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Optimisation a priori pour le probléme du stable maximum probabiliste

Résumé

Nous commencgons par donner une définition formelle du concept relativement nouveau
des problémes d’optimisation combinatoire probabilistes (sous la méthodologie dite a priori
développée par Bertsimas, Jaillet et Odoni). Ensuite, nous éudions la complexité de résoudre
optimalement le probléme du stable maximum probabiliste sous différentes stratégies de
modification, ainsi que la complexité de solutions approchées. Pour les diverses stratégies
étudiées nous présentons aussi des résultats sur la restriction du stable maximum probabiliste
sur les graphes biparties.

Mots-clé : problémes combinatoires, complexité, stable, graphe

A priori optimization for the probabilistic maximum independent set
problem

Abstract

‘We first propose a formal definition for the concept of probabilistic combinatorial opti-
mization problem (under the a priori method). Next, we study the complexity of optimally
solving probabilistic maximum independent set problem under several a priori optimization
strategies as well as the complexity of approximating optimal solutions. For the different
strategies studied, we present results about the restriction of probabilistic independent set
on bipartite graphs.

Keywords: combinatorial problems, computational complexity, independent set, graph
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1 Introduction

In probabilistic combinatorial optimization, the probabilities are associated with the data de-
scribing an optimization problem {and not with the relations between data as, for example, in
random graph theory ([4])). For a particular datum, we can see the probability associated with
it as a measure of how this datum is likely to be present in the instance to be optimized, and
in this sense, probabilistic elements are explicitly included in problem’s formulation. In such a
formulation, the objective function is a kind of carefully defined mathematical expectation over
all the possible sub-instances induced by the initial instance.

The fact that in the framework of probabilistic combinatorial optimization problems (PCOP),
the randomness lies in the presence of the data, makes that the underlying models are very
adequate for the modeling of natural problems, where randomness models uncertainty, or fuzzy
information, or hardness to forecast phenomena, etc.

For instance, in a transportation network whenever situations of several types of crises have to
be modeled, we meet PCOPs like probabilistic shortest (or longest) path, probabilistic minimum
spanning tree, probabilistic location, probabilistic traveling salesman problem (here we model
the fact that perhaps some cities will not be visited), etc. In industrial automation, the systems
for foreseeing workshops’ production give rise to probabilistic scheduling or probabilistic set
coverings or packings. In computer science, mainly in what concerns parallelism or distributed
computer networks, PCOPs have to be solved; for example, modeling load balancing with non-
uniform processors and failures possibility becomes a probabilistic graph partitioning problem;
also in network reliability theory many probabilistic routing problems are met ([3]).

Definition 1. An NP optimization (NPO) problem II is commonly defined as a fourtuple
(P,S, vp,opt) such that:

¢ P is the set of instances of Il and it can be recognized in polynomial time;

e given P € P (let n be the size of P), S(P) denotes the set of feasible solutions of P;
moreover, for every § € S(P) (let |S| be the size of S), |S| is polynomial in n; furthermore,
for any P and any § (with |S| a polynomial of n), one can decide in polynomial time if
S e S(P);

e given P € P and S € S(P), vp(S) denotes the value of 5; vp is polynomially computable
and is commonly called objective function;

¢ opt € {max, min}. il

Based upon definition 1, we will try to give in what follows a formal definition for PCOPs (under
the a priori thought process).

In [2, 3, 11], a thought process called in the sequel a priori methodology is adopted. Consider
an instance P (where all the data are present) of an NPO problem II, a sub-instance I of P
and an algorithm U (called modification strategy), receiving S € S(P) (called e priori solution)
as input. Roughly speaking, the a priori methodology consists in running U in order to modify S
and to produce a new solution, dealing with the (present) sub-instance I of P.

The a priori methodology together with the re-optimization one (an exhaustive computa-
tional technique) are the only ones used until now in the study of PCOPs. In {2, 3, 11}, particu-
lar PCOPs are studied, but no formal definition of what a PCOP is (in the a priori framework) is
given. In what follows in this section, we draw a formal framework for the a priori probabilistic
combinatorial optimization.



Definition 2. Consider an NPO problem II = (P, S, vp,opt) and a modification strategy U
medifying § and producing a feasible IT-solution for I. The probabilistic version PII of II is a
quintuple (Z, S, U, Ep(P§), opt) such that:

o T is the set of instances of PII defined as Z = {IP = (P,Pr)}, where P € P and Pr is an
n-vector of occurrence-probabilities; T can be recognized in polynomial time;

o given P = (P,Pr) € I, S(IP) = S(P)

¢ U is a modification strategy, i.e., an algorithm which, given a solution § € S(P) and a
sub-instance I of P, receives S as input and computes a feasible II-solution for I;

o given P € T and § € S(PP), Epr(PY) denotes the value of S; if p; = Pri], i € P,
is the occurrence probability of datum! ¢, F(I3) and F(I}) are the solution obtained
by running U(8) on I and its value, respectively, Pr[I] = [[;c;2: [L;cp\ (1 — ps) is the
“occurrence” probability of I, then Fpn(P§) = ¥ ;cp PriI]F(IY); Epn(PY) is commonly
called functional; . -

e opt is the same as for IT. I

The complexity of PII is the complexity of computing § = argopt{Ep(Pg) : § € S(P)}.
Dealing with definition 2, the following remark must be underlined.

Remark 1. In definition 2, U is part of the instance and this seems somewhat unusual with
respect to standard complexity theory where no algorithm intervenes in the definition of a prob-
lem. But note that U is absolutely not an algorithm for PII, in the sense that it does not compute
S € S(P). It simply fits S (no matter how S has been computed) to I. I

Moreover, let us note that changing U one changes the definition of the problem itself. In other
words, given a deterministic problem II, the probabilistic problems induced by the quintuples
Q1 = (Z,5,U1, Epn(P§),opt) and Q2 = (Z,S,U2, Epn(PY?),0pt) are two distinct PCOPs.
Moreover, as we will see in the sequel, the choice of the modification strategy plays a crucial role
in the complexity of the problem given that a strategy may or may not allow inclusion in NP.

A common thought process dealing with a PCOP PII is first to express Epn(Pg) in an explicit
way. Such expression of the functional allows to precisely characterize the a priori solution
optimizing it and, consequently, to decide if § can or cannot be computed in polynomial time.
Of course, if § cannot be computed in polynomial time, it is very interesting to decide if at least
the functional itself can be computed in polynomial time (in other words, if the problem at hand
is or is not in NP). This remark introduces a (perhaps the most) meaningful difference between
probabilistic and deterministic problems. The general formula of the functional as it is given in
definition 2 (as well as in PCOP-literature) suggests that, in general, exhaustive computation
of Epn(Pg) requires O(2") distinct computations. Consequently, a positive statement about
inclusion of PII in NP is not immediate, at least for a great number of PCOPs. Of course, in
many cases, functional’s computation can be simplified and performed in polynomial time, but
as we will see in the sequel, this is not always the case.

Given a graph G = (V, E) of order n, an independent set is a subset V' C V such that not any
two vertices in V' are linked by an edge in @, and the maximum independent set problem (IS)
is to find an independent set of maximum size. A natural extension of IS which will be also
mentioned and discussed in the sequel is the maximum-weight independent set (WIS). Here, the

1This datum can be a vertex if we deal with graph-problems, or a set if we deal with optimization problem in
set-systems, etc.



vertices of the input-graph are provided with positive weights, and the objective becomes to
maximize the sum of the weights of the vertices in an independent set.

