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Le probléme de la couverture minimum de sommets probabiliste

Résumeé

Une instance du probléme de la couverture de sommets probabiliste est une paire (G =
(V, E),Pr) obtenue en associant & chaque sommet v; € V une probabilité « d’occurence » p;.
Nous considérons une stratégie de modification M transformant une couverture de sommets C
de G en une couverture de sommets C; pour le sous-graphe de G induit par I’ensemble de
sommets I C V. L'objectif, pour la couverture de sommets probabiliste, est de déterminer
une couverture de sommets de ¢ minimisant la somme, sur tous les sous-ensembles I C V,
des produits: probabilité de I fois Cr. Dans cet article, nous étudions la complexité de
résolution optimale du probléme de couverture de sommet probabiliste.

Mots-clé : problémes combinatoires, complexité, couverture de sommets, graphe

The probabilistic minimum vertex covering problem

Abstract

An instance of the probabilistic vertez-covering problem is a pair (G = (V, E),Pr) ob-
tained by associating with each vertex v; € V an “occurrence” probability p;. We consider a
modification strategy M transforming a vertex cover € for G into a vertex cover Cf for the
subgraph of G induced by a vertex-set I C V. The objective for the probabilistic vertex-
covering is to determine a vertex cover of G minimizing the sum, over all subsets 7 C V, of
the products: probability of I times C7. In this paper, we study the complexity of optimally
solving probabilistic vertex covering.

Keywords: combinatorial problems, computational complexity, vertex covering, graph
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1 Introduction

Given a graph G = {V,E), a vertex cover is a set C C V such that for every v;v; € E either
v; € C, or v; € C. The vertes-covering problem (VC) consists in finding a vertex cover of
minimum size. A natural generalization of VC, denoted by WVC in the sequel, is the one where
positive weights are associated with the vertices of V. The objective for WVC is to compute a
vertex cover for which the sum of the weights of its vertices is the smallest over all vertex covers
of G.

Let G be the set of graphs. Given G € G, denote by C(G) the set of vertex covers of G.
For any subset I C V we denote by G[I] the subgraph of G induced by I. The probabilistic
vertez-covering, denoted by PVC in what follows, is a quintuple (X, C{(G).M, E(GL), min) such
that:

H is the set of instances of PVC defined as H = {G = (G, Pr)}, where G € § and Pr is
an n-vector of vertex-probabilities;

C(G) s the set of vertex covers of G (C(G) = C(G));

M is a modification strategy, i.e., an algorithm receiving C € C(G) and a G[I], I TV as
inputs and modifying C in order to produce a vertex cover for G[I];

E(GY) is the functional, or objective value of C; consider G € H, C € C(G}, I €V, and
let p; = Prfv;], v € V, be the probability that vertex v; is present; moreover, denote
by CY the solution computed by ¥(C, G[I]) and by |C7| the cardinality of C}; finally,
denote by Pr{I] = [1;c; pi [L;ev\s(1—pi) the probability that vertex-subset I is present;

then E(GE) = Zrey Pr{I]ICT.

The complexity of PVC is the complexity of computing C = argming e {E (G%)}. Using the
terminology of [4, 5], we will call the solution C (in which the modification strategy is applied)
a priori selution.

A priori optimization, i.e., searching for optimal a priori solutions of probabilistic combinato-
rial optimization problems, has been studied in restricted versions of routing and network-design
probabilistic minimization problems ({1, 2, 3, 4, 3, 6, 7, 8]), defined on complete graphs. Finally,
a priori optimization has been used in [9] to study a probabilistic maximization problem, the
longest path.

One can remark that in the above definition of PVC, M is part of the instance and this seems
somewhat unusual with respect to standard complexity theory where no algorithm intervenes in
the definition of a problem. But X is absolutely not an algorithm for PVC, in the sense that it
does not compute C € C(G). It simply fits C (no matter how it has been computed) to I.

Moreover, let us note that when changing M one changes the definition of PVC itself. Strictly
speaking, the PVC-variants induced by the quintuples Q1 = (M, C,M;, E(GH), min) and Q2 =
(M, C, Mg, E(G'é?), min) are two distinct probabilistic combinatorial optimization problems.

