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Le probléme de la chaine Hamiltonienne de poids maximum avec extrémité(s)
prédéterminée(s)

Résumsé

Cet article traite des différents problémes de la chaine Hamiltonienne, nommés HPPF;; lorsque les
deux extrémités sont connues & ’avance et H PP, lorsqu’une seule est prédéterminée. Nous montrons que
HPP;; est 1/2-différentielle approximable et n’est pas approximable & mieux de 649 /650. Ensuite, nous
prouvons que la version HPP; est mieux approximable avec un ratio de 2/3. Basés sur ces résultats,
nous obtenons des bornes pour la mesure standard: une 1/2-approximation standard pour & PP, et une
2/3-approximation standard pour HPP,. Nous améliorons ce ratio i 2/3 pour Max HPP;,(a,2a] (lorsque
les arétes ont un cotit appartenant a l'intervalle [a,2a]), & 5/6 pour Mazx HPPs[a,2a) et finalement & 2/3
pour Min HPP;[a,2a], & 3/4 pour Min HPPFs[a,2a].

Mots-clés: Algorithmes approchés; Mesure différentielle; Mesure standard; Réductions

The maximum Hamiltonian Path Problem with specified endpoint (s)

Abstract

This paper deals with the problem of constructing Hamiltonian paths of optimal weight, called
HPPF;,; if the two endpoints are specified, HPP; if only one endpoint is specified. We first show
that HPP;; is 1/2- differential approximable and can not be differential approximable greater than
649/650. We next demonstrate that, when dealing with one specified endpoint, we improve to 2/3 the
ratio. Based upon these results, we obtain new bounds for standard ratio: a 1 /2-standard approxima-
tion for Max HPP,, and a 2/3 for Maz HPP, which can be improved to 2/3 for Maz HPP; s[a,2a]
(all the edge weights are within an interval [a,2a]),to 5/6 for Maz HPPsa,2a] and to 2/3 for
Min HPP;[a,2a], to 3/4 for Min HPP[a,2a].

Keywords: Approximate algorithms; Differential ratio; Performance ratio; Analysis of Algorithms;



B.U. DAUPHINE

1 Introduction

Routing design problems are of a major importance in combinatorial optimization, and the most important
ideas of algorithmic have been applied to them during the last twenty years, see Christofides [4], Fisher et
al [12], Hassin and Rubinstein [15] and Engebretsen [11]. We will be concerned with some problems closely
related to the Maximum Traveling Salesman problem, namely, the problem of finding a Hamiltonian path
of maximum weight. We will study two variants depending on the number of specified endpoints (one or
two) of the path. Maz HPP; and Maz HPP;; respectively denote the Hamiltonian path problem with
one fixed endpoint s € V' and two fixed endpoints s,¢ € V. To our knowledge, these two latter problems
have not been studied before, whereas their minimization versions have been studied by Hoogeveen [17] and
Guttmann-beck et al. [14] (in particular, it is well known that the minimization problems are NP — hard).
We also deal with a variant called HPP; 4[a; b, where the edge-weights are in the set {a,a+1,...,6—1,b}.
Both Min— and Maxz HPP,; are NP — hard, even in their restricted versions with b > a, since they are
polynomial-time Karp-reducible [19] to each other.

We focus on the design of approximation algorithms with guaranteed performance ratios, that run
within polynomial time and produce sub-optimal solutions. Usually, the scientific community works on
the ratio (called standard ratio) of the cost of the solution generated by the algorithm to the optimal cost,
in the worst-case. However, we mainly refer in this article to another ratio called differential ratio which
measures the worst ratio of, on the one hand, the difference between the cost of the solution generated
by the algorithm and the worst cost, and on the other hand, the difference between the optimal cost
and the worst cost. This measure, studied by Ausiello et al. [3], Fisher et al. [12] and more recently
by Demange and Paschos [10], leads to new algorithms taking into account the extreme solutions of the
instance, and provides the opportunity to better understand these problems. There are great differences
between standard and differential approximation for the Hamiltonian path problems. For instance, we
can easily prove that the Best Neighbor Heuristic [12] is 1/3-standard approximable for Maz HPP,
or that we have a trivial standard approximation scheme for Maz H PP, 4[n;n + 5]; however, for the
differential ratio, the Best Neighbor Heuristic is not approximable with any constant ratio for Maz HPP,
and Maz HPP;[n;n + 5] is not approximable with ratio greater than 649/650. We present along this
paper many examples to illustrate the difference between these two measures.

