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Résultats d’approximation différentielle pour le probléme du voyageur du
commerce :

Résumé _

Nous commencons par démontrer que les versions maximisation et minimisation du pro-
bléme du voyageur de commerce sont approximables & rapport différentiel 1/2. Nous pré-
sentons ensuite une 3/4-approximation polynomiale du cas particulier & distances 1 et 2;
ce résultat nous permet notamment de ramener le rapport standard connu pour la version
maxisation de ce sous-probléme de 5/7 & 7/8. Nous proposons enfin un résuitat négatif:
approximer le voyageur de commerce, & colt minimum comme maximum, & mieux que
3475/3476 + € est NP-difficile pour tout € > 0.

Mots-clé : algorithme d’approximation, rapport d’approximation, probléme NP-complet,
complexité, réduction, voyageur du commerce.

Differential approximation results for traveling salesman problem

Abstract

We prove that both minimum and maximum traveling salesman problems can be approx-
imately solved, in polynomial time within approximation ratio bounded above by 1/2. We
next prove that, when dealing with edge-distances 1 and 2, both versions are approximable
within 3/4. Based upon this result, we then improve the standard approximation ratio
known for maximum traveling salesman with distances 1 and 2 from 5/7 to 7/8. Finally, we
prove that, for any ¢ > 0, it is NP-hard to approximate both problems within better than
3475/3476 + ¢.

Keywords: approximation algorithm, approximation ratio, NP-complete problem, com-
plexity, reduction, traveling salesman.
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1 Introduction

Given a complete graph on n vertices, denoted by K,, with positive distances on its edges, the
minimum traveling salesman problem (min _TSP) consists in minimizing the cost of a Hamilto-
rian cycle. the cost of such a cycle being the sum of the distances on its edges. The maximum
traveling salesman problem {max_TSP) consists in maximizing the cost of a Hamiltonian cycle.
Further special but very natural cases of TSP are the ones where edge-distances are defined using
the 5 norm (Euclidean TSP), or where edge-distances verify triangle inequalities (metric TSP);
an interesting sub-case of the metric TSP is the one in which edge-distances are only 1 or 2
(TSP12). Both min_ and max_ TSP, even in their restricted versions mentioned just mentioned
above, are famous NP-hard problems.
In general, NP optimization (NPO) problems are commonly defined as follows.

Definition 1. An NPO problem I is as a four-tuple (Z, S, vy, opt) such that:
1. 7 is the set of instances of II and it can be recognized in polynomial time;

2. given I € I (let |I| be the size of I), S(I) denotes the set of feasible solutions of I;
moreover, there exists a polynomial P such that, for every S € S{I) (let |S| be the size
of 8). |S| = O(P(|I])); furthermore, given any I and any S with |S| = O(P(|I])}, one can
decide in polynomial time if S € S(I);

3. given I € T and S € S5(J), v;(S) denotes the value of §; v; is integer, polynomially
computable and is commonly called objective function;

4. opt € {max, min}. B

Given an instance I of an NPO problem IT and a polynomial time approximation algorithm A
feasibly solving II, we will denote by w(I), As(I) and B(I) the values of the worst solution
of I, of the approximated one (provided by A when running on I), and the optimal one for I,
respectively. There exist mainly two thought processes dealing with polynomial approximation.
Commonly ([13]), the quality of an approximation algorithm for an NP-hard minimization
(resp.. maximization) problem II is expressed by the ratio (called standard in what follows)
ea{l) = MI)/3(I}, and the quantity py = inf{r : ps(I) < r,I instance of II} (resp., ps = sup{r:
pa(I) > r,I instance of I1}) constitutes the approximation ratio of A for IT. Recent works ({9, 8]},
strongly inspired by [3] (see also [12, 23]}, bring to the fore another approximation measure, as
powerful as the traditional one (concerning the type, the diversity and the quantity of the results
produced), the ratio (called differential in what follows) §,(I) = (w(I) — MI))/(w(I} — B(I)).
The quantity &y = sup{r : 64(f) > r, I instance of II} is the differential approximation ratio of 4
for I1. In what follows, we use notation p when dealing with standard ratio and notation § when
dealing with the differential one. Moreover p(II} (resp., §(II)) will denote the best standard
(resp.. differential) approximation ratio for I1.

In (3], the term “trivial solution” is used to denote what in [9, 8] and here is called worst
solution. Moreover, all the examples in [3] carry over NP-hard problems for which worst solution
can be trivially computed. This is for example the case of maximum independent set where,
given a graph, the worst solution is the empty set, or of minimurm vertex cover, where the worst
solution is the vertex-set of the input-graph, or even of the minimum graph-coloring where one
can trivially color the vertices of the input-graph using a distinct color per vertex. On the
contrary, for TSP things are very different. Let us take for example min _TSP. Here, given a
graph K, the worst solution for K, is a maximum total-distance Hamiltonian cycle, i.e., the
optimal solution of max_TSP in K,. The computation of such a solution is very far from being
trivial since max_TSP is NP-hard. Obviously, the same holds when one considers max_ TSP



and tries to compute a worst solution for its instance. In order to remove ambiguities about the
concept of the worst solution, the following definition, proposed in [9], will be used here.

Definition 2. Given a typical instance I of an NPO problem II, the worst solution of J is the
optimal solution of a new NPO problem IT where items 1 to 3 of definition 1 are identical for
both IT and II, and

max opt(Il) = min

min opt(Il) = max 1

opt(Il) = {

One of the features of the differential ratio is to be stable under afine transformation of the
objective function of a problem and so it does not create a dissymmetry between minimization
and maximization problems. This is very clear in the case of TSP. Dealing with min_TSP it is
very well-known that its general version is not approximable in polynomial time within better
than 27(") for & polynomial p. On the other hand, its maximization version, max_TSP, the
NP-hardness of which is immediately proved if one replaces distance d(i,7) for min_TSP by
M - d(4,7) in max_TSP, for an M greater than the largest edge distance in the input graph
of min_ TSP, can be approximated in polynomial time within 5/7 ([20]).

Let us recall some standard terminology from the theory of the polynomial approximation of
the NP-hard problems {for the standard approximation framework). Given an NP minimization
(resp., maximization) problem II, a constant-ratio approzimation algorithm for Il is a polynomial
time approximation algorithm (PTAA) guaranteeing approximation ratio bounded above (resp.,
below) by a fixed constant, i.e., by a constant that does not depend on any input-parameter
of II. APX is the class of the NP optimization problems solved by constant-ratio PTAAs.
A polynomial time approzimation schema (PTAS) for II is a sequence of PTAAs (receiving as
inputs any instance of II and a fixed constant €) guaranteeing approximation ratio bounded
above (resp., below) by 1+ ¢ (resp., 1 — €), for every ¢ > 0. If a PTAS is polynomial in
both n and 1/e, then it is called fully polynomial time approzimation schema (FPTAS). For the
differential approximation, the ratio achieved by polynomial time approximation schemata is
1 — € for both minimization and maximization. Finally, APX-complete is the class of problems
in APX, which, in addition, are complete with respect to the existence of a PTAS solving them,
in other words, if any APX-complete problem could be solved by a PTAS, then any other
APX-complete problem could be so.

