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Un mécanisme de coordination pour éviter la violation de contraintes
distribuées

Résumé

Certaines applications informatiques complexes nécessitent la contribution de plusieurs
équipes spécialisées dont les travaux doivent respecter un ensemble important et évolutif
de contraintes sur les données ainsi que des échéances serrées. L’utilisation de I’approche
transactionnelle traditionnelle pour préserver la cohérence des données peut conduire &
défaire et refaire certaines parties du travail et entrainer une perte de temps et d’argent.
Dans certains cas, cette situation n’est pas acceptable. Nous proposons une approche
alternative consistant & organiser le travail & partir des contraintes sur les données de
telle sorte que lorsque le travail est fini les contraintes sont nécessairement respectées.
Un modeéle conceptuel de travail coopératif et un langage de définition de protocole de
travail sont présentés. Nos propositions sont appliquées a la spécification de systémes
informatiques & base de composants.

Mots clés: coordination, collecticiel, workflow, contraintes de compatibilité de données

A Coordination Mechanism to Prevent the Violation of Distributed
Constraints

Abstract

Some applications present specific characteristics: work distributed between several
teams, a lot of changing data constraints to respect, short time delays. The use of the
traditional transactional approach to preserve the data consistency may lead to undo and
redo some parts of the work and so, may induce a waste of time and a waste of money.
In some cases, this situation is not acceptable. We propose an alternative approach which
consists of organizing the work from the constraints, so that there is no need of a constraint
checking phase. A conceptual model of cooperative work and a language to define work
protocol are presented. Qur proposition is applied to the specification of component-

oriented systems.

Key words: coordination, groupware, workflow, distributed compatibility constraints



1 Introduction

A lot of computer systems are composed of a great number of elements of different nature,
for example, programs, hardware, manuals and documents which are progressively stored
in a component base. More and more often, these ”component-oriented” systems are built
by putting together existing components which are, if necessary, adapted to the specific
environment in which the system will be integrated. These adaptations lead to the creation
of several versions of some components and to the improvement of the reusable component
base. The building of a new system is performed in two steps. First, each element of the
system is specified either by reusing the specifications of an existing component version,
or by creating new specifications. Second, every specified component version is entirely
built. Generally, components of the reusable component base are not independent, for
example, component x uses component y. Thus, it is imperative that the component base
stores not only the component themselves, but also compatibilities and incompatibilities
between component version specifications. These compatibility descriptions constitute a

constraint base.

Due to the great number of components to put together and to their diversity, the building
of a new system requires a wide range of specialized skills. This construction is achieved
by several teams coordinated by a person who plays the role of integrator. The integrator
overall knows the set of components in the component base and the environment of the
future system. Each team is in charge of a subset of components and of the building of a
part of the system (a sub-system). Due to time constraints, as many tasks as possible are
simultaneous. However, all constraints between component versions have to be respected:
constraints between component versions managed by a single team as well as those between
objects managed by different teams.

This paper focuses on the problem of constraint enforcement. Thus, we are only interested
in the specifications phase of the systems. The traditional concept of transaction has been
extended to support long-duration activities and to solve the problem of constraint en-
forcement in design applications. [Bernstein, Newcomer, 1998] discusses several advanced
transaction models, e.g.: Split-Joint Transactions [Pu, 1988], Flexible Transactions [El-
magarmid and al., 1990], Acta [Chrysanthis, Ramamritham, 1991], Sagas [Garcia-Molina
and al., 1991], Contract [Waechter, Reuter, 1992], Open Nested Transactions [Weikum,
Schek, 1992).

The main idea of these models is to relax the well-known properties of atomicity, consis-
tency, isolation and durability of the conventional transaction model which would make
data unavailable for long time (since transactions may run for days or weeks). Most ad-
vanced transaction models allow transactions to be composed of other nested transactions
forming a transaction tree. Results of nested transactions are visible to the other sibling
transactions or even to external ones. Some models allow the specification of dependencies
between transactions. Acceptable states for termination of a transaction in which some
sub-transactions may be aborted may be specified by the designer. When concurrency
conflicts or failures happen, the compensation concept is used in place of the standard
rollback: inner transactions are associated with compensating transactions which leave
the database in a consistent state,

Advanced transaction models were developed from a database point of view. Their main
concern is the preservation of database consistency. If constraints are violated, work is to



be compensated. That leads to a waste of time and thus to a waste of money. In certain
situations, this solution is not easily acceptable. One alternative to transactional models
is to organize the work so that there is no need of a constraint checking phase. Instead of
verifying data consistency to ensure the consistency of work being performed on the data,
work consistency is controlled to be sure of data consistency.

Our solution follows this approach. It is in line with cooperative work studies and it
proposes a computational coordination mechanism for distributed specifications. This
mechanism fits the definition given in [Schmidt, Simone, 1996]. It consists of a protocol
which coordinates the work and an artifact in which the protocol is objectified. The
protocol stipulates and mediates the articulation of the cooperative work. Changes to the
state of the protocol induced by one actor of the cooperative work (a person or a process)
are conveyed to the other actors. The execution flow of the protocol may be disturbed by
user interventions like stopping, restarting or iterating an activity.

Our work integrates both workflow [Jablonski, Bubler, 1996] concepts and what we call
advanced groupware concepts. Worflows assist business processes which are generally com-
posed of many automatic and manual individual tasks [Kim, Paik, 1997]. Groupware offers
supports for managing communications and shared environments between participants of
a group working on a common goal (electronic mail, video-conferencing, shared document
editing, awareness mechanisms). Advanced groupware concepts concern the definition of
cooperative work modes like, for example, iterative conversations between participants,
discussions where each participant alternately develops its propositions and the different
propositions are communicated to all the group, negotiation [Munier, Shakun, 1988].

The objective of a cooperative work management system is to assist the user in the mod-
eling of cooperative work and in its execution. This paper is only concerned with the
modeling aspect. It describes a model that represents cooperative work modes and flows of
tasks based on these work modes. As an example, the model is applied to the component-
oriented system building application.