We now give some standard definitions in the field of optimization and approximation theory. For a
more detailed statement of this theory, we refer the reader to Ausiello et al. (2], [1], Hochbaum [16].

Definition 1.1 An N P-optimization problem = € NPO is a five-tuple (D, sol,m,Triv, goal) such that:
(i) D is the set of instances and is recognizable in polynomial-time.

(it) Given an instance I € D, sol[I] is the set of feasible solutions of I; moreover, there ezists a polyno-
mial P such that, for any = € sol[l], |z| < P(|I|); furthermore, it is decidable in polynomial time
whether  z € sol[I] for any I and for eny = such that |z| < P(|I]). Finally, there is o feasible
solution Triv(I)' computable in polynomial-time for any I.

(ii) Given an instance I and a solution = of I, m|I, z] denotes the positive integer value of z. The
function m is computable in polynomial time and is also called the objective function.

(i) goal € {Maz, Min}. 0

YThe common definition of class NPO does not require the existence of a trivial solution.




We call goal® the complementary notion of goal and 7 the NPO-problem (D, sol,m,Triv,goal). The
goal of an N PO-optimization problem with respect to an instance I is to find an optimum solution *
such that OPT(I) = m[l,2*] = goal{m[I,] : = € sol[I]}. Another important solution of 7 is a worst
solution x. defined by: WOR(I) = m[I,z.] = goal{m[I,z] : z € sol[I]}. A worst solution for 7 is an
optimal solution for 7 and vice versa. In Ausiello et al. [3], the term érivial solution referred to as worst
solution and all the exposed examples have the property that a worst solution can be trivially computed
in polynomial-time. For example, this is the case of the maximum Cut problem where, given a graph, the
worst solution is the empty edge-set, or the Bin-Packing problem where we can trivially put the items
using a distinct bin per item. On the contrary, since a worst solution of the maximum weight Hamiltonian
path from s to ¢ is an optimal solution of its corresponding minimization version, the computation of such
a solution is far from being triviall The same property occurs for the f-depth Spanning Tree problem [22]
or all the problems exposed in [20].

Approximate algorithms and reductions. In order to study algorithms performances, there are
two known measures: standard ratio [13], [2], [6] and differential ratio [10], [3] and [5].

Definition 1.2 Let w be an NPO problem and z be a feasible solution of an instance I. We define the
performance ratios of x with respect to the instance I as

m[l,z] OPT(I)
OPT(I)’ m[l,x] }

o (standard ratio) p[r](I,z) = Min{

WOR(I) — m[I,z]
WOR(I) — OPT(I)
The performance ratio is a number less than or equal to 1, and is equal to 1 if and only if m[I,z] =
OPT(I). Remark that, compared to some definitions, we have inverted the standard performance ratio
in the case of minimization problems so that the ratio value is always between 0 and 1. Let 7 be an NPO
problem. For any instance I of w, a polynomial time algorithm A returns a feasible solution 24. The
performance of A with respect to R € {6, p} on the instance I is the quantity B4 [7)(I) = R[x](I,z"). We
“say that A is an r-approzimation algorithm with respect to R if for any instance I, we have R4([) > 7.

Y

o (differential ratio) &[x](I,z) =

Definition 1.3 For any performance ratio R € {6, p},

e an NPO problem belongs to the class APX (R) if there ezists an r-approzimation with respect to R
for some constant r €]0; 1].