As it is shown in [9, 8], many problems behave in completely different ways regarding tradi-
tional or differential approximation. This is, for example, the case of minimum graph-coloring
or, even, of minimum vertex-covering. This paper deals with another example of the diversity
in the nature of approximation results achieved within the two frameworks, the TSP. For this
problem and its versions mentioned above, a bunch of standard-approximation results (posi-
tive or negative) have been obtained until nowadays. The first inapproximability result is the
one of {21} (see also [13]) affirming that it is NP-hard to approximate min_TSP within any
constant factor; with the same proof, one can easily refine the result of [21] to deduce the in-
aproximability of min_TSP within any ratio of the form 2°(™) for any polynomial p. On the
other hand, the metric min_TSP is approximable within 3/2 {[5]), the symmetric min_TSP12
within 7/6 ({18]) (recall that the original proof of the NP-completeness of the min TSP is done
by reduction to min_TSP12), while the asymmetric version of min_TSP12 is approximable
within 17/12 ([22]). Moreover, min_TSP12 is APX-complete ([18]), consequently, given the
result of [2], it cannot be solved by a PTAS unless P=NP; in other words, 3¢ > 0 for which
approximation of min_ TSP12 within ratio smaller than 1 + ¢ is NP- hard. Furthermore, even
in graphs where the density of the subgraph spanned by the edges of length 1 is bounded below
by a constant ¢ €]0,1/2[, min_TSP12 cannot be solved by a polynomial time approximation
schema ([11]). The works of [10] and more recently of [4] refine the result of [18] specifying



for e. In [4] is proved that for any € > 0, it is NP-hard to approximate min_TSP12 within ratio
smaller than, or equal to, 3475/3476 — ¢; in other words the result of [10] gives a value - equal
to 1/3476 — ¢, V¢’ > 0 - for the hardness threshold € of min_TSP12 refining so the negative
results of [18, 10]. Finally another restrictive version of the metric min_TSP, the Euclidean
min_ TSP can be solved by a standard PTAS ([1]). A complete list of standard-approximation
results for min_ TSP is given in [6].

In what follows, we show that, in the differential approximation framework the classical 2_0PT
algorithm. originally devised in {7] and revisited in numerous works (see, for example. [15}),
approximately solves min_ TSP with edge-distances bounded by a polynomial of n within dif-
ferential approximation ratio 1/2. In other words, 2_0PT provides for these graphs solutions
“fairly close” to the optimal and, simultaneously, “fairly far” from the worst one. Ve also
prove that, in the opposite of what happens in the standard framework, metric min_ TSP and
general min_TSP are equi-approximable in the differential framework. Moreover we prove
that min_TSP12 is approximable within 3/4.

For max_ TSP things are much more optimistic for standard approximasion, since this prob-
lem is in APX. By the end of 70s it has been proved in [12] that 2_0PT guarantees approxima-
tion ratio 1/2 for max_ TSP. More recently, in [20] is proved that max_ TSP can be solved by
a standard PTAA within ratio 5/7, if the distance-vector is symmetric and within 38/63, if it
is asymmetric. The dissymmetry in the approximability of min_ and max_TSP can be con-
sidered as somewhat curious given the structural symmetry existing between them. In fact the
transformation d — M —d mentioned above and revisited in detail in section 6 is affine. Since dif-
ferential approximation is stable under affine transformation of the objective function, min_ TSP
and max TSP are equi-approximable.

In what follows, we will denote by V' = {v1,...,vn} the vertex-set of K, by E its edge-
set and, for v;w; € E, we denote by d{v;,v;) {(or by d(,j) when no ambiguity occurs) the
distance of the edge v;v; € E; we consider that the distance-vector is symmetric and integer.
Given a feasible TSP-solution T{K,) of K, {both min_ and max_TSP have the same set
of feasible solutions), we denote by d(T(Ky)) its (objective) value; T will be indexed by min
or max depending on whether it deals with min_ or max_TSP. When necessary, the values of
the worst case solution, the approximated one and the optimal one for min_TSP (max_TSP)
will be denoted by wmin(Kn), AP (Ky) and Bmin(Kn) (wWmex(Kn), AP™(Kn) and Fmax(Kn)),
respectively. Given a graph G induced by K, we denote by V(G) its vertex-set. Finally, given
any set C of edges, we denote by d(C) the total distance of C, i.e., the quantity ZWJ,GC d{i, 7).

2 Preserving differential approximation for several min_ TSP versions

This section is a preliminary one containing several results about how differential approximation
is preserved between several restrictive versions of min_TSP.

Proposition 1. Metric min_ TSP and general min_ TSP are differentially equi-approzimable.

Proof. Obviously, metric min_ TSP being a special case of the general one, can be solved within
the same differential approximation ratio with the latter.

Suppose now that metric min_ TSP is approximately solved within differential ratio é. Given
an instance I = (Kn,cﬁ of general min_TSP (set dmax = max{d(s,) : v;v; € E}}, one can
transform it into a new one I’ = (K,,d') by changing, Vv;uj € E, distance d(i,;) of the
former to d'(4,7) = dmax + d(t,7). It is easy to see that I' is metric, and that every feasible
tour T{I) of (Ky,d} remains feasible for (Kn,d'). The cost of such a tour becomes d(T(I')) =
d(T(I)) + ndmax- Then the 6-PTAA for metric min_ TSP will achieve

5= w(I') - d(T(I')) - w(l) + ndmax = d(T(I)) — ndmax - w(I) = d(T(I))
w(I') = B(I') w(I) + ndmax — B(I) — ndmax w() -/
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Consequently, every PTAA for metric min_ TSP can simultaneously soive general min TSP
within the same differential approximation ratio. I

Let dmin = min{d(i,j) : viv; € E}. Then, if one transforms every distance d(i,5) into
d(i,7) — dmin -+ 1, one obtains a complete graph where dmi, = 1 and with arguments completely
analogous to the ones of proposition 1, the following holds.

Proposition 2. General min_ TSP and min_ TSP with dmin = 1 are differentially equi-appro-
zimable.

We next consider another class of instances, the one where the edge-distances are either a,
or b (notorious member of this class of min_TSP-problems, denoted by min_TSPab, is the
min_TSP12). Suppose, without loss of generality that e < b. Then, by proposition 2,
min_TSPab is equi-approximable with min_TSP1b. Consider now an instance of the latter
problem. If one sets & = 2 for all the b-edges (edges of distance b), then by arguments com-
pletely similar to the ones of the proof of proposition 1 (and since for a tour 7T containing &
b-edges, d(T) =n+ (b — 1)ky), the following result holds.