We use three modification strategies M1, M2 and M3 and study their corresponding functionals.
- For M1 and M2, we produce explicit expressions for their functionals, expressions allowing us
to completely characterize the solutions minimizing these functionals. On the contrary, the
expression for the functional associated with M3 is not quite explicit in order to allow achievement
of similar results. Therefore, we give bounds for this functional and study their quality. Let us
recall that the three strategies introduce in fact three distinct probabilistic PVC-variants.

In what follows, given a graph G = (V, E) of order n, we denote by C a vertex cover of G,
by 7 its cardinality and by C;, ¢ = 1,2,3, the optimal PVC-solutions associated with M1, M2
and M3, respectively. Moreover, by I'(v;), ¢ = 1,...,n, we denote the set of neighbors of the



vertex v; {the degree of v;). We will set § = min,, g1 {|[(:)|} and A = maxy,ev {|T'(v:)]}. Given
a vertex cover C' of G and a subset V' C V, we will set C[V'] = CNV’ and C[V'] = (V)N
Finally, when dealing with WVC, we will denote by u; the weight of v; € V.

2 The strategies M1, M2 and M3 and a general preliminary result

2.1 Specification of M1, M2 and M3

Given a vertex cover ' and a vertex-subset 7 C V. 3/1 consists in simply moving vertices of
C'\ I (the absent vertices of C) out of C' and in retaining ClI] = CN T as vertex cover of GI).

BEGIN (xM1(C,G[T])=)
ClI) —¢cNiI;
QUTPUT C{13;

END. (#M1(C,G[I])*)

It is easy to see that C[I] constitutes a vertex cover for G[I]. In fact, in the opposite case, there
would be at least an edge wjv; of G[I] for which neither v;, nor v; would belong to G[]. But,
since v;v; € E and C is a vertex cover for G, at least one of Vi, V5, 88y v;, belongs to C and,
consequently, to C[I] = C'NI. Therefore v; is part of the vertex cover for G{I], contradicting so
the statement that edge v;v; is not covered in G[I].

The second strategy studied in this paper is a slight improvement of M1 since one removes
isolated vertices from C[I].

BEGIN (*M2(C,G[I])*)
ClI] ~ ¢NI;
R {vy € C[I]: T(vy) = 0};
OUTPUT 2{I] « CIT]\ R;
END. (*M2(C,G[I])*)

Finally, strategy M3 is a further improvement of M2 since it removes from C2[I] vertices all the
neighbors of which belong to C2[I]. In the following specification of M3, algorithm SORT sorts
the vertices of C2[I] in increasing order with respect to their degrees.

BEGIN (*M3(C,G[I]}*)
C2[I] — M2(c, G[1]);
C3[I] «— SORT(C2[I));
FOR i~ 1 TO |C3({I]] DO
IF Vv; € T(vi),vy € C3{I] THEN C3{I] « C3[I}\ {v;} FI
oD
QUTPUT €3[1];
END. (#M3(C,G[I])*)

It is easy to see that the vertex cover C3[I] computed by strategy M3 is minimal (for the inclusion)
for G{I).

2.2 A first expression for the functionals

Consider any strategy that starting from C{I] reduces it by removing some of its vertices (if
possible) in order to obtain smaller feasible vertex covers. Clearly, M1, M2 and M3 are such
strategies. Then, the following proposition provides a first expression for functionals E(GH),
E(G¥)and E(GB).



Proposition 1. Consider o vertez cover C of G and strategies M1, H2 and 3. With each verter
vi € V associate a probability p; and a random variable X?k’c, k =1,2,3, defined, for every
ICV, by
Xﬂk,c _ { 1 v € C}m

t T 0 otherwise

Then. E(GE) =3, .c PrlX™C =1,

Proof. By the definition of X™ we have |C¥ =32 XIC g,
n n
E(CF) = 3 Plc =3Py x*¢ =3 3 prpxwe
icv cv i=1 i=1ICV

— anE (X;"kf) = anpr |X*C = 1] ~ iPr [X?*'C = 1] (Liecy + Ligcy)
=1 i=1

i=]
iPI‘ [kac = 1] l{v,;EC} + iPr [X:Ek’c = 1] l{viﬁfC}'
i=1 =1

But, if v; ¢ C, then, VI C V such that v; € I, X?k'c = 0. So, Pr[Xfﬂ"C =1 =90, vy ¢ C.
Consequently, E(G¥F) = ¥ Pr[X1™C = linec) = Xyec Prixi™% = 1].1