An instance of probabilistic independent set (PIS) is a pair (G,Pr) and is obtained by as-
sociating with each v; € V an “occurrence” probability p; and by considering a modification
strategy U transforming feasible IS-solution § of G into an independent set for the sub-graph
of G induced by a set I C V. As mentioned above, the objective for PIS is to determine the a
priori solution & maximizing the functional Eps(GY).

Let us note that PIS is quite different from PCOPs already studied ([2, 3, 11, 12]). There,
Euclidean versions of minimization routing-problems (such as the traveling salesman, or the
shortest path, or the minimum spanning tree), all of them defined in complete graphs, are
considered. For all these problems only one modification strategy, consisting, given an a priori
solution, in removing absent vertices (as our strategy Ul introduced in section 2) is considered.
Since for this kind of problems any feasible solution is a connected subgraph of the input-graph
and since this latter graph is supposed complete, there always exist a proper (and easy) way
to connect the vertices of the surviving in order to construct a feasible solution for the “present
sub-instance”. Such strategies seem efficient for minimijzation problems. On the other hand,
for PIS, since it is a maximization problem, strategies as Ul are, as we will see later, rather
inefficient and lead to low-quality solutions. Finally, no particular restrictions are imposed here
on the input-graphs.

Except for its theoretical interest, PIS has also concrete applications. In [7], we have stud-
ied some aspects of the satellite shots planning problem. We have proposed a graph-theoretic
modeling for this problem and we have proved that, via this modeling, the solution of the prob-
lem studied became exactly the computation of a maximum independent set in a kind of graph
called “conflict graph”. However, we have not taken into account that shots realized under strong
cloud-covering are not operational. Consequently, it would be natural to also model weather fore-
casting. This can be done by associating probability p; with vertex v; of the conflict graph; the
higher the vertex-probability, the more operational the shot taken. Such a model for the satel-
lite shots planning problem allows, given an a priori IS-solution, computation of the expected
number of operational shots.

There exist two interpretations of such an approach, each one characterized by its proper
modification strategy:

~» plan is firstly executed and one can know only after plan’s execution if a shot is operational;
in this case, one retains only the operational ones among the shots realized; this, in terms
of PIS, amounts to application of strategy Ul introduced in section 2;

o weather forecasting becomes a certitude just before plan’s execution; in this case, starting
from an a priori IS-solution, one knows the vertices of this solution corresponding to non-
operational shots, one discards them from the a priori solution and, finally, one renders the
survived solution maximal by completing it by new vertices corresponding to operational
shots; this amounts to application of other strategies, for example the ones denoted by U2,
U3, U4 in the sequel and introduced in section 2.

Let us note that the probabilistic extension of the model of [7] can also be used to represent
another concept, modeled in terms of PIS, where randomness on vertices represents this time
probabilities that the corresponding shots are requested. Shot-probability equal to 1 means that
this shot has already been requested, while shot-probability in [0,1] means that the corresponding
shot will eventually be requested just before its realization. The corresponding PIS can be
effectively solved by applying strategies U2 ([13]), or U3, or U4.



In what follows we consider maximal® (although not necessarily maximum) a priori inde-
pendent sets and use five modification strategies, Ui, i =1,...,5. For Ul and U5 we express
their functionals in & closed form, we prove that they are computed in polynomial time, and we
determine the a priori solutions that maximizing them. For U2 and U3, the expressions for the
functionals are more complicated and it seems that they cannot be computed in polynomial time.
Due to the complicated expressions for these functionals, we have not been able to characterize
the a priori solutions maximizing them. Finally, for U4, we prove that the functional associated
can be computed in polynomial time, but we are not able to precisely characterize the optimal a
priori solution maximizing it. For all the strategies studied we also study the complexity of ap-
proximating optimal a priori solutions. Let us, once more, recall here that the strategies studied
introduce in fact five distinct PCOPs denoted in the sequel by PIS1, PIS2, PIS3, PIS4 and PIS5,
respectively. Finally, we study the probabilistic version of a natural restriction of IS, the one
where the input graph is bipartite.

In the sequel, given a graph G = (V,E) of order n, we sometimes denote by V(G) the
vertex-set of G. We denote by § a maximal solution of IS of G, by a(@) its cardinality, by S* a
maximum independent set of G, by &*(G) its cardinality, by S an optimal PIS-solution (a priori
solution) and by &(@) its cardinality. Moreover, by I'(v;), ¢ = 1,...,n, we denote the set of
neighbors of the vertex v; and the quantity |I'(v;)] is called degree of v;; by I'(V'), V! C V, we
denote the set Uyev:I'(v;); also, g = miny, v {{T'(v;)|}, Ag = maxqyev{|T(v;)|} and pg is the
average degree of G, finally, by Pr[v;] = p;, we denote the fact that the presence probability of
a vertex v; € V equals p;. Given a set I C V, we denote by G[I] = (I, Ey) the subgraph of G
induced by I (obviously, there are 2™ such graphs). Given a maximal solution S of IS (the a
priori solution) in &, we denote by S[I] the set SN J. For reasons of simplicity, the functional
associated with PIS on graph G is denoted by E§ (= ngv Pr[I}F(I3)).

2 The modification strategies and a preliminary result

In what follows we denote by GREEDY the classical greedy IS-algorithm. It works as follows:
it orders the vertices of V in increasing degree-order, it includes the minimum-degree vertex
in the solution, it deletes it together with its neighbors (as well as all edges incident to these
vertices) from V' (E), it reorders the vertices of the surviving graph and so on, until ail vertices
are removed. Moreover, we denote by SIMGREEDY, a simplified version of GREEDY where after
removing a vertex and its neighbors, the algorithm does not reorder the vertices of the surviving

graph.

2.1 Strategy Ul

Given an a priori IS-solution § and a present subset I C V, modification strategy U1l consists in
simply moving the absent vertices out of S.

BEGIN (*U1(G,S)*)
OUTPUT F(I3!) < 8[I] +~SNTI;
END. (#Uix)

2.2 Strategies U2 and U3

Modification strategy U2 is a two-step method: it first applies U1 to obtain S[I], it next applies
GREEDY on the graph G[I] = G[I \ {S[I} UT(S[I])}] and, finally, it retains the union of the two
independent sets obtained as final IS-solution for G[I].

2If we add a vertex, the result is not an independent set.



BEGIN (¥U2(G,S) /U3(G,S)/*}
S[I] «— U1(G,5);
6¢[I] < 6[1\ {s[T] UT(S[T])};
S[T] « GREEDY(G[T)); /8[%] «— SIMGREEDY(G[I]);/
OUTPUT F(IF%) « s[T}usiI]; /0UTPUT F(I3°) « S[T]uUs[i];/
END. (U2 /U3/%)

Finally, strategy U3 is identical to U2 modulo the fact that, instead of GREEDY, algorithm
SIMGREEDY is executed (instructions between slashes above refer to modification strategy U3).

2.3 Strategy U4
Strategy U4 starts from S[J] and completes it with the isolated vertices (vertices with no neigh-

bors) of the graph G[I].

