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PQI Ordres d’intervalle

Résumé

Nous présentons la réponse & un probléme ouvert dans la modélisation des
préférences & I’aide d’intervalles. Soit un ensemble fini A et trois relations binaires
P,Q, 1, appelées “préférence stricte”, “préférence faible” et “indifférence”, respec-
tivement. Nous présentons les conditions nécessaires et suffisantes pour pouvoir
associer & chaque élément de A un intervalle de fagon & ce que si un intervalle
est “complétement & droite” de l'autre on obtient la relation P, si un intervalle
est inclus dans l'autre on obtient la relation I et si un intervalle Yest & droite”
de Pautre, mais leur intersection n’est pas vide on obtient la relation Q (Q modé-
lisant I’hésitation entre P et I). Deux structures de préférences spécifiques sont
caractérisées: le PQI ordre d’intervalle et le PQI quasi-ordre. Détecter I'existence
d'un PQI quasi-ordre est immédiat. Par contre, la détection d’un PQJ ordre
d’intervalle est pius difficile parce que le théoréme d’existence est une formule du
deuxiéme ordre. Pour cette raison nous présentons un algorithme pour la détection
de PQI ordres d'intervalle et nous démontrons qu’il est “backtracking free”. Avec
ce résultat nous pouvons présenter une implémentation matricielle de I’algorithme
et montrer qu’il est polynomial.

Mots cles: Intervelles, Ordre d'intervelle, Indifférence, Préférence Faible,
Préférence Stricte.

PQI Interval Orders

Abstract

We provide an answer to an open problem concerning the representation of
preferences by intervals. Given a finite set A with three relations P, @, I standing
for “strict preference”, “weak preference” and “indifference” respectively, necessary
and sufficient conditions are provided for representing each element of A by an
interval in such a way that P holds when one interval is completely to the right
of the other, I holds when one interval is included to the other and Q holds when
one interval is to the right of the other, but they do have a non empty intersection
(Q modeling the hesitation). Two specific preference structures: PQJI semi orders
and PQI interval orders, will be considered. While the detection of a PQI semi
order is straightforward, the case of the PQT interval order is more difficult as the
theorem of existence consists in a second-order formula. To this purpose, the paper
also presents an algorithm for detecting a PQJI interval order and demonstrates
that it is backtracking free. This result leads to a matrix version of the algorithm
which can be proved to be polynomial.

Keywords: Intervals, Interval Orders, Indifference, Weak Preference, Strict
Preference.



1 Introduction

Comparing intervals, instead of discrete values, is a frequently encountered
problem in preference modelling and decision aid. This is due to the fact
that the comparison of alternatives (outcomes, objects, candidates, ....) gen-
erally is realized through their evaluations on numerical scales, while such
evaluations are often imprecise or uncertain. A well known preference struc-
ture, in this context, is the semi order (see Luce 1956) (for a comprehensive
presentation see Pirlot & Vincke 1997) and more generally the interval order
(see also Fishburn 1985). An interval order is obtained when one considers
that an alternative is preferred to another iff its interval is “completely to
the right” of the other (hereafter we assume that the larger an evaluation
of an alternative is on a numerical scale the better the alternative is}, while
any two alternatives, the intervals of which have a non empty intersection,
are considered indifferent. Such a model has a strict probabilistic interpre-
tation, since the interval associated to each alternative can be viewed as the
extremes of the probability distributions of the evaluations of the alterna-
tives. Under such an interpretation a “sure preference” occurs only if the
distributions have an empty intersection. A second implicit assumption in
this frame is that if there is no preference of an alternative over the other
then they are indifferent.

It is easy however to notice that if, in the previous frame, we want to
establish a “sure indifference”, it is much more natural to consider that two
alternatives are indifferent if their associated intervals (or distributions) are
embedded. In such a case we obtain a preference relation which is known to
be a partial order of dimension 2, that is a partial order obtained from the
intersection of exactly two linear orders; (see Roubens & Vincke 1985).

Practically we observe that we have three situations:

- a “sure indifference”: when the intervals associated to two alternatives are
embedded;

- a “sure preference”: when the interval associated to one alternative is
“more to the right” with respect to the interval associated to the other
alternative and the two intervals have an empty intersection;

- an “hesitation between indifference and preference” which we denote as
weak preference: when the interval associated to one alternative is “more
to the right” with respect to the interval associated to the other alternative
and the two intervals have a non empty intersection.

The preference structure having three relations P, Q, I defined as such
is called hereafter PQI interval order. It fits better in the case we have
qualitative uncertainties or imprecision and is consistent with the use of



specific relations in order to represent situations of hesitation in preference
modeling (see Tsoukias & Vincke 1997). The problem is to give the neces-
sary and sufficient conditions for which a preference structure characterized
by the presence of the relations P, @ and I may admit a representation
by intervals as the one previously discussed, and then to detect if a given
PQI preference structure satisfies these conditions. Such a problem was
considered open for a long time-(see Vincke 1988).

In this paper we present an answer for this problem. Section 2 pro-
vides the basic notations and definitions. In section 3 we recall some re-
sults concerning conventional interval orders. The main theorical results of
PQI interval order are presented, demonstrated and discussed in section 4.
Section § gives a detecting algorithm in a procedural way by which it is
possible to demonstrate that it is “backtracking free”. Section 6 presents a
“matrix implementation” of the algorithm enabling the demonstration that
it is polynomial. Some conclusions are given at the end of the paper. Ap-
pendix A contains the demonstrations of the propositions used in the proof
of Theorem 5.1 (backtracking free).

2 Notations and definitions

In this paper we consider binary relations defined on a finite set A, that is
subsets of A x A (the quantifiers apply therefore always to such a domain).
Further on we will use the following notations for any binary relations S, 7".
If § is a binary relation on A we denote by S(z,y) the fact that (z,y) € S. —,
A and V denote the usual negation, conjunction and disjunction operations.