I

3 The complexity of (H, C, M1, E(G%), min)
‘The following theorem can be deduced from proposition 1.

Theorem 1. E(GH) = > wec Pi and ¢ = argminee ({2 . co Pi}- In other words Cy is o
minimum-weight vertex cover of G where the vertices of V are weighted by their corresponding
presence-probabilities. In the case where all verteg-probabilities are identical, E(GE)=prand
is @ minimum verter cover of G. Consequently, (H,C,M1, E(GM ), min) is NP-hard.

Proof. By strategy Mi, if v; € C, then v; € CM for all subgraphs ‘G[/] such that v; € I.
Consequently, Pr[Xfi'C = 1] = p;, Yv;€ C and the result follows from proposition 1.

Let us now consider G with its vertices weighted by their corresponding probabilities and
denote the so obtained instance of WVC by Gy. The total weight of every vertex cover of G,
I8 3 ,.ecpi and the optimal weighted vertex cover of Gy is the one for which the sum of the
weights of its vertices is the smallest over all vertex covers of Guw. Such a vertex cover minimizes
also E(G§)and, consequently constitutes an optimal solution for (H, C, M1, E(GH), min).

It p; =p, 1 <4< n, then YovecPi = Z}Uiecp = pr and, consequently, the vertex cover
minimizing this last expression is the one minimizing 7, & minimum vertex cover of G.

Expression 3 .~ p; (the objective value of the problem (M, C, M1, E(G¥), min)) can be com-
puted in O(n), therefore, (H, C,M1, E(G}), min) € NP. Furthermore, by the isomorphy between
this problem and WVC, the former problem is hard for NP and this completes the proof of the-
orem 1.

Let us revisit case p; = p, 1 < ¢ < n. Since C¥ = ClI] and 0 < |C[I]] < T, we get:
(CH = |C S, l{jcin)=i} and the functional for ¥1 can be written as

E (GMCI) = Z PI‘[I”C[I” Z l{lC[I]i:i} = ZE Z Pr[I]l{IC[I][=z’}

Icv i=1 i=1 [CV

i%’(j)p"(l~p)7“'r§(n;)pf(1~p)ﬂ“f‘j =

i=] F=0

3



where in the last summation we count ali the sub-graphs G[I] such that [C[I]| = i, we add their
probabilities and we take into account that 3 ;27 CT"p/(1—p)* "I =1
The above can be generalized in order to compute every moment of any order for M1. For
instance. E((C})?) = Loycy PHI(ICH])? = S0, 3C7p(1 = p)7F = pr(pr + 1~ p) and, conse-
quently. B
Var (G#) = E((G)°) - (E(G#))* = rp(1 - ).

So, for M1 and for the case of identical vertex-probabilities, the random variable representing the
size 7 follows a binomial law with parameters = and p.

4 The complexity of (M, C, M2, E(G%), min)
We recall that strategy M2 consists in removing the isolated vertices from C[I]. Then, the

following theorem holds.

Theorem 2.
E@GE) =) n|1- J] (1-p
weC vy &l (vy)

and Cz is a minimum-weight vertez cover of Gy, where, for every v; € V,

w; = p; (1— II (1—Pj))-

vj'EF{m)
Consegquently, (H,C.M2, E(GY¥?), min) is NP-hard.

Proof. Remark first that C}? = C2[I] = C{I]\ (U{Uiec:(p(vi)ﬂn=@}vi).
Starting from proposition 1 we get

E(G®) = Z Pr {Xﬁ”'c = 1] = Z Y Pr{llgyecny = YoM Prn(1- Lveca)y) -
veC

weC ICV wel eV
vyl v;el

But, for any v; € C, v; ¢ C2[I] <= I'NT(v;) = §; consequently,

E@GE) =) Y prn-> Prll)l{inrwy=0y = > i (1 - I a-»)

.eC ICV EC ICV , . )
v;eC i 7 eC i % EC v; €0 (v}

It is easy to see that £ {(G¥) can be computed in O(n?); consequently (H, C, M2, E(G%), min) €
NP. With a reasoning completely similar to the one of theorem 1 one can irnmediately deduce
that Cp = argmingec(ey {2 vec Pi(l = [1o,erw)(1 —ps))}, ie., & minimum-weight vertex cover
of Gy where, for v; € V, w; = p;(1 — ijel‘(vi)(l -pi)-1

5 The complexity of (H, C, M3, E(G'S), min)
5.1 Building E(G%)

Recall that M3 consists in removing from C[I] both the isolated vertices and the vertices all the
neighbors of which belong in C[I]. Consequently, the solution C3[I} computed by M3 is minimal.