BEGIN (*U4(G,S)*)

S[I] « U1(G, 8);

G[T] « G[1\ {S[T]UT(S[I)}]; _

OUTPUT F(ISY) «— S[IJU{vi € I:T(v;) =0};
END. (*U4x)

2.4 Strategy U5

Strategy U5 applies the natural relation between a minimal vertex cover® and a maximal in-
dependent set in a graph, i.e., a minimal vertex cover (resp., maximal independent set) is the
complement, with respect to the vertex set of the graph, of a maximal independent set (resp., a
minimal vertex cover).

BEGIN (*U5(G,S)*)

(1) C+«V\S8;

(2) C[I]«~¢nI;

(3) R« {v; €C[I]:T(v;) =0};
(4) C[1] —C[I] \R;

(5) OUTPUT F(I) — I\C[I];
END. (*U5%)

2.5 A general mathematical formulation for the five functionals

Theorem 1. Consider an a priori solution S of cardinality o(G) for G; consider strategies Uk, k

=1, ..., 5 With ecach vertez v; € V we associate a probability p; and a random variable X,Pk ’S,
k=1, ..., 5 defined, for every ICV, by
Ue,S _ 1 y,eF (ng)
X = { 0 otherwise (1)
Then
EF=Ym+ > P[x™=1]. (2)

BES »E(V\S)
In particular, if, for each vertez v; € V, p; = p, then

EF=pa(@)+ 3 Pr [X;”"S = 1] . (3)
v E(V\S)

8Given a graph G = (V; E), a vertex cover of G is a set V' C V such that for any viv; € E either vi, or v;
belongs to V'.



Proof. By expression (1), F(ITF) =37, ka’s . So,

B = Y P () =3 P> X =33 prinx*

cv cv i=1 i=1 ICV
n 7 n
= YB(xM) =Y P xS =1] = YPrx =1 (lues) + Liugs))
i=1 =1 d==1
= ZR:PI‘ [X;J'k,S = 1] 1{'0,:65} + iPI‘ [_szkvs = ]_] l{ﬂiﬁs}'
=1 fe=l

But, if v; € S, then necessarily X = 1, VI such that v; € I; so, Pr{X;*° = 1] = p;, v; € 5,
and consequently,

EUk_—,Ep;-I-ZPr [ka75=1] 1{v=¢5}=2pz+ Z Pr{XzUk,S___l:l
nES i=1 v;ES v E(V\S)

If p; = p, v; € V, then the result of expression (3) is immediately obtained from expression (2). I
Let us note that, as it can be easily deduced from the proof of theorem 1,the above result

holds for any strategy which it first determines S[J], it next computes an independent set S[I]
on G[I], and it finally considers as sclution for G{I] the set S[I] U S[I].

3 The complexity of PIS1

3.1 Computing optimal a priori solutions
From expression (1), we have Xf LS = 0, Vo; ¢ S, and consequently, Pr[X;j LS = 1] = 0, for
v; € V'\ S; so, the following theorem is immediately derived for strategy U1.

Theorem 2. Given a graph G = (V, E), an a priori solution S and the modification strategy Ul,
then Bt = 3. g i, and is computed in O(n). Optimal PIS1-solution 8§ is o mazimum-weight
independent set in a weighted version of G where vertices are weighted by the corresponding
probabilities. If p; = p, Yu; € V, then EX = pa(G); in this case, § = §* and Egi = pa*(G).

The characterization of § given in theorem 2 immediately introduces the following complexity
result for PIS1.

Theorem 3. PIS7 is NP-hard.

We now show that for p; = p, v; € V, a mathematical expression for EZ' can be built directly
without applying theorem 1 (used in néxt sections for the analysis of other strategies). Given
that 0 < |F(I§)| ' F(IE) = |SH]] < (@), we get:

a(@)
F(I8) =[S Y s~y

=1
So, the functional for Ul can be written as

a{G) «(G)
B = Y PAIISUI Y lgsu=ny = D¢ D Prilllgsp=s
Icv i=1 i=1 ICV
o(G) n—oG)
. G i a(G)—i - oG ] —o(G)~j
= S i(*Da-nee T (P pa-pre@7 = pao)
i=1 j=0

6



where in the last summation we count all the sub-graphs G[I] such that |S[7]| = i and we add

their probabilities; also, ZFO‘(G) C’n (G i (1~ p)*~C)~i = 1, The above proof for E§' can
be generalized in order to compute every moment of any order for UL. For instance,

(@)

B[(@8)7] = S pe (ag) = 3 (7 )~ 90 = peiG)po@) +1-9

Icv i=1

and, consequently,
varf = B[ (G¥)*] - (B%)® = (@)1 - p).

So, for U1, the random variable representing the size a(G) of the a priori solution follows a
binomial law with parameters a(G) and p.

3.2 Approximating optimal solutions for PIS1

In this section we show how, even if one cannot compute the optimal a priori solution in poly-
nomial time, one can compute a sub-optimal solution, the value (expectation) of which is always
. greater than.-a factor times the value {expectation) of the optimal one. For this, we shall propose
in what follows well-known (in the theory of polynomial approximation of NP-complete prob-
lems) polynomial algorithms computing “good” sub-optimal solutions, and will show that, also
in probabilistic case, these algorithms work well.

Let us first recall that given an instance P of an NP-complete problem II, a common way
to estimate the capacity of a polynomial approximation algorithm 4 in finding good sub-optimal
solutions for II, is by evaluating its approximation ratio ([8]), i.e., the ratio A(P)/OPT(P),
where A(P) denotes the value of the solution computed by A on P and OPT(P) denotes the
value of the optimal solution of P. Then the approximation ratioc of A for a maximization
problem II is the quantity inf{A(P)/OPT(P) : P instance of I1}; the closer this ratio to 1, the
better the approximation algorithm.

Recall that as we have already seen in section 3, PIS1 is equivalent to a weighted IS-problem,
where each vertex is weighted by the corresponding probability. Consequently, the following
theorem holds immediately.

Theorem 4. If there ezists a polynomial time approzimation algorithm 4 solving WIS within
approzimation ratio p, then 4 polynomially solves PIS1 within the same approzimation ratio p.

In [6], an algorithm is developed for WIS achieving approximation ratio the minimum value
between logn/(3(Ag + 1) loglogn) and O(n~%®). Using this algorithm in theorem 4, one gets
the following corollary.

Corollary 1. PISI can be approzimated within

. logn —4/5
i { 3(Ag + 1) loglogn’ 0 (’n }

The characterization of PIS1 in terms of a weighted IS-problem draws not only issues for finding
reasonable a priori sub-optimal solutions but, unfortunately, limits the capacity of the problem
to be “well-approximated” since, via this characterization, all the negative results applymg to IS
are immediately transferred to PIS1 also. So, PIS1 is hard to approximate within nl™¢, for any
e > 0 ([10)).




3.3 PIS1 in bipartite graphs

Theorem 5. Consider a bipartite graph B = (Vi,V,Eg). Then, B3 = Y vesPi and is
computed in polynomial time. The optimal a priori solution Sisa mazimum-weight independent
set in B considering that its vertices are weighted by the corresponding presence probabilities, and
can be found in O(n'/2|Ep|). Consequently, in bipartite graphs, PIS1 € P.