° an NPO problem belongs to the class PT AS(R) if there ezists an r-approzimation A, for any
constant v €]0;1[. The family {A, }o<r<1 is said to be an approzimation scheme. 0

Clearly, the following inclusion holds for any measure R € {8, p}: PTAS(R) C APX(R). As it is usually
done, we will denote by APX and PTAS, respectively, the classes APX (p) and PTAS(p). We could
argue whether the differential ratio is really pertinent: the authors of [10]) and [3] answered positively to
that question and concluded that this measure is complementary with the standard ratio. As shown in
8], many problems can have different behavior patterns depending on whether the differential or standard
ratio is chosen: consider for instance Vertex Covering or Dominating Set problems. On the other hand,
there are problems that establish some connections between the differential and the standard ratios, like
Bin Packing [9] or maximum weight bounded-depth spanning tree [22]. Besides, we show that there are

2If goal = Moz, then goal = Min and goal = Maz.



tight links between both measures for the problems dealt with in the case where the edge-weights have
lower and upper bounds.
Now, consider the following approximation preserving reductions between pairs (m, R).

Definition 1.4 For m; € NPO and R; € {6,p},i=1,2,
o an A-reduction from (my,Ry) to (me, Rg), denoted by (w1, Ry) <4 (72, Rg),
is a triplet (, f,c) such that:

(i) o: Dy, 3 Dy, transforms an instance of my into an instance of o in polynomial-time.
() f : solx,[ex (I)] — soly,[I], transforms solutions for g into solutions for w1 in polynomial-time.
1

(i5i) ¢ : [0;1] = [0;1] (called ezpansion of the A-reduction) is a function verifying ¢ 1(0) C {0} and
Ve € [0;1],Y] € Dy, ,Vz € soly,[o< (I)]: Ra[mo)(ex (I),2) > e => Ry [m](Z, f(z)) > c(e)

o an A x P-reduction from the pair (m1,R;) to the pair (m2, Re), denoted by (my, Ry) <4*F (73, Ry),
is an A-reduction from (m, R1) to (w2, Ry) such that the restriction of function ¢ to some interval [a;1]
is bijective and (1) = 1 (note that c(e) does not necessarily verify e 1(0) C {0}). If (mi;, R;) <AF
(w33, R3—;) with c(e) =€ fori=1 and i = 2, we say that (w1, R1) is equivalent to (ma, Ra). 0

An A-reduction preserves constant approximation while A % P-reduction preserves approximation
schemes. They are a natural generalization of those described by Orponen and Mannila [23] and Crescenzi
and Panconesi [7].

The differential ratio measures how the value of an approximate solution is located in the interval be-
tween WOR(I) and OPT(I) whereas for a maximization problem, the usual ratio measures how the value
of an approximate solution is placed in the interval between 0 and OPT(I). Hence, for a maximization
problem, we have an A % P-reduction from the usual ratio to the differential ratio since WOR(I) > 0:

Lemma 1.5 If m = (D, sol,m, Triv, Maz) € NPO, then (r,p) <4*F (r,6) with c(e) = ¢.

Remark that, in general, there is no evident transfer of a positive or negative result from one framework
to the other.

2 The Hamiltonian path problem

The Hamiltonian path problem, also called the Traveling Salesman Path problem, is formally defined as
follows.

Definition 2.1 Consider a complete graph K, with non-negative costs d(z,y) for each vertices pairs of
K. We want to find an optimal-cost Hamiltonian path, where the cost of a path is the sum of the weights
on its edges. We refer this problem as HPP. When one endpoint s (resp. two endpoints s and t) of
Hamiltonian path are specified, we use the notation HPP, (resp. H Pl ).

If goal = Maz, the problem is called Max HPP, else Min HPP. We use the notation H PP, HPP;
or HPPs; when we consider without distinction the cases goal = Maz or goal = Min. ¢

For the Hamiltonian Path problem with non specified endpoints, a lot of standard ratio approximation
results can be derived for TSP (with goal = Min and goal = M az) thanks to a structural property
of solutions and a trivial reduction to the Traveling Salesman problem: the first negative approximation



result (that we can deduce from [26]) states that it is not possible to approximate Min HPP within
1/f(|1]) where f is any integer function computable within polynomial time unless P = NP. On the other
hand, Min metric® HPP is approximable within 2/3 [4] and Min HPP[1,2] is APX-complete (deduce
from Papadimitriou and Yannakakis [24]). For Maz HPP, the results are more optimistic since this
problem is in APX. The best-known standard ratio is equal to 3/4 and can be deduced from [27].