Proposition 2.
E@GE) =) m|1- J] G-p))|-3 > Prllllg, gomy Luncirwai#o L ncrri=e) (1)
v, eC v; &l w;) weCICV
Proof. By proposition 1, E{GE) = > weC Pr[Xfa‘C = 1]. Moreover,
. _ 4] _
PrX®C =1] = 3" Prilliy, comy.
ey

Note that I'(v;) = C[I'(vs)] U C[[(v)] and that if v; € C, then C[T(w;)] # 0 (because C is
minimal).

Let now v; € Cand I; = {I C V : v; € I'}. The set of graphs G[I], I € Z; can be partitioned
in the following four subsets. a graph G[I] belonging to only one of them:

{i) graphs such that 7N T (v;) = §;
(ii) graphs such that I N C[T(v;)] # @ and 7N C[T(w;)] # 0;
(iii) graphs such that 7N C[C(v;)] 5 0 and I N C0(w;)] = 0;
(iv) graphs such that I nC[I(v;)] =0 and I 1 CT(w;)] 0.
Let us analyse strategy M3 in cases (i) to (iv).
In case (i) since v; is isolated, M3 will remove it from Cl[J].

In cases (ii) and (iv) v; will be included in C¥(since I N &[T(x;)] # 0, Jv; € INT(v;) such
that v; & C).

In case (iii} the fact that v; will be included in, or will be removed from, the solution depends
on the order on which it will be treated by M3 and on wether or not all its neighbors are

part of C[I].
In all,
e u; ¢ C¥® for all graphs verifying case (i) and for a part of graphs verifying case (iii);

e v; € CP for all graphs verifying cases (ii) and (iv) and for the rest of graphs verifying

case (ii).
We so have:
PrXx*C =1 = Prillle,eomy = D PrlIlly, com) (l{rnC[r(m)]#G}1{mé{r(u.-);¢ca}

Icv cv
+ l{fnc[r("n‘)i‘—'@}1{!0@'[?('&-)]#0} + 1{fﬂC[P(v:)]#ﬂ}1{mc‘:[r(v.-);=m})

= D Prilllg, com) (I{Iné[r(m)]#w} + l{fﬂC'[F(v-:)l;éw}l{mé[r(u;)]=0})
gV

= Z PI[I]I{viEcF}l{Ir‘\C'[r(v,:}i?é@}
Icv

+ Y Prll ]l{v;ECfS}l{fnC[F(ui)}¢@}l{fﬁc-'[f‘{vg)]:@}
IcV

= ) PrlI]i, eom) (1 - I{InC‘[I‘(v;)]=®})

cv



+ Z Pr[I]l{v Ecna}l{IﬂC{F }#@}l{mc (T(v:)]=0}
Icv

= p (1— I[[ a-» ) +ZPrI}1{ eopplunciewsi#er L {ineir )=o)

v €CIT(vi)] fev
Prix{*¢ =0 = %} Prll]l,. gomy + Z PrlIlf, gcp)

}'CV

= Z Pe{l]lr, gom) (l{mr(v) =0} + Luncirqal#0) L{ ingirew,))= @}) +l-p

ICv
vel

= Z Pr(I] l{v ecua}l{jnf(v =03 +1—p;

Icv
viEr!

+ Z Pr(l 1{ Ecxa}l{IﬁC[F u)aé@}l{mc [[{v:)i=0}
!CV
-y

= b H (l=p;)+1-pi+ Z Pr{f l{u gc“}l{mc[f‘ (v )]#@}1{mc{r(u )j=0}

5 €0 (v:) ey

It is easy to see, after some easy but tedious algebra, that PriX>¢ = 1] + Pr[X*C = 0] = 1.
Then, the result of proposition 2 is get using

M3 M3, C J = — .MB’C = .
E (G EECPJ.- [X EEC: (1 Pr [Xz 0}) I
5.2 Bounds for E(GE)

Let us first note that from theorems 1, 2 and proposition 2, we have E(G) < E(G'¥) < E(GH).
Since the result of proposition 2 does not allow the achievement of a precise characterization of Cs,
we give in the following theorem bounds for E(G).