The remainder of the paper is organized as follows: a real system (CORSSE) and its
management are described in section 2 to well explain the needs of teams which build
component-oriented systems; sections 3 and 4 describe the formal data and coordination
models respectively which are illustrated by examples extracted from CORSSE; in section
5, we apply these formal models to CORSSE and show how an adapted articulation of the
work leads to constraint enforcement; section 6 exposes some existing cooperative work
models; section 7 concludes the paper and presents future work.

2 Motivating example

A concrete example CORSSE (Component-ORiented System Specification Environment)
inspired from a real case is presented to explain the needs of teams that build component-
oriented systems,. First, the component and constraint base are described. Then, the
creation process of a new system is detailed.

The component base of CORSSE. CORSSE is devoted to distribution management.
It allows the construction of specific systems for different types of stores from small su-
permarkets to hypermarkets. The systems may be installed in different countries with
different management rules, and of course different languages. The different customers of



the systems may have specific standards, specific management procedures and needs, and
different technical environments.

A distribution management system is composed of software, hardware, documentation and
services. Each of these parts contains a great number of components. For example, hard-
ware contains specific or/and general components and additional components, which are
used to build or to test the specific hardware. These additional components may be general
or ad hoc for the system. Specific and general components are servers, workstations, cash
registers and informative tills. Each component may be composed of other components,
for example, a cash register is composed of cables, one printer and one or several screens.
Another example concerns the software: in addition to specific programs, the system may
include general software like a documentation formatter, print tools, test tools, a database
management system, a specific compiler, or a graphic user interface generator.

Systems differ from one another by their components and also by the versions of these
components. When CORSSE was created, it concerned few systems, at most one for each
customer. Progressively, new versions of hardware and software components, of documen-
tation and new systems were created, for new customers, for maintaining the installed
systems or for taking into account new needs or new environments. All the component

and their versions used in the different systems compose the reusable component base of
CORSSE. This base is incrementally built and continually evolves.

The constraint base of CORSSE. Compatibility constraints may exist between ver-
sions of different components and a system must respect them. An example of such
constraints is given below.

The following object versions are compatible:

1. Version NCR of the scanner and version AU33_ND Board 3 of the program TCF

2. Version PEACH of the scanner and version AU33.SD Board 3 of the program TCF

3. Version PEACH of the scanner and version AU33_AIF Board 3 of the program TCF

4. Version PEACH of the scanner and version AU32_N Board 3 of the program TCF

5. Version NCR of the scanner and version AU32_S Board 3 of the program TCF

6. Version NCR of the scanner, versions DASSAULT, ICL and new' of the check reader,
versions DASSAULT 1200 bauds and ICL 1200 bauds of the card-reader

7. Version NCR of the scanner, version FPI and nil? of the keyboard

8. Version PEACH of the scanner, version DASSAULT and new of the check reader, version
GEMPSY 9600 bauds of the card reader, version FPI of the keyboard

9. Version GEMPSY 9600 bauds of the card reader and version PS2 of the keyboard

"The symbol new means that a new version of the object may be specified.
2The symbol nil means that the object may be absent.



10. Versions 7.04 and 7.05 of the program PA and version 3.19 of the function 3GLIF

As new component versions are created and added to the reusable component base, their
compatibility with the other component versions of the base is tested. Consequently, the
compatibility constraint set is updated, most of the time by adding new constraints.

Creation of a system. The different components of the reusable component base are
managed by several specialized teams which may work in different places and different
countries. For example, teams located in a central place manage the components com-
mon to all the customers, and one or several teams in each country are in charge of the
components specific to the customers of the country.

The construction of a new system follows a pre-established manufacturing process (Figure
1) during which each team concerned creates a part of the system (subsystem) and ver-
ifies compatibility constraints among the subsystem components. Then, a specific team
integrates all the parts, verifies compatibility constraints between them and tests the new
system on a platform identical to the customer technical environment. Finally, the system

is installed at the operational site.

complete set of component versions
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Figure 1: the creation process of a new system



3 Formal data model

The construction of a system is called a project.A project uses a subset of the component
base (which we call the project component base) and an associated set of compatibility
constraints. This compatibility constraint set is computed from the general set of con-
straints according to the characteristics of the system to be built. This section formalizes
the different notions intuitively introduced in section 2 by the concepts of configuration,
reduced constraint set, constraint violation and system. One additional concept (con-
straint family), used in section 5, is also defined. The different concepts are illustrated by

an example extracted from CORSSE.

3.1 Configuration

A configuration is a set of multiversion objects as defined in the object-oriented database
system O2 [Ardent, 1998]. Formally, a configuration is defined by a triplet < O, V,
version> where:

o (O is a set of objects,

o ) is a set of object versions,

o version is a mapping from O to 2" which associates each objet o in @ with a subset
of V representing the set of versions of 0. The version mapping satisfies the exclusive
property, i.e., for any pair (o, 0’) of objects, version (0) and version (0’) are disjoint.

Intuitively, V represents all the known versions of objects in @ and version provides the
association between the versions and the objects.

Totally defined configuration. A configuration is totally defined if for any o in O,
version (0) is a singleton.

3.2 Constraints

Constraint properties. A constraint set specifies four type of properties of the com-
ponents and component versions:

1. transitivity or compatibility between versions of different components
2. commutativity or equivalence of versions of a component
3. possible absence or mandatory presence of components in the systems

4. possibility to insert new versions of components in the systems

For example, the properties specified in the sub-set of constraints 1, 5, 6 and 7 of section

2 are:
o All the component versions cited in the four constraints are compatible
o Versions AU33_ND Board 3 and AU32_S Board 3 of the program TCF are equivalent

o Versions DASSAULT, ICL and any new other version of the check reader are equiv-
alent



o Versions DASSAULT 1200 bauds and ICL 1200 bauds of the card reader are equiv-
alent

o Version FPI and any new other version of the keyboard are equivalent

o If one of the components, scanner, check reader, card reader and program TCI is
present in the system in one of the cited versions, the other components have to be
also present in the appropriate versions. The keyboard may be absent (specified by

nil).

o A new version of the check reader may be created (specified by new).