The Hamiltonian Path problems with specified endpoints (vesp. metric HPP; or metric HPP, ;) are
as hard to approximate as HPP (resp. metric HPP). The question put by Johnson and Papadimitriou
[18] on the relative hardness of the specified endpoint version compared to the non-specified is open.
These conjectures are strengthened by the positive results given on these problems since the best-known
standard ratios are respectively 2/3 and 3/5 for Min HPP, (17] and Min HPP;, [17), [14]. Moreover,
if we consider the case a < d(e) < 2a there are no specific results. For example Christofides’ modifica-
tion algorithm [17] remain a 2/3-standard ratio for Min HPP, [a;2a]. To our knowledge, no standard
approximation result has been found for Maxz HPP, and Maz H PP ;.

We show that HPP; is 2/3-approximable and H PP ; is 1/2-approximable under the differential frame-
work. We can deduce from lemma (1.5) a 2/3-standard approximation for Maz H PP, and a 1/2-standard
approximation for Maz HPP, ;. Moreover, our technique allows to handle the case where all the edge
weights are within an interval [a, 2a] for any positive a, and more generally the case WOR(I) > ;OPT(I).
Since we give a 3/4 (resp. 2/3)-standard approximation for Min HPP, (@, 2a] (resp. Min I:Z'PPs tla, 2a]),
we improve the best-known bounds of 2/3 (resp. 3/5) for minimization versions given by Hoogeveen [17]
(resp. Guttmann-beck et al. [14] or [17]).

3 Elementary properties

We present some relations between HPP, HPP,, HPP, .t and different subcases. We prove that HPP;
is the most general problem. As a second step, we establish for each problem some connected relations
between differential and standard ratios. In the following paragraph, without specification, the properties
that we present for HPP, ; are also true for HPP, and HPP.

HPPF;; is as hard as HPP; (which is itself as hard as H PP) to approximate for both performance
ratios. Moreover, from a differential approximability point of view, these different versions are very closed
to the Traveling Salesman problem, even if we consider the restriction a <de) <b.

Lemma 3.1 for any goal € {Min, Maxz}, we have:
(i) (goal TSP,8) <**F (goal HPPs4,8) with c(e) =e.
(it) (goal HPP,8) <A*F (goal TSP,8) with c(e) = e.

Proof: We only show the case goal = Maz. Let [ = (Kn,d) be an instance.

o For (i): Choose a vertex s in K, and define I, = (Ky,s,v,d) for all v € V \{s}. If g, is a
Hamiltonian path from s to v of I,, we construct the Hamiltonian cycle Ty = py U {(s,v)}. Then, we
take I' = argmaz{m(I,T',] : v € V' \ {s}}. Now, consider v* such that OPT(I,+) +d(s,v*) = OPT(I);
if m[lye, poe] > €OPT(Lye) + (1 — )WOR(L,+ ), then m[I,T] > m[I, poe] + d(s,v*) > eOPT(I) + (1 -

e)yWOR(I).
o For (ii): Transform I into instance o (I) = (Kp41,d") as follow: add a new vertex s to graph K,
and define d'(s, v) = a,¥v, d'(e) = d(e) for other edges. Then, the proof is similar. O

8Verifying for all vertices z,y, z the inequality: d{z,y) < d(z, z) + d(2,9)-



Note that the proof of item (ii) also holds for the standard ratio with d’(s,v) = 0 and we can deduce
from [21] and item (i) of lemma (3.1) that HPP is 2/3-differential approximable and HPP[1,2] is 3/4-
differential approximable. HPP;; is NP — hard if and only if so is H PP, hence, computing a worst
solution of HPP,; is as hard as computing an optimal one. For goal = Min, we also have the well-
known result stemming from Sahni and Gonzales [26] which affirms that if Min HPP;; € APX, then
the following decision problem is polynomial: given a simple graph G = (V, E), does E' C E exists such
that E' is a Hamiltonian path from s to ¢ of G? Thus, we deduce that Min H PPF;; is not in APX unless
P = NP, because the associated decision problem is N P-Complete.