Theorem 3.

Soolt- JI G-p) ) <E@B)<Ypi|1- J] Q-pp)

weC 5 Eé[r{vi)] %ueC v; &0 (v;)

Ifpi =p, Yu; €V and §c = min,ec{|T(v:)|}, then
p (T — max {T(l -p)%, (1 —p)‘sc}) >FE (G'g’) > pPr.

The upper bound for E(G) is attained for the bipartite graphs when considering the one of the
color classes as a priori solution.

Proof. The upper bound is obvious since it is nothing .else than the expression of theorem 2
for E(G¥).
Let ‘
Ai = PrlliLy, gomy Lmcireaior L {inciriw o) )

IV
u,E!



(see the last term of the expression (1) in proposition 2). Then,

A < ZPrml{mC[F(-vs)l#@}I{Iné{r(vin:@} < ZPr[f] (1“1{100[1‘(m)}=0})1{mé{r(u,;)]=@}

Icv cv
v; &7 v ET
< pi ( II a-»- II a-» I « —Pj))
v; €CIT (ug)] v €00 (vs)) vy eCI (v)]
< pz-( II a-»- ] (1—1);'))-
v €C[T ()] V€N {w;)

Combining the expression for 4; above with the expression for E(G”Os) of proposition 2, we easily
get the lower bound claimed.
Let us now suppose that p; = p, Vo; € V. Then the expression for E(G2) becomes

E(GE)=pr—p 3 (1-pfel _ ¥~ 4,

nel wEC
with 0 < A; < p((1 — p)ICTCE — (1 — YT, Since 4; > 0 we have
E(GE)<pr—p)_ (1-p)Tl
v;€C
Using. V4, [T'(v;)] < A, we get
E(GE)<p(r-r(1-p)2). (3)
Remark that

P Z (1-p)lEl = (1 —p)le Z (1 = p)lT(wal~dc
wneC h-{e

Z (1- p)fr(vi)l—Jc > 1
v €C

because there exists at least a vertex v;, € C with [T'(viy)! = d¢. Consequently,
E(GE) <p(r-(1-pf). 4

Combining expressions (3) and (4) one immediately obtains the upper bound claimed. _

For identical vertex-probabilities, the lower bound for E(G¥) becomes pr(1—(1— p)lcCl@llly,
Since C' is minimal, C[['(v;)] # 0, i.e., IC[C ()]l > 1. Using the latter inequality in the former
one we get E(GE) = pr(l — (1 —p)) = pr, proving so the lower bound claimed.

Consider now a bipartite graph B = (V1, V2, E) and one of its color classes, say color class V7,
as a priori solution. Remark that, Vo; € Vi, T(y;) = Vi[[(w)] € Va. Consequently, the upper
and lower bounds for E(B}?) coincide. I »

5.3 On the quality of the bounds obtained

We prove in this section that the bounds of E(G%) obtained in theorem 3 are quite tight .
Let G = (V,E) be a graph consisting of a clique K (on £ vertices) and of an independent
set § on o vertices; moreover consider that any vertex of K is linked to any vertex of S. Let

7



us suppose that all the vertices of G have the same probability p and consider C = V(K,), the

vertex-set of Ky, as a priori solution. Finally set n =l+o.
For v; € C we have C[T'(w;)] = V(&) \ {v} and C[['(vi)] = S. Then, expression (1) becomes

B(GE) =2 p=3 » ] (-2~ 3 D Prlllly, somlunmimaz lims=a (5)

el ueC vy €l (v;) weC ICV

Let V(K;) = {v1.c2.v3...., v} (the degrees of the vertices of V(Ky) are all equal) and let
S = {vps1,Vg42,Ves3. ... . tn}. In step i, strategy M3 tests if vertex v; can be removed.

