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Une approche par agrégation/désagrégation pour construire
des conclusions robustes avec ELECTRE TRI

RESUME: ELECTRE TRI est une méthode bien connue qui permet d'affecter un ensemble
d'actions 4 des catégories prédéfinies en s'appuyant sur une famille de critéres, L'utilisation
de cette méthode requiert de définir la valeur de divers paramétres, ce qui est souvent une
téche difficile. Nous nous plagons dans une situation od les décideurs impliqués dans le
probléme de décision ont des difficultés 4 déterminer une valeur précise pour l'ensemble
des parameétses. De telles difficultés peuvent provenir de la nature incertaine, imprécise ou
mal déterminée des données présentes aussi bien que d'une absence de consensus parmi les
décideurs.

Cet article analyse la synergie entre deux approches développées indépendamment qui
visent 4 prendre en compte la difficulté mentionnée ci-dessus. Ces deux approches
n'exigent pas des décideurs des valeurs précises pour les paramétres. Pour dépasser ce
probléme, elles demandent aux décideur une information qui leur impose une charge
cognitive plus faible.

La premiére approche infére les valeurs des paramétres & partir d'exemples d'affectation
fournis par les décideurs. Chaque exemple d'affectation génére des contraintes que les
paramétres doivent respecter. La seconde approche considére un ensemble de contraintes
sur la valeur des paramétres qui traduit la nature imprécise de linformation que les
décideurs peuvent fournir. Cette information permet de déterminer la catégorie la meilleure
et la pire 4 laquelle chaque action peut étre affectée considérant les contraintes.

Ce travail propose une nouvelle méthodologie intégrant la phase d'élicitation des
préférences avec l'analyse de robustesse en vue d'exploiter les synergies entre ces deux
phases. L'approche proposée est interactive dans la mesure ou les "output" guident les
décideurs en vue d'une éventuelle modification des contraintes et/ou exemples
d'affectation.

Mots clés: Approche par Agrégation/ Désagrégation, ELECTRE TRI, Critéres Multiples.

An aggregation/disaggregation approach to build
tobust conclusions with ELECTRE TRI

ABSTRACT: ELECTRE TRI is a well-known method to assign a set of alternatives to a set of
predefined categories, considering multiple critetia. Using this method requires setting
many parameters, which is often a difficult task. We consider the case whete the Decision
Makers (DMs) in the decision process are not sure of which values should each parameter
take, which may result from uncertain, imprecise or inaccurately determined information, as
well as from a lack of consensus among them,

This paper discusses the synergy between two approaches developed independently to
deal with this difficulty. Both approaches avoid asking for precise values for the
parameters. Rather, they proceed to solve the problem in a way that requires from the DMs
much less effort.

The first approach infers the value of parameters from assignment examples provided
by the DMs. Each assignment example originates mathematical constraints to which the
parameter values should satisfy. The second approach considers a set of constraints on the
parameter values reflecting the imprecise information that the DMs are able to provide.
Then, it computes the best and worst categories for each alternative compatible with
constraints.

This paper proposes a new approach integrating the elicitation phase with robustness
analysis, to exploit the synergy between them. It is an interactive approach, where the
insight obtained during robustness analyses guides the DMs during the elicitation phase,

Keywords: Aggregation/Disaggregation Approach, ELECTRE TRI, Multiple Criteria.
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1. Introduciion

Many real world decision problems can be formalised using a multiple criteria approach, i.e., by
defining a set of criteria evaluating the alternatives’ petformances. However, such approach
requires the Decision Makers (DMs) to provide some preference information in order to build a
model that discriminates ameng the alternatives,

A crucial phase in 2 modelling process grounded on a Multiple Criteria Decision Aiding
(MCDA) model consists in eliciting preference information from the DMs and formalising it
through preferential parameters. In the various aggregation procedures, these parameters take the
form of weights, aspiration levels, thresholds, ... The values assigned to these parameters express
the way the evaluation of the alternatives on the different criteria should be combined in order to
build comprehensive preferences.

However, DMs have difficulties in defining precise values for preferential patameters. The
reasons for such problems concerning preference elicitation are various. The data considered in
the decision problem might be imprecise ot uncertain; DMs in the decision process may have a
vague understanding of what the patameters represent and their point of view can evolve during
the elicitation process; moreover 2 lack of consensus among DMs can be also a critical issue. A
possible approach to deal with these difficulties is to work with information which is often called
“imprecise” (see Athanassopoulos and Podinovski, 1997), “incomplete” (see Weber, 1987),
“partial” (see Hazen, 1986) or “poor” (see Bana e Costa and Vincke, 1995). We will use the
expression “imprecise information”, meaning that it does not impose 2 precise combination of
values for the parametets.

Some authors (Mousseau, 1995; Bana e Costa and Vansnick, 1994; Jacquet-Lagréze and
Siskos 1982; Belton and Vickers, 1990) have proposed Preference Elicitation Techniques (PETs)
to support the analyst in assigning values to preferential parametets. Usually PETs proceed
indirectly through a questioning procedure and “translate” the DMs' answers into values for the
preferential parameters (by applying the specific aggregation rule in use).

Such PETs provide the analyst with several acceptable combinations of values for the
parameters. One of the last phases of a decision aiding process is robustness analysis (see Roy,
1998). It consists in studying the impact of the values of preferential parameters on the overall
preferences in order to determine recommendations to the DMs that are valid for all (or most of
the) combinations of acceptable values for the parametets.

It seems obvious that these two stages of a decision aiding process interact. Robustness
analysis uses a set of acceptable parameter values as input, while the elicitation of values for
preferential parameters should be considered in relation with the impacts of the parameters’
values on comprehensive preferences. However, methodologies proposed in the literature do not
consider preference elicitation and robustness analysis within an integrated approach.

The purpose of this paper is to show how these two phases of a decision aiding process can
be viewed within a single integrated approach. Within such an approach, the preference
elicitation process is a sequence of question/answers; the DMs are provided with the solution(s)
detived by the model using their answers to the preceding questions. Hence, they can react
interactively and control their preference information with regard to the robust output of the
model. We will restrict the analysis to the ELECTRE TRI method (see Mousseau ¢f a/. 1999a,b;
Roy and Bouyssou 1993). However, we claim that the basic idea underlying our work can be
applied to a large class of methods.