Proof. Concerning the expression for E¥* and the complexity of its computation, the proof is
the same as the one of theorem 2.

Determining an optimal IS-solution in a bipartite graph is of polynomial complexity in both
weighted and unweighted cases (see [9] for the unweighted case; for the weighted one, we quote
here the result of [5] where the polynomiality of weighted IS in a class of graphs including the
bipartite ones is proved). I '

4 The complexities of PIS2 and PIS3

4.1 Expressions for Ef and EF
Let Ai = Y rcv, snij=: Pr{I|F(IZ*). Then, EZ can be nicely written as follows:

ICV IV =0 =0 icv
= |SAT | =i

a(d) a(G) e(G)
EE =S PrIF (I¥) = (Z 1{|3m,=,-}) PrilFIR =Y | > PIF(IF) | =D 4
=0
Quantities 4;, i = 1,...,a(G) (Ag = 0) are very natural and interesting from both theoretical
and practical points of view. For instance, formula for E§ given by expression above holds for
every probability law; also, computing analytical expressions for A; seems to be an interesting
problem in combinatorial counting of graphs; moreover, thanks to the simple relation between E§
and 4;, ¢ = 1,...,a(G), analytical expressions for the latter would produce explicit expressions
for the former. Unfortunately, expression above for Eg2, even intuitive and smart, does not give
any hint allowing precise characterization of S.
In proposition 1, the proof of which is given in appendix A, Ay(q) and Ay (g)—1 are explicitly
computed, for the case of identical vertex-probabilities. However, the explicit computation for 4;s
of lower index produces very long and non-intuitive expressions.

Proposition 1.  Let I'(v) = T(v) \ {T(v) nT(S*\ {v})}, & = |{v € §* : T'{v) = O},
& =a*(G) = {1, and p; =p, Yv; €V. Then,

Ap = o (Gp* @

Apiger = PO 1-p) | (G~ 1+ (@)~ Y (1-p)" )
vES*
T (v)s£0

We shall now give an upper bound for the complexity of computing E*. For this, we will analyze
(as an intermediate step) strategy U3 introduced in section 2.

Let G = G[V\ 8] = (V',E'), and let V' = {v1,...,U 4@} be the list of vertices of G’
sorted in increasing-degree order; let us denote by V; the set of the i first vertices of V' and
let G, = G'[Vi] (of course, for G} the vertices of V; are not sorted in increasing-degree order).
Let us denote by S; the independent set found by U3 on (the present sub-instance of) Gj, and
by q; its cardinality, i = 1,...,n — a(G). Finally, let a(G[I']) be the cardinality of the solution
provided by U3 when applied in graph G{I'], I' C V.

8



Theorem 6. .

n—a{G)
E(na) = 3. piPri¢(Siy)]

g=1

E§3 = Eg-i +FE (an_a(G)) .

If we denote by T(E(on_oc))) ond T(ES) the computation times of E{oy_qo()) ond EY,
respectively, then T(E(an—ae))) = 02" 9D) and T(EP) = O(2n~)},

Proof. E(o;) = E(o;|v; present)p; + E(a;|v; absent)(1 — p;). Moreover, for strategy U3 we have
the following relation, setting Sp = @, I'(Sy) = 0 and ag = 0:

o = { ®i—1 (v} N S # @-

a;-1+ 1 otherwise
So, E(o;|v; present) = E(ai—1) + Pril'(v;) N S;—1 = 0]; consequently,
E(e) = piF (@i-1) + i Prvi ¢ T(Si-1)} + (1 - pi) B (i) -
Since E(ag) =0,
BE(w) = Y pjPro; ¢ T(Sj-1)]
i=1

n—ea(G)
E(on-a@) = D piPrlu¢T(5i)].

Now, let I' = f(I) = I\ {S[I)UT(S[I])}. This set represents the subset of vertices of I which
are not contained neither in S, nor in the neighbor-set of S§[I]. Consequently, U3 will be applied
on G[I'}; so, F(I$¥) = |S[I]] + a(G[I']) and consequently

EP = Z Pr{I\S[1]] + Z Prlle (G[I') = EY + Z Pr{I]e (GI')

ICvV IV IV
= Egl + Z Z l{f(_[}:p]. PI‘[I]OJ (G[ = + Z Z PI‘ I]a
ICV \I'CV TV ev

Since Pr[I'] = 3 jcv 4(ny=r Pr[I], we get
¥ =EF+ > Pr{l'la(Gl) = B + E (eh-o@)) -
Icy

Let us now introduce the random variable C; representing the solution of PIS3 whenever we
consider only the present vertices of V;, i.e., when we apply the greedy algorithm implied by
strategy U3 in the graph induced by the present vertices of V;.

Ci—1 v; 18 absent
Ci-1 v; is present and T'(v;) NGy # 0
Ci—1 U {v;} w;is present and I'v;) N Ci—y = 0

We then have E(ap_q(q)) = =28 p; Pr[T(v;) N Ci_y = 0.
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In order to prove the result of the theorem, we prove that the quantity Pr{l'(v;) N Ci_; = 0]
is not computable in polynomial time.

Pr [I‘(v,;) NC_; = @] = (1-— Pi—1) Pr [F ()N Cip = @]

+p;i_1 Pr [F (1) NCi_g = @] Pr [P (’U@'_l) NCia # @]

+ pi1 Pl () N {Cima U{vi-1}) = O] Pr T (v;-1) N Ci_p = 0]
= (1-pi) PrL (v} NCiz =]

+pi—1Pr{T () N Ci_o = 0} (1 — Pr[I" (15-1) N Ciz = 1))

+Pi—1 Pr T (v;) N (Cima U {521 }) = 0] Pr[T (v;~1) N Ci_2 = 0]
= Pril'(nu)NCi—g =0

— Pi~1 PrI' (v;) N Cig = O] Pr [T (vi—1) N Ci—2 = 0]

+p;—1Pr [F (Uz) n (C'g_z U {’U,;_l}) = @] Pr [I“ ('Uz'_l) N Ciung = EJ] .

On the other hand,

Pr[[ {v) N (CimaU{vi=1}) = 0] = Pr[(T (v} N Cizz) U (T (w) N {viz1}) = 0]
Pr{(T (v;) N Ci—2 = B) N (T (v;) N {v;_1} = 0)]
= Prl(0:) N Cica = O Lirtuynius-i)=0}-
Consequently,

Pr [F ("Ug') n Ci—l = @] = Pr [P (’Ui) M Ci-.z = @]
—p;—1 Pr [F (’U,‘) NCims = @] Pr [1" ('Uz'._]_) NC;_g = @]
+pic1 PrT(v:) NCig = W] Pr [T (v1) N Cia = @] Lir(uo)nfvi_y }=0) -

Let ¢;—1(v;} be the computational time of Pr[I’(v;) N C;_; = §]. By the above equalities we easily
deduce that
tim1 (vi) = tig (v3) + tig (vie1) -

In order to compute this recurrence relation, at each step we need to know two terms of the
precedent step; so for the computation of Pr[T'(v;) N Ci—1 = ], we need 2¢~1 computations and
expression for T(EY®) immediately follows. I

Algorithm U3 is, as it has been already noted, a simplified version of algorithm U2. Moreover,
there exist graphs where the two algorithms give the same results by performing identical choices
and deletions of vertices (for example, consider a graph on n isolated vertices). Consequently,
computation time of U3 is a (worst-case) lower bound for the one of U2 and the following theorem
holds.