§t= {(z,y): S(y,3)}
§¢==8= {{z,y): -5(z,v)}
§¢=-8"1= {(z,9): —-S(y,z)}
ScT: Vz,y Slz,y)—=T(z,y)
ST = {(z,y): 3z S(z,2)AT(z,9)}
$?= {(z,9): 3z S(z,2)AS(z,y)}
SUT= {{z,9): S(z,y)vT(z,y)}
SNT = {{z,y): S{z,y)AT(z,y)}

We recall some well known definitions from the literature {our terminol-
ogy follows Roubens & Vincke 1985).

Definition 2.1 A relation S on a set A is said to be:
- reflezive: iff Yz S(z,x)



- irreflexive: iff Vo —8(x, z)

- symmetric: iff Vz,y S(z,y)—=S(z,y)

asymmetric: iff Vz,y Sz, y)—5%z,y)

- complete: iff Vz,y, £y, S{z,y)vSz,y)

transitive: iff Vz,y,2 S(z,y)AS(y, z2)—8(z, 2)

- negatively transitive: iff Vr,y,z =S(z, y)A-S(y, 2)—=>-8(z, 2)

Definition 2.2 A binary relation S is:

- a partial order iff it is asymmetric and transitive;

- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflezive, complete and transitive;

- an equivalence iff it is reflezive, symmetric ond transitive.

In this paper we will consider relations representing strict preference,
weak preference and indifference situations. We will denote them P, Q, [
respectively. Moreover, such relations are expected to satisfy some “natural”
properties of the type announced in the following two definitions.

Definition 2.3 A (P,I) preference structure on a set A is a couple of binary
relations, defined on A, such that:

- I is reflezive and symmetric;

- P is asymmetric;

- TUP is complete;

- P and I are mutually ezclusive (PNI=0).

Definition 2.4 A (P,Q,I) preference structure on a set A is a triple of
binary relations, defined on A, such that:

- I is reflezive and symmetric;

- P and Q are asymmetric;

-IUPUQ is complete;

- P, Q and I are mutually ezclusive.

Finally we introduce an equivalence relation as follows:

Definition 2.5 The eguivalence relation associated to o (P, Q,I) preference
structure is the binary relation E, defined on the set A, such that, Vz,y € A:

P(z,z) & P(y, z)
Qlz,2) & Qy, )
E{z,y) iff V2€A: { I{z,z) = I{y,2)
Q(z,z) & Q(2,y)
P(z,2) & P(zy)



Remark 2.1 In this paper we consider that two different elements of A
are never equivalent for the given (P,Q,I) preference structure. This is
not restrictive as it suffices to consider the guotient of A by E to satisfy
the assumption. Under such an assumption we will use in the numerical
representation of the preference relations only strict inequalities without any
loss of generality.

3 Interval Orders

In this section we recall some definitions and theorems concerning conven-
tional interval orders and semi orders.

Definition 3.1 A (P, I) preference structure on a finite set A is a PI in-
terval order iff 31,7 : A RT such that:

Vz: r(z)>lz)

Va,y: P(z,y) < l(z)>r(y)

Vz,y: I(z,y) < lz) <r(y) end l{y) < r(z)

In conventional interval orders when comparing two intervals two situa-
tions are considered:
- one interval is completely to the right of the other (strict preference);
- there is a non empty intersection of the intervals (indifference).

Definition 3.2 A (P,I) preference structure on a set A is a PI semi order
iff 3i: A R and a positive constant k such that:

Vz,y: Plz,y) & lz) >y +k

Vaz,y:I(z,y) & |i(z) -y <k

Such structures have been extensively studied in the literature (see for
example Fishburn 1985). We recall here below the two fundamental results
which characterize interval orders and semi orders.

Theorem 3.1 A (P,I) preference structure on a finite set A is a PI inter-
val order iff PI.P C P,

Proof. See Fishburn (1985).

Theorem 3.2 A (P, I} preference structure on a finite set A is a PI semi
order iff PI.P C P and I.P.P C P,

Proof. See Fishburn (1985).



4 (P,Q,I) interval orders

As mentioned in the introduction, we are interested in situations where,
comparing elements evaluated by intervals, one wants to distinguish three
situations: indifference if one interval is included in the other, strict pref-
erence if one interval is completely “to the right” of the other and weak
preference when one interval is “to the right” of the other, but they have a
non empty intersection. Definition 4.1 precisely states this kind of situation,
I(z) and r(z) respectively representing the left and right extremities of the
interval associated to any element z € A.

Definition 4.1 A (P, Q,I) preference structure on a finite set A is a PQI
interval order, iff there exist two real valued functions | and r such that,
Ve, y € A,z #y:

-r(z) > i{z);

- P(z,y) & r(z) >Uz) >r(y) > Uy);

- Qo y) & r(z) >rly) > Uz) > l(y);

- Haz,y) & r(z) > r(y) > iy) > Ug) orr(y) > r(z) > Uz) > (y).

The reader will notice that the above definition immediately follows Def-
inition 3.1 since a preference structure characterized a PJ interval order can -
always be seen as PQI interval order also. We give now necessary and
sufficient conditions under which such a preference structure exists.

Theorem 4.1 A (P,Q,I) preference structure on @ finite set A is a PQI
interval order, iff there exists a partial order I; such that:

i) I=LUIL UL, where I, = {(z,%), z € A} and I, = I},

i) (PUQUIL)P CP;

#i) P(PUQUIL.) C P;

iﬁ)(PUQUIg)QCPUQUI],; Yains

v) QPUQUI,) crogur| &8 COUF

Proof
Necessity.

We first give an outline of necessity demonstration which is the easy part
of the theorem. If (P, Q,I) is a PQI interval order, then defining
- I(z,y) & Hy) <l(z) <r(z) <r(y)
- I(z,y) & Uz) <Uy) <r(y) <r(z)



we obtain two partial orders satisfying the desired properties. As an example
we demonstrate property (v):

Q(z,y) and (PUQU I;)(y, 2} imply 7(z) > r(y) and r(y) > r(2), hence
r{z) > r(z), so that (PUQU L)(z, 2).

Sufficiency.