So, to highlight the properties of the subset of constraints (1, 5, 6, 7), the subset will be
rewritten as follows:

Version NCR of the scanner, versions AU33_ND Board 3 and AU32_S Board 3 of the program
TCF, versions DASSAULT, ICL and new of the check reader, versions DASSAULT 1200 bauds
and ICL 1200 bauds of the card-reader, version FPI and nil of the keyboard

Intuitively, we can see that the rewritten constraint subset is derived from the original
sub-set by grouping all compatible component versions and all equivalent versions.

The rewritten constraint set is called a reduced constraint set which is formally defined as
follows.

Reduced set of constraints. Given a set of constraints & and a constraint ¢ in R, O,
denotes the set of objects in ¢ and wversion. (o) with o in O, the version set of object o
involved in c.

R is a reduced set of constraints if, ¥V (¢, ¢;) € R,

o O and O, are disjoint, or

o O = O; and there exists at least two objects o and o’ in Oy; such that version,
(0) N versiong; (o) = @ and version., (0’) N version, (o) = 0@

Appendix A provides the updating algorithm of a reduced set of constraints when a new
constraint is added.

Constraint family. Given a reduced set of constraints R, a constraint family F is the
subset of R where all constraints refer exactly the same set of objects. Formally F is such

that:
Vein Fandc;in R- F, O and (’)cj are disjoint.

The set of objects occurring in a constraint family F is called an object family noted Ox.

Constraint violation. Let R be a reduced set of constraints, and ¢ a constraint in R.
Let a configuration £ = < @, V, version >, then ¥ violates c if:

o either some objects are missing in % with respect to c, or

o two of the objects of X are in incompatible versions with respect to c.



Formally, given a set of constraints R and a constraint c in R, a configuration ¥ = < O,
V, version > violates c if one of the two conditions below is verified:

1. O.N O # O,
2. 0. NO =0, and

3 (o4, 05) in ¢ with i # j, such that version (0;) C version. (o;) and version (o;) &
version. (0;)
The absence of an object in ¥ is assumed to be indicated by the presence of the version
nil of this object in the configuration.

We will say that .is a consistent configuration with respect to R if ¥ does not violate
any constraint in K.

3.3 System

Given a reduced set of constraints R, a system is a configuration totally defined and
consistent with respect to K.

3.4 Example

Let be a configuration ¥ with:

O = {program TCF, scanner, card reader, check reader}

V = { AU33.SD Board 3, PEACH, DASSAULT, GEMPSY 9600 bauds }
version (program TCF) = {AU33.SD Board 3}

version (scanner) = {PEACH}

version (check reader) = {DASSAULT}

version (card reader) = {GEMPSY 9600 bauds}

Given the following set of constraints R ={c, ¢3, ¢4} with:

¢ = { (program TCF, [AU33.SD Board 3, AU32_N Board 3]), (scanner, [PEACH]),
(check reader, [DASSAULT, new]), (card reader, [GEMPSY 9600 bauds]),
(keyboard, [FPI]) }

c3 = {(program TCF, [AU33_ND Board 3]), (scanner, [NCR]), (check reader,
[ICL, DASSAULT, new]), (card reader, [ICL 1200 bauds, DASSAULT 1200
bauds]), (keyboard, [FPI, nil]) }

c4 = { (program PA, [7.04, 7.05]), (function 3GLIF, [3.19])}

R is reduced because:

o (O, and @4 are disjoint, and
o O, and O are disjoint, and

o 0, = (O and there exists two objects (program TCF and scanner) in O, such that

version, (program TCF) N versiong (program TCF) = §, and version, (scanner) N
versiones (scanner) =



The configuration X violates the constraint ¢ because the object keyboard does not exist
in this configuration. Thus, ¥ is inconsistent with respect to R.

Two constraint families F1 and F2 are defined over R:

F1 = {c, c3} with

Op1 = {program TCF, scanner, check reader, card reader, key-
board}

F2 = {cd4} with
Opg = {program PA, function 3GLIF}

Consider the reduced set of constraints R. Let the configuration ¥’ contain the same
objects and object versions than X plus the object keyboard in its version FPIL. Y is a

system.

4 The coordination Model

Complexity and instability of the component and constraint bases, and also the turnover
of the teams make a team unable to know all the constraints, especially those involving
elements managed by other teams but also those involving the elements managed by the

team itself.

The composition of the teams and the modes of coordination between them depend on
the teams themselves and on the general characteristics of the system to be built. Teams
work differently if the system has to be quickly and reliably built or if it constitutes a new
prospective platform.

So, a coordination model must obey the following requirements:

o to allow the driving of the relationships between teams according to the constraints,
o to help the teams to respect the constraints among the components they build,
o to be easily modified when changes occur in the component and constraint bases,

e to be easily specified according to the teams, their work and their composition, to
the properties of the system and to the available time for building it.

This section presents a formal coordination model which answers to these needs. First, the
principles of the driving of the relationships among teams are described. Then, the con-
cepts of working modes and coordination protocol are defined and illustrated by examples
extracted from CORSSE.

4.1 Principles of the driving of the relationships between teams

In what follows, a team is an agent (possibly human) in charge of an object or of a group
of objects specified together. Of course, a team may be actually a group of agents, which
will functionally be considered as only one.



Teams do not directly communicate with each other and a team does not necessarily know
the other teams. A coordinator is in charge of the teams coordination and drives the task
sequencing among the teams (Figure 2). It has information about the order in which the
teams have to work (the coordination protocol described later).

A coordinator and the teams communicate by messages. All the messages exchanged
between the coordinator and the teams from the beginning of the work are recorded in a

message history log.