Theorem 7. Let T(Eg) be the computational time of ER2. Then, T(EF) = Q(T(E¥)).

The result of theorem 6 simply gives an upper bound on the complexity of computing Eg"* and
does not prove that EJ® is not computable in polynomial time (if this was true, it would be
a very interesting result since, in this case, PIS2 and PIS3 would not belong to NP). In fact,
the result of theorem 6 is based upon a particular recursion-formula and a particular way for
computing it. In any case, one can easily prove that PIS2 is intractable (following the notation
in the appendix of [8], PIS2 is a kind of starry problem).

Indeed, if one can polynomially determine an optimal a priori solution § for PIS2, then one
can simply consider an instance of IS as a PIS2-instance with p; = 1, Vo; € V. It is easy to see
that, in this case, § = §* and the following theorem immediately holds.

"I‘heorem 8. Unless P=NP, PIS2 is computationally intractable.
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4.2 Bounds for Eg?

For lack of characterizing the complexity of computing E32, we build in this paragraph upper
and lower bounds for it.

Theorem 9. Let A be the mazimum degree of G[I1. Then, on the hypothesis of distinct
verter-probabilities:

I
sz+2]:[pz]:[ 1—Pz A‘_‘ < \sz'FZszl—I l—p,, I} (4)
HES ICVviel gl 7 ES ICV el vl
while, on the hypothesis of identical vertez-probabilities:
&)+ 3 pll —pyri Ll ’ ’ - < B <pa(@) + Y o1 - pr ]1( (5)
cv Icv
Alwoys under the latter hypothesis: pn/{A¢ + 1) < EF < n(A¢ +p)/(Ag +1).
Proof. Remark first that |S[I]] < F(I2) < |S[D] + I\ (S[I)) u (TSI N )| = || + |1};
consequently,
BE < Y Polr) (151 + ‘ID <B4+ Z Prll] ‘Ii S pi+ Y Prl) ‘Il (6)

IV wes Icv

On the other hand, Pr[f] =], ¢; pi [L,,¢r(1—pi). The upper bound results from the combination
of expression (6) and the one for Pr[f].

We now prove the lower bound for E¥2. Let a(G{I]) be the cardinality of the solution provided
by U2 when applied to G{I]; we then ha,ve

=Y nt+ Pl (¢[) =T n+ X [InIla-me(e[l]) ©

wes Iy wES ICVwel el

For a(G[I]), since the greedy algorithm implied by U2 provides a maximal independent set,
the following holds ([1]): «(G[I]) > |I|/(A + 1). By substituting the expression for o(G[I]) in
expression (7}, we obtain the lower bound claimed.

In the case where all the vertices have the same presence probability p, 3°, 52 = pa(G)
and Pr[I] = pll(1 — p)*~1| and expression (5) follows immediately.

In order to obtain bounds implied by the last expression of the theorem (always assum-
ing identical occurrence probabilities), we use inequality o{G) > n/(Ag + 1). Moreover,

Crcv (L= p)" M =1 (s0, Eycy pHI(1 = p)»~11 2 0), and
[f‘ = [IN{SIHUTSIPH < LA SH =\ (SN D[ < [VA(SNV)[ = [V\ 5] =n~aG)

So, ZICVPII](I p)» i< (n- (G))chvpm 1—p)» Ul = n — a(G) and combining the
above inequalities, we obtain the claimed bounds. §

4.3 Approximating optimal solutions for PIS2

4.8.1 Using argmax{}_, g pi} as a priori solution

Set § = argmax{},, cgpi : S independent set of G} and suppose that it is used as a priori
solution for PIS2. Then, the following holds.

11



Theorem 10. Approzimation of § by § = argmax{},, .oPi: S independent set of B} guar-
antees for PIS2 approrimation ratio

Prmin 1
max , .

Proof. By expression (7) (proof of theorem 9), and since a(G[I]) € @

*

(G), we get

S m<EE=Y p+ Y Prllla (6lN]) <07(@) (pm + 3 Pl n) &) (1+pm)  (8)

v€ES vES icv icv
Since, § = argmax{)_, .spi: S independent set of G}, then
Ef > pi2 Y pi 2 Pminc’(G) 9)
vz-eS' 9 ES*

Remark now that expression (8) holds also for Egz; consequently, combining expressions (8)
and {9) we obtain :
EU2 Pmin®¥ (G) Pmin (10)
EU2 g (1 + Pmax) o* (G) 1 + Prax

On the other hand, remark that from expression (2)

< p (11)

eV

and from the lefthand-side of expression (4}
EE2D m (12)
v,-eS‘

Combination of expressions (11) and (12) gives

2 pi
Egz % €S 1 (13)
E? vaz' Ag+1

%E

where the last inequality (remark that S is maximal) is the weighted version of Turén’s theo-
rem ([16]}).
Expressions (10} and (13) conclude the theorem. Il

4.3.2 Polynomial time approximations for PIS2

The set S considered in the previous paragraph cannot be computed in polynomial time. Instead,
suppose that one uses a polynomial time approximation algorithm A (achieving approximation
ratio p) for (unweighted) IS in order to compute a solution SOL (obviously, we can suppose
that SOL is maximal) on G where vertex-probabilities are omitted. Then, expression (9) in the
proof of theorem 10 becomes

E§31, > Prin|SOL| 2 pminpe™(G)

and with exactly the same arguments as in theorem 10, the following theorem can be proved.

12



Theorem 11. If there exists a polynomial time approzimation algorithm 4 solving IS within
approzimation ratio p, then algorithm 4 polynomially solving PIS2 within approzimation ratio

1 DPmin
ma‘X{AG+ T (1+pm)p}'
If 4 is the algorithm of [6], then:

e in the case of fized vertex-probabilities, PIS2 can be approzimately solved in polynomial

time within ratio )
. Og " ~4/5
mm{O (3(Ag+1)loglogn)’0(n )}

o in the case where probabilities depend on n, PIS?2 is polynomially approzimable within ratio

max{AG+1’(l+pmax) mm{O (3(1&..;;—i—l)log;log’r.z)’O(ﬂ ) '

4.4 PIS2 in bipartite graphs
Theorem 12. Consider o bipartite graph B = (V1,Vs, Eg). Then,

Ef=>m+y.m [ -p5)

v EV) viEV2 v €0(v;)

and can be computed in polynomial time. Conseguently, in bipartite graphs, whenever color-
class V1 (or V3) is considered as a priori solution, PIS2 € NP.

Proof. Let us first note the following:

s if all the vertices of V7 are absent, then the solution provided by U2 is exactly the present
vertices of the color-class V5;

e if all the vertices of V] are present, then, despite the state of the set V3, the solution of the
present sub-instance of B is exactly the color-class Vi;

¢ in the case where a part of the vertices of V] is present, the final solution for B[I] will
eventually include some vertices of V5.

Applying the result of theorem 1, we get:

B =3 p+ Y Pr[xPV =1 (14)

v;€V] 1EV:

(recall that Pr[X;m’S = 1] represents the probability that vertex v; ¢ S will be chosen when
applying U2).