Conversely let us assume the existence of [; satisfying the properties of
the theorem. Define a set A’ isomorphic to A (4’ and A being disjoint) and
denote by ' the image of z € A in 4. In the set AU A’ let us define the
relation S as follows: Vz,y € A,z #y
-8 (xla Z )

- S(z,y) & (PUQUINz,y)
- 8(z',y) © (PUQUIL)(z,y)
- 8(z,4) & P(z,y)

- S('(E,!y) < __'P(ya '7:)

We demonstrate now that S is a linear order (irreflexive, complete and
transitive relation) in A U 4’

Irreflexivity results from irreflexivity of P, @, I; and I,.

'To demonstrate completeness of S remark that for z # y:

8(z,y) & ~(PUQUIL)(z,y)
& (PUQUI)(y,z) since PUQUT is complete and I = UL U,
& Sy, z)

=8(@',y) & ~(PUQUI)z,y)
(PUQUI)(y,) since PUQUIT is complete and I = ; UL, U I,
S(y',2")

-P(z,y)
Sy, z)

P(y,z)
S(y, ")

-8z, y")

-8(z’, )

te ¢ o3

We demonstrate now that § is transitive.



¢ S(z,y) and S(y, z) imply (PUQUIL)(z,y) and (PUQUIL)(y, 2). From
conditions ii) and iv) of the theorem, we know that (PUQUI;)(z,y) and
(PUQ)(y, z) imply (PUQUIL)(z, z), hence S(z, 2). From transitivity
of It we have that Ij(z,y) and Ij(y,2) imply Ij(z,z2), hence S(z,z).
Finally, if (PUQ)(z,y) and I;(y, z) then (P UQ U I;)(z, z) because, if
not, we would have (P U QU I;)(2, z) which with I}(y, z) would give
(PUQUI)y,z) (by conditions ii) and iv) and transitivity of I;),
contradiction. So we get S(z, z).

e S(z,y) and S(y, 7)) imply (PU QU L)(z,y) and Ply,2), which, by
condition ii}, give P(z, 2}, hence S(z, 2').

s S(z,y') and S(y,2) imply P(z,y) and -P(z,y). If =S(z,z), then
(PUQU L) (z,z) which, with P(z,y) and by condition ii) would give
P(z,y), a contradiction. Thus S(z,z). This reasoning applies also in
the case y = 2.

o S(z,y") and S(¢/,2') imply P(z,y) and (P UQ U I}y, z), which, by
condition iii), give P(z, z), hence 8(z, z’).

o S(a',/) and S(¥/, z) imply (PUQUIL)(z,y) and ~P(z,y). f~S(z/,2),
then P(z, z) which, with (PUQUI)(z,y) and by condition iii) would
give P(z,y), a contradiction. Thus $(z',z). This reasoning applies
also in the case y = z.

o S(z',y) and S(y', 2") imply (PUQU I )(z,y) and (PUQU I ){y, z).
From conditions iii) and v) of the theorem, we know that (PUQ)(z,¥)
and (PUQUI)(y,2) imply (PU QU I)(z, 2), hence S(z', 7). From
transitivity of I, we have that I, (z,y) and I (y, z) imply I,(z, z), hence
S(«',2'). Finally, if I(z,y) and (P U Q)(y,2) then (PUQU L)(z, 2)
because, if not, we would have (P U Q U I;)(z, z) which with I.(z,y)
would give (PUQUI)(z,v) (by condition iii) and v} and transitivity
of 1), contradiction. So we get S(z',2').

e S(z',y) and S(y, 2) imply ~P(y,z) and (PUQU I;)(y, 2) If =8(=', 2),
then P(z,z) which, with (PUQ UI})(y, 2) and by condition ii) would
give P(y,z), a contradiction. Thus S(z',2). This reasoning applies
also in the case y = z.

e S(z',y) and S(y,2’) imply —=P(y,z) and P(y,z). If -S(«',2'), then
(PUQU IL.)(z,z) which, with P(y, z) and by condition iii) would give
P(y,x), a contradiction. Thus S(z', ). This reasoning applies also in
the case y = z.



Since S is a linear order on A U A’', there exists a real valued function u
such that, ¥V z,y € A:
- 5(z,y) & ulz) > uly);

(#',y") & ulz) >uly);
- S(z,y) & ulz) > uly');

(=',y) & u{z’) > u(y).

We define Vz € 4, I(z) = u(z) and r{z) = u(z") and we obtain:
o ¥z :r(z) > I(x), since S(', z).
e Vz,y: Plz,y) & Sz,¢) « i(z) >r(y).

e Vz,u: Qz,y) & Sz, y)/\S(w',y’)/\ﬂP(w,y) &
H{z) > l(y) and r(z) > r{y) and r{y) > l(z), equivalent to:
r(z) > 7”( ) > U(z) > I(y).

e Vaz,y: I{z,y) &
r{z) > r(y) > l(y) > l(z) or r{y) > r(z) > (z) > I(y)
since I{z,y) holds in all the remaining cases.
|

We can complete the investigation providing a characterization of PQI
semi orders.

Definition 4.2 4 PQI semi order is a PQI interval order such that 3k >
0 constant for which Vz: r(z)=1(z) +k

In other words, a PQI semi order is a (P, Q,I) preference structure for
which there exists a real valued function ! : A — R and a positive constant
k such that ¥ z,y, = # y:

- Plz,y) & Hz)>1l{y) + K&
- Qz,y) & Uy) + k> Uz) > Uy
- I(z,y) © lz)=Uy) (actually I reduces to I,).
For such preference structures the following theorem holds.

Theorem 4.2 A (P,Q,I) preference structure is o PQI semi order iff:
i) I is transitive

i) PPUPQUQP C P;

i) QQ C PUQ;



Proof

Necessity is trivial. We give only the sufficiency proof. Since I is an
equivalence relation, we consider the relation P U @ on the set A/I. Such a
relation is clearly a linear order (irreflexivity and completeness result from
definition 2.4 and transitivity from conditions i) and iii) of the theorem).
Therefore we can index the elements of A/I by i =1,2--.,n in such a way
that V 2, 241 € A/I: (PUQ)(@it1, 7).