Revisit now the third term of expression (5) (the double sum). This term deals with in-
stances G[I] such that I C V(Kp) \ {v}, in other words, instances where all present vertices are
elements of V(Kj). i.e., they are also part of C. Since v € V(K,), T{v)NI CCNIT and vertex
v; € C can be removed only if, it is not isolated and for j < i, vj ¢ I (because, in the opposite
case, vj would be removed at step j < 4, in other words, before v; and, since viv; € E(K}), v;
should not be removed). Consequently, Levigemy = Linfu vava,...vio1 =0} and for a fixed index 1,
expression (2) becomes

A; = ZPr[-[]1{Iﬂ{v1,vz,vs,...,vi._l}=0}1{IDV(K5)\{vi}#®}l{IﬂS=@}
cv

= Z Pr{l1 - L{ins=0}
ICV In{”lv"Zl"Sv-"’“i-—i}=@
[ﬂ{vi+1,vi+2,vi+3 ..... ue}#@

i—1 ' ¢ n
= [[a-pp|1- ] (1—p)) IT a-p
g=1

j=i+l j=t+1

= (1- )1 1 ( E (z+1)+1) (1 )n—(€+1)+1
= }_ —p z—-l (1 1 _ E—z) (1 )n.‘e'
We so have,
4
Z A = Zp ((1 _ p)n+i—'€—1 _ (1 _p)n_l)
v &C i=1
£
= p(l—p" 1> (1 -p)t - pl(1 - )t
i=1
= (1-pyt (1 —p—(1 —p)e“) - pl(1-p)"
= (1-p)" = (1-p"—plll-pt (6)

Remark that computation of A;’s in the expression above is polynomial and, consequently, the

whole computation for E( G”a) is also polynomial.
Combining now expressions (5) and (6), we get

E(GE) = Zp Zp [ a-p)-(@-p™* (1 -p)* —pe1 —p)*})

i=1  y;el(v:)
= lp~tpA-p)" = (1=-p)" 4+ (1 -p)* + pl(1 — p)~?
= fp-(1-p)"*(1-01-p¥).



For reasons of facility, set

etpn) € tp-(1-p*(1-(1-p)) (7)
bepm) € fp(1-(-p)) ®
Blt,p,n) & p(1-(1-pY) (9)

and remark that expressions (8) and (9) are, respectively, the lower and upper bounds of theo-
rem 3 for E(GE).
We now study the difference (B — e)(¢,p,n) {expressions (7) and (9)). We have,

(B-e)(&pn)=(1-p)" = (1—p)"—tp(1-p)* 1 <1 (10)

Starting from expression {10), we prove in appendix that the foilowing hold:

n—1
n—£ n—f\ 1

0K D) (B-e)t,pn) < (——)%_ (——) = (11)

-1 n—1

Note that the upper bound of expression (11) is quite tight for D(¢, n). Let us now estimate this
bound for several values of ¢:

e if /=1, then D{¢,n) =0;
e ifl</<n (eg., {=o0(n)), then lim,_o D¢, n) =0;
o if £=An, for a fixed A < 1, then

. 1=A (1 In(1-2)
lim D(An,n) =e x MI-A _ =%
n—oo

and this limit’s value is a fixed positive constant;
o if, finally, £ =n — 1, then limy .o D(n — 1,n) = 1.

Let us now study the difference (e — 8)(4,p,n). We first have

E=b)(Epm) = p(1=p)" " = (1) + (1-p)" < (0= 1) (A -9~ = (1= ") (12)

one can refine the bound of expression (12) obtaining (see in the appendix for the proof )

0<d(t,n) € (e-b)(t,pn) < (€~1) (—E:"E—)H (1 Lﬁj_)

n—£4+1 - £+1
< ey 1
< (¢-1)e i1 m— (13)

As previously, we estimate this bound for several values of £;
o if £ =1, then d{4,n) =0;
o if £ = o(n), then limy_c0 d(f,n) = 0;
¢ if £= Mn, for a fixed A < 1, then