Yet, the asymmetry in the approximability of both versions (Maz HPP;; is in APX as later proved)
can be considered as somewhat strange given the structural symmetry existing between them. Since
differential approximation is stable under an affine transformation of the objective function, Maz H PP,
and Min HPP;; are differential-equivalent 4. Besides, another difference with the standard ratio is that
Min HPP;; is not more difficult than the same problem with triangular inequality (called metric).

Proposition 3.2 The following assertions hold:

(i) Min HPP;, is diﬁev‘enti-al-equévalent to Max HPP;,.

(it) Min HPP;4[a,b] is differential-equivalent to Maz HPP, 4[a,b).
(iti) HPP; is differential-equivalent to metric HPP; ;.

Proof : Let I = (K,,s,t,d) be an instance, set dpqez = maxeeg d(e) and dpin = min.cg d(e).
o For (i) and (ii): (Min HPP;;,8) <4*F (Maz HPP;,,d) with c(e) = e.
We transform I into instance o (I) = (Kp, s,t,d') defined by: Ve € E, d'(e) = dmas + dmin — d(e).
For any Hamiltonian path y from s to ¢, we have: m[oc (I), p] = (|V| — 1)(dinaz + dmin) — m[I, .
Hence if m[oc (I), p} > eOPT(ex (1)) +(1-e)WOR(x (I)), then m[I, p) < eOPT(I)+(1—e)WOR(I).
Conversely, the proof is similar since « o = Id.
o For (iii), the proof is similar, except that function d’ is now defined by d’(e) = dinas + d(e). 0O

The following easy theorem holds, thus giving a bridge between differential and standard ratios for
goal = Maz and goal = Min, in the case where edge weights belong to an interval [a, b)].

Theorem 3.3 (goal HPP;4[a,b), p) <**F (goal HPP;la,b),8) with the expansion verifying:

e ¢(e) = Q_b;‘)g +% if goal = Max
o c(e) = B—:—(s_—'a)é if goal = Min

Proof : We only prove the goal = Maz case. Let I be an instance and g be a Hamiltonian path from s

to 1.
If m[I, u] > eOPT(I) + (1 - )WOR(I), then m[I, y] > c1(e)OPT(I) since WOR(I) > $OPT(I). D

HPP;[a,b] (for a and b not depending on the instance) is "easy" to approximate with standard
framework (i.e., HPP;[a,b] € APX), since even a worst solution is an a/b-approximation (take ¢ = 0
in theorem (3.3)), while this is not true with the differential measure. Nevertheless, we can deduce from

4see definition (1.4)



this theorem that the hardness thresholds for standard and differential framework are identical since
Min HPPs4a,b] is APX — complete.

Corollary 3.4 For allb>a >0, HPP;4a,b] ¢ PTAS(S) unless P = NP.

For some values of @ and b, we can also establish a limit on its differential approximation. Keep in
mind the negative result of [11]: for any € > 0, no polynomial time algorithm can guarantee a standard
approximation ratio greater than, or equal to, % + ¢ for T'SP[1,6]. So, using item(i) of lemma(3.1) and

lemma(1.5), we deduce:

Proposition 3.5 For all a > 0, HPP,4[a,a + 5] is not approzimable with differential ratio greater than

825 unless P = NP.

Note that this proposition does not hold for HPP and HPP;.

4 Approximate algorithms for these problems

In this section, we propose two types of algorithms which yield constant ratio. For Maz HPP,, the
algorithm is obtained by getting several feasible solutions and by choosing the best one among them.
Each of these individual solutions has a differential approximation ratio tending towards zero with the
size of the instance. For Maxz H PP, the algorithm is very different and takes into account the extreme
solutions. So, on the one hand, the algorithm tries to be the nearest from the best solution value and on
the other hand, tries to be the furthest from the worst solution value. In order to do that, it iteratively
provides a solution of value greater than (WOR(I;) + OPT'(I;))/2, where I; is the sub-graph built at step

q.