Choosing an arbitrary positive value &, we define function { as follows:
l(z1)=0and for i =2,3,---n
Uzir1) > U(zs)
Uz;) > l(z;) + &k ¥ j <isuch that P(z;, z;)
z:) < Uzm) +k ¥V m <isuch that Q(z;, m)-

This is always possible because P(z;,z;) and Q(2i,2m) imply (P U
Q)(zm, z;) (if not, we would have (P U Q)(z;,z,) which, with P(z;,z;)
and by condition ii) would give P(z;, Tr,), hence m > 3 and I{z,,) > U(z;)).
By construction the function ! satisfies the numerical representation of a

PQI semi order.
|

5 Detection of a P interval order

The problem is the following:

Given a set A and a (P, Q, ) preference structure on it, verify whether it
is a PQI interval order. The difficulty resides in the fact that the theo-
rem previously announced contains a second order condition which is the
existence of the partial order I;. For this purpose we give two propositions
which show the difficulties in detecting such a structure.

Proposition 5.1 There exist (P, Q,I) preference structures which are PI
interval orders (where I=QUIUQ™), but are not PQI interval orders.

Proof Consider the following case.
- A = {G, bs c, da 6};
-P= {(G, c)a (da 6)7 (G, e)};
-Q= {(ds C), (a, b): (ba e)};
- I={(a,d),(c,€), (b,d), (b;¢), (d, a), (e, ), (d,0),(c, D)} UL,



On the one hand if we consider the relation [ = QUIU Q™! it is easy to
observe that the (P, ) preference structure is a PI interval order (PP C P
holds). On the other hand if we accept that the given {P, @, I) preference
structure is a PQJ interval order then we have (by definition 4.1 and theorem
4.1) that:

- I(a,d) has to be I;(a,d) because of ¢;
- I(d, b) has to be I;{d, b) because of ¢;
therefore by transitivity we should have I;(a, b}, while we have Q{a, b) which
is impossible. Therefore we can conclude that for this particular case the

PQI interval order representation is impossible.
[ |

Proposition 5.2 There exist (P, Q,I) preference structures which have more
than one PQI interval order representation.

Proof Consider the following case.

-A= {a: b: C};

-P={;

- I={(a,c), (b,c), (c,a), (c,b)} U IL;
- Q = {(aa b)}

It is easy to observe that both Ij(e,c),I;(b,¢) and Li(c,a), [;(c,b) are
possible, thus allowing two different PQI interval orders: one in which the
interval of ¢ is included in the intervals of both a and b and the other where
the intervals of b and ¢ are included in the interval ¢. Both representations

are correct, although incompatible with each other.
]

The basic theorem 4.1, which gives necessary and sufficient conditions
to see if a PQI preference structure is a PQI interval order, is unfortu-
nately a formula in a second order logic (a formula where predicates can be
variables). Generally the satisfaction of second order formula can be unde-
cidable. Moreover, the theorem does not give a constructive procedure for
verifying its satisfaction. In the following we give a second theorem, equiva-
lent to theorem 4.1, which enables to define an algorithm detecting if a PQJ
preference structure is a PQI interval order.

Theorem 5.1 A PQI preference structure on o finite set A is o PQI in-
terval order iff there exists a partial order I such that:
i. I =L UL UI, where I, = {(2,2), z € A} and I, = I["};

10



. PQUQ.PUPPCP and QQCPUQ;
#.(P.Q™'NI) C I;
w.(Pl.QnI)cCI;

v. (I.INP)C L.I;
vi (LINQUQ™Y) C (L) U (1,.1) 7@
vee. I - I;

Proof

We will now prove that the conditions 7 — vii are equivalent to 7 — v of
theorem 4.1.

Necessity - (i-u) of 4.1 = (i-vii) of 5.1

ii. PQUQ.PUPPCPand Q.QC PUQ;
(PUQUIL)PC P=PPUQPCP
PPUQUL)CP=PQCP
(PUQUILQCPUQUIL=QR.QC (PUQRUY
QPUQUL)CPUQUL=Q.QC (PUQUI,
Iy asymmetric =L N1 =0
We have then Q.Q C (PUQ)U (NI} =(PUQ).

i, (PQ-1N1) C I;
We will prove that P.Q~! N (fy U L) = 0. Suppose that:
dz,y,z: Pz, y)AQ(z,y)Alo(z,2) ie =2z
Impossible since it implies P(z, y)AQ(z, y).
3z,y,z: Plz,y)ANQz,y)NI(z,2) ie Iz z)
Since I;.P C P (ii of 4.1), we have P(z,y)AQ(z,y), impossible.

iv. (Prl@nhcl;
The proof is quite similar to that of [iii].
P QN (I UI) = 0. Suppose that:
3z,y,2: Ply,z)AQ(y, 2)Aly(z,2) ie z=2
Impossible since it implies P{y, z)AQ(y, ).
3z,y,2: Ply,e)AQ(y, 2)Alx(z,2)
Since P.I. C P (iii of 4.1}, we have P(y, 2)AQ(y, ), impossible.

vii. I.I; C I;
Evident as [; transitive (we also have I,..I. C I,.).

vi. (IIN(QUQ™)) € (I.L;) U (I,.Iy));
We have I.I C (JUL.LUL.I)U (L. UL.L)

11



v.

As P, Q, I are mutually exclusive and the above result (vi7), we have
QU HYNUULLUL.IL)=0

(IINP) C I.I:

Similarly to vi, we have (I.I N P) C (I;.I,) U (I;.I})), we still have to
prove that PN I..I; = 0.

Az,y,z: Pz, 2)AI(z,y)AL(z,y})=P(z,y)AL(z,vy), impossible.

Sufficiency - (i-vii) of 6.1 = (i-iv) of 4.1

ii.

iii.

iv.

(PUQUI)PCP
(PPUQP)CPbyiiofb.l

I;.P C P. Suppose that:

3z,y,z: L(z, y)AP(y, z)AP(z, ).

Impossible since it implies Py, z) by 4 of 5.1
dz,y, 2 : I],(«'E, Q)AP(y} z)AQ(z, 23)

Impossible since it implies P(y,z) by 4 of 5.1
Iz,9,2: Lz, y)AP(y, 2)AL (2, T).