Proposition 3. min_ TSPab and min_ TSP12 are differentially equi-approzimable.

Note that results analogous to the ones of propositions 1, 2 and 3 do not hold in the standard
approximation framework.

3 2_0PT and differential approximation for the general minimum traveling
salesman

In what follows, we denote by D-APX the analogous of the class APX, the class of NPO
problems solved by a constant-ratio PTAA, for the differential approximation framework.

Theorem 1. min_ TSP is differentially approzimable within approzimation ratio 1/2 and this
ratio is tight.

Proof. In what follows, suppose that a tour is listed as the set of its edges and consider the
following algorithm of 7).

BEGIN /2_0OPT/
(1) start from any feasible tour T;

(2) REPEAT :
(3) pick a new set {vyvj,vyvy} CT;
(4) IF d(i, i) + (1, 3') > d(4,1) +d(F, j') THEN T « (T \ {vivy,vyvy}) U {vivir,v5vy} FI

(6) UNTIL no improvement of d(T)} is possible;
(6) OUTPUT T;
END. /2_0PT/

Suppose now that, starting from a vertex denoted by v;, the rest of the vertices is ordered
following the tour T finally computed by 2_OPT (so, given a vertex v;, ¢ =1,...,n~1, vy, is its
successor with respect to T; vpt1 = v1). Let us fix one optimal tour and denote it by 7*. Given
a vertex vj, denote by v, (; its successor in T (remark that v,.(;),; is the successor of Vgo (i)
in T; in other words, edge vs-(;)Us=(s)41 € T). Finally let us fix one (of the eventually many)
worst-case (maximum total-distance} tour T.,.

The tour T computed by 2_0PT is a local optimum for the 2-exchange of edges in the sense
that every interchange between two non-intersecting edges of 7 and two non-intersecting edges
of E\ T will produce a tour of total distance at least equal to d(T). This implies in particular
that, Vi € {I,...,n},

d(é, i+ 1) +d(s7(i),s"(1) + 1) < d(6,s7(0)) +d (i + 1,8 (4) + 1);

4



so, writing the expression above for all i € {1,...,n}, we get

n

> (A i+ 1) +d(s* (@), 5" @) + 1) € 3 (d(6,5%E) +d G+ 1,5"6) + 1))

i=1 i=1

Moreover, it is easy to see that the following holds:

U vy = U {owveent = T

i=1l,..n i=1,.7
U {vvsw} = T

<573

U {vi“us-(i}ﬂ} = some feasible tour 77

Let us show that 7" = Usst,..,n{i+10s+ (541 } is feasible. Recall that an acyclic permutation is a

bijective function f: {1,...,n} — {1,...,n} such that, ¥i € {1,...,n}:

fR@ #4 k<n
{ F) =

Every feasible tour T, oriented as mentioned above, can be seen as an acyclic permutation.

Consider now the following mappings

§° 1 i §T(0)
f v imi+l
h @ i—s*(i-1)+1.

It is easy to see that if s* is an acyclic permutation and f is a permutation, then h = fos*o f!
s an acyclic permutation. Moreover, it is not hard to see that pairs (1, 2()) correspond ( modn)

to the edges of 7", .
Combining expression (1) with expressions (2), (3) and (4), one gets:

(@) = Ydii+1)+ 3 d(s (s () +]) = 2 mwr(Ka)

i=1 i=1

®) = TdGs) = B

(@) = YdG+Ls6)+1D) = dT) < wKy)
i=1 :

and expressions (1) and (5) lead to

w(Knp) = Az o7 (Kn) _ 1

2X2_opr (B} € B{Kn) +w (K,) <= A —)—B(Kn) 25

Consequently, 62 ger = 1/2.

Consider now a Kgpig,n 20,58t V = {v;:7 = . 4n + 8}, let
d2k+1,2k+2)=1 k=0,1,... 2n+3
d(dk+2,4k+4) =1 k=0,1,....n+1

d(4k +3,4k+5) =1 k=0,1,...,n
d(dn +7,1) =

ot



and set the distances of all the remaining edges to 2. Then,

T = {vivim1:i=1,...,4n + T} U {vantst1}
T = {vag_1veprn: k=0,....2n + 3} U {vipsovaksa : k=0,...,n+ 1}
U {1;_;3;+3'U4k+5 :k=0,... ,n} J {’U4n+7’01}
Tw = {vopsovops3:k=0,...,2n +2} U {vops1voksa: k=0,...,2n + 1}

U {voksovokes 1 k=0,...,2n + 1} U {vspqsv1 }-

In figure 1, T* and Ty, are shownforn =1 (T = {1,..., 11,12,1}). Hence, 62 opr(Kynss) = 1/2

and this completes the proof of the theorem. il

Figure 1. Tightness of the 2_0PT approximation ratio for n = 1.

From the proof of the tightness of the ratio of 2_0PT, the following corollary is immediately
deduced.

Corollary 1. 62_ opr = 1/2 is tight even for min_ TSP12.

A first case of polynomial complexity for algorithm 2_OPT (even if edge-distances of the graph
are exponential in n) is for graphs where the number of (feasible) tour-values, denoted by ¢ (K, ),
is polynomial in n. Here, since there exists a polynomial number of different min_ TSP solution-
values, achievement of a locally minimal solution (starting, at worst for the worst-value solution)
will need a polynomial number of steps (at most o(K;)) for 2_0PT.

Theorem 1 obviously works in polynomial time when dp,4 is bounded above by a polynomial
of n. However, even when this condition is not satisfied, there exist restrictive cases of min_ TSP
for which 2_OPT remains polynomial.

Consider now complete graphs with a fixed number £ € IV of distinct edge-distances,
d1,da,...,d;. Then, any tour-value can be seen as k-tuple (nq,ns,...ng) with n; +no +
...+ ng = n, where n; edges of the tour are of distance d;, ..., ny edges are of distance dj
(XX md; = d(T)). Consequently, the consecutive solutions retained by 2_0PT (in line (4))
before attaining a local minimum are, at most, as many as the number of the arrangements with
repetitions of k distinct items between n items (in other words, the number of all the distinct
k-tuples formed by all the numbers in {1,...,n}), i.e., bounded above by O(n*).



Another class of polynomially solved instances is the one where 8(K,) = O(F(n)) where P is
a polynomial of n. Recall that, from proposition 1, general and metric min_ TSP are differentially
equi-approximable. Consequently, given an instance K, where 3(K,) is polynomial, K, can be
transformed into a graph XK as in proposition 1. Then, if one runs the algorithm of {5} in order
to obtain an initial feasible tour T (line (1) of algorithm 2_0PT), then its total distance, at
most 3 ‘2 times the optimal one, will be of polynomial value and, consequently, 2_0PT will need
a polynomial number of steps until attaining a local minimum.