4.1 The algorithm for two specified endpoints version

Maz HPP;; can also be regarded as the problem of determining a Hamiltonian cycle that contains edge
(s,t). The algorithm works by finding a maximum weight 2-matching among 2-matchings containing
(s,t) and at each step, merge two by two the cycles. The main idea consists in pointing out that we
could have lost much more by merging in a different way the two cycles at each iteration. Thus, we will
build dynamically a bad solution that will actually depend on the choices made by the algorithm at each
iteration. Consider two cycles I'; and two edges (x1,22) € T'1 and (y1,¥2) € I'a, we call localchange; for
i = 1,2 the following process:

localchange;((T'y, (z1,%2)), (T2, (¥1,92))] = {(21,y3-4), (€2, ¥:)} U (T1 U T2 \ {(21, %2), (¥1,%2)})

These two processes merge the cycles T’y and I'y into a unique cycle. Remark that the vertices order
is important in the processes; thus, edges (z1,z2) or (y1,%2) are implicitly given as directed edges and
we have: localchange:[(T'1, (z2,21)), (T2, (¥1,42))] = localchanges[(T'y, (z1,%3)), (T2, (¥1,%2))]. Moreover,
when I'y = I'; and (21, 22) is not adjacent to (y;,y2), these processes amount to simply local edges swaps.
We associate to localchange; a function cost; that represents the loss in merging two cycles:

costi[(z1,22), (Y1, y2)] = d(z1, 22) + d(yr, y2) — d(1, y3—s) — d(z2,ys)

[Localchange H PP, 4
input: An instance (K,,s,t,d);



output : A Hamiltonian path SOL from s to ¢ of G;
Change the cost of (s,t) into |V|dmaz + 1. Call d' this function ;
Compute a maximum weight 2-matching M = {Ty, i = 1,..., k} of (K,,d");
Suppose that (s,t) € I}
Choose 2 consecutive edges (z},23) and (z3,23) in I'; different from (s, ) ;
soly =T, e} = (z],%}) and e} = (z},2}) ;
For i=2 to k do
Choose 2 consecutive edges (zi,z}) and (2}, z}) in [;
If costi[e] ™Y, (zf, 28)) < costalel™, (zf, 1)) then
sol; = localchange: [(soli_1, el ™), (Ty, (21, z3))] ;
Suppose €; ! = (z,y), and &} is the other neighbor of z} in T
Set ef = (y,z%) and e} = (zf,z}) ;
Else
sol; = localchanges|(sol;i—1, e5™1), (Ts, (z5, 23))] ;
Suppose e; ! = (z,%), and z? is the other neighbor of #% in T;
Set ef = (y,25) and €} = (g}, 2}) ;
End if ;
- End fori;
SOL = sol \ {(s,)};

As this algorithm is polynomial, let us then show that SOL is an Hamiltonian path. First, remark that
by construction, (s,%) belongs to every maximum weight 2-matching of (K,,d’). Moreover, ei and €}
obviously belong to sol; for every iteration 7 < k of the algorithm. These two facts lead to the result.

Theorem 4.1 The algorithm [LocalchangeHPP;.] is a %-dz’ﬂerentéal approzimation for Max HPP;;
and this ratio is tight.

Proof: Given I = (Ky,s,t,d), an instance of Maz HPP,;, we denote (is,...,4) with i; € {1,2} the
sequence of choices produced by the algorithm such that, for j € {2,...,k} :

sol; = localchange;;[(sol;_1, efj_l), JETH ('Ti:’ 2J+1))]

Thus, d(sol;) = d(solj—1) + d(T';) — cost;;(j) with cost;, (j) = cost;, [e;f;l, (me 5 :cfjﬂ)]. Summing up
these equalities for j = 2 to k, and since d(soly) = d(I'1) and d(SOL) = d(sol;) — d(s,t), we obtain:

k
d(SOL) = d(M) — d(s,t) — Y _ cost;(5) (4.1)
i=2
The main idea is to note that edge-subset {ej- i : ("33-43 ) i;) 1 J = 2,...,k} belongs to solution soly.