An-1 n(1-A) 1n(1-—1-—)
s O=-An+1) .,
ddnn) S T a1t )

and this last value is a fixed constant;



| p=01 p=05 p=09 p=1/n p=1/y/n p=1/Inn
E(GE),E[GE) ] 0.34 0.82 0.98 0.26 0.62 0.74
n=14| E(GE)/EGE) | 073 0.88 0.98 0.73 0.79 0.84
E(G®);E(GE) || 0.97 0.96 0.99 0.98 0.95 0.95
E(GE/EGE)T 0.34 0.83 0.97 0.25 0.62 0.73
n=15 | E(GE)/E(GE) | 073 0.89 0.98 0.72 0.79 0.83
E(GPY/E(GE) | 0.97 0.95 0.99 0.97 0.95 0.95
EGEYEGE)T 0.35 0.83 0.98 0.25 0.62 0.73
n =16 | E(GE)/E(GA 0.72 0.88 0.98 0.71 0.78 0.83
E(GPYH/EGEY | 0.96 0.95 0.99 0.97 0.94 0.94
Table 1: Relations between functionals.
i i p=01 p=05 p=09 p=1i/n p=1/vn p=1/lnn
n=14| By/E(GE)] 0.34 0.62 0.92 0.32 0.45 0.53
B/E(GE) || 1.67 1.18 1.02 1.71 1.42 1.29
n=15 By/E(GS.) [ 0.33 0.61 0.92 0.31 0.44 0.52
Bi/E(GE.) | 1.68 1.18 1.02 1.74 1.42 1.29
n=16 || Bf/E(GE.) [ 032 061 092 0.29 0.43 0.51
B/EWGE) | 1.69 1.17 1.02 1.77 1.43 1.29

Table 2: On the quality of the bounds for E(G¥.).

e if, finally, {=n—1, then d(n — 1,n) ~ n/4.

One can remark that for £ = o(n}, E(G'%) tends (for n — c0) to both b(¢,n,p) and B{¢,n,p).
This is due to the fact that o{n)/lim,_,ee(B — b)(£,n, p) ~ 0.

We see from the above discussion that for the graph and the a priori solution considered and
for n — oo, the distance of E(GE) from the bounds given in theorem 3 can take an infinity of
values being either arbitrarily close to, or arbitrarily far from them. Consequently, it seems very
unlikely that the bounds computed could be substantially improved.

6 Some simulation results

Limited computational experiments have been conducted in order to study the realistic per-
formances of the three strategies proposed. We have randomly generated graphs of orders
n € {14,185, 16}, forty graphs per order, in the following way: for each graph, a number pg € [0, 1]
is randomly drawn; next, for each edge e, a randomly chosen probability p, is associated with,
and, if p, < pg, then e is retained as an edge in the graph under construction. For all the
generated instances, the minimum vertex-degree varies between 0 (graph non-connected) and 14,
while the maximum one varies between 1 and 15. The ratio |E|/n varied between 0.06 and 7.3
for all the graphs generated. The a priori solution considered was the minimum vertex cover of
each graph, denoted by C*. We have supposed identical vertex-probabilities and have tested six
probability-values: 0.1, 0.5, 0.9, 1/Inn, 1/4/n and 1/n.

We have computed quantities E(GEL), E(GY2), E(G.) and E(G°*). The last quantity is
the mathematical expectation of a thought process consisting in finding the optimal vertex cover
in any subinstance of G. This implies computation, by branch-and-bound, of the optimal solution
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I p=01 p=05 p=09 p=1/n p=1/y/n p=1/lnn

o*c./E G’g.) 1.08 (.36 0.12 1.30 0.60 0.46

n=141 o /E:GE 2.26 0.46 0.13 3.08 0.90 0.63
°Pt/E«‘G°Pt) 223 046 014 3.0 0.89 0.63

JC./E G . ) 1.03 0.34 0.11 1.29 0.58 0.45

n=15 /.E,G ) 2.13 0.44 0.13 3.08 0.88 0.61
°pt/E!G°pt) 2.10 0.44 0.13 3.06 0.87 0.61
O'C./E(G L ) 0.99 0.33 0.11 1.28 0.57 0.44

n=16 || oB/EGE) | 203 042 012 3.13 0.87 0.61
a‘m/E(Gopt) 201 042 013  3.09 0.86 0.60

Tabie 3: Standard deviations for M1, M3 and reoptimization.

for any subgraph of G, i.e., 2" executions of branch-and-bound. This is the reason for having
restricted our studies in small graphs. In the table 1 we present the mean ratios for the functionals
of the different strategies. What we can see from this table is that the ratio E(GP)/E(GE.)
varies between 0.94 and 0.99. In other words, C* seems to be very close to Cs. In the opposite the
computations times for E(G¥.) are quite large much more large than the ones for both E{G¥.)
and E(G.), whose the ratios with E{(G%.) are relatively small. Another remark we can make
from the results of table 1 is that the larger the vertex-probabilities, the larger (closer to 1) the
ratios.