Let us note that the first and the fourth of the above cases cannot be decided in polynomial
time. However, if one systematically transforms general min_ TSP into a metric one (proposi-
tion 1) and then uses the algorithm of (3] in line (1) of 2_0PT, then all instances meeting the
second item of corollary 2 will be solved in polynomial time even if we cannot recognize them.

Corollary 2.  The following versions of min_ TSP are in D-APX (solved by 2_0PT within
ratio 172):

¢ on graphs where the optimal tour-value is polynomial in n;

» on graphs where the number of feasible tour-values is polynomial in n (examples of these
graphs are the ones where edge-distances are polynomiaily bounded, or even the ones where
there exists o fized number of distinct edge-distances).

4 Approximating min TSP12

Let us first recall that, given a graph G, a 2-matching is a a set M of edges of G such that
if V(M) is the set of the endpoints of A, the vertices of the graph (17(M), M) have degree
at most 2, in other words, the graph (V' (M), M) is a collection of cycles and simple paths. A
2-matching is optimal if it is the largest over all the 2-matchings of G. As it is shown in [14],
an optimal triangle-free 2-matching can be computed in polynomial time.

Our min_TS3P12 PTAA is based upon a special kind of triangle-free 2-matching in K,,
the cycles of which will be progressively patched in order to produce a Hamiltonian tour. In
what follows, we deal with optimal triangle-free 2-matchings, i.e., with triangle-free collections
of cycles.

Theorem 2. min_TSP12 is approzimable within differential approzimation ratio § > 3/4.
This ratio is tight for the algorithm devised. ' :

Proof. Let M = (Cy,C5,...) be any maximal triangle-free 2-matching of K,. In the sequel,
we call by value of ¢ 2-matching the sum of the distances of its edges. For any matching M,
we will denote its value by d(M). Also, let us call cycle-patching (see also [18]) the operation
consisting in taking two cycles C; and C; of M, in picking edges wv; € Cj, vpvg € C; and
in transforming C;, and Cj into a unique cycle C' = C; N C; \ {vpvy, vprg} N {eij,egj}, where
{ez-j,egj} = {vkvp, vvg}, or {ejj.€;;} = {vkvg,vivp}. This specifies the following procedure,
polynomial in n, computing, in addition, the total distance of the cycle resulting from cycle
patching.

BEGIN /CYCLE_PATCH/
take edges vyvy € C; and vpvq € Cy;
Cij — C1 UCy \ {wiv1. vpvq} U {vxvp, 1vg};
ij = C3 UCy \ {vivy, vpvg} U {vivg, vivp};
QUTPUT Cyj «— argmin{d(Cl;),d(c2;)};
END. /CYCLE_PATCH/



4.1 Specification of the min_ TSP12-algorithm and evaluation of A(K,)

In the sequel, we will first specify a PTAA min_TSP12 and estimate the value Arspra{K) =
d(T(Ky,)) of the Hamiltonian tour computed. Next, we will compute a lower bound for w(Ky).
As for theorem 1, we will exhibit a feasible tour of a certain value. Since worst solution’s value
is larger than the value of every other Hamiltonian tour of K, the value of the tour exhibited
will be the bound claimed.

Let M be an optimal triangle-free 2-matching of K, (recall that, as we have mentioned,
such a matching is maximal, i.e, it does only contains cycles). Starting from M, one can easily
construct an optimal 2-matching M* where every patching of two cycles strictly increases its
value. In what follows, we will call M* 2-minimal. Construction of M* can be done in polynomial
time by the following procedure.

BEGIN /2_MIN/
Mp —0;
REPEAT
pick a new set {G;,C;} CR;
FOR all wvyvy € C;,vpvg €C5 DO
Mp — M\ {Cy,Cy} U CYCLE_PATCH(C;, C;)
IF d(f) > d(Mp) THEN #l —M, FI
0D
UNTIL no improvement of d(M) is possible;
OUTPUT M* « f1;
END. /2_MIN/

Remark 1. In any 2-minimal matching M there exists at most one cycle C containing 2-
edges (edges of distance 2). In fact, if not, procedure CYCLE_PATCHING can always be applied in
order to patch two distinct cycles containing 2-edges into one cycle with total distance no longer
than the sum of the distances of the two cycles patched. Moreover, if M = C, then M is an
optimal solution for min_TSP (in general, a Hamiltonian cycle being a particular triangle-free
2-matching, d(M) < Bmin(Kn))- 1

Fix a 2-minimal triangle-free matching M* = (C|,Cy,...,Cpy1) (recall that M* is a minimum
total-distance triangle-free 2-matching) and suppose, without loss of generality, that p>0
and that cycles Cy, ..., Cp contain only 1-edges (edges of distance 1} and that only cycle Cpyy
contains, eventually, some 2-edges. Finally, recall that it is assumed that |Cif 2 4. The following
facts can be concluded regarding M*.

Fact 1. ¥(C,C") € M* x M~ such that C # (', Vuv € C, Yu'v' € C', max{d(u, ), d(v,v")} =
max{d(u,v'),d(v,u')} = 2. I

Fact 2. If vertex u is adjacent to a 2-edge in Cpy., then, Yo' & V(Cpy1), d(u, o) = 2. §

Fact 3. If wu' and vv' are two distinct non-adjacent 2-edges of Cpy1, then d(u,v) = d(u,v') =
d(u'v) = d(u'v') = 2.1

Given M* = {C),...,Cp41), we first perform the following preprocessing on Ch,...,Cy.

BEGIN /PREPROCESS/
PR« 0;
WHILE possible DO
arbitrarily pick C3,C; € M*\ {Cp.y} linked by at least one i-edge;



PR «— PRU{Ci,Cj};
M* = M N {Cs, €y}
D
QUTPUT PR;
END. /PREPROCESS/

Suppose the WHILE loop of PREPROCESS executed ¢ times and denote by {C},C3} the cycles
considered during the sth execution of the loop, s = 1,...,¢. Then PR = UI_ {C§,C5}. Set
r =p—2q and denote by Dy, t =1,...,7, the cycles in {C1,...,Cp} \ UL, {C$,C4}. Under all

this,
q r
= {Jenenfu{UnUsm

t=1

The following facts hold and complete the above discussion. .

Fact 4. 2g+r > 1,if 29+ r =1 then Cpiy #0. I

Fact 5. Vs € {1,....q},V/ € {1,2}, Ve € C}, d(e) = 1.