Impossible since it implies f;(z, y) by vii of 5.1
3z,y,2 Ig(x,y)/\P(y,z)/\Il(m,z).

Impossible since it implies I, (z, y)AL(z, 2z) by v of 5.1
dz,y,2z: Iz, y)AP{y, 2)AQ(z, 2).

Impossible since it implies I;(y, z) by #i% of 5.1.

P(PUQUIY)YCP.

(PPUPQ) C P byiiof 5.1;

P.I7' C P. Suppose that:

3z,y,2: P(z,y)ALT (y, 2)AP(2,T).
Impossible since it implies P(z,y) by i of 5.1
Ela;,y,z: P(m,y)/\Ifl(y,z)/\Q(z,m).
Impossible since it implies P(y,z) by 4 of 5.1
3z,y,2: Pz, y)AL (v, 2)AL(2,3).
Impossible since it implies I;(x, 2)ALi{y, 2) by v of 5.1
3z, Y, 2 P(ﬂ':, y)AIlml(ya Z)AI;(.’I’, Z)
Impossible since it implies ;(z,y) by »ii of 5.1
S0,9,2: Pla, A (g, 2)AQ(3, 2).
Impossible since it implies I;(y, z) by iv of 5.1.

(PUQUL).QCPUQUIL.
(PQUQ.Q) C Pbyiiof 5.1;
I.Q C PUQUI. Suppose that:

12



3z, v,z Iﬂ(m Q)AQ(Q” ) (z )

Impossible since it implies P(y,z) by % of 5.1

Iz, Y,z Il(ﬂ’;‘ y)AQ(y7 ) ( 5T )

Impossible since it implies P(y, z)VQ(y, z} by i1 of 5.1
dz,y,2: L, y)AQ(y, 2)A (2, z).

Impossible since it implies I;(z,y) by wii of 5.1.

v. QPUQUIHYcPuQuI?
Q.P C P by ii of 5.1;
QQCPUQbymofSl
QI' CPUQUI;'. Suppose that:
32,9,z Qz, YAy, 2)AP(z,x).
Impossible since it implies P(z,y) by it of 5.1
3z,y,2: QYA (¥, 2)AQ(2, 2).
Impossible since it implies P(y, z)VQ(y, z) by i of 5.1
3z,y,2: Q(-’L", y)AI[—l(y: Z)AIl(maz)'
Impossible since it implies [;(z, y) by vii of 5.1.
|

From this theorem, we have the following algorithm which constructs J;
by converting elements of I either to I; or I,. By definition, when Ij{z,y) is
established, I(y, ) is also established. The algorithm is a direct application
of conditions ¢ to vii of theorem 5.1. Therefore if it succeeds in transforming
all elements of I in elements of I; (or I,) then the PQI preference structure
under investigation is a PQJ interval order. If on the other hand it fails
then the PQI preference structure under investigation is not a PQT interval
order. Failure of the algorithm can occur either because condition ¢ is not
satisfied or because during the construction of I; a contradiction occurs (in
the sense that two elements of the set A are linked by two different relations).

Algorithm 5.1

Step 1: Verify PQUQ.PUPPCPand QQCPUQ;

Step 2: ¥V z,y,z I{z, )AP(2,2)AQ(y, z) =2 Ii(z, y);

Step 8: ¥V z,y,z I(z, y)AP(2,2)AQ(2,y) = Li(z, y);

Step 4: ¥ z,y,2 I(z,y)A\I{y, IAP(z, )= Li(z, y)A\Li (2, y);

Step 5: Y z,y,z Lz, y)AI(y, ) AMQ U Q™) (2, 2)— Iy, 9);
v T, U2 I(ma y)AIl(ya Z)A(Q U Q_l)(m:z)_)Il(y: 3") 3

Step 6: ¥ =z,y,2 Li(z,y)AL(y, 2) > 1i(z, 2);

Step 7 If there is one I(z,y) not yet established as I; or I, choose one of
them and set it as Iy(z,y). Then return to 5. QOtherwise stop.

13



Steps 1 to 4, are deterministic, in the sense that each I; established
is mandatory. If a contradiction occurs, i.e. a newly established Ij(z,y)
has been formerly established as &(z,y), ® being any among P, Q, P1,
@71, the algorithm fails. Steps 5 and 6 however, use already established [;
in order to establish further I;. The problem arises from Step 7 where I is
arbitrarily chosen.. When the algorithm goes back to Step 5 to continue with
establishing I;, if a contradiction occurs, intuitively, it should backtrack to
the last I;{z,y) established, reverse it to I;(y,z) and try again. In other
terms the algorithm appears to have to explore a “tree structure” defined
by the branches created by each arbitrary choice. In such a case the risk is
to have to make an exhaustive research of the whole “tree”.

In the following we will demonstrate that the algorithm previously pre-
sented is “backtracking free”. In other words, any contradiction, implies
the non-existence of a PQT interval order on A and the algorithm can stop
immediately without backtracking.

Theorem 5.2 The elgorithm 5.1 is backtracking free.

Proof We elaborate the demonstration observing how the setting of I;(z, y)
(steps 5, 6) is propagated and analyzing contradictory situations. The
demonstration consists of decomposing the problem in smaller cases and
showing for each of them that when a contradiction occurs there is no back-
tracking necessity and the algorithm fails (the PQI preference structure is
not a PQI interval order).

Before reaching step 7 the first time, the process is deterministic, we
can therefore construct the graph Go = (A, V) where A is the usual set of
objects on which the PQI preference structure applies and Vy = PUQUIUIT,
where I consists of (z,y) which are not yet set. Gy is complete and all its
arcs are directed except the ones in I. In the following we denote as a
“triangle” a set of three elements in A (z,y, z) such that z®y¥ 20z, where
®, T, O are any among P,P~1,Q,Q1, I;,Il_l, I

Proposition 5.3 In Gy, a triangle with at least an I-arc must be one of
the following:

1-1II

2-1.11]

8-11Q

4- 10071

5- LITLIL
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6-I1.ppP!
7-1.P-LpP
8- 1.Q.Q1
9-1.Q71Q

Proof.
The application of steps 1-6 of the algorithm 5.1 excludes all other possi-
bilities. For example, all triangles I;.7.Q have changed to I;. E'I.Q by step
5.

|

Denote as I-path a path where each of its arcs is an I-arc. Consider
then the partial graph G* of Gy, G* = (4,14) where Vi = {(z,y)|z #
y, 3 I-path from z to y}. The proofs of propositions 5.4 to 5.11 can be
found in Appendix A.