The paper is organised as follows. The next section provides a brief reminder on the well-
known ELECTRE TRI method. Section 3 presents two approaches developed independently:
the first one consists of inferring values for the ELECTRE TRI method’s parameters from
assignment examples (see Mousseau and Slowinski, 1998, Mousseau ¢f a/, 2000), whereas the
second one consists of computing robust assignments consistent with constraints on parameters
(see Dias and Climaco, 1999,2000). Both approaches avoid asking for precise values for the
parameters. Rather, they proceed to solve the problem in a way that requires much less cognitive
cffort from the DMs. Section 4, after introducing the concept of constructive learning



procedures, shows how these two approaches can be combined into an integrated methodology
to determine robust assignments interactively, within an aggregation/disaggregation approach.
An illustrative example is provided in section 5. The last section draws some conclusions and
issues for further research.

Brief presentation of the ELECTRE TRI method

This section gives a very brief overview of the ELECTRE TRI method and defines some
notations that will be used along the paper. For more details, see Mousseau e 4/, (1999a,b), Roy
and Bouyssou (1993).

ELECTRE TRI is a multiple critetia sorting method, i.e., 2 method that assigns alternatives
to pre-defined ordered categories. The assignment of an alternative s results from the
comparison of # with the profiles defining the limits of the categories. Let F denote the set of the
indices of the criteria g7, g, ..., g (F={1,2,...,#}) and B the set of indices of the profiles &y, &y, ...,
by defining p+7 categories (B={1,2,...,p}), b being the uppet limit of category C; and the lower
limit of category Cys1, =T, 2, ...,p. In what follows, we will assume, without any loss of generality,
that preferences increase with the value of each criterion,

ELECTRE TRI builds a fuzzy outranking relation § whose meaning is "af kast as good as".
Preferences restricted to the significance axis of each criterion are defined through pseudo-
criteria  (see Roy and Vincke, 1984, for details on this double-threshold preference
representation). The indifference and preference thresholds, gi(by) and pj(by), respectively,
constitute the intra-criterion preferential information. Two types of intet-criteria preference
parameters intervene in the construction of S

© the set of weight-importance coefficients » = (1, ..., wy) is used in the concordance
test when computing the relative importance of the coalitions of criteria being in favour
of the assertion aS4; (and 4,54);

© the set of veto thresholds (vs(s), v2(Bs),..., ta(B3)) is used in the discordance test; z(by),
represents the smallest difference g(fs)g(a) incompatible with the assertion 5% (and
bsSa).

As the assignment of alternatives to categories does not result directly from the relation S,
an exploitation phase is necessary; it requires the relation S to be "defuzzyfied" using a so-called
A-cut: the assertion aS4, is considered to be valid if the credibility index of the fuzzy outranking
relation is greater than a "cutting level" A such that A€ /0.5, 7). This A-cut determines the
preference situation between # and 4

Two assignment procedures (optimistic and pessimistic) are available, their role being to
analyse the way in which an alternative « compares to the profiles so as to determine the category
to which # should be assigned. The result of these two assignment procedures differs when the
alternative « is incomparable with at least one profile 4.

3. Preference elicitation and robustness analysis for ELECTRE TRI

3.1. Main features of the inferring procedure

Mousseau and Slowinski (1998) proposed an inference procedure using the paradigm of
aggregation/disaggregation, outlined in Figure 1. Its aim is to find an ELECTRE TRI model as
compatible as possible with the assignment examples given by the DMs. The assignment
examples concern a subset 4*CA of alternatives for which the DMs have clear preferences, ie.,
alternatives that the DMs can easily assign to a category (or a range of consecutive categories),
taking into account their evaluation on all criteria, The compatibility between the ELECTRE TRI
model and the assignment examples is understood as an ability of the ELECTRE TRI method
using this model to reassign the alternatives of A* in the same way as the DM did.



In order to minimise the differences between the assignments made by ELECTRE TRI and
the assignments made by the DM, an optimisation procedure is used (Appendix B presents the
optimisation model corresponding to the inference of the weights » and the cutting level ). The
DMs can tune up the model in the course of an interactive procedure. They may either revise the
assignment examples (ie., remove and/or add some alternatives from/to A, change the
assignment of some alternatives of A4") or define constraints for some model parameters G,
ordinal information on the importance of criteria, incomplete definition of some profiles defining
the limits between categories, ...) basing on their own intuition.

When the model is not petfectly compatible with the assignment examples, the procedure
can detect all “hard cases”, i.e., the alternatives for which the assignment computed by the model
strongly differs from the DMs' assignment. The DMs could then be asked to reconsider their
judgement.

The interaction procedure presented in Figure 1 (grey items refer to the phases in which the
intervention of DMs is required) stops when the DM is satisfied with the values proposed for the
parameters. These values should be compatible with a set of assignment examples and possibly
with additional constraints on the parameters value. The interaction provides the DMs a so-called
"constructive learning" context in which they can improve their understanding on how the
assignment model is affected by the values of the parameters and find a set of parameters values
that are consistent with the assignment examples.

This methodology is of a great help in practical decision situation so as to elicit preferences.
However, Mousseau and Slowinski (1998) do not provide much support to the DMs in the
management of the interaction. There is a lack of control of the interaction process which is due
to the absence of features that would ensure a certain form of “cognitive convesrgence” of the
procedute. START

- Choose a set of examples A°.
| - Assign the alternatives from
4 L A to the categories

Add Yes

Information
on Parameters?
Provide constraints on
one/several parameters

No J

| =

parameters’ values.

[ Optimise to obtain a set of }

Set of parameters’ values.
Most atypical assignment examples

Change the set of DNN s P
IO exa.mgles or revise satisfied? 2
assigiiitidiath Modify sore
constraints

Figure 1: General Scheme of the Inference Procedure



3.2, A procedure to obtain robust conclusions

We consider in this section a situation where several combinations of values for the parameters
are acceptable, i.e., a situation with imprecise information. The set of possible combinations are
expressed as constraints, rather than as a discrete set of values. The constraints may be explicitly
provided by the DMs or inferred from holistic compasisons (as in Mousseau, 1993), Although
constraints are not always easy to provide, requiring precise values for the parameters is obviously
more demanding,

Let T represent the set of all acceptable combinations of parameter values. One can
determine the range of any credibility index subject to T (for details, see Dias and Climaco, 1999),
which may be used to determine the best and worst categories to which an alternative may be
assigned, subject to T (for details, see Dias and Climaco, 2000). This approach determines the
best and the worst categoties, B(@,T) and W(a;T), respectively, to which alternative & can be
assigned by ELECTRE TRI subject to the constraints defining T. If B(z;T) coincides with
W(a,T), then the method is able to assign 4 to 2 single category, despite the imprecision regarding
the input.