Fact 6. Vie {1,...,r},Ve€ D, d{e) =1.1

Fact 7. Vs € {1,....q}, 3i®* € V(C}), 3I° € V(C3) such that d(i*, %) = 1. §

Fact 8. V(t.#) € {1,..., 7} x{1,...,r}, t # ¥, V(u,v) € V(D) x V(Dy), d(u,v) = 2. 11

In the sequel, for s = 1,...,q, we denote by a° and b° (resp., A® and B®) the vertices adjacent
to ¢° (resp.. I} in C¥ (resp., C3). Weset ¢ = 3 1_ (|G| +{C3]), d =31, |Dil, B2 = {e €
Cp+1: d(e) = 2}. Following these notations, n = c+d+|Cp41| and, denoting by |E2| cardinality
of the set E2,

d(M*) =n+|E2| (6)

We are weli-prepared now to describe the algorithm proposed. Informally, it first patches cy-
cles Cf and Cj into a single cycle C%, 8 = 1,...,q. Next, it patches cycle C! with C? to produce
a cycle C which will be patched with C3, and so on, finally producing a single cycle C. It
does so for the cycles Dy, t = 1,...,r, producing a single cycle D. Then it patches C and D
in order to produce a partial tour T and finally it patches T and Cp+1 obtaining so the final
TSP-tour T(Ky). '

4.1.1 Construction and evaluation of C
Construction of C is performed by means of the following procedure.

BEGIN /C/
FOR s — 1 to q DO using edge i°I® C® « CYCLE_PATCH(C],C§); OD
¢+t
FORs« 1 TO g—-1 DO
replacing as many 2-edges as possible C«— CYCLE_PATCH(C,CSt!);
aD
OUTPUT C;
END. /C/

The call of algorithm CYCLE_PATCH in the first FOR-loop of C is a very slightly different variant
of the corresponding procedure presented above where one imposes to the 1-edge °I° {fact 7)
to be one of the cross-edges entering cycle C'°.



Lemma 1.  The 2-matching (C!,C?,...,C9) produced during the g ezecutions of the first
FOR-loop of algorithm C has value d(C!,C?,...,CY) =c +q.

Proof of lemma 1. Patching of Cf and C§ into C® is done using l-edge i°I° (fact 7), s =
I,...,q. Consequently, only one 2-edge has been included in C*® {the one used with i*I® to
patch C7 and C3). Such an edge always exists because of fact 1. So, for s = 1,..., q. execution of
CYCLE_PATCH(CS, C3) in the first FOR-loop of C will produce in all exactly ¢ 2-edges replacing and ¢
i-edges replacing 2¢ 1-edges. Consequently, d(C',C%,....C) =31, (|IC§| +|C§)) +q=c+gq
and this completes the proof of lemma 1. B

During the executions of CYCLE_PATCH in the second FOR-loop of C, we try that the total
distance of the resuiting cycle is no longer than the sum of the total distances of the cycles
patched. In other words, we try to not produce additional 2-edges in the resulting cycle. Here
the following lemma holds.

Lemma 2. The cycle C produced during the second FOR-loop of algorithm C does not increase
d(C',C?,...,C9).

Proof of lemma 2. The proof is done by induction on ¢.

4111 g=1

The proof of this case is an immediate application of lemma 1 with g = 1.

41.1.2 g=k
Suppose that during the k first executions of the FOR-loop, the number of 2-edges is at most &.

4113 g=k+1

Suppose now that there exists at least one 2-edge in C (note also that C**!, since it has been
not processed yet, always contains the 2-edge produced by the execution of the first FOR-loop).
Since the patching with C**! is done by algorithm C using two 2-edges, there is no additional
2-edge created. On the other hand, if no 2-edge exists in C, the patching of C with C5+1 will
produce at most 2 € k+ 1 new 2-edges and this concludes induction and the proof of lemma 2. I

Lemmata 1 and 2 induce
d(C)<c+g (7)

4.1.2 Construction and evaluation of D

The following procedure is used to construct D.

BEGIN /D/
DeDy;
FORt«~ 1 T0 r-1 DO
replacing as many 2-edges as possible D «— CYCLE_PATCH(D,Dy1);
oD
OUTPUT D;
END. /D/

Exactly analogous arguments to the ones of the proof of lemma 2 applied to algorithm D and

thanks to fact 8 induce
d(D) <d+r (8)

Also, let us note that any patching of cycles D; between them will create an additional cost of r.
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4.1.3 Construction and evaluation of T

BEGIN /T/
replacing as many 2-edges as possible T « CYCLE_PATCH(C,D);
QUTPUT T;

END. /T/

With the same arguments as in lemma 2, the following holds for |T7:

c+d+g+r 2g+r 22 (9)
d (g,7) = (0,1)

4.1.4 Overall specification of the min TSP12-algorithm, construction and evalu-
ation of T

Once T constructed, call of CYCLE_PATCH(T, Cp.1), changing as many as 2-edges (at most 2)
as possible, constructs the final TSP-solution T'(K,) and the whole min_ TSP12-PTAA is the
following. The 2-matching M produced in the first line of the a,lgortthm below is supposed to
be optimal and without cycles on less than, or equal to, four edges.

BEGIN /TSP12/
call the algorithm of [14] to produce H;
M= (Cy,...,Cpxu1) — 2_MIN();
M* «~ PREPROCESS(M) Uf_; {D¢} U Cpy1;
C e C(M");
D — D(M*);
T — CYCLE_PATCH(C,D);
OUTPUTT(Ky,) < CYCLE_PATCH(T, Coi4);
END. /TSP12/

It is easy to see that, since all the algorithms called are polynomial, TSP12 works in polynomial
time.

If (g,r) = (0,1) (in this case, by fact 4, Cp1 # 0), then patching of D) with Cp41 constructs
a tour with d(T'(Ky)) = d(D1) +d(Cpr) + 1 =d(M*) + 1 = d(M*) + g + 7.

Suppose 2¢+7 > 2. Then, by expression (9), d(T) € c+d+q+r. Ifd(T T) < c+d+q+r, ie.,
d(T) < c+d+q+r—1. even if T does not contain any 2-edge, patching of T with Cp+1 will create
only one additional 2-edge so, finally, d(T(K,)) < d(T )+d(Cp+1) L ct+d+g+7+|Cppa| +|E2)
and, by expression (6). d(T(Ky,)} < d(M*) +q+r. If d(T) = c+d+ g+, we simply exchange
two 2-edges and the same expression for d(T'(K,)) always holds.

The discussion above leads to the following concluding expression for the quantity d(T(K,)):

d(T (Kn)) = A1gpio (Kn) L (M*) +g+r (10)

4.2 A bound for w(K,)

In what follows, we will exhibit a TSP12-solution, the objective value of which will provide us
with a lower bound for the value w(X,)} of the worst TSP12-solution on K,. For this we define a
set W~ of disjoint elementary paths (d.e.p.), any one of them containing only 2-edges. Obviously,
if W = {wy,... ,W|w;}- one, by properly linking w;’s, can easily construct a tour 7" vérifying
d(T’) n+ Y u.ew lwi which is a lower bound for w(Ky).