Proposition 5.4 G* consists of connected components which:
i. are complete;

2. do not contain any P-are;

iii. are closed under the propagation of the setting of I;.

We have proved that G* consists of connected components in which the
propagation of the setting of [;{z,y) is limited. Fach component contains
only @ or I or I; arcs, while P arcs exist only among such components.
Therefore, we can limit ourselves in analyzing only one connected compo-
nent, denoted by G = (41, 11).

Let (z*,y*) be an I-arc arbitrarily chosen in step 7 to become an Ij-arc.
Consider iteration & of the algorithm. Denote as IF the set of I-arcs set
in I; in the current step and as Il the cumulative set of I-arcs set in I; in
all the former iterations of the algorithm. We have that If = IfF U’ lK -1,
Conventionally, in step 5, (z*,y*) is added to IF.

Proposition 5.5 I-arcs set to I; by transitive closure (step 6) are never
used in step 5 when the algorithms iterates.

Denote as a @-path a path whose arcs are Q or @~ ones. In the set A,
let us consider now the following equivalence relation: ©(z,y) < 3 a Q-path
from z to y and use X, Y, Z to denote equivalence classes. Therefore we can
see graph (71 as composed by equivalence classes of nodes each of which
contains only @@ and 7 arcs. Further on among such equivalence classes only
I-arcs do exist.
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Proposition 5.6 In step 5

i - the propagation of Ij(z,y) € X XY is imited to X x Y.

it - when X # Y ,the propagation of I; covers the whole set X x Y.

it - If (259" ) EX x X then IFC X x X

iv-If(@y*) EX XY, X #Y then IF =X x V.

v - Whatever (z,y) is chosen to be set in I, in Step 5 the result is the same.
vi - If I(y*,z*) is chosen instead of Iy(z*,y*) then all the settings in this
step will be reversed.

Proposition 5.6 states that, during the k-th iteration of the algorithm,
Step 5 sets to I; either some I-arcs included in one equivalence class (of
relation ©) or all I-arcs among two equivalence classes.

Consider now Step 6. In each application of step 6, setting I;(z,2) from
Ii(z,y) and Ij(y, z), implies that at least one arc, let’s say (z,y), has to be
set during, either this step, or the two last steps 5,7. In a formal notation
we have:

Proposition 5.7 In Step 6:

i-If(z,y) EX x X thenze X.

i - If (z*,y*) € X x X is set in Step 5 then IF C X x X.

it - If it exists IM{(z,2) € X x Z, X # Z then X x Z C I}..

i - If (2*,y*) € X xY, X # Y is set in Step 5, only arcs connecting
different classes are set in Step 6 (in other terms if Ij(z,2) € X x Z is set
in Step 6then Z # X NZ#Y ).

These results show that if we choose an arc (z*,y*) to set in I, if it
is inside one equivalent class it does not propagate I; outside this class,
while if it connects two different classes, it does not propagate I; into any
class. Furthermore, as the algorithm has passed through steps 5, 6 before
the establishment of G; at least once, all the arcs between two classes X,Y
are of the same type (either I-arcs or I;-arcs). Therefore, the problem can
be further decomposed into two sub-problems:

a} - Outside all the equivalent classes, we consider the same problem with
G1 replaced by G2 = (As,Vs) where Ay is the quotient set A® and Vs =
{{(X,Y)|X,Y € ApA3(z,y) € X x Y such that I or J; holds} according to
the type of the arcs connecting X, Y.

b) - Inside each equivalent class, we consider the same problem with G,
replaced by G3 = (43, V5).

The sub-problem a) is trivial, as the graph G2 contains only I or I,
arcs, furthermore, the part of G5 covered by Ij-arcs is already I; transitively
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closed since the algorithm has already gone through Step 6. The problem
is reduced to the construction of a linear order. Therefore, we have to deal
only with the sub-problem (b).

We have to demonstrate now that the algorithm is backtracking free on
G'3 where the arcs are @, I, I and there is a Q-path connecting any two dif-
ferent nodes. We consider now the possible situations where a contradiction
may occur.

Proposition 5.8 In step § '

i -~ IF(z, ) AIF(y, 2)=>IF (2, 2) e if (z,y) and (y,2) are set in this step,
then so is (z, 2).

i - I{“(m,y)/\IlK_l(y, 2INIF (2, t)=1F (z,1).

it - IF Y, ) ATE "y, 2)= I Yz, 2).

N.B. We may emphasize that, while in Step 5, I}{z, y)Al lK ~}y, z) does
not necessarily imply I¥(z, z).

Proposition 5.9 In step §, an Ij-circuit occurs only with a contradiction.

Proposition 5.10 If the first contradiction occurs at step 6, then there
must be an I; circuit at the end of step 5 (an IlK ~1 cireuit).

Proposition 5.11 If the first contradiction occurs at step 5, then the prob-
lem has no solution.

From Proposition 5.10 if a contradiction occurs in Step 6 there is an I;
circuit at Step 5. From Proposition 5.9 if such a circuit exists in Step 5 it
has to exist also a contradiction in Step 5. And from Proposition 5.11 if
a contradiction occurs at Step 5, the problem has no solution and it is not
necessary to make any backtracking. And this concludes our demonstration.