Note also that Pr[X,}Jz’V1 = 1], v; € V, depends only on the present vertices of I'(v;); conse-
quently, it does not depend on the other elements of Vo. Henceforth, insertion of the elements
of V3 is performed independently the ones from the others and v; € Vo will be introduced in the
solution for B[I] only if [(w;) NVi[l] = 0. So, Pr[X]>" = 1] = p; [T, ergws (L — -

Replacing this expression for P{X}>"* = 1] in expression (14), we obtain the result claimed

for EJ?. One can see that this expression implies the computation of E?,f in at most O{n?)
steps. Il

From the proof of theorem 12, one can see how the particular structure of the bipartite graph
intervenes in a significant way to simplify the expression for the functional and, consequently, its
computation. Expression (14) holds thanks to the fact that the vertex set of B can be partitioned
into two independent sets.

13



Corollary 2. Suppose Pr[v;] = p, v; € V1 U Ve, denote by n1 and ng the sizes of V1 and V3,
respectively, and suppose that ny > ng. Then, EYf = pni+p Y, oy (1 —p)F@. Naturally, EP
is computed in O(n?).

From corollary 2 we can obtain the following fra.ming of E{? by Et for the case of identical
vertex-probabilities: EUf + nap(1 — p)28 g E? < EY} +nop(l — p)®2. So, in reguler bipartite
graphs (i.e., the ones where Ap = 6p = A): E{f = E 2 +nap(l — p)A.

Cons1der set § = argmax{}’, copi : S mdependent set of B} as a priori solution. Then,
considering vertex-probabilities as vertex-weights and using the result of [5], § can be computed
in polynomial time. Moreover,

> pi

Z pi 2 Uﬁev

;€8

Using the expression above together with expression (11), approximation ratio 1/2 is immediately
vielded.

Proposition 2. § = argmax{zvie gPi: S independent set of B} is a polynomial time approz-
imation of 8 guaranteeing approzimation ratio 1 /2 for PIS2 in bipartite graphs.

Obviously, from theorem 12 and the discussion just above, the same approximation ratio can be
yielded if one uses .':1.:¢'gn:1aw-c{ZmGV1 pz-,ZZ,,,.eVZ pi} as a priori solution.
5 The complexity of PIS4

5.1 An expression for EZ
Recall that strategy U4 starts from S[I] and completes it with the isolated vertices of the
graph G[I].

‘ Proposition 3. Given a graph G = (V, E), an a priori independent set S and the modification
‘strategy U4, then

E@Y) = Yo+ ¥ m ] @-n)

wES uE(VAS)  vi€Tg(w)
x 11 ((1 - +pe [1- [ @ —pz))) (15)
v €Ny 5 (wi) v Els{vg)

where Ts(v;) = T'(v;) NS and Tyng(v;) = D(vi) N{(V\S). B(G) can be computed in polynomial
time. If p; = p, for all v; € V, then

E(GY) =pa@)+ Y p-pfstdl J[  (1-p-plTsel)  (6)

% e(V\S) v, €Ty g(v:)

Proof. Set B; = Pr[X¥ 45 — 1. Then

Bi=Y_ Prll]L ey, er(mue))

Icv
v El

Let v; be any vertex of V'\ $ and let I be any subset of V' containing »;. Obviously,

v € F(IE) < v isolated in Gl = (v; € G[f]) A (v; has lost all its neighbors in I).
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Since v; ¢ S, v; € I only if there does not belong to the neighborhood of any vertex in S[J], i.e.,
v € G[I] <= Te(v;)NI =0 (17)

On the other hand, all the neighbors of v; in G[I] have been removed iff Tyrg(vs) N I=9. This
last condition is satisfied only if every vertex of I'y,\g(v;) is either absent or (being present) has

been removed from I because it belonged to the neighborhood of a vertex in S[I]. In all,

Tyg(w) Ni=f Yv; € PV\S(”@') ({v; is absent } v (18)
((v; is present) A (Ju, € I'(v;) N S such that vy is present)))

From relations (17) and (18) and the discussion above we get (v; € V' \ §):

B, = ZPr[I]l{v.-EF(I?)} = ZPr[I}l{ viecl] }

Icv Icv Tyygividni=a
v el wel

= ZPr[I]l{WEG[ﬂ}l{FV\s(W)”f=@} - ZPr[I]l Laninted l{rv\s(”i)nf=@}

Igv Icv Tg(v;)nr=0
v;EJ =
= 3 Prllgaar=wnlmsoonr=0y 11 (Lungsi=0y + Lingui=(o; 1} L{ars(u;)20)
ev v €l s (i)
=p [ -2 ] ((1—pj)+pj (1— 1 (1—101))) (19)
v €05 (vs} v; € v\ g{wv:) v €l s (wy)

Replacing the second term of expression (2) by expression (19} we easily obtain expression (15).
Moreover, one can see that computation of E(GZ) in expression (15) takes at most n?
multiplications. Also, setting p; = p, Yo; € V, we immediately obtain expression (16). I

5.2 Using $* or argmax{}., . .spi} as a priori solutions

Expression (15) although polynomial does not allow precise characterization of the optimal a
priori solution & associated with U4. In theorem 13 below, we restrict ourselves to the case of
identical vertex probabilities and suppose that o*(G), a maximum-size independent set of G is
used as an a priori solution. Our objective is to estimate the ratio E% /EE.

Theorem 13. Under identical vertez-probabilities:

B ()
E? n

The ratio o*(G)/n is always bounded below by 1/(Ag + 1).
Proof. Set |I's(v;)| = ki, [I'yng(i)| = |T'(v;)| — k;. Then expression (16) becomes

BGH) =pu(@)+ Y pi-p% TI (1-p1-n).

wE(V\S) S ERVICH]

Also, note that, Vk, kx < Ag —1 (v; and vy are in V'\ § and v;v;, € E) and E(G) is increasing
in kk. Then,

E(G%) < pa@)+ 3 op-p% [ (-p-ptey
wme(V\S) vR€Ly g(v:)
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< pa(@)+ 3. p—p) (1~p(1 —pyret) DIk
‘U,:E{V\S')
—pLl-p(t—p)e-1
1-pgl p\(\{ ) p&(G) + Z P (1 —p(1 _p)Ag—l)IP(wN
wE(V\S)
S A ) o
< pa(G) + (n—&(@)p (L -p(1-p)7¢7") < pn (20)

On the other hand, if we consider §* as an a priori solution, we get

E(G%) = pa’(@)+ Y p-p)% ]I (1*1’(1“3’3’“'“)

‘UiE(V\S*) ﬂkerv\sn(ﬂi)
1—p(1—p)* 21-p

> p(@)+ > pa-p* I -»

weE(V\S*) v €Ty g (1)
= pa(G) + Z p(1 —p)fi(1 __p)|1"(w,-);~k,-
wE(VAS*)
= pt(@)+ Y p(1-p)f™)
v €(V\5*)
> pa(G) + (n ~ o*(G)) p(1 — p)e
= pa*(G) (1 = (1 - p)2¢) + pn(L — p)* (21)

Combining expressions (20) and (21), we have

a*(G) S 1
n  Ag+1’

B(G%) | (@)

E (thl) z T b

(1-(-pPe) +(1-p)* >

For instance, if G is cubic, i.e., Ag = 3, then a*(G) > n/4 then, E(GH)/E(GY) > ((1/4)(1 -
(1-p)*) + (1 —p)® > 1/4. If, in addition p = 1/2, then E(G§)/E(GY) > 11/32.