11



4.2.1 Disjoint elementary paths on V{C)

Recall that, for ¢ # 0, d(i°.I°) = 1; hence, by fact 1, d(a®, 4°) = d(a®, B®) = d(b°, 4°) =

d(b*. B°) = 2, s = 1,...,q. Always by fact 1, either d(¢°, B®) = 2, or d(I*, %) = 2. Without loss

of generality, we suppose all over the rest of the proof of theorem 2 that d(:*, B®) = 2.
Consequently, for s = 1,...,q, set Wgs = {b°A%, A%®, a®B®, B%°} and the set of d.e.p. on

the vertices of C is We = UI_ We. with

|Wel = 44 , (11)

4.2.2 Disjoint elementary paths on V(D)
If r > 1, we choose, for ¢ = 1,...,r, a sequence {we, z¢,y1, 2} € V(D). Then, the set of d.e.p.
and its cardinality on 17(D) is

DVD = {wlrw%“-uwtrwt-i-l!"-1w1"1$1:-"1$t:"-amrayla---syhzlv"wzr} (12)
Wpl = 4(r—1)+3=dr—1 (13)

If r < 1, then we set Wp = 0.

4.2.3 Disjoint elementary paths on V(T
4.2.3.1 g>a0

Suppose first r # 1. If » = 0, then W = W¢. Suppose now r > 1. Then, by fact 1, there
exists vertex v; € V' (D1} such that either d(v1, B') = 2, or d(v;, ') = 2. Let e be this 2-edge.
Without loss of generality, we can suppose vy = w; (see the paragraph just above). Then the

-

set of d.e.p. on V(T) is Wz = We UWp U {e} with (see expressions (11) and (13))
|Wi|=dg+4r—1+1=4{g+7) (14)

Suppose r = 1. Consider cycles C{, C; and Dy and denote by o’ (resp., A'!) the vertex,
distinct from ¢! (resp.. I') in Cf (resp., C}) adjacent to a® (resp., A!). If for any u € V(D)
and for any v € {a!,b', 4}, B}, d(u,v) = 2, then let w, z,y, 2 be four vertices of V{D;) and set
W, = {wa',alz, zb!, bly,yAl, Atz, 2B, BY4'}.

Suppose now that there exist = € v(D) and v € {a!,b}, A}, B!} with d(z,v) = 1; assume
v = a! (s0, d(za!) = 1). Let w,y, z be three vertices in V(D1) such that w, Z,Y, z are subsequent
in Dy. Then, by fact 1, d(w,a'") = d(w,i') = d(y, o'ty = d(y, i) = 2.

If d(y, I') = d(z, A') = 2, then W1 = {I'y},ya'", 0" w,wil,al B!, Blb!, b1 A1, Alz}. If not,
we can suppose (up to renaming of cycles C}, C3 and Dy in the discussion that follows) d(y, I')} =
1. Then, by fact 1 one of the edges i'z and a'y is a 2-edge; let us denote it by e. Set f =a' 1y
if e = iz, or f = i'w if e = aly. Then, W; = {a'lw,ily,alAl,Albl,blBl,Blz} U {e f}.
Figure 2 illustrates this case. In all the above cases set W = (Wo \ Wg,) UW, is a set of d.e.p
(remark that the hypothesis d(i¥, BS) = 2 does not intervene in the specification of the set W;)

of cardinality
Wel=4g+4+8=4(g+r) _ (15
T

From expressions (14) and (15} we conclude for the case ¢ > 0:

Wz = 4(g +7) . (16)

12



2-edge in W3

Figure 2. Construction of W,.

42.3.2 g=0

Consider first |E2| = |Cp41|. Remark that r > 1 (if not T(K,,) = Cpy1 is 2 minimum-distance
Hamiltonian tour); note also that Cp.; can eventually be empty. From facts 2, 3 and 8, for any
cycle Dy, ¢ =1,...,7 the only l-edges (other than the ones of D;) incident to vertices of V(Dy)
are pairs of V(D;} x V/(D;) not included in D;. However, in any feasible Hamiltonian tour,
one cannot use more than Zfz’f(]Dgl — 1) = d — r of them and, consequently, no less than
n—(d—r)=|Cps1|+7 2-edges. Hence, 8(Kp) 2 n+|Cpui}+7 = d(M*) +r = |T(K,)| and the
solution computed by algorithm TSP12 is optimal. For case |[E2| < |Cpt1], we set Wi = Wp
ifr>1and Wp=0,ifr=1.

4.2.4 Disjoint elementary paths on V(K,,)
4.24.1 q > 0,[E2| < |Cpt1]
Consider set W =W U E2. Using expression (16), we get |W| = 4(g + r) + | E2l.

4.24.2 q> 0,|E2| = |Cpyi]

Let ur € Cpy1 and v’ be a vertex with [Tw,. (w')| = 1, where by T'w,(u") we denote the set of
neighbors of v’ belonging also to V/(W.z). Remark that such a vertex u' exists because Wsisa
simple set of paths. Fact 2 ensures d(u,u') = 2. We then set W = W U (Cpy1 \ {uv}) U {uv'}
© with (see expression (16)) W] = 4(¢ + r) + |E2|. -
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4.2.43 q=0,[E2| < |Cps1]

Let us first suppose 7 = 1. Then, let H = {e1, ey, €3,24} be an elementary path on four edges
in Cp+1 with endpoints u and v and such that d(e;) = I and d{ez) = 2; let M = {w,z,y,2} be
a sequence of four successive vertices in V(D;) and set H2 = {e € H : d(e) = 2}. Then, using
facts 1 and 2, we can construct {see figure 3), between paths H and M, a path P containing at
least 4 + [H?2| 2-edges where [I'p(v)] € 1. We set W = P U (E2\ H2) that constitutes a d.e.p
with 7] = (4 + |H2|) + (|E2| - |H2)) = |E2| + 4.

u €1 (0] e3 v €4 v
Cp+t
D
2-edge
"""""""" 1-edge
Cot1
S =1, -2
included in W
D

w T Y 4

Figure 3. Construction of W supposing vz = argmax{d(v’,y), d(v, z)}.

Let us now suppose r > 1 and let uv be an l-edge of Cpy;. Moreover, from the previous
paragraph, for the case we deal with, W = Wp, where Wp is given by expression (12). By
fact 1 we have that either zju, or yv is a 2-edge; let us suppose d(z;,u) = 2. Then, the set
W = W, U E2U {z;u} forms a d.e.p. composed of |W| = (4r — 1) + |E2| +1 = 4r + |E2| =
4(g +r) + | E2| 2-edges.