Messages consist of a message identifier and a message value. A message sent by the
coordinator to a team contains information about the work to do. When the team has
finished the work, it sends a message to the coordinator containing the result of its work.
At this point, the coordinator searches for the next teams to activate; to do this, it uses the
coordination protocol and information about its execution and the message history. Then,
for each of the selected teams, it calls an application-dependent function which computes
the message to send to it. This function uses the message history and data specific to the
application (for example, the constraints in CORSSE). Examples of functions are provided

in the next subsection.

messages
history
application-
dependent
S function e -
coordination constraint

family

protocol

coordinator

sent received
message| |message

team team team

Figure 2: communication between a coordinator and teams

4.2 Working mode

The work required of the teams may be different according to the teams themselves,
the general objectives and the state of the progress of the global work. Consequently,
several types of messages may be sent to the teams in which case several functions will be

implemented, one function for each type of message to compute.

A working mode defines the messages received and sent by the teams in a specific collabora-
tion situation. It is associated with one application-dependent function. The coordination
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protocol described later in this section provides the workflow among teams.

Formally, a working mode is defined by a triplet <identifier, context, function name >
where:

o identifier is the name of the working mode,

o context is a data structure used by the application-dependent function. This struc-
ture contains the description of the messages sent to the teams and received from
them. It may also contains the declaration of specific variables,

o function name indicates an application-dependent function which computes messages
for the teams. This function takes the identifier of a team and returns a message to
send to it.

A working mode is defined a priori, independently of the teams to which it will be
applied and of the systems to be built. Two examples of working modes are presented
below.

Example 4.1 The working mode "discussion”. In this mode, a team receives propositions
about possible versions of the objects it is in charge of. It computes and sends its choices.
A weight is affected to each of the choices to represent the team’s preferences. We suppose
that the teams accept the propositions they receive. The working mode "discussion” is used
when teams have to discuss together before specifying objects.

The definition of the working mode "discussion” is:

identifier: discussion

context:
sent.message: {< proposition message, configuration >}
recetved.message: <team identifier; set of weighted choices > with
weighted choice:= < a configuration, a weight >

compute_discussion_message (set of objects): sent_message

Sent_message provides the history of the teams’ propositions from the beginning of the
discussion and for each of the propositions, the related computed configuration of the team.

Received_message contains pondered solutions computed from the propositions received.

Compute_discussion_message function selects, in the message history, the propositions sent
by the different teams from the beginning of the discussion. It then uses the constraints
to compute, for each proposition, the possible versions of each object identified by input
parameters. The computed message contains each proposition and the associated computed
configuration and the structure of the expected response (received_message structure). This
structure will be used by the team to present the reply.

Example 4.2 The working mode "decision”. In the preceding ezample, a team receives sev-
eral possible configurations and makes pondered choices from the propositions. In the work-
ing mode "decision”, a team receives only one proposition (a configuration) and chooses
one version of each object from it.

11



The definition of the working mode "decision” is:
identifier: decision

context:
sent_message: <configuration available >
received_message: < a system > where
each object version belongs to the configuration available to the team.

compute_decision_message (set of objects): sent_message

Sent_message provides to the team the configuration inside which one version for each
object will have to be chosen. '

Received_message specifies the version chosen for each object.

The function compute_decision_message uses the constraints to compute the possible ver-
sions of each object identified by input parameters. The computed message contains the
available configuration and the structure of the expected response.

4.3 Coordination protocol

‘A coordination protocol defines the working modes to apply to each team and the relation-
ships between the teams. A formal definition of a protocol is presented below. Appendix
B provides the protocol execution algorithms.

Formal definition of a protocol. A protocol for a set of teams & is defined by a
sextuplet | 7, V, FVH}, 7], £], D ; where:

o T is a set of pairs < C, e > where C' is a working mode and e is a team of £. Each
of these pairs will be called a task in the following,

e Vis validity rule which provides the possible and/or mandatory sequencing of work-
ing modes for each team,

o FV-} is a set of fragments recursively built from fragments or tasks assembled by
applying one assembly schema: the serial assembly or the parallel assembly,

o 7] is aset of control expressions which, for each fragment, specify iteration conditions
of the fragment,

o £] is aset of control expressions which, for each fragment, specify exit conditions of
-the fragment,

o D is a data structure used in the control expression of the fragments. This structure
may also contain the declaration of specific variables.

The simplest fragments are composed of tasks assembled in a serial or in a parallel manner.
More complex fragments are obtained by recursively applying the serial assembly and/or
the parallel assembly to fragments. In a serial assembly, the set of components is ordered

12



and each of them is executed according to its order. In a parallel assembly, the components
are executed in parallel.

The execution of a fragment is implicitly iterative and iterations are controlled by the
definition of iteration conditions. The definition of exit conditions provides conditions of
the fragment execution termination upon exceptions.

Example 4.3 [

[ z
[(discussion el), (discussion e2) (iterations <3) (enddis1)] |
[(discussion e3), (discussion e4) (iterations <3) (enddis2)]

(iterations < 1} ()],
[(decision el), (decision e2), (decision e3), (decision e4)(iteration < 1) () ]

(iterations < 1) (stop)]

This example shows a protocol composed of two fragments assembled in a serial manner.

1. The first fragment is composed of two parallel discussion fragments: teams el and
e discuss in a serial manner during three iterations. In parallel, teams e8 and e/
also discuss in a serial manner during three iterations. The discussion between el
and e2 is exceptionally terminated if the message "enddis1” arrives. Similarly, the
discussion between e3 and ef is exceptionally terminated if the message "enddis?”
comes.

2. At the end of all, a decision fragment starts in which each team serially decides.
This fragment is not iterative and nothing can interrupt its ezecution.

The protocol execution is exceptionally terminated if the message "stop” comes.

Valid, complete protocol. Given a set of teams £ and a protocol P, P is valid if,
for each team occurring in the protocol, the validity rule is satisfied. It is complete with
respect to £ if each team of £ appears in at least one task of the protocol.

Example 4.4 Consider the validity rule of the form
discussion™ decision

where symbol + represents the standard Keene operator. Intuitively, this rule specifies that
any team participates in one and only one decision task that is possibly preceded by one or
more discussions including the team (the discussion is optional). Let us remark that this
validity rule implies that any basic fragment including one decision task will be executed
only once.