The result of theorem 13 can be easily extended in the case where vertex-probabilities are
distinct and § = argmax{}_, .gp: : S independent set of G} is used as a priori solution. More-
over, without loss of generality, one can suppose that S is maximal. Then, from expression {15)
one easily gets:

B(6¥) < Yom+ Y mo= Lo (22)
eS8 U;E(V\é') wEV

B@ > Yn )
wES :

Combining the above expressions we obtain

2 pi
E(G%‘;) S v;e8 ' S 1

E (Gtgg) z v,-,%vpi “ Ag+1

where the last inequality is the weighted version of Turan’s theorem.
Finally, let us note that the same approximation ratio can be obtained if one treats vertex
probabilities as weights and uses as a priori solution the one computed by the greedy IS-algorithm.
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In the weighted case, this algorithm iteratively chooses the vertex maximizing the ratio “vertex-
weight over vertex-degree” and eliminates its neighbors. In this case, if § is the independent set
computed we have ([15])

> P

meV
E(GS) > ) mi> Au

and using expression (22), approximation ratioc bounded below by 1/(Ag + 1) is immediately
concluded.

5.3 PIS4 in bipartite graphs

The particular structure of a bipartite graph, denoted as previously by B = (V1, Va2, F), does not
allow refinement of the result of proposition 3 in order to obtain a better characterization of the
a priori solution maximizing E(G%') and of the complexity of its computation.

However, if argmax{|V1],|V2|} is used as a priori solution, then expression (15) can be simpli-
fied. Plainly, let us revisit it and suppose, without loss of generality, that Vi = argmax{{V1], |V2|}.
So, we have § =V and V \ S = V,. Consequently, for v; € V3, I'(v;) N Va = Dyng(v;) = 0 and
the term HvkeI‘V\s(vs)((l — k) + P61 = [ ers @, j(1 — 1)) (the last product of expression (15)),
computed on an empty set takes, by convention, value 1. So, dealing with bipartite graphs,
expression (15) becomes

EBH =Y m+>.m J[ G-p) (24)

neW €V, o EFVI (U,‘)

In what follows, we will prove that if we use the color-class argmax{}_, v, Pis 2 .1, Pi} 88
a priori solution for PIS4, then it is solved within approximation ratio 1/2. In fact, let ¥ =

argmax{} . v Pis D _y.cv, Piy- Then, by expression (24), we get

; v D

A u

E(BE)> Y mi> (25)
HY

Combining expression (25) with expression (22) we obtain

Ud viE‘%UVzp{
B(BY) i

2(8Y) " udin®

Of course, the same worst case approximation ratio is also achieved if one sees probabilities
as weights and considers the maximum-weight independent set (of total weight at least equal
£0 3~y ev; Pi; this set can be found in polynomial time ([5])) as a priori solution and the following
theorem concludes the discussion above.

Theorem 14. Sets argmax{zweyl i, Evl—eVg P}, and argmaxg independent set of B{Ew,;es pi}
are polynomial approzimations of PIS in bipartite graphs achieving approrimation ratio bounded

below by 1/2.

Finally remark thé,t for the case of identical vertex-probabilities, the result of theorem 14 could
be obtained by direct combination of expressions (22) and (23).
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6 The complexity of PIS5
6.1 In general graphs

We recall that strategy U5 considers the restriction C[I] of an a priori vertex cover in the present
subgraph G[I] of G, it removes the isolated vertices (if any) from C[I] and it finally takes the
complement, with respect to I, of the resulting set.

Theorem 15. Given a graph G = (V, E), an a priori independent set S and the modification

strotegy U5, then
EGH)="m+ > m ] (t-p5). (26)
wuEeS wu€(V\S)  wel(wm)

E(G%5) is computable in polynomial time.

Proof. Lines (1) to (4) of modification strategy U5 in section 2 constitute a modification
strategy, denoted by U in what follows, for probabilistic vertex cover problem. For an a priori
vertex cover C, the functional associated with U is (see [14] for a detailed computation):

Eg=3 m-D>_ m [ (1-pp) (27)

neC v;€C  wyel(w)

Using expression (27), we have the following for E(GP):

E(GY) = %‘/PrmF = 3P (11— F (GlITs) )
I
= Y Pdniz| - Y PR (GmV\s) = Y. Pl Y Lwen - B(Ging)
ICvV ICV cv wEV
= ¥ S Pilipen-FB(GRs)= S m— Y m+ > o» [ -2
eV ICY wEV v &{V\S) v €(V\S) v;el{w)

= Sop+ > om J[ @-pp-0

€S v €(V\S)  wyel(wi}

Expression (26) can be rewritten as

E(G¥) = Zpi- Z D+ Z pi H (1-p5)

%uEeEV 1 e(V\S) w:e€(V\S} v;el(w;)

TN pi(l— II (1“193'))-

it

9 EV v &(V\5) vy €0 (wi)

Since, given a graph G, the quantity ), .y p; is constant, maximization of E(G%) becomes
equivalent to the minimization of 3°, - gy Pi(1 - Hv_.,-er‘(v,-}(l —p;)). But S being a maximal
independent set, V'\ § is a minimal vertex covering of G and in order to find the vertex covering C
minimizing the quantity >, o pi(l — ij er‘(v,)(l P;)), one has simply to consider each vertex
v; € V as weighted by the weight w; = p;(1 — H”J erwy{l — ps) )} and to search for a minimum-
weight vertex cover. Consequently the following theorem characterizes the a priori solution
maximizing E(G%).

Theorem 16. The o priori solution S mazimizing E(GY) is the complement, with respect

to V, of a minimum-weight vertezx cover of G where every vertex v; is weighted by a weight
pi(1 = [Ty eres (1 — p;)). Consequently, PIS5 is NP-hard.

In other words, theorem 16 establishes that, as in the case of PIS1, PIS5 is equivalent to a WIS.
Since weights do not intervene in the ratio obtained in [6], corollary 1 holds also for PISS.
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6.2 In bipartite graphs

Since maximum-weight independent is polynomial in bipartite graphs ([5]), so does minimum-
weight vertex covering. So the following theorem immediately holds.

Thearem 17. The @ priori solution s mazimizing E(Bg.s) is the complement, with respect
to V1 U V3, of ¢ minimum-weight verter cover of B where every verter v; is weighted by a weight
pi(l~ ij er‘(v‘-)(l ~p;)). Consequently, PIS5 is polynomial for bipartite graphs.

7 Conclusions

We have drawn a formal framework for the study of PCOPs and studied five variants of the
probabilistic maximum independent set, defined with respect to natural modification strategies
used to adapt an a priori solution to the “present sub-instance”.

Table 1: Complexities of computing functionals and characteriza-
tions and complexities of computing a priori solutions for several
variants of probabilistic independent set.

| PIS1 Pis2 PIS4 PIS5
General graphs |
T(E) Ofn) 002 %@) 0m) o)
S WIS(GY) hard 7 WIS(GE)
Complexity NP-hard ? ? NP-hard
Bipartite graphs
T(E) O(n) @ on’) o)
S WIS(BY) ? 7 WIS(BY)
Complexity P ? ? P

(@) Polynomial if argmax{|V;}, |Va|} is used as a priori solution.