Consequently, dealing with W, we always have |W| > 4(¢g + r) + |E2{. One can obtain
a tour T,(K,) by properly linking d.e.ps by edges (at worst by l-edges) in order that they
form a Hamiltonian cycle on K,. The so obtained T, (K,) has objective value d(T,(Kr)} =
n + 4(g + r) + | E2|; so, using expression (6}

w(Ky) 2d(Ty (Kn)) 2n+4{g+r)+ B2l =d(M") +4(g + 7). - (17)
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4.3 The differential approximation ratio of TSP12

We have already seen that if ¢ = 0 and |E2| = [Cpy,], then é(min_TSP12) = 1. So, for ¢ > 0
or g =0 and |E2| < [Cp41| expressions (10), (17) and the fact that F(K,) = d(M™), we get

_ w(Kn) — Argpio (Kn) . d(ﬂff*) +4(q+r) - (d(ﬂ/f*) -+ (q—!—r)) _ 3(q+r) _

3
brsp12 (Kn) = w(hn) - B (K, *° d(M*)+4(g+7r)— d{M¥) T 4(g+ T} a4

4.4 Ratio 3/4 is tight for TSP12

Figure 4. Tightness of the TSP12 approximation ratio.

Consider two cliques and number their vertices by {1,...,4} and by {5,6,...,n + 8}, re-
spectively. Edges of both cliques have all distance 1. Cross-edges ij,:=1,3,7=35,...,n+8§,
are all of distance 2, while every other cross-edge is of distance 1.

Unraveling of TSP12 will produce:

T = {1,2,3,4,53.6,...,n+7,n+8,1} cycle-pathing on edges (1,4) and (5,n + 8)
T, = {1,5,2,6.3.7.4,8,9...,n+7,n+ 8,1} using 2-edges (1,3),(6,3),(3,7) and (n +8§,1)
T = {1,2,n+8n+7,..,54,3,1} using l-edges (4,3),{2,n + 8)

ie, AM(Knig) =n+9. B(Knts) = n+ 8 and w(Kyts) = n + 12 {in figure 4, T* and T}, are
shown for n = 2; T' = {1,...,10,1}). Consequently, rsp12(Kr+3) = 3/4 and this completes the
proof of theorem 2. I

Let us note that the differential approximation ratio of the 7/6-algorithm of [18], when
running on Kp.g, is also 3/4. The authors of [18] bring also to the fore a family of worst-
case instances for their algorithm: one has k cycles of length four arranged around a cycle of
length 2k. We have performed a limited comparative study between their algorithm and the
our one, for k = 3,4, 5,6 (on 24 graphs). The average differential and standard approximation
ratios for the two algorithms are presented in table 1.

5 Further results for minimum traveling salesman

5.1 Bridges between differential and standard approximation

Let us consider the following approximation-preserving reduction proposed in [16], strongly
 inspired by the A-reduction of [17] between pairs (II, R), where II is an NPO problem and R an

15



| & TSP12 The algorithm of [18]

Q

2 (3 0,931100364 0,846702091
3 {4 0,9000002 0,833333
Z 5 0,920289696 0,833333
&6 09222222 0,833333
=

.£

2 I3 0,923350955 0,87013
= [[4 0,9094018 0,857143
< 15 092646313 0,857143
g6 0928178 0,857143

Table 1: A limited comparison between TSP12 and the algorithm of [18] on some worst-case
instances of the latter.

approximation measure. In what follows, we denote by R[II](7,.S) the value of the approximation
measure R relative to a solution S of an instance I of [I. We suppose that R has values in [0, 1]
(for the standard approximation, we inverse the approximation ratio in the case of minimization
problems).

Definition 3. A G-reduction of the pair (IT;, R;) to (IIy, R2), denoted by (IIy, R})QG(HQ, Rs),
is a triplet (o, g, ¢} such that:

e ox: 7} — Z; polvnomially transforms instances of I1; into instances of IIy;
o g:5(cx (I)) — S(I) polynomially transforms solutions for II; into selutions for II;:

e c:[0,1] = [0,1] (c™*(0) = {0}) is such that, Ve € [0,1],¥] € T1,¥S € S(x (1)),
Ry [Mo]{ex (1), 8) 2 e = Ry [Ih](1,9(S)) 2 cle). 1

The following easy lemma holds.

Lemma 3. Consider an NPQ problem II = (Z,S,v;,0pt). If 3t > 0 such that, VI € I,
lw(I) = B(I)| € tmin{w(T), B}, then (II, p)<C(IL, 6) with

tetl =
ci(e) = { ] OPt=max
Tiote Opt = min
Remark that for min_TSPab we have
w (Ka) = B (Ka) S b= an < (b= aln < 228 (Ko)
and by application of lemma 3 the following theorem holds.
Theorem 3.
(min_ TSPab,p) <€ (min_TSPab,6) with c(e) = m

(min_TSP12,p) <% (min_TSP12,8) with ce) = 5 1 Pa
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Theorem 3 implies 1/prsp12 > 4/5; in other words, prspiz < 5 /4. This ratio is better than the
one of [3] for this particular case, but with no operational impact since it is dominated by the

result of [18].
Recall that min_TSP12 and min _TSPab are equi-approximable in the differential approxi-
mation framework. Consequently, using theorem 3 with 6 = 3/4, the following corollary holds.

Corollary 3. min_ TSPab is approzimable within
(3,1b
£s 4 da

in the standard framework. This ratio tends to oo with b.

Let us now denote by Amae and Api, a maximum and a minimum spanning trees of K,, re-
spectively. and by ¢(4max) and ¢{Amin) their respective costs. Then, the following proposition
kolds.

Proposition 4. If c(Amax)/c(Amm) € v, v > 1, then (min_TSP,p)SG(min_TSP,é) with
ele) = 1/(v(1 —€) +¢).

Proof. lLet T, (K,) and T*(K,)} be a worst-value tour and an optimal tour of K, respec-
tively. Set dy = miny,y .1, (x,){d(%,7)} and dg = MaXy,; ;T (K,) 143, 7)}.  Since Ty, (Ky) \
{argmin, , c7,(k,){d(7,5)}} and T*(X,) \ {argmax,.,.e7+(x,){d{i,7)}} are obviously spanning
trees of Ky c(Amaz) 2 w(Kr)~dy, c(Amin) < B(Kn)—dg. Remark also that dy, < w(Ky,)/n and
dg 2 B(Kn}/n. So, c(Amez) 2 W(Kn){l ~1/n} and e(Amin) < B{En)(1 = 1/n). Consequently,

w (Kn) C{Amam) (1 = %) C(Ama:r)

BB S eChmen) (1= 3) < () =
Hence, w(K,) - 8(K,) < (v — 1}8(K,), and using lemma 3 for ¢t = (v — 1) we get cle) =
(v(l=€)+e)"t 1

5.2 An inapproximability result

We first note that one can prove very easily (with arguments similar to the ones of theorem 6.13
in {13]) that min_ TSP cannot be solved by a differential FPTAS unless P=NP. We now restrict
ourselves to min_TSP12 and revisit theorem 3. It is easy to see that it does not only establish
links between the approximabilities of min_TSP12 in standard and differential frameworks, but
it also establishes limits on its approximability in the two frameworks. Plainly, since approxi-
mation of min_TSP12 within § = 1 — ¢ implies its approximation within p = 2 ~ (1—¢) =1+¢,
0 < e < 1, if there exists an ¢ such that, under a very likely complexity theory hypothesis,
min_ TSP12 is inapproximable within pg < 1 + €g, then it is inapproximable within 8y > 1 — €.
In other words, the hardness thresholds for standard and differential frameworks are identical.