Given the protocol of example 4.3. The succession of tasks for each team is:

el: discussion discussion discussion decision
e2: discussion discussion discussion decision
ed: discussion discussion discussion decision
eqf: discussion discussion discussion decision

13



As the validity rule is satisfied for each team occurring in the protocol, the protocol is valid.

Consider the set of teams £ = {el, €2, e3, ef, e5}. The protocol is not complete with
respect Lo £ because il contains no task including eb.

5 The Compute_Protocol Algorithms

In the previous section, a very general coordination framework is proposed. In what
follows, this framework is used for specifying coordination protocols in the context of

CORSSE application.

Our goal is to statically construct a valid and complete protocol for a constraint family.
The protocol construction uses two working modes and one validity rule. The working
modes are discussion and decision as set in examples 4.1 and 4.2. Thus, the tasks are
of the form <discussion set of objects> or <decision set of objects>>. The set of objects
involved in a task is handled by one team. At execution time, the input messages will
contain the set of objects to be handled (plus additional information on these objects),
and the output messages will contain the results of the work of the teams.

The validity rule is of the form discussion* decision as in example 4.4. The completude
of a protocol is verified in relation to the set of objects of the constraint family as in the

example below.

Example 5.1 Take the family constraint of ezample 3.4: F1 = {c, 3} with:

¢ = { (program T'CF, [AU83.SD Board 3, AU32_N Board §]), (scanner, [PEACH]),
(cheque reader, [DASSAULT, new|), (card reader, [GEMPSY 9600 bauds]),
(keyboard, [FPI]) }

¢ = { (program TCF, [AU38_ND Board 8]), (scanner, [NCR]), (cheque reader,
[ICL, DASSAULT, new}), (card reader, {ICL 1200 bauds, DASSAULT 1200

bauds]), (keyboard, [PS2]) }

and

Op1 = {program TCF, scanner, cheque reader, card reader, keyboard}

Let P be the protocol:

[ [ (discussion { scanner, cheque reader}), (discussion {card reader} ) (iterations
<) 0

[ (decision {scanner, cheque reader}), (decision {card reader}), (decision {keyboard} ).
(decision {program TCF}) (iterations < 1 ) ()](iterations < 1 ) ()]

This protocol contains siz tasks gathered into two serial fragments. The tasks are:
<discussion {scanner, cheque reader}>,
<discussion {card reader}>,
<decision {scanner, cheque reader}>,
< decision {card reader}>,
<decision {keyboard}>, and
<decision {program TCF}>.
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As each object of F1 occurs in at least one task of P, the protocol is complete.

We propose two algorithms (basic and optimized compute_protocol algorithms) that stat-
ically compute a coordination protocol for a constraint family F. The algorithms take a
protocol P that is not necessarily complete (it may be empty), a set of additional tasks T
and two default fragment control expressions (/e for iteration conditions and Ee for exit
conditions). Our goal is to produce a complete and valid protocol for F' by completing
P with the tasks in T". Let us remark that, depending on P and T, the construction is
not always possible. The feasibility condition is that every object of F' participates in a
decision task occurring in P or in T. In what follows we assume that this condition is

satisfied.

Generally, there are several ways to complete P with respect to T'. So, the algorithms use
heuristics on task scheduling. Both algorithms implement different heuristics but apply
the following common rules: 1) the discussion tasks of 7' are serially assembled into one
discussion fragment which precedes any decision task, 2) any decision task which only
includes non discussed objects cannot precede one task including at least one discussed
object (decisions are brought closer to discussions).

Bach algorithm is briefly explained below and illustrated by an example. Details can be
found in Appendix C. Inputs to the algorithms are: a valid protocol P for a constraint
family, an ordered set of discussion tasks Disc, a set of decision tasks Dec, a default iter-
ation expression /e, a default exit expression Fe. Optimized compute_protocol algorithm
uses, additionally, the constraint family F. The output of both algorithms is a valid and

complete protocol P’

Basic compute_protocol algorithm
In this algorithm, all the tasks and fragments are serial. First, a discussion fragment

composed of the ordered set of discussion tasks Disc is appended to the input protocol
P. Then, a decision fragment is added for each task of Dec involving an object occurring
in Disc. The protocol is achieved by a decision fragment for each task in Dec involving
objects which do not occur in any task of Disc. Each fragment of P is controlled by the
default iterative and exit expressions.

Example 5.2 Take the family constraint of example 3.4. Consider:

o P an empty initial protocol

(=]

the set of tasks Disc = { discussion {scanner}, discussion {card reader} }

the set of tasks Dec = { decision {scanner, cheque reader}, decision {card reader},
decision {keyboard}, decision {program TCF} }

o

o the default iteration expression Ie = (iterations < 1)

the defaull exit expression Fe = ()

®

The use of basic compute_protocol algorithm gives the following final valid and complete
protocol:

[
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[ (discussion {scanner}), (discussion {card reader}) (iterations < 1) ()],
[ (decision {scanner, cheque reader}) (iterations < 1) ()],

[ (decision {card reader}) (iterations < 1) () ],

[ (decision {keyboard}) (iterations < 1) ()],

[ (decision {program TCF}) (iterations < 1) ()]

(iterations < 1) ()]

Optimized compute_protocol algorithm

With this algorithm, parallel assembly is used as much as possible. As in the basic
compute_protocol algorithm, a serial discussion fragment composed of the ordered set of
discussion tasks Disc is first appended to the input protocol P. Then, decision fragments
are added following two considerations: 1) tasks involving objects occurring in a discussion
task are put before tasks involving objects which do not occur in any discussion task,
2) decision tasks are added to the protocol according to their descending probability of
reducing the number of constraints between remaining objects.

The selection of the most discriminating object of a set of objects may be derived using
expected values as in the example below.