[ |

6 Matrix version of the algorithm

From the previous discussion it is easy to see that the critical part of the
PQI graph to analyze is the (3 graph, so we may study complexity with
respect to this subgraph. In the following we give a way to implement the
algorithm and discuss its complexity. Let P, @, I, L be n x n matrixes
representing relations P, @, I, I; respectively, where:

ziyj = 1 € X(i, ), otherwise z;; = 0, X being one among P, @, I, I;.
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Theorem 6.1 Algorithm 5.1 is in polynomial time (O(n®))

Proof The algorithm presented in the previous section can be represented
in the following way (including some small variations discussed immediately
after):

Algorithm 6.1

Step 1: pij+oik < 1+Diks Pij+ ik < 1+Dik, Gij+an < L+Die+qir V4,5, k;
Step 2: i =pix =qig = 1= l;; =1V 4,5, k;

Step 3: i = Pri = Qrj = 1=l =1V4,5,k;

Step 4: pyy =l =ty =1=lg =l =1V 6,5,k

Step 5: g+ g =l =gy = 1 = Ly = lg; Vi, 5, k;

Step 6: Li=lig=1=1lp =144k

Step 7: For I(x,y) not yet established as I; or I, choose arbitrarily I(z,y).
If the I; established belongs to an equivalence class established in Step 5, put
all the elements of the class equal to 1. Return to § (instead of 5).

A critical step in this algorithm is step 5 since it introduces implicitly a
recursive establishment of I;. In order to avoid an infinite recursion and the
associated contradictions it is necessary to “fix” I; as soon as it is generated
by step 5 so that only J(z,y) which are not yet established may still be
considered in the recursive application of step §. This is possible partitioning
the set of non zero elements of the matrix I into classes which will have the
same value of /;; because of step 5. Then as soon as one element of one
of these classes turns to 1, the whole class will turn to 1. Under such an
adjustment the following positive consequences hold:

- if there is no solution then a contradiction in establishing an I; will appear
before step 6;
- after step 7 you just have to return to step 6.

We can now discuss complexity. Steps 1 to 4 are obviously in O{n®)
as step 6 (transitive closure) is. Step 5 is in O(n®) as can be seen by the
following implementation (remark that in the worst case n = |Gsl):

function step5: boolean
forall i, j, k
if (IikxIkj*(Qij+Qji) == 1)
if ( not setLabel(i,j,k) )
return false
return true
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function setlabel(i,j,k: integer)

if (Lik, Lkj no label)
set new label to Lik and Lkj

else if (Lik = L1, Lkj no label)
set Lkj to L1

else if (Lik no label, Lkj = L2)
set Lik to L2

else if (Lik = L1 et Lkj = -L1}
return false (conflict)

else if (Lik = L1 et Lkj = L2)
unify these two labels

endif

return true

Furthermore it is easy to see that the decomposition of the PQI graph in
G and its connected components, the decomposition in G5 and G5 and the
construction of the linear order in G are all in polynomial time. Therefore

the whole algorithm is in polynomial time.
|

7 Conclusions

The paper has presented an answer for the problem concerning the represen-
tation of preferences by intervals by showing necessary as well as sufficient
conditions to see if a preference structure is a PI interval order, PQI semi
order or PQI interval order. For PQI interval order, it provided also an
algorithm to verify whether a PQI preference structure on a finite set A is
a PQI interval order. In other words verify if it is possible to associate to
each element of A an interval such that if the interval associated to z is com-
pletely to the right of the interval associated to y, then z is strictly preferred
to y, if one interval is included in the other, then z is indifferent to y and
if the interval associated to z is to the right of the interval associated to y,
their intersection being not empty, then z is weakly preferred to y. We first
demonstrate that the algorithm, although it appears having to explore a tree
generated by branches of arbitrary choices, is backtracking free and then we
demonstrate that runs in polynomial time. We consider such a result very
promising, since it enables an efficient check of the existence of PQT interval
orders which are very common in many different cases, including preference
modeling and temporal logic.
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Appendix A

Proof of Proposition 5.4
i. If z,y belongs to a connected component then there exists a path g =
z,61,..065 =Y. ¥ i =0..k—1, if exists an I-path from a; to a;41 then there
exists an I-path from z to y and therefore {z,y) € V;.
ii. If a P-arc exists, choose P{z,y) such that the length & of the I-path
 ap = T,03,...6; = y is minimal. Consider then the arc a1, a; (it exists from
the completeness of the component), then from proposition 5.3 we have
P(ay,a;) and therefore we have another P-arc withlength of the I-path
< k. Impossible.
iii. Immediate from conditions v¢ and viz of Theorem 5.1 (steps 5 and 6 of
the algorithm).

|

Proof of Proposition 5.5
First consider (z1,z2) such that If(z1,z2) in step 6. Therefore it exists
Ii(z1, z3) Ali(z3, T2). If, for example, (z1,z3) was also established in IF (in
the current step 6) then it exists Ij(z1, 24)AL}(z4,73) and so on until an
IlK ~Ll.path is obtained. Therefore for all {z,%) such that I; is established in
the current step 6 exists an 1, lK ~Lpath from z to .
Let now (z,y) to be an arc set to I; in the last step 6, participating to the
setting of arc (z, z) in step 5 through let’s say Q(2,y). Let us consider the
situation in the last step 6:
I{“(m, y)=3 IlK'l-path to =z,t1, ...t = ¥
Consider the triangle z,t;_1,y where Q(z, y)/\IlK “Htpo1,9).
If Q(tx—1, 2) then Q(tr_1, 2)AQ(2, y)=>(PUQ)(tk-1,y), conflict with [ (41, ).
If I(tg-1,2) then IX " (te 1, 0)AQ(y, 2)AT(tho1, 2)=> T " (tx1,2) (at least
in the last step 5). Therefore it exists an I/~l.path from z to 2, that
is Ij{z,z) must be set at least at the same time as (z,y). We conclude
that Q(z,tx_1). Repeat this procedure, and we get at last Q(z,¢;), which
together with IIK ~Haz,t,) gives IEK “Naz,2) ie. (,7) must have been set
before (z,y).

||

Proof of Proposition 5.6

i - In each application of step 5, consider (z,y) € X x Y such that L;(z,y).
Relation I; will propagate to (z',y) or (z,¥’), =',% arbitrary. From Theorem
5.1 and proposition 5.4 (no P-arcs in G') we know that there have to exist
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Q-paths from z to 2’ and from y to 3. Therefore (z',y) € X x Y.
ii- (2',y') € X xY implies that there exist Q-paths ag = z, a1, ...a5 = &, and
by =y, b1,...0; = /. Applying consecutively step 5 on these two paths we ob-

tain the setting in J; of (z, y), (21, %), ...(#', ¥) and then of (z', 1), (z', bs), ...(z’, &)

iii and iv - Immediate from propositions (5.5}, (5.6.i) and (5.6.ii).
v and vi - Immediate from Theorem 5.1.
|