Theorem 4. If under a complesity theory hypothesis min_ TSP12 is inapprozimable within
L + €y, then, under the same hypothesis, min_ TSPI12 is differentially inapprozimable within
1—¢p. ‘

Recall the negative result of [4]: Ve > 0, no PTAA can guarantee standard approximation ratio
less than, or equal to, 3477/3476 — ¢ unless P=NP. Using theorem 4, Ve > 0, it is NP-hard to
approximate min_TSP12 with differential ratio better than 3475/3476 + ¢. Since min_TSP12

is a special case of general min_ TSP, the following corollary holds concluding the section.

Corollary 4. min_ TSP cannot be approzimated within differential ratio greater than, or equal
to, 3475/3476 + ¢, for every positive €, unless P=NP.

Finally, let us note that the inapproximability result of [11] for dense graphs holds also in the
differential approximation framework with the same hardness threshold.
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6 Differential approximation of maximum traveling salesman

We have also mentioned that in the opposite of min_ TSP, max_ TSP (certainly less popular than
its cousin), although it is APX-hard ([20, 18]), can be solved by a PTAA achieving standard
approximation ratio p = 5/7 (this ratio is somewhat worst — 38/63 - when the input-graph is
directed).

The purpose of this section is to show that, in the differential approximation framework, the
two cousins are equi-approximable establishing so a kind of natural symmetry between the two
problems at hand.

Theorem 5. maz_ TSP is equi-appromimable with min_ TSP; consequently it is in D-APX.

Proof. Observe first that, given a graph K, there exists a very interesting symmetry be-
tween min_ and max_ TSP with respect to worst-case and best objective values:

Prain (Kn} = Wmax{Kn)
{/6106-3((}{71) = wmin(Kn) (18)

Expression (18) confirms what we said in the introduction of the paper that the worst value of
a problem can be as hard to compute as the optimal one.

Given a complete graph K7, let us denote by K, the complete graph on n vertices when one
replaces distance d(i,7) by d{(i,7) = M - d(5,7), 4,5 = 1,...,n, for M = maxy,v; ez {d(i, 5)} +
miny,;cg{d(4,5)}. It is easy to see that K, = K,,. Moreover, any TSP-feasible solution for K,
is TSP-feasible for K.

Given a Hamiltonian cycle T, we use notation T, (resp., Timax) in order to indicate that

we deal with a solution of min_ TSP (resp., max_TSP). We then have

ITmin (Kn)l = Mn- |Tmax(R-n)|
iTma.x (Kn)f = Mn- !Tmin (Kﬂ)|
and, more particularly,
Wmin (Kn) = Mn- .Smin (Kn) = Mn - Wmax (Rn) (19)
M (KR) = Mn— AP (K,) (21)

By the discussion above, one can immediately conclude that for every PTAA 4 and for every K,
§PI(K,) = 672%(K,,) (where, once again, indices min and max are used to denote min_ TSP
and max_TSP, respectively). Consequently, 5" = §['®, VA. Since §8%,. > 1/2, the same
holds for 6§**%p; and this completes the proof of the theorem. I B

For d(i, 7} € {a, b}, MmaXy,y;ep{d(%, j)} +miny.;ez{d(i, /)} —d(i, j) € {a,b} Yv;v; € E; so, the
proof of theorem 5 establishes also equi-approximability between min_TSPab and max_ TSPab
and the following theorem summarizes differential approximation results for max_TSP.

Theorem 6.
» maz_ TSP is approzimable within differential approzimation ratio 1/2;

o maz_TSPI2 and maz_ TSPab are approzimable within differential approzimation ra-
tio 3.4;

® for every e > 0, maz_ TSP cannot be approzimated within differential ratio greater than,
or equal to, 5379/5380 + €, unless P=NP,
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7 Animprovement of the standard ratio for the maximum travellng salesman
with distances 1 and 2

Application of lemma 3 in the case of max_TSPab with ¢ = (b — a)/a gets

b—a a
p—Cb;a((S)— 5 c5+5
and for § = 3/4 we have
3\ _3,1a .
o \y) T 171 _ (@)

The above ratio is always bounded below by 3/4. Here we see another impact of the asym-
metry between minimization and maximization versions of TSP in the standard approximation
framework. Recall that, as we have seen in section 5.1, the standard approximation ratio for
min_TSPab tends to oc with b and this obviously holds for every PTAA.

Set now a = 1 and b = 2 and revisit expression (22). Then, the following theorem immedi-
ately holds.

Theorem 7. maz_ TSP12 is polynomially approzimable within p™ > 7/8.

Such an improved ratio (7/8 > 5/7) for max _TSP12 seems that it cannot be immediately
achieved by the interesting work of [20].
Consider now the following algorithm for max_TSP.

BEGIN /MTSPALG/
construct K,;
call the algorithm of [18] to compute a tour Tmin(i_(n);
DUTPUT Trax(Kn) — Toin(Ka);

END.

Recall that the algorithm called in the first line of the algorithm just above guarantees p™in g
max

7/6. Then, using expressions (20), (21) and some easy algebra, one gets pBa%, . (Kn) > 2/3.

8 Towards stronger differential-inapproximability results for the traveling
salesman

Recall that an NPO problem IT is called simple ([19]) if its restriction IT; to instances verifying,
for every fixed comstant k € IV, B(I) < k can be solved in polynomial time. Analogously, we
will call H D-simple if its restriction II; to instances verifying, for every fixed constant & € IV,
lw(I) = B(I)] € k is polynomial. Then the following proposition holds.

Prop051t10n 8. IfIl 1s not D-simple, then there exists kg € IN such that §(I1) < ko/ (ko +1).
Proof. Suppose II not D-simple and 6(II) > k/(k + 1), Yk € IN. Then, VI € 7,

D) = ND) 3 () - gr) - 2050, 29

Consider now an instance I € Z such that w(I') — 8(I') € k. Then, since objective function’s
values are integer (item 3 of definition 1), expression (23) gives w(I’) — A(I') = w({I') — B(I').
Consequently, it suffices to set ko = min{k : II; non polynomial} in order to complete the
proof. I :

In other words, problems which are not D-simple do not admit differential PTAS (this is
the differential-equivalent of the result of [19] for the standard approximation). The proposition
above allows achievement of stronger hardness thresholds provided that kg is a fixed constant.
We conjecture that TSP is not D-simple and this for a small kg. If this was true, the hardness
threshold of corollary 4 could be meaningfully improved.

T
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