Example 5.8 Let I be a constraint family containing 6 constraints and the objects a and
b. The object a occurs in 8 versions (a1, ay and az) in F and object b in 2 versions (b1
and by). The table below provides:

e in the first column, each object version,

o in the second column, the number of constraints of I' in which the object version
occurs, and

o in the third column, the choice probability of the version of object.

ay 3 0.7
ay 1 0.2
as 2 0.1
by 3 0.5
b, 3 0.5

The mean number of constraints that we can hope to eliminate after the choice of one
version 1s:

for the object a:  3%0.7 4+ 1%0.2 4+ 2%0.1 = 2./ constraints

for the object b:  3%0.5 + 3%0.5 = 3 constraints

Thus, the most discriminating object, in this ezample, is b.

Example 5.4 Let us use the optimized compute_protocol algorithm with the input of ex-
ample 5.2. To select the most discriminating object of an object set, a function as the one .
described in example 5.3 is introduced. The set of objects occurring in Dec is scanner,
cheque reader, card reader, keyboard, program TCF. If the most discriminating object in
this set is scanner, the specification of the version of the scanner reduces the set of con-
straints to only one constraint. So, once the object scanner is specified, the specification
of all the remaining objects may be run in parallel.

The final valid and complete protocol will be:

[
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[ (discussion {scanner}), (discussion {card reader}) (iterations < 1 ) ()],

[ (decision {scanner, cheque reader}) (iterations < 1) ()],

[ (decision {card reader}) | (decision {keyboard}) | (decision {program TCF})
(iterations < 1) ()]

(iterations < 1) ()]

6 Related Work

This section focuses on the modeling of coordinated work and its needs.

Several papers in cooperative work concern the modeling of workflows. Besides the work
already cited in the introduction [Clarke, 1996], [Jablonski, Bubler, 1996], [Kim, Paik,
1997], the needs of workflows are analyzed in [Schmidt, Simone, 1996]. The authors
define a coordination mechanism as ”a construct consisting of a coordinative protocol (an
integrated set of procedures and conventions stipulating the articulation of interdependent
distributed activities) on one hand and on the other hand an artifact in which the protocol
is objectified”. ™A coordinative protocol is a resource for situated action in that it reduces
the complexity of articulating cooperative work by. providing a precomputation of task
interdependencies which actors, for all practical purposes, can rely on to reduce the space
of possibilities by identifying a valid and yet limited set of options for coordinative action
in any given situation”. The malleability quality of a workflow model, i.e., the capacity of
the model to support dynamic changes, flexible process definitions and graceful handling
exceptions, is underlined in [Schmidt, Simone, 1996] and [Kim, Paik, 1997].

As mentioned in the introduction, some researchers adopt advanced transaction models
to specify workflows, The disadvantages of this approach were developed in [Alonso and
al., 1995] and [Rusinkiewicz, Sheth, 1995]. In advanced transaction models, users and
programs are not considered. Thus, mapping between activities and actors, and users
actions cannot be modeled by this type of approach.

Several specific models for workflows have been proposed. All provide a language for
task specifications. Thus, users can precise programs used to execute tasks, concerned
human actors and related roles, grouping of tasks in activities, start and exit conditions
of activities, data structure used, activity execution dependencies and workflow execution
failure cases. Some of workflow models are only conceptual. They often use a graphical
representation. Others allow to define workflows and to implement them as well (agent or

rule based models).

Conceptual worflow models provides a graphical representation of the flow of activities.
This representation is completed by a definition, in a formal language, of the different
elements of the workflow: WFDL in [Casati and al., 1995] in which actors and roles
concepts do not exist, METEOR in [Sheth and al., 1996], ATREUS in [Grifoni and al.,
1997] which provides a lot of possibilities to define activity dependencies, ICN in [Kim,

Paik, 1997].
An example of a rule-based model is provided by [Gokkoda and al, 1997). Workflows

are implemented by using the Acta transaction model and the rule specification language
provides Acta-like facilities to declare task dependencies and compensated activities.
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[Leymann, Roller, 1998] and [Divitini, Simone, Schmidt, 1996] propose agent-based mod-
els. Both paper concentrate on agent communications. But, the first paper focuses on
the implementation of agent communications while the second one is concerned with the
specification of communications. In more details, [Leymann, Roller, 1998] describes a con-
ceptual workflow architecture based on persistent queues. Fach agent has an input and
an output queues. Communications between agents are realized by messages put in the
agent input queues. Messages are deleted from the input queues by its consumer. The
results of agent actions are messages inserted by the agents in their output queue.

[Divitini and al., 1996], present a language, IL, which allows to define the interoperabil-
ity between agents in a multi-agent-based CSCW systems. IL integrates the malleability
and linkability qualities of computational coordination mechanisms. In particular, special
working modes, like conversation (what we called discussion in our work), awareness and
iteration are treated as independent and linked coordination mechanisms. IL provides
low-level means to define communications between the different agents of a coordination
mechanism (awareness with or without acknowledgement of receipt, sending of informa-
tion, task activation, warning) and between different coordination mechanisms. IL allows
to define conditions associated with the communications. The real executed protocol will
depend on the satisfaction of the conditions (malleability quality).

7 Conclusion

Some applications like the one described in this paper present specific characteristics: work
distributed between several teams, a lot of changing data constraints to respect, short time
delays. The use of the traditional transactional approach to preserve the data consistency
may lead to undo and redo some parts of the work and thus, may induce a waste of time
and a waste of money. In some cases, this situation is not acceptable. We propose an
alternative approach which consists of organizing the work from the constraints, so that
there is no need of a constraint checking phase. Instead of verifying data consistency to
ensure the consistency of work being performed on the data, work consistency is controlled
to be sure of data consistency.

A conceptual model of cooperative work and a language to define work protocol are pre-
sented. Our cooperative model is founded on the following principles: 1) a coordinator
ensures the work protocol execution, 2) teams do not directly communicate among each
other, 3) the coordinator ensures the communication among teams by messages, 4) ex-
change of messages across teams and the coordinator are asynchronous, 5) the coordinator
is sensible to external events. The user defines working modes between participants of a
group like collective discussion or serial decisions. The protocol definition language allows
to define serial and parallel tasks and group of tasks based on pre-defined working modes,
and iterative and exception conditions.

