].

Theorem 14. ([2])

1. If algorithm IS guarantees approzimation ratio p(G) for IS, then algorithm IT_IS guaran-
tees approzimation ratio 4p(G) for CHS.

2. If algorithm IS is an exact (optimal) algorithm for WIS, then algorithm IT_IS guarantees
approzimation ratio 4 for WCHS.

On the contrary, no indication for extension of item 2 of theorem 14 in the case where IS is an
approximation algorithm exists in the interesting work of [2]. Here we perform an easy extension
of their result in order to work also in the case where IS is considered as a PTAA guaranteeing
a certain ratio.

Theorem 15. If algorithm IS guarantees approximation ratio p(G) for WIS, then IT_IS
guarantees approzimation ratio 4p(G) for CWHS.

Proof. Given a vertex-weighted graph (G, @), let us denote by D the LCM of the denominators
of the components of @ and set w = D.w. Obviously, components of w are integral. Consider
now the graph Gy (definition 1) and any subgraph H = (Vy, Ep) of G. Then:
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e application of algorithm IS in H determines an independent set Sy corresponding to an
independent set Sy of Hy of cardinality w(Sg);

o if w(Sk)/aw(H) > p(H), then [Sy|/a(Hg) > p(H);

o if " and H" are the subgraphs of H and Hg, respectively, obtained by removing vertex-
sets Sy and Sy, then H” = H..

Consequently, supposing that an algorithm WIS solves WIS in G within ratio py1s(G) = p(G),
application of algorithm WIS in G can be equivalently seen as an application of an algorithm
solving (unweighted) IS in Gy within ratio p(G) (and not p(Gg)).

Every coloring C' = (C’l,...,él) of Gy corresponds to a coloring C' = (C4,...,C)) of G
such that w(C;) = ]C’Z\, i = 1,...,1. Consequently, the value of the WCHS-solution C' of G
is Y2t i (C;) which is exactly the value of the CHS-solution C' in Gg. Of course the same
holds if we divide all the above quantities by D.

In all, if we consider a WIS-PTAA WIS guaranteeing approximation ratio p(G), its application
in G can be simulated to the application of an IS-PTAA IS in Gy guaranteeing the same
ratio p(G). Extending this argument, application of IT_WIS in G can be simulated to the
application of IT_IS in Gy. By item 1 of theorem 14, this latter algorithm guarantees for CHS
approximation ratio 4p(G). Consequently, this ratio is also the ratio of IT_WIS when used to
solve WCHS in G, q.e.d. 1

Immediate consequence of theorem 15 is that the results for WIS produced above apply also
for WCHS.
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