Proof of Proposition 5.7
i - Otherwise, consider the first setting with z € Z # X. It implies that
I({y,z) € X x Z, Z # X and since (z, ) is the first such setting, IK Yy, 2)
holds. We have z,y € X A z € Z A IF ™Yy, z) which implies 7K~ 1(sc 2) as
it must be set at least in the last step 5 {proposition (5.6.ii)). Contradlctmn
ii - Immediate from (5.6.iii),(5.7.1).
iii - Otherwise it should exist (z’,2') € X x Z\ I} . In the next step 5 (z, z),
which is set in this step 6, will propagate I; to (z',2'), which is impossible
because of (5.5).
iv - Suppose that (z*,y*) € X xY, X #Y is introduced in step 5. Then
all the arcs of X x Y are set to I; and only these arcs. The setting in step
6 is the propagation of such arcs. Let Ij(r, y)/\Il(y, )=h(z,2), z € X, y €
Y, z € Z the first setting in step 6 with II Yz, ), T K 1(y,z) and (z,y)
set in the last steps 5,7, i.e. (z,y) EXxYandXxYCIK I Z=X
then (z,y) should have been set at the same time as (z,y), which contradicts
IF(y,z). We conclude that Z # X (and similarly that Z # Y).

|

Proof of Proposition 5.8

i-Let Q=QUQ@ land ¥ =1 U Il_l U €. In an equivalence class we have
Y(z,2) ¥(z, z).

If in Step 5 we had Q(z,z) then IF(x,y)AQ(z, 2)AI(z, y)=>I¥(z,y), in con—

tradiction with IF(y,z). Therefore we have =Q(z,z) and ¥ = L; U I -

The transition from I*(z,y) to If(y,z) in step 5 passes through 2 Q—paths

Ty = 2,%2,..%n = ¥ and y1 = Y,¥2,..Ys = z where (z; = z;y; and

W 75 i1 and I(zs, 1), I(@iy1, Yi41)) or (@ # 241 and y; = g4, and

Iz, ), I{Zit1, Yi+1)). We consider the two different transitions from (z,9)

to (y,2).

1. If y» = y then z # x5 and therefore Q(z,z9)AI(z2,y). We have then

Q(z, 22)AIF(z, y) AI(2,y)=If (23, y). But Q(zs, 2) is in contradiction with

If(z3,y). Therefore I *(y, 2)=>-0Q(z2, 2).
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We have Q(z, z2)AI{zg, 2)AY (2, 2)=T (29, z). Therefore the situation is not
changed (z2 plays now the role of z).
2. Iif y2 # y then x = 3. Therefore Oy, y2)AI(z, yo)=If (3, y2). If Oy, 2)
holds we have Q(yz, 2) AIF(z, yo) AI(z, 2)=IF(z, z). Otherwise, Q(v, y2) and
IF(y, z) give IF(ys, z) and the situation is not changed (o plays now the role
of y).
In order to pass from y to z, it must exist a k such that yzy1 = z and g3, # =,
ie. Q(yr,yr+1)—=Qyk, 2)=If (z, 2).
ii - Let ¥(z,?). Since Q(y,t) or Q(z,z) is in contradiction with IF(z,y),
IF~Yy,2) and I¥(z,1) we have I(y,t) and I(z,z).
If O = Q then If (5, y)AI{y, ) AQ(z, t)=IF (¢, y). But IF(t, y) AIF (2, )= I} (2,y)
(5.8.1) in contradiction with IlK ~Yy,z). Therefore & = J; UI;_;. The tran-
sition from If(z,y) to If(z,t) in step 5 passes through 2 Q-paths z; =
T,T2,..2n =z and y1 =¥, Y2, ... Yyn = z wWhere (2; = z;41 and y; # ¥;41 and
Iz, i), I(Tit1, Y1) or (i # @irr and y; = yiqy and Iz, 1), I{@ig1, yit1)-
We consider the two different transitions from (z,y) to (z,1).
1. If yo = y then z # z9 therefore Q(z, z9).
Az, ) AIF(z, )AL (T2, y)=IF (29, y). If Q(zo,t) we have
Q(z2, )AIF (22, YA (y, )= If (8,y). But IF(2, )AIF(t, u)=>IF(z,y) (5.8.i),
in contradiction with J; “Hy, 2).
We have then —Q(xzs, t)=1(20,t). Qlza, £)AI(z9, )AL (z,)=T(22,t) and
the situation is not changed (x2 plays now the role of z).
2. If yo # y then 2o = z, therefore Oy, y2).
Qy, y2)AIF (2, )AL (2, y2)= I (3, 32).
If O(yo,t), we have Q(ya, DAIF (2, y2) AT (2, ) =T (x, 1).
Otherwise, if Q(ys,z) then Q(ys, 2)AIF(z, y2)AI(z, 2)=I}(z, 2).
Therefore, we have I} {(z, 2)AIF(z,t)=IF(z,t) (5.8.1).
If (32, 2) then O(y, y2) AKXy, 2)AI(ya, 2)= I~ (33, 2) and the situation
is not changed (y2 plays now the role of ).
So, we have either [;(z, t} when it exists Q(y;, z) or the only way to pass from
y to t is through some yj.1 = tand yx # tie. Qyp, yr+1)=>Qyr, t)=>1(2, 1),
it - If IlK ~l(z,y) and IF~!(y,z) are set at least in the last step 6 then
IEY(z,2) is also set at least in the last step 6.

|

Proof of Proposition 5.9

Let an Ij-circuit with arcs I{“ or IIK -l With (5.8.i), we can replace all
If-paths with If—arcs. With (5.8.iii), we can replace all IlK ~L.paths with
I lK'l-a\rcs. We get at last an j-circuit with alternative If-arcs and I {{—1_
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