Dealing with the quality of the solutions obtained we have the following relation for the
same a priori solution S (let us note that, until now, we have not been able to compare E(G¥)
with B(G¥)):

| E(GY) € E(GY) < B(GY) < BE(GY) R ¢)
First inequality in expression (28) is obvious and follows from theorem 2 and expression (26) of
theorem 15. In order to prove the second inequality, remark that (expression (15))

Pk X (1- II (1—291)) >0

vl g(vy)
and consequently,

EGYH) » Sm+ Y, mx JI a-m)x [ @-p

wES we(V\9) v;elg(v;) v €0y g(v;)

> Y pit+ Y, mx II (1—p;)

;€5 v €(V\S) v G(Ps(m)urv\s(w))

= Yu+ Y mx [ @-2) > EGE).

% ES v e{V\S) vy El{w;)
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Table 2: Approximating a priori solutions in general and bipartite g‘raphs.

] S | Approximation ratio
General graphs
PIS1 The one computed in [6] r
The one computed in [6] max { (ﬁ;‘;) r, & +1} (2)
PIS2
—— s {5 )
argman S5 7 )
PIS4
The output of the greedy algorithm AT
PIS5 The one computed in [6] r
I Bipartite graphs
PIS2 argmax{} , o Pi} 2
PIS4 argmax{} ., cs Pi} ;9

@} min{O(logn/(3(Ag + 1)loglogn)),O(n~4®)} if vertex-probabilities
independent of n.

®) o*(G) /n whenever § = §* and vertex-probabilities are identical.

<) The same ratio is achieved considering argmax{3,, cv: Pis Yy, cv, Pi}
as a priori solution.

@ The same ratio is achieved considering argmax{}_, cv, Pir 2_p.cvy Pit
as a priori solution.

Last inequality is due to the fact that for every subgraph G[I], the cardinality of the solution
computed applying U2 will be greater than the one of the solution computed applying U4 since
GREEDY (called by U2) will always add in the solution, at least the isolated vertices of G[I].

Table 1 summarizes the main results of this paper about the complexities of computing the
functionals and the ones of computing the a priori solutions maximizing them. In this table we
denote by Gy, a graph G whose vertices are weighted by their corresponding probabilities, by G /
a graph Whose vertex v; is weighted by the quantity p;(1 -], €T (vs) (1 ), 1€ign by T(E)
the time needed for the computation of the functional E and by WIS(Gy) (resp., WIS(G})),
the fact that the a priori solution maximizing the functional is a maximum—weight independent
set in G (resp., G;”,). Finally, G and B denote general and bipartite graphs, respectively.

In table 2, where we denote by r the quantity min{O(logn/(3(Ag+1)loglogn)), O(n~4%)},
a summary of the main approximation results is presented. Let us note that the approximation
ratio in the line for PIS5 in general graphs of table 2 is directly obtained with arguments exactly
analogous to the ones of corollary 1 in section 3.2, considering p;(1 — [l,,er,)(1 — ps)) as
vertex-weight for v;, i =1,...,n.
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A  Proof of proposition 1
A.l1 Determining Ao«c)

Let us first prove a small preliminary lemma.
Lemma 1. If S C I, then F(IF) = o(G).

- Proof. In fact, by definition of U2, F(IZ?) = |S[I]| +|S[I]|. But if § C I, then S[I] = S and this
implies S{I| U I‘(S[Ij) SUTL(S). Moreover the maximality of S implies that S UT(S) =
and consequently, S[I] = §. So, F(I¥) = |S[][ = (@)

For Aa-(cy we have |S* NI| = o*(G} and, by lemma 1, F(I2) = o*(G); therefore,

1=0

* *(G)n_a’(G) i — Q(G G G
Ae@=2c"@)| X Pf|=a@p”® Y ( . ) —p) O = (G @

cv
18*nij=a*(q)

where, in the above expression, the term p® (&) represents the fact that the o*(G) vertices of S*
are all present in I (§* NI = §*) and the term Y, * "(G) cr "(©) p*(1 — p)*~"(G)~% stands for
- all possible choices for the rest of the elements of V' {as we ha,ve already seen, this term equals 1).

A.2 Determining A~ (g)—1

Consider an element v of $* and note that, since S* is a maximum independent set, I(v) is either
empty, or a clique on at least one vertex (if not, S* could be augmented to (S* \ {v}} UT'(v)).
Consequently, by considering that v is the element of S* which is absent from I, we have: '

o if INT'(v) = 0, then the independent set S* \ {v} remains a maximal one for G[I], so
FIB)=a*@)-1;

o if INTY(v) # 0, then the independent set S*\ {v} (included in G[I]) can be augmented by
exactly one element of I'(v), so F(I32) = o*(G).

We now study the two following cases with respect to IV(v), namely IV(v) = §§ and I'(v) # 0.

I(v) = 0.
F(I2) = a*(G) — 1 and

Y PNF(IE)=(a*(G)-1) > P

cv Icv
(s*\{vhcr (F*\{21er
n—a* (@}
()= n—a*(G n—a o
> P =pr@1-p) 3 ( i( ))p(l Py (O = g2t (O)-1(y )

cv i=0
(s*\{+Her

Consequently,
> PIF (I8) = (@(G) - 1y~ @-1(1 - p).
Icv
(s*\{+})CI
(v) # 0.

Here, we study the following two subcases, namely, ITNI'(v) =0 and I NT'(v) # 0.
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0:

Subcase I NT'(v) =
= o*(@) — 1 and, moreover, no vertex of I'(v) is contained in I; so, we

here F(I3%2)
get

Y. Pl =p¥ O (1 p)(L - g O = g2 @1 IO ()

Icv
(S*\[vhE!
00 (v)=p

Subcase I NTV(v) #
F(I%) = o*(G) and I contains at least a vertex of I'(v); so, we get for this case:

> Pl =p* @Y 1-p) [1- (1 -p)" W] (4.2)

(5:\[v})C!
INT! (2)#0

Consequently, for case I[V(v) 3£ 0 we have combining expressions (A.1) and (A.2) together
with expressions for F(I22) of the two subcases:

> PIF (1) =2 @711 - p) [or(€) - (1 -]

oV
(s\feher
This concludes the study of case I'(v) # 0.

By summing the above expressions over all elements of §*, we get:

Aeiey = D, ) PrlllF (IF) Lysappen

vES* ICV
= > D PrIF (IF) Ysnpen Lw=0p + L ezo)
wES* ICV
= 4 @) -nr O 1-p+ Y O -p) (o*(6) - 1~ pTE)
vES*
T {w)#e

= £(@(0)- DO 1 -p) +(2*(6) - ) p* O (1 - pa’(G)
=p* O (1-p) 3 (1-p)F@

uES*

T (v)#8
= p O 1-p) [ e’ (@) -1+ 'GP - 4’ (@) - Y (1-p)T'@
\ o s
,. ( ,
= p O -p | b+ @G +a) - Y 1-p)F O

\ vESH
(v}
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