Hence, we can "damage" the current solution by local edges-swap from this edge-subset. More formally,
consider solutions sol; defined by sol] = sol and for j = 2,..., k,

sol; = localchanges_i;[(sol}_,, e}~ i) (soll_y, (xg_z ,h —i;)]
Finally, proceeding as previously, we obtain d(sol},) = d(M) — Z?:z (costi; (5) +costa—i; (j)). By construc-
tion, cost;; (4) + costs—i; (§) > 2cost;;(j) and WOR(I) < d(sol},) — d(s,t). Hence:

k
WOR(I) < d(M) —d(s,t) ~ 2 costy; (5) _ (4.2)

=2



Remark that M is an optimal weight 2-matching among the 2-matching of (G, d) containing the edge
(s,t}; thus
OPT(I) < d(M) — d(s,t) (4.3)

By combining expressions (4.3), (4.2) and (4.1), we obtain:

d(SOL) > %OPT(I) i %WOR(I)

We now show that this ratio is tight. Let J;, = (Kp, s,t,d) be an instance defined by: V = ( {zf, 1<
i<3,2<j< 2+ 1}U{s,u,t}), dal,2l) = do],«l) = 1Vi = 2,..,2n, d(z, 23*?) = 1 vj =
2,020 =1, dp(s,23) = dn(u,2}) = d(u,23) = d(t,22) = 1 and let the cost of all other edges be two. The
2-matching is composed of I'1 = {s,u,t} and T; = {z, ah,2l} §=2,..,%n + 1 The edges produced by
the algorithm are: ef = (s,u), e} = (u,1), e} = (u,2}), €} = (#2,22), ¢] = (a7~ Lal), e = (z],23) 5=
3,..,2n+ 1 and cost; (2) = costz(2) = 2, cost1 (4) =costa(j) =1 j=3,...2n+ 1.

d(SOL) = 10n + 4, WOR(J2n+1) =8n+3, OPT(J2n+1) =12n+4
Thus, we obtain (sLocaichangeHPP,,g (J2n+1) == % O
For the standard ratio, we deduce new improved results from lemma (1.5) and from theorem (3.3):

Corollary 4.2 We have the following results:
o Maz HPP;, is l—standard approzimable and Max HPP;,la,2a] is %-standam’ approximable.
o Min HPP;,|a, 2a] is 2-standard approzimable.

4.2 The algorithm for one specified endpoint version

We propose an algorithm which differs from the one previously studied since we explicitly compute several
solutions. Our algorithm is based upon a simple idea and uses structural properties of solutions. It still
works by finding a maximum weight 2-matching containing specified edges and then discarding some edges
and arbitrarily connecting the resulting paths to form an Hamiltonian path from s. The principle of our
algorithm is to generate not only one but several feasible solutions following this method.

Consider a maximum weight 2-maiching M, among those containing (s, r), including elementary cycles
I's, ¢ =1,..,k In order to do that, we substitute |V|dmas + 1 for the cost of (s,r) and we compute a
maximum 2-matching in this new graph. Finally, for each cycle I';, we consider four consecutive vertices
oi,o3,03,0%. Remark that we have numbered vertices such that z! = 7 and z} = s. Moreover, if ITi| =8
then z§ = z{. For the last cycle I't, we consider an additional vertex y which is the other neighbor of ¥
in T'g. Thus, if |Tx| = 4 then y = =} while y is a new vertex in the other case.

[Patching 2 — matching]
input: An instance (Kj, s, d);
output: A Hamiltonian path SOL from s of K,,;
For any r € V'\ {s} do
Change the cost of (s,7) into |V|dmaes + 1. Call d' this function;
Compute a maximum weight 2-matching M, = {T,i = 1,..,k} of (K,,d");
if £ =1 then SOL, = M, \{(s,7) };
if k is even then

51 = UiZH (e, ad)} U {(af,25), (s,7)} 5



build soly = (M, \ $1) U{(af,2}), (e}, 23)} ULTD? (a7, 2571), (@371, 237*2)} 5

(soly is a Hamiltonian path from s to r)
82 = Ui {(e], 4} U {(w, 2}), (5,7} 5
build soly = (M, \ S3) U {(a},a3)} U322 (a3, 27, (o242, 22*2)}
(sola 1s a Hamiltonian path from s to y)
S3 = Ui (23,2} U {(af,25), (5,10} 5
build sols = (M; \ S3) U {(2,2}), (2}, 23)} U322 {2, 231), (2971, 00)}
(sols is an Hamiltonian path from