Three types of information are considered in Dias and Climaco’s apbroach:
9%

1. Robust conclusions as regards T: stating that 4 belongs to a category no worse than W(a,T)
is a robust conclusion, and so is stating that 4; belongs to a category no better than B(z;T).

2. Identification of the alternatives that are more affected by the imprecision of data. Indeed, it
may be interesting to know that some alternatives have a wide range of categories to which
they may be assigned, in contrast with some other alternatives that are precisely assigned to a
single category.

3. “Extreme” combinations of parameter values corresponding to best-case and worst-case

assignments,

Provide constraints on one or L
" several parameters J ~

Compute the best and worst
categories (B@,T), W(ai,T), Vac A)

Information on variability.

Robust conclusions.
Information on extreme values.

DMs
satisfied?

Add/remove/ L

modify constraints

Figure 2: General Scheme of the Robustness Analysis Procedure

We may consider the use of this type of approach to be an interactive learning process,
where the results of the analysis may stimulate the DMs to discuss and revise their inputs, as
outlined in Figure 2. In general, DMs could begin with little information (starting with a set T not
too constrained) and then progressively enrich that information (reducing T) as they form their



convictions. This type of approach then tries to identify conclusions that can be accepted as
valid, despite the lack of precision present in the information they provide.

Dias and Climaco (1999,2000) addressed a general case that involves solving many non-
linear maximisation/minimisation problems, which become linear programs when veto
thresholds are fixed or only subject to upper and lower bounds (see Appendix C). They did not
address explicitly the problem of obtaining those constraints from the DMs. Therefore, the
integrated approach presentéd in the next section can be seen as a complement to the robustness
analysis approach, to the same extent that it may be seen as a2 complement to the inference
approach in Section 3.1.

4. A new consiructive learning procedure
4.1. The constructive learning process

The process that leads to the definition of a multiple criteria sorting model can be analysed with
respect to different perspectives. The role of assignment examples, constraints on preference
parameters and the way the model can be validated are very different when they are conceived
according to a descriptive or constructive process.

Defining a sorting model can be viewed in a deseriptive learning perspective, i.e., s a process in
which the model reproduces a class of input-output behaviour accounting for a set of learning
examples. Machine learning (Michalski, 1983; Quilan, 1986) typically enters this perspective in
which the definition of the model should optimise the explanation of the examples. Hence, the
validity of the obtained model is grounded on the input data and its ability to reproduce similar
classifications. The role of the DMs in the definition of the model is reduced to providing
learning examples. Different models that equally explain the data are considered equivalent.

On the other hand, a constructive learning perspective regards the definition of the sorting
model as a result between the interaction of the assignment examples and the DMs' points of
view. The process should result in a model that both explains the examples and accounts for the
DMs' perception of the problem. During the construction process, the DMs might modify some
assignment examples while increasing their understanding of the problem. The very nature of this
constructive learning process is to provide the DMs with an interactive context in which they
may check the impact of assignment examples on the model parameters and so find 2 model that
fits both a set of learning examples and their perception of the sorting problem.

Both approaches presented in Sections 3.1 and 3.2 fall into the context of constructive
learning. The combined approach proposed in this paper also considered the integration of the
DM:s in the process of defining the sorting model as a crucial point.

4.2, A combined approach

We can combine the two approaches presented in Sections 3.1 and 3.2 to take advantage of both
of them. This combined approach should be used in an interactive manner, where the output of
the analyses can help the DMs to revise their inputs (see Figure 3). Although the methodologies
proposed by Mousseau and Slowinski (1998) and Dias and Climaco (1999,2000) apply when all
preferential parameters are considered, we testrict ourselves to the case where only the weights
w=(wy, wa,..., wy) and cutting level A are variables and when no veto phenomenon occurs. This
restriction is mainly due to computational difficulties (the mathematical program becomes non-
linear) that atise when all parameters should be inferred

4.2.1.  Input information required from the DMs.

Our approach intends to help DMs to fix the parameter values (or to constraint them) and to
obtain robust conclusions concerning the alternatives’ assignments. To do so, the proposed
procedute does not require the DMs to provide precise values for the preferential parameters. At
iteration &, the input may consist of:



© explicit preferential information (constraints on the parameter values), defining a domain
T

© assignment examples, i.e., a subset of specific alternatives (A4*CA) that the DMs are able to
assign holistically to a category (or a range of categories).

Both types of input information take the form of constraints on the values of preferential
parameters as assignment examples are expressed in the model through a set of constraints

defining a polyhedron Ty (using the ELECTRE TRI assignment rule). T, = T nT¢ denotes the

set of combination parameters values corresponding to the input information provided by the
DMs at the iteration £ (either through assignment examples or constraints on the parameter
values). At each iteration the input information may be inconsistent or not, i.e., the set T; may be
empty ot not.

4.2.2. Output information provided fo DM

The information provided to the DMs at iteration £ is different depending on the consistency of
the input information. Technical details concerning the computation of these results are given in
section 5.

a) The input information is considered as inconsistent if T: is empty, ie., thete is no
combination of parameter values that fully restores the assignment examples and
simultaneously conforms to the additional constraints. In this case we can provide the DMs
with:

i) acombination of parameter values that least violates the constraints that define Tj;

i) the constraints in T} that are the most difficult to respect, which yield the alternatives
from 4" that are the most difficult to assign;

iii) the constraints in T, that are the most difficult to respect;

iv) proposals of modification of Ty so that this polyhedron does not become empty.

b) The input information is consistent, i.e., T} is not empty. In this case we can provide the
DMs with:
i) acombination of parameter values t: € Tk that best match the provided information;
ii) the "range" of categories [W(z;,T4), B(#;T4)] to which each alternative ¢,€.4 can be
assigned to for any combination of parameters values in T, ; it should be noted that
when an alternative 4; is such that ¢(a;05)=g(@,bs+1), Vi (bs and byes defining a category

Ch in the range [W{(a;, Ts), B(a; Ti)]), no 7€ Ty exist such that 2—,C} (see appendix D);
iif) the category in [W{(a;T%), B(a;Ty)] to which ELECTRE TRI assigns each alternative

#€A using #;;
iv) the “extreme” combinations #; (3) and ¢} (&) leading to the best and worst case

assignment, respectively, for each alternative 4.4,
v) for each category C; to which any alternative 4€.4 can be assigned, a "typical" set of
value # for » and A leading to this assignment (a— Cy);

4.2.3. Interaction process.

The proposed procedure is designed to be used interactively, i.e., the output at a given iteration £
is used to guide DMs to discuss and revise the input for the next iteration (T},,). Figure 3

presents the general scheme of the procedure. The nature of the interaction depends on the
consistency of the input information provided at the current iteration.