Our support considers the nine components of a cooperation model defined in [Clarke,
1996): 1) several partners, 2) communication among partners -about choices made on
the objects, 3) communication about communication and management of communication
- maintenance of the history of messages among partners and communication of it to
partners, 4) definition of a goal - building of a system -with specific characteristics, 5)
goal-oriented working -in a continuous sequencing way, 6) definition of actions necessary
to reach the goal - choices into a list of possible alternatives, 7) coordination of actions
of different partners, 8) shared standards and guides -constraints between object versions
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and object version manufacturing ordering, 9) a reward system -when a partner makes a
choice, it is definitive and the system built is valid at the first attempt.

Our proposition was applied to the creation of a new component-oriented system. After
modeling the constraints on the reusable components, a work protocol from ”discussion”
and "decision” working modes, a list of tasks and heuristics about task scheduling was
automatically generated. This protocol can always be afterwards changed by the user.

A working protocol may also be generated for the maintenance of an existing system.
Changes in the component base generally lead to update the constraint base. So, from
the set of added and modified constraints, a working protocol may be generated to drive
the specification of components to be changed.

There are many open issues which should be attacked:

1. In the application chosen, the compatibility constraint set is such that the specifica-
tion of the different objects may be ordered so that, at any time, the valid versions of
an object can be computed from the versions of the preceding objects. We are think-
ing to other applications using other kinds of constraints, particularly constraints on

execution of tasks.

2. Our protocol is statically generated. The protocol definition language provides ex-
ception handling, for example human interventions, which may change the normal
progress of the work. But it would be interesting to add facilities that allow dynamic
changes of the protocol during its execution, for example: its restart from a recovery
point, the serial execution of tasks initially planned in parallel, the modification of
fragments according to the results of the execution of preceding ones.

3. We are going to implement a prototype. Some points are not yet decided. They
concern:

o the management of the reusable component base. During the building of a sys-
tem, one coordinator by constraint family is created. Each coordinator controls
the execution of the protocol which leads to the specification of the objects in-
volved in the family. The project component base which has to be accessed by
the coordinators may be centralized or temporary distributed between them.

o the management of workspaces, When the building of a system is finished, the
integrator has to access to the whole system. So, even if several coordinators
controlled the cooperative work, all the sub-systems have to be put together.
In case of the restart of a part of the protocol, the concerned sub-systems have
to be communicated to the coordinators and the whole system updated.

o the different nature of processes. The control system has a central and several
decentralized processes.  The decentralized processes are the coordinators. The
central process initializes their work, accesses to the reusable component base,
and manages the integration of the sub-systems.

o the protocols. We are thinking to automatically generate E-C-A rules from
a protocol definition and to use an application development toolkit like in
[Bouzeghoub and al., 1998], to control its execution and to implement the co-
ordinators.
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Appendix A. Updating algorithm of a reduced set of con-
straints when a new constraint is added

input: a reduced set of constraints R and
a new constraint c;

output: a new reduced set of constraints R’
Initialization: R+ R
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1.1
k=|R[+1

/* The function are_reductible takes two constraints a and b in parameters and returns
true if one of the reducibility conditions is verified:
1. Oy = Oy and there exists exactly one object o in O, such that version, (o) #
versiony (o)
2. Oy # Oy and there exists at least one object 0 in O, N O such that
version, (o) = versiony (o) */

/¥ ¢’ is a constraint in R' */

while not are_reductible(c, ¢’;) and i < k
i—i+1;

end while

if i = k then /* the new constraint ¢ is reducible with any constraint in R'. It is added as
it isto R #/
R« R 4+ ¢

else
/* Constraints ¢ and ¢’; are reducible. A new constraint ¢’ is computed and added to

R'. The set of objects involved in ¢’ is composed of all the objects tnvolved in both

constraints ¢ and ¢’;. */
OC,IL = O U O
X T

/¥ For each object of ¢’, compute its set of versions */
for each o in OCL
ifoe O, N (90; then
/* o is present in both constraint ¢ and c’;. So, the set of versions of o in
constraint ¢’y is composed of the set of versions of o involved in both

constraints. */
versiony (o) = version, (o) U versiong (0);

elseif o € O, - O, then
/* o0 is only present in ¢. So, the set of versions of o in constraint ¢ ’ is
the same as in c. */
versiony (o) = version, (0);

otherwise
/¥ 0 is only present in c’;. So, the set of versions of o in constraint ¢’ is

the same as in ¢’%. */
version, (o) = versiony (o);
v 1

/¥ Deleting of the constraint ¢’; from R’ */
R« R -
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Appendix B. Protocol execution algorithms

Coordinators execute protocols by using the three algorithms below that detail the exe-
cution of a task and of a serial and a parallel fragment.

Task execution algorithm

/* When a task has to be executed, an init event is generated by one of both fragments
execution algorithms (see the following algorithms). The task is the event parameter.
The form of the task is (C, e)-where C is the identifier of a working mode and e is a

a team */

on init_task event
input: a task of the form (C, e)

/% a sent_message is calculated and sent to e */
send the message returned by C.compute_message(e) to e;

/* When e finishes its work, it sends a receive message */

on receive message from e
exit from task;

Serial fragment execution algorithm

/¥ When a serial fragment has to be executed, the coordinator generates an init_serial_
fragment event. The fragment is the parameter of the event, */

on init_serial fragment event
input:  a serial fragment Frag composed of an ordered set of tasks or an ordered
set, of fragments,
an iteration control expression Je and
an exit control expression Fe;