We also have considered the bounds Bj and B2 for E(G'%) in the last expression of theorem 3
and computed their ratios with E(G%.). The results are presented in table 2. The mean value
of ratio B3/E(G%.) is 0.52, while for B2/E(G%.) this value is 1.39. So, although these values
are fairly close to 1, it seems to us that the bounds considered have to be improved. Also one
can note that once more the larger the vertex-probabilities, the closer to 1 the ratios.

Finally, for strategies M1, M3 we have computed their standard deviations defined, for &k = 1,3,
as op = [Z[CV Pr(l(| C'm‘l)2 (X rcv Pr[I]|CY()?])1/2 and compared the expectations with the
corresponding deviarions. We also have done so for ¢°° and E(G°P*). The relative results are
presented in table 3. As one can see entries of this table show important dispersions of the
funetionals around the corresponding mathematical expectations.

7 Conclusions

We have first given a formal definition for probabilistic vertex cover and next we have analyzed
three modification strategies and studied the complexities for the corresponding probabilistic
vertex covering problems. Moreover we have shown that two of the three variants studied have
natural interpretations as weighted vertex cover versions. _

The framework of our paper differs for the one {1, 2, 3, 4, 5, 6, 7, 8] where besides the fact
that. all the problems considered (even minimum spanning tree and shortest path) are defined in
complete graphs, a single modification strategy consisting in dropping absent vertices ouit of the
a priori solutions (as our M1) is studied. '

Dealing with our results, further work has to be made for strategy M3 in order to (a) completely
characterize E(G¥®) and (b) determine Cs and the complexity of its computation. We think that
if one can answer point (a), then one will be able with very little more work to answer also

point {b).
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A Proof of expression (11)

Consider expression (10) and set z = 1 — p. Then. expression (10) becomes

(B—e)(t,z.n) = 2" F—s —f(1-2)2"1 = 2% Cp (0 1)z — gzn?
I+ (- Daf -t < ol ¢ (A1)

Set f{z) =1+ (¢ —1)z* - 2*". Then, f'(z) = £(¢ - 1)(z*~! - 2¢-2) < 0. Consequently, f(z)
1s decreasing in z € [0, 1], therefore f(z) = f (1) = 0 and the lower bound of expression (11) is
proved.

Revisit expression {A.1) and set g(z) = 2"~ ‘~z?"1in [0,1]. First remark that g(0) = g(1) =
0. Moreover, g'(z) = (n - £)z"¢1 — (n — 1)z"2 and

1
Yoy A AN
g(m)-O{:wo—(——n_l) .

So, g(r) increases, with respect to z, in [0, zp) while it is decreasing in z in (zp, 1]. Hence,

(B - e)(t,z,m) < g(z) < glzo) = (H) = (Z—:f)_

and the upper bound of expression (11) is also proved.

. B Proof of expression (13)

Revisit expression (12} and, as previously, set z = 1 — p- Then, expression (12) becomes

(e=b){lz,n) = l-x)z" -zl = (£ — 1)zt — ggn-t+l 4 gn
2"zt —lz+ (£-1)) < (£-1) (x”—f - x”-f-“) (B.1)

Set h(z) = 2t — £z + (¢ - 1). Then, h'(z) = £(z'~1 = 1) < 0, so, h(z) is decreasing in z € [0,1]
and, consequently, A(x) > h{1) = 0, proving so the lower bound of expression (13).
Revisit expression (B.1) and set p(z) = 2% — 2"+ Then, ¢/(z) = (n — £)z"~~1 — (n—

£+ 1)z ¢ and
n—4

n—£0+1
So, ¢(z) increases in {0, 7o) and decreases in (zo, 1]. Hence, in [0,1],

(e — )&, z.n) < (£~ 1) (ﬂu)n—e (1 —”—"f—) < (£~ 1)em=n{1-sty

Gz =0 = z5=

n—~F+1 mn—€+1 n—£F{+1

and the lower bound of expression (13) is also proved.
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