a) If T, =0, the interaction aims at eliminating the inconsistency. The DMs should react by a

modification or 2 deletion of a constraint in Tp. Several elements can support them in such
revision of their input information:

o the list of assignment examples that are the most difficult to restore in the
ELECTRE TRI model are the ones that should be considered first for an eventual
modification or deletion;

o similarly the constraints of T," that are the most difficult to respect should be
considered first;

o the deletion of specific subsets of constraints can lead to a new polyhedron Ti+s

which is not empty. Several such sets can be computed and presented to the DMs
for them to choose.

b) If T#Q, the interaction aims at reducing the set of possible combinations of parameter
values. Hence, the DMs should feact in order to modify a constraint and/or add a new one
to T% Several elements can support the DMs in such revisions of their input information:

o the combinations of parameters values #,, #; (2;) and 7} () may suggest additional

constraints for the DMs define T,,,; for instance, if 7, is such that A =0.5, the
DMSs may react by stating that A = 0.75;

o the ranges of [W(a;Ty), Ba;Te)] for all 44 € A provide the DMs with useful
information for selecting an alternative to be added to A% alternatives with the
widest ranges are the most affected by T imprecision; hence, giving additional
information about their assignment should be highly informative; we conjecture that
on average there ought to be less iterations to reach acceptably precise assignments
when DMs choose alternatives with larger variability as assignment examples.

This interactive procedure is designed in such a way that the DMs start the first iteration
with very little information. Each iteration will provide opportunity to add, delete or modify a
specific supplementary constraint. Adding a single piece of information only at each iteration
facilitates the control of the information supplied by the DMs.

As the DMs add constraints duting the successive iterations, the domain T becomes more
constrained and the range of categories [W(a;Ty), B(a;T4)] (for each 4 € A) reduces (or is
invariant). At a given iteration, it is possible that the domain T, becomes empty, meaning that
the new constraints contradict some previous ones. DMs should then revise T:. However, such
iteration will not occur at the beginning of the interactive process. The interactive procedure
stops when DMs are satisfied and the set T as well as the assignment of alternatives matches
their view of the decision problem. The final results are:

o a set of constraints and assignment examples defining a set T; of acceptable parameter
values;

o aninferred combination of parameter values #, defining a model in a precise manner;

o a precise assignment or range of assignments for each alternative in A4 that is robust with
respect to T

However, we want to emphasise the fact that this interactive process does not aim only at
providing the above mentioned results, During the interactions, the DMs will get insights on
their view of the problem and revise and possibly modify their opinions. Such interaction will
provide them with an opportunity to learn about their preferences and increase their
understanding of the decision problem.



Compute results:

Compute “hard” cons- W(T% a), B(Ts,0) ), ¥V € A
raints and “difficult” O e Sl LW s
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Discuss results
with DMs

Yes
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satisfied?

Revise: Tk
Revise/provide constraints and/or
revise/provide assignment examples

AN ke—k+1

Figure 3: The proposed procedure

5. Computational aspects

At each iteration &, results are computed according to Ty in order to provide the DMs results on
the basis of which they can refine the input informaton T and define Ti+s. The computations
are different depending on the consistency of the input information Tg.

5.1. Computaiions when Tk is inconsistent
5.1.1. parameter values that least violates the constraints that define Ti;

In order to determine the combination of values for » and A that least violate the constraints
defined by Tk, we solve the following linear program (LP1):



where :

Max a

st
asx;, Vi suchthata,-EA* (1)
a<y;, Vi suchthata,-eA* (2)
assg,Vq=1,...,ne . (3)
a<smin (4)
aSsTax (5)

Y wici(aiby1)=x =A ¥isuchthata;e A*  (6)

Z?zIWjCj(ai,bui)+y,-:,l+s, Vi mchthal.‘aieAb:¢ (7)

Z;=1”jqwj"vq+5qZOIV‘I’:L---:’IC (8)

A= Jmin _ ghin (9)

PR S i) (10)

£'Sw;<0.5-¢, je F,Z’}=1wj =1 (11)

0.5<A<1 (12)

Xi,Yi»Sq sflm,simx,a Jree (13)
LP1

/i (m, respectively): the index of the lowest category (highest category, respectively) to
which the alternatives 4€.A4* can be assigned, according to the opinion of the DMs
(4=, means that the DMs are able to assign the alternatives 4 to a single category ).

Amin (Amex, respectively) is the lower bound {upper bound, respectively) for the cutting
level A. This information stated by the DMs is such that 0.5<Amin < Jma<]

T} : the set of combinations of weights that conform to the constraints implied by the
assignment examples at iteration 4 In the mathematical progtam below,

T} corresponds to constraints (6) and (7).
T, : the set of combinations of parameters values that conform to the additional

information provided by the DMs at iteration 4. T, is defined by # constraints (8) of
the form Z;_=11{ 20, Vg=1,...,n,, and the constraints (9) and (10) defining

bounds for A.

€and €' represents an arbitrary small positive value,

X 3y VaG€ A, sy k=1,..., ., si"i“ and 57 : the slack variables that account for the
“degree to which” a constraint is fulfilled; if negative, the constraint is violated and T

is empty.

5.1.2. Alsernatives from A* that are the most difficult to assign

In LP1, these alternatives correspond to the 4 such that x; =0t and/or y= at the optimum.

5.1.3. Constraints in Tg’ that are the most difficult to respect

In LP1, these constraints correspond to the ones for which &= at the optimum.



5.1.4. Proposals of modification of T

Proposals of modification of T} correspond to subsets of constraints that, when removed, lead to
a consistent information. Numerous such subsets can exist; in order to identify N of these
subsets, it is possible to use the naive enumeration algorithm mientioned bellow. So as to list all
these subsets, more elaborated techniques should be used (see for example Chinneck 1996).

ie-1

numée0

while (num < N)

do
for (each subset Z of i constraint in T,)
do

if (T\Z#J) then print 2
end do

numénum+1
end do

5.2. Computations when Tt is consistent
5.2.1. Parameter valnes t, € Th that best match the provided information

1¢is computed solving LP1 (see section 5.1.1).

5.2.2. Best and worst categories to which each alternative 4:€ A can be assigned considering Ty

To determine the best possible assignment B(a;, T¢) for the alternative 4 considering the domain
T of possible values for » and A, we perform the tests by maximising the credibility (6=7,2,...,):

n
LP2: maxeT, ij(:j(ax,bh )=A
j=1

To determine the worst possible assignment ¥, Ty) for the alternative a;, we perform the tests
by minimising the credibility (4=7,2,...,p):

n
LP3: minser, ijcj-(ax,bh)-i
j=1

3.2.3. “Extreme” combinations t} (&) and t} (z) leading to the best and worst case assignment

tf (@) and £ (@) are obtained directly solving LP2 and LP3.

5.2.4. for each category Cy to which any alternative a,€.A can be assi ned, a "typical” set of values Hayh
40Ty 1y 8 Bp.

This result is obtained by the resolution of LP1 (see 5.1.1) to which the constraints
corresponding to the assignment of 4 to Cj are added.

3.2.5. For each category C) to which a; €A can not be assigned, the constraints that makes impossible for a; to be
assigned to Cy .

In order to compute the constraints that forbid the assignment of an alternative €A to a
category Cj, we proceed as follows.
1. Add the assignment example 4—C}, to T;. The information become inconsistent.
2. Compute proposals of modification of T} that make the information consistent and
containing the constraints corresponding to the assignment example 4—C;,. -

10



6. An illustrative example

So as to illustrate the proposed methodology, we consider the data from a real world application
in the banking sector (see Dimitras e al, 1995). We consider a model that aims at assigning 40
alternatives to 5 categories on the basis of their evaluations on seven criteria. The data are
presented in Appendix A.

Using this data we simulate # posteriori the modelling process that could have take place using
our methodology. Let us consider a hypothetical preference elicitation process and suppose that
our fictitious DMs are able to elicit directly the limits of categoties &5 and the thresholds (%) and
Liby). (their values are given in Appendix A and correspond to the values considered in Dimitras
¢ al. 1995) but have difficulties with assigning values for the importance coefficients #; and

cutting level A.

Let us suppose that the only initial information that the DMs are able to express is that the
most important criterion is g, no assignment example is provided by DMs, and

Ty = {w2 S W Wy 2 W Wy 2 Wy, Wy 2, Wy 2, Wy 2 w-,}. Suppose also that A€ /0.5, 0.99].
This information is obviously consistent and #, is such that 2,=0.49, 1w=0.085, ¥j#2, and A=0.5.

Ranges [W(a;Ty), B(a;,To)], Va€.A, are presented in Table 1 in which the grey cells correspond to
possible assignments and the marked cells correspond to the assignments made by ELECTRE

TRI pessimistic rule using #,. Alternatives ate sorted decreasingly according to the width of their
assignment range.

azs

ats

aig

a3y

az

laz

a4

ag

a9

a0

ar

aiz

a3

a1

a8

a9

a0

azt

@22

azs

Table 1: Assignment ranges after the first iteration
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Analysing these first results, the DMs are surprised with the wide range (C; to Cj, except Cz
as gazbi)= glazsbs), VjEF, see appendix D) of possible assignments for . Considering
evaluations of a2 on the criteria and their expertise of the problem, the DM:s state that a5 should
be assigned to categories Cy. Considering this information Ty, results are computed and the
information is still consistent. Computations show that t; is such that 2,=0.49, =025,

w;=0.22, w=0.01 for all other criteria and A=0.99. Ranges [W(2,T1), B(a;T1)), Va€A, are
presented in Table 2.

az

a3

ag

atg

asr

a32

ar4

a3

435

dsg

a3

azs [

as

as

az

a3z

an a3

aiz

413

216 azs

Table 2: Assignment ranges after the second iteration

Considering the result presented in Table 2, the DMs are surprised that the alternative ay is
assigned to category Cs. They consider that this alternative should be assigned to category Cs.
However, it is clear that adding the assignment example “2—Cs” would make T3 inconsistent.
Though, we determine which constraints contradict such assertion, i.e., the subsets of constraints
with minimal cardinality whose deletion from T, makes the information consistent. In our case,
the deletion of one constraint can make T consistent. This constraint is one among the
following:

- ai—>Cs
- a—Cy
- we 2 ws

Let us suppose that DMs are rather confident in the two assignment examples but feel less

confident about the constraint concerning #; and w5 Therefore, they propose to remove this
* .

constraint. Results are computed considering this updated information. T3 is consistent and 73 is

such that ws=0.49, #,=0.235, ws=ws=0.1225, w=0.01, j=1,3,7 and A=0.6225. Ranges [W{a;T3),
B(a;T3)), Vai€ A, are presented in Table 3.

12



Cr
ay |1 az
.310 ap
a12 a4
a3 a
a4 a3
a5 a.;
a16 as
a7 a6
ag ay
a19 ag
a20 a9
az) an
a22 a23
azs 24
a7 a3
azo a34
a3 a3g
a32 a9
236 ass
a3 azs i

Table 3: Assignment ranges after the third iteration

At this stage, the DMs would like to add a new assignment example by stating that the
*
-alternative a3 is assigned to category Cz. The new information Ty is consistent and 74 is such

that 25=0.48, 2,=0.282, w= 0.198, »=0.01, J=1,3,6,7 and A=0.604. Ranges [W{(a;,Ty), B(a; T4)],
V€ A, are presented in Table 4.

CiCiG CiG:G: G
a0 A
a2 &2
as3 4
a14 s G
ais ;%%f;%:aﬁ'cxvl a5
a16 \ : |2
a1 Ty | v
a9 S |
a20 e | o
az) = f‘x A
a3 : : aig o
" ; an ! !
227 S5 a2 .
Sovs ; 3 | a3
a3 E : a3
e e a3
ass - ay
a3y . a5
a4 a3] ERE

‘Table 4: Assignment ranges after the fourth iteration
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The DMs want now to add a supplementary constraint concerning the weights w;>w,,
Adding this constraint makes the information Ts inconsistent, It is however possible to determine
a set of parameters that least violates the information contained in Ts: ws=0.333, wr=w3=0.160,
wa=ws=0.166, w;=w;=0.01 and A=0.667. In this case, we determine which constraints contradict
such assertion, i.e., the subsets of constraints with minimal cardinality whose deletion from Ts
makes the information consistent. In our case, the deletion of one constraint can make T
consistent. This constraint is one among the following:

- a;—)Cj
- a3—Cs
- Wiy

Let us suppose that the DMs decide to revise their views concerning alternative 4 in such a
way that @—(Cy or C) Results are computed considering this updated information. Ty is

consistent and tg is such that ws=0.406, w:=0.396, w;=0.158, w=0.01, j=1,4,6,7 and A=0.743.
Ranges [W(a;T¢), B(2;,Ts)], Vai€.A, are presented in Table 5.

CiCiGCiCiiCs G
a3 ! a13
ag aig
a9 a19
a10 azo
an az|
a2 a2
216 a23
ax a3
a3z a6
a4 az7
az4 asg
236 a33
a3g a37
a3 a4
a3s a0
as ay
a5 als
a7 217
az a3y
ay a28 s

Table 5: Assignment ranges after the sixth iteration

The DMs would like now to add a new assignment example a7s — Cj. The new information
T7 is consistent and z‘; is such that 25=0.264, 2,=0.348, ws= 0.094, wy= 0.264, »=0.01, j=1,4,6
and A=0.879. Ranges [W(2;T7), B(2,T;)], Va€ A, are presented in Table 6.

Pursuing their analysis, the DMs would like to add a new assignment example 214 — Ca
The new information T is sdll consistent and t; is such that #s=0.225, »,=0.295, w;= 0.225,

wy= 0.225, w=0.01, j=1,4,6 and A=0.846. Ranges [W(a,Ts), B(2;T3)), Vai€ A, are presented in
Table 7.
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Cs

a7

)

a3

an

a2

a2

a9

a30

a33

a4

a2

234

ass |

ai

a3

ais

217

Table 6: Assignment ranges after the seventh iteration

Cs

a2

229

azn

a4

a3s

a1

as

az

a5

a1

az

a3

ag

a9

a0

an

a12

Table 7: Assignment ranges after the eighth iteration
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Finally, the DMs add a new assignment example a3s — C;. The new information Ty is
consistent and z‘; is such that »,=0.242, =0.185, j=1,3,5,7, =0.01, j=4,6 and A=0.873. Ranges

(W(a;Ty), B(a,Ts)], Vai€A, are presented in Table 8. The interaction process stops here, as the
DMs are satisfied with this assignment table and the corresponding values of preferential
parameters.

Cs
axn a16
a0 a18
a3p 219
424 a0
EN) a1
a1 a3
.
as az
a6 426
az a7
as a3
ar; a33
3.2 . a3y
a3 a14
a4 a31
ag a3y
a9 a36
a1 233
an a39
a2 28
a13 a3s

Table 8: Assignment ranges after the last iteration

At the end of this interactive elicitation process, the DMs come out with a set of weights
and a value for the cutting level that they can apply in their assignment model. Moreover, these
values for » and A ate justified by the information they have provided in the process, i.e., the
assignment examples and constraints on the parameters.

This example of fictitious elicitation process shows how the interaction is made possible
through the proposed procedure. We would like to emphasise that the procedure is designed in
such a way that DMs can gain insights on their own preferences duting the process. In our
example, the DMs began the interaction with the idea that g was at least as important as all other
criteria, During the interaction, the DMs revised their point of view by stating that the inequality
w2 2 ws does not hold. Similarly, their opinion concerning the assignment of alternative a;
changed during the process.

Another important issue illustrated through this example deals with the "amount of
information" provided at each iteration. In our example, only a single piece of information is
added at each iteration. In this way, the DMs keep a good control of the interaction. This feature
is particularly important for the management of inconsistencies, i.e., in order for the DMs to
identify and understand the reasons of inconsistencies.
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7. Conclusion

A classical view of a multiple criteria decision aiding process is frequently the following:
@ definition of the criteria and alternatives, @ choice of an aggregation model and preference
elicitation, @ use of the aggregation model, ® Robustness analysis and recommendations to the
DMs. %

Preference elicitation and robustness analysis are usually considered separately. In this paper,
we show how these two phases of a decision aiding process can be viewed within a single
integrated approach. We present a new approach to elicit an ELECTRE TRI model in a way that
integrates the preference elicitation phase and the construction of robust conclusions: in our
interactive procedure, the information provided by the DMs for preference elicitation purposes is
considered as compared to its implications on the robust conclusions that can be derived.

Although this work is dealing with the ELECTRE TRI method only, we claim that the basic
ideas underlying our work can be applied to a large class of sorting methods such as additive

utility sorting methods (UTAIDIS), Rough sets based classifiers, etc.

o
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Appendix A: Data set

This example was adapted from Dimitras ez al. (1995).

1.

Criteria

: (Financial ratio) Earning Before Interest and Taxes/Total Assets [Increasing preferences).
: (Financial ratic) Net Income/Net Worth [Increasing preferences].

: (Financial ratio) Total Liabilities/Total Assets [Decreasing preferences].

: (Financial ratio) Interest Expenses/Sales [Decreasing preferences).

: (Financial ratio) General and Administrative Expenses/Sales [Decreasing preferences).

: (Qualitative criterion) Managers Work Experience [Increasing preferences].

&2+ (Qualitative critetion) Market Niche/Position [Increasing preferences].

©o o0 06 0 0 o
PR

Alternatives
Altern. [F} gz £ <] gs Js gz
al 35.8 67.0 19.7 0.0 0.0 5.0 4.0
al 16.4 14.5 59.8 7.5 5.2 5.0 3.0
a2 35.8 24.0 64.9 2.1 4.5 5.0 4.0
a3 20.6 61.7 75.7 3.6 8.0 5.0 3.0
ad 11.5 17.1 57.1 4.2 3.7 5.0 2.0
ab 22.4 25.1 49.8 5.0 7.9 5.0 3.0
ab 23.9 34.5 48.9 2.5 8.0 5.0 3.0
a7 29.9 44.0 57.8 1.7 2.5 5.0 4.0
a8 8.7 5.4 27.4 4.5 4.5 5.0 2.0
a9 25.7 29.7 46.8 4.6 3.7 4.0 2.0
aio 2142 24.6 64.8 3.6 8.0 4.0 2.0
all 18.3 31.6 69.3 2.8 3.0 4.0 3.0
al2 20,7 19.3 19.7 2.2 4.0 4.0 2.0
all 9.9 3.5 53.1 8.5 5.3 4.0 2.0
ald 10.4 8.3 80.9 1.4 4.1 4.0 2.0
als 17.7 19.8 52.8 7.9 6.1 4.0 4.0
ale 14.8 15.9 27.9 5.4 1.8 4.0 2.0
al7 16.0 14.7 53.5 6.8 3.8 4.0 4.0
als8 11.7 10.0 42.1 12.2 4.3 5.0 2.0
alg9 11.0 4.2 60.8 6.2 4.8 4.0 2.0
az20 i5.5 8.5 56.2 5.5 1.8 4.0 2.0
a2l 13.2 9.1 74.1 6.4 5.0 2.0 2.0
a22 9.1 4.1 44.8 3.3 10.4 3.0 4.0
a23 12.9 1.9 65.0 14.0 7.5 4.0 3.0
a24 5.9 -27.7 77.4 16.6 12.7 3.0 2.0
a25 16.9 12.4 60.1 5.6 5.6 3.0 2.0
a26 16.7 13.1 73.5 11.9 4.1 2.0 2.0
az27 14.6 9.7 59.5 6.7 5.6 2.0 2.0
a28 5.1 4.9 28.9 2.5 46.0 2.0 2.0
a29 24.4 22.3 32.8 3.3 5.0 3.0 4.0
a3 29.5 8.6 41.8 5.2 6.4 2.0 3.0
a3l 7.3 -64.5 67.5 30.1 8.7 3.0 3.0
a32 23.7 31.9 63.6 12.1 10.2 3.0 2.0

—
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Appendix A: Data set

This example was adapted from Dimitras et al. (1995).

1

Criteria

© g (Financial ratio) Farning Before Interest and Taxes/Total Assets [Increasing preferences).
© g (Financial ratio) Net Income/Net Worth [Increasing preferences].

© g (Financial ratio) Total Liabilities/Total Assets [Decreasing preferences).

©  g¢ (Financial ratic) Interest Expenses/Sales [Decreasing preferences).

© g (Financial ratio) General and Administrative Expenses/Sales [Decreasing preferences].

® g (Qualitative criterion) Managers Work Experience [Increasing preferences].

© g (Qualitative criterion) Market Niche/Position [Increasing preferences].

Alternatives
Altern. g1 g2 [2£] Je gs gs g7
a0 35.8 67.0 19.7 0.0 0.0 5.0 4.0
al 16.4 14.5 59.8 7.5 5.2 5.0 3.0
a2 35.8 24.0 64.9 241 4.5 5.0 4.0
a3 20.6 61.7 75.7 3.6 8.0 5.0 3.0
ad 11.5 17.1 57.1 4.2 3.7 5.0 2.0
ab 22.4 25.1 49.8 5.0 7.9 5.0 3.0
ab 23.9 34.5 48.9 2.5 8.0 5.0 3.0
a7 29.9 44.0 57.8 1.7 2.5 5.0 4.0
a8 8.7 5.4 27.4 4.5 4.5 5.0 2.0
a9 25.7 29.7 46.8 4.6 3.7 4.0 2.0
alo 21.2 24.6 64.8 3.6 8.0 4.0 2.0
all 18.3 31.6 69.3 2.8 3:0 4.0 3.0
al2 20.7 19.3 19.7 2.2 4.0 4.0 2.0
all 9.9 ] 53.1 8.5 5.3 4.0 2.0
ald 10.4 93 80.9 1.4 4.1 4.0 2.0
als 17.7 19.8 52.8 7.9 6.1 4.0 4.0
alé 14.8 15.9 27.9 5.4 1.8 4.0 2.0
al’ 16.0 14.7 53.5 6.8 3.8 4.0 4.0
als 11.7 10.0 42.1 12.2 4.3 5.0 2.0
al9 11.0 4.2 60.8 6.2 4.8 4.0 2.0
a20 15.58 8.5 56.2 5.5 1.8 4.0 2.0
a2l 13.2 9.1 74.1 6.4 5.0 2.0 2.0
az22 9.1 4.1 44.8 3.3 10.4 3.0 4.0
az23 12.9 1.9 65.0 14.0 7.5 4.0 3.0
az24 5.9 -27.7 77.4 16.6 12.7 3.0 2.0
az2b 16.9 12.4 60.1 5.6 5.6 3.0 2.0
az26 16.7 13.1 73.5 11.9 4.1 2.0 2.0
az27 14.6 9.7 59.5 6.7 5.6 2.0 2.0
az28 5.1 4.9 28.9 2.5 46.0 2.0 2.0
az29 24.4 22.3 32.8 3.3 5.0 3.0 4.0
a30 29.5 8.6 41.8 5.2 6.4 2.0 3.0
a3l 7.3 -64.5 67.5 30.1 8.7 3.0 3.0
a32 23.7 31.9 63.6 12.1 10.2 3.0 2.0

—
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a3l 18.9 13.5 74.5 12.0 8.4 3.0 3.0
a3d 13.9 3.3 78.7 14.7 10.1 2.0 2.0
a35 -13.3 -31.1 63.0 21.2 29.1 2.0 1.0
a3é 6.2 -3.2 46.1 4.8 10.5 2.0 1.0
a3? 4.8 -3.3 71.1 8.6 11.6 2.0 2.0
a38 0.1 -9.6 42.5 12.9 12 .4 1.0 1.0
a3g 13.6 9.1 76.0 17.1 10.3 1.0 1.0
3. Categories
© (g Very High Risk (worst category).
©  Cy High Risk.
o  C; Medium Risk.
o C; Low Risk.
© (g Very Low Risk (best category).
4. IProfiles
©  4;: High Risk/Very High Risk
© by Medium Risk/High Risk.
© by Low Risk/Medium Risk.
e b; Very Low Risk/Low Risk.
Prof. <! fe7) g3 g¢ gs gs 7
by -10.0 -60.0 90.0 28.0 40.0 1.0 0.0
b, 0.0 -40.0 75.0 23.0 32.0 2.0 2.0
b3 8.0 ~-20.0 60.0 18.0 22.0 4.0 3.0
by 25.0 30.0 35.0 10.0 14.0 5.0 4.0
5. Thresholds
Crit, g g2 g3 Gs gs gs
Thresh. @» pi g p; a3 D3 gs D¢ gs  Ds ds P g 7
by 1.02.0 4.06.0 1.03,.0 1.0 2.0 0.0 3.0 0.0 0.0 0.0 0.0
b, 1.02.0 4.06.0 1.0 3.0 1.0 2.0 0.0 3.0 0.0 0.0 0.0 0.0
b; 1.0 2.0 4.06.0 1.0 3.0 1.0 2.0 0.0 3.0 0.0 0.0 0.0 0,0
b, 1.02.0 4.06.0 1.0 3.0 1.0 2.0 0.0 3.0 0.0 0.0 0.0 0.0
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Appendix B: The inference optimisation model

Let us recall the following notations:

o

ACA: a set of alternatives that the DMs can assign intuitively to a single category, or to
a range of categories, taking into account their evaluation on all the criteria.

ki (m, respectively): the index of the lowest category (highest category, respectively) to
which the alternatives 464" can be assigned, according to the opinion of the DMs (=,
means that the DMs are able to assign the alternatives 4 to a single category ).

T=: the set of combinations of weights that conform to the constraints implied by the
assignment examples. In the mathematical program below, T# corresponds to constraints
(3) and (4).

T¥: the set of combinations of weights that conform to the additional information
(bounds, ranking or more general constraints on weights) provided by the DMs..

Arin (Ares, respectively): the lower bound (upper bound, respectively) for the cutting level
A. This information stated by the DMs is such that 0,55Amin <Ama<],

T=T*T¥: the set of combinations of weights that conform to the constraints implied by
the assignment examples and the additional information provided by the DMs, i.e,
constraints (3)-(6).

€ represents an arbitrary small positive value.

max o
S. bt
& < x;, Visuchthata; € A" 1)
o< y;, Visuchthata;e A @
E;}'=1 wjci(a;b )= x;=A, Visuchthate; € A ©)
"a# (@b )t 9 = A+E, Visuchthatg;e 4" ()
we T ©)
AW < 2 < AV ith 0,5 < AR g A < q ©)
0.5-*821»1- 2€, ]'EF,Z;.=111}]—=1 ™)

Xy Vi, O free

For more details concerning this model, see Mousseau et Slowinski (1998).
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Appendix C: The robustness analysis optimisation

When no veto phenomenon occurs, to determine the best possible assignment B(z,T) for the
alternative 4. considering the domain T of possible values for » and A, we maximise the
credibility index O(a.,by), 5=1,2,...,p:

#

max Y, j(ay,by)— A
=1

sit.: w€T

’;-=1Wj=1,ﬂfj 20, jfeF

j‘min < ) < Jmax

If by is the highest profile for which the optimum value of the objective function is positive,
then B{a, T)=Cy=1.

To determine the worst possible assignment for the alternative 4. considering the domain T
of possible values for » and A, we perform the tests by minimising the credibility index G(a.,b),

h=1,2,...,p:
A
min Z:yjcj(ax,bb)—)u

J=1
s.t.: weT

Yimwj=1w;20, jeF

Amin < 3 < jmax

If by is the lowest profile for which the optimum value of the objective function is positive,
then W(a.,T)=Cj~.

For details, see Dias and Climaco (1999,2000).
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Appendix D: Nature of the "range™ [W(a, Tk), B(ai,T1)]

Let us consider an ELECTRE TRI model in which gibs), ¢(bs) and py(bs), ViVh, ate defined such
that gi(bs)*p;(bs)) < g(bse1)+pi(bs+1) (the direction of preference on each criterion is increasing), ie,
categories are consistent. Let us suppose that no veto phenomenon occurs. T defines g
polyhedron of possible values for » and A.

Let us denote T(a,Cy)={t€ T/ a—: C;}. It should be noticed that:

Result 1: JT, Ja€ A such that T(a,Csu2)#, and T(a,C)#D with T(a,Cher)=D

Proof: a simple counter example can be build considering a situation where g(2Sby)=g(aSby; )
Vje F. Let us consider the following data set in which the scales on the four criteria are such that
()€ [0,20] VjeF, Vac A. Four categories are defined such that:

8(01)=5, 8(62)=10, g(b3)=15, VjeF;

2ilbs)=qi(bs)=0, v(bs)>20, VjEF, Vj=1,2,3
We consider a such that gi(a)=g(2)=8, gs(a)=g5(a)=16 and T= {m€ [0.05, 0.45]; A€ [0.55, 0.557}
It holds T(a,Cp)={t€ T/ wi+w22A}, T(a,Co)={te T/ ws+m2A}, and T(4,Cs)=L2

In other terms, there exist situations in which an alternative ¢€.4 cannot be assigned to an
intermediary category between two categories to which it can be assigned. However, it is possible
to characterise the situations in which such phenomenon occurs. Result 2 shows that the
situations in which it is not possible to assign an alternative # to an intermediate category Cj
between W(a,Ts) and B(q, Ty) corresponds to a case in which 4 equally outranks 4 and ;..

Let us denote b(a, b; #) = 2 myia, b) — A, where t = [y, wy, ..., wn, A] (GEB). H; := {#: h(a, b, t) = 0}
(4€ B); since 4 is a linear function, H; is 2 hyperplane.

Lemma 1: Consider two profiles 4; and 4:s (4 Abis), and the positive open orthant where >0
(7=1,..,7). Then, either H; does not intersect H;; (H/NH:.1=@), or H; coincides with H;; (Hi=H..
1),

Proof: obvious since the fact that J; dominates 4:.; implies that A, by #<h(a, bus, ) for w>0
(/=1,...,). If H; were to intersect H;; in the open orthant while not coinciding with it, we could
find #such that h(a, &, 1)>h(a, bis, #), which is impossible.

Let T be a convex set such that »>0 (JEF) for all t€ T containing the admissible combinations of
parameter values. T(z,Cj} denotes the set of parameter combinations such that ELECTRE TRI

pessimistic rule assigns alternative a to G, i.e., T(a,G) = {t€ T: h(a,b,2)<0 and h(a,b;.1,20}.

Result 2:
Suppose there exists sup and Znf, with sup>inf+1, such that T(a, C,,) #& and T(a, Gy #E&
For any 7 such that sup > 7 > inf, we have the following equivalence:

T(a, C) =D & ¢fa, b) = ¢(a b,,), ViEF

Proof:
T{a, G) = & Gla, by) = j(d, bii), VjeF
If g(a, b)=¢(a, bir), VjEF, then hlab,t)=h(ab.1,#). Hence, aSh <> aShis and a cannot be
assigned to G, i.e., T{g, C) =&.
T(a, C) =D = g(a, by) = ¢(a bis), ViEF
Let us choose any #,€ T(2,Cyp).
We must then have b(a,b,p.1,8)20, which implies that A(a,;2)20 and h(a,bi1,2)20.

Let us now choose any #y& T(z,Ciyy).
We must then have A(z,4i,52)<0, which implies that b(a,5,2)<0 and h(a,b:.1,2)<0.
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Since T is convex, the line segment L={c tupt(1-0) tips 12020} is contained in T, Given
that b(a,b,2) and h(a,bi1,2) are continuous functions that change their sign when going from
Zinf tO fup, there must exist #€ L and £€ L such that hla,byt1)=0 and h(a,b;.1,1,)=0.

If ##4, then the combination 0.5%+0.5¢ is such that ¢ would be assigned to C, which
contradicts the hypothesis. Hence, T(s,C)=@ = =t

However, since #€H; and #€H;s, this means that H; intersects Hyy at # (%2, resp.).
Thetefore, by Lemma 1, H; must coincide with H;;, which implies g(a,6)=¢(a,b:1), ViEF .
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