/* if the iteration control expression is true, the execution of the fragment starts £
if Te then
/* first(Frag) returns the first component of Frag. This component may be a
fragment or a task */

if first(Frag) is a fragment then
send init_fragment event to first(Frag); /* this event will be processed by
the coordinator which will test if first(Frag) is a serial or a parallel fragment
and will generate an appropriate init_fragment event (init_serial_fragment
or init_parallel_fragment event /*

else /* first(Frag) is a task */
send init_task event to first(Frag);
else /* the end of fragment is detected */
exit from Frag;
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/* When o task finishes, it generates an ezit event */
on exit from a task

/* Frag is the fragment containing the task which has generated the exit event */
/¥ next(Frag) returns the next component of Frag */
if next(F'rag) = (0 then

exit from Frag; /* execution of Frag is finished */

else

send init_task event to next(Frag); /* start the execution of the following
task */

Parallel fragment execution algorithm

/* When a parallel fragment has to be executed, the coordinator generates an init_parallel_
Jragment event. The fragment is the parameter of the event. */

on init_parallel_fragment event

input:  a parallel fragment Frag composed of a set of tasks or a set of fragments,
an iteration control expression e and
an exit control expression Fe;

/* if the iteration control expression is true, the ezecution of the fragment starts */

if Ie then
if first(Frag) is a fragment then
send init_fragment event to each of the fragments composing Frag;
/* each of these events will be processed by the coordinator which will test if
the concerned fragment is a serial or a parallel fragment and will generate an

appropriate init_fragment event (init_serial_fragment or init_parallel_fragment
event /*

else /* first(Frag) is a task */
send init_task event to each of the tasks composing Frag;
else

exit from Frag; /* ezecution of Frag is finished */

on exit from task

/* the message history is used to search for the exit event from each task composing
Frag */
if an exit has been received from each task of Frag then

exit from Frag;

/* if some tasks have not yet sent the exit event, the end of fragment execution is
deferred */
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Appendix C. Basic and optimized compute_protocol algo-
rithms

Both algorithms take a valid protocol P for a family constraint, an ordered set of dis-
cussion tasks Disc, a set of decision tasks Dec, a default iteration expression 7e and a
default exit expression Fe. They compute a valid and complete protocol for F. The op-
timized compute_protocol algorithm uses additionnally the constraint family to calculate
the discriminating power of each object.

Basic compute_protocol algorithm

input:  a valid protocol P,
an ordered set of discussion tasks Disc,
a set of decision tasks Dec,
a default iteration expression Ie and
a default exit expression Fe;

output: a valid and complete protocol P;
Initialization: P+ P;

/¥ Compute the discussion fragment. A serial fragment composed of the ordered
discussion tasks of Disc is added to P'. */

if Disc # () then
let Frag denotes the fragment of the form [(Disc) (Ie) (Ee)]
P’ « P' + Frag;

/% Compute the decision fragments. Each decision Jfragment contains one task of Dec.
The decision fragments are ordered in P' in the following manner: first, each decision
task of Dec involving at least one object involved in Disc is added to P' ordered with

respect to the objects in Disc, then the remaining tasks of Dec are considered in the st

order as they appear in Dec. */

let O’ denotes the set of objects occurring in Disc ordered with respect to their order i
Disc;

while Dec # ()

let O denotes the objects occurring in Dec
let o be the object of O chosen as follows:
if O’ is not empty, then
o is the first element of O,
else,

o is the first element of O;

/* Selection of the decision task of Dec involving o */

let d denotes the decision task of Dec containing o
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/* Compule a decision fragment with the selected task and add it to P' */
let F'rag denotes the fragment of the form [ (d) (7€) (Fe)]
P+ P+ Frag

/¥ Deletion of the selected decision task from Dec */
Dec + Dec — d

/¥ Deletion of all the objects involved in the selected decision task from O' */
remove every object occurring in d from O’;
end while

return P’;

Optimized compute_protocol algorithm

input:  a constraint familly F
a valid protocol P for F'
an ordered set of discussion tasks Disc
a set of decision tasks Dec
a default iteration expression fe
a default exit expression Fe;

output: a valid and complete protocol P’;

Initialization: Pl P
F' « F;

/* Compute the discussion fragment. A serial fragment composed of the ordered
discussion tasks of Disc is added to P'. */

if Disc # () then
let Frag denotes the fragment of the form [ (Disc) (Ie) (Fe)]
P' + P’ + Frag;

/% Compute the decision fragments. Each decision fragment contains one task of
Dec. The decision fragments are ordered in P' in the following manner: first, each
decision task of Dec involving at least one object involved in Disc is added to P’ with
respect to the discriminating power of the objects in Disc, then the remaining tasks of
Dec are added ordered with respect to the discriminating power of their objects. */

O" « set of objects occuring in Disc;

while Dec # ()

let O denotes the objects occurring in Dec ,
/+remove from constraints in #” all the objects but objects of O , then reduce F' %/

F'  simplify(F', O)
F' + reduce_set(F’)
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/% If it remains only one constraint in F', a parallel fragment composed of all the
decision tasks remaining in Dec is added to P’ */

if | /| = 1 then
for each d; in Dec do
fragi = [ (di) (Ie) (Ee)];
P' « P' + fragi | ... | frag, (with n = | Dec|)
Dec « 0;

else

/* F' conlains several constraints. Decision fragments are computed in the following
manner: first, the objects involved in Dise are selected according to their descending
discriminating power and each decision task of Dec involving at least one of these
objects are added to P' according to this order. At each iteration, F' is updated in
deleting the objects used from F' and reducing F'. When all the decision tasks of
Dec involving objects involved in Disc are used, the same process is exveculed on the
remaining tasks of Dec: the objects involved in the remaining tasks of Dec are
selected according to their descending discriminating power and the corresponding
tasks in Dec are added to P'. The process ends when only one constraint remains
inF'. */

let o be the object of O chosen as follows:
select the most discriminating objects in O’
select the most discriminating objects in O
if several objects are selected then
randomly pick one of them
let d denotes the decision task of Dec containing o
let F'rag denotes the fragment of the form [ (d) (Te) (Fe)]
P« P' + Frag

/¥ Updating of Dec and O' before iterating */

Dee + Dec — d
if o € O then
=0 -6
end while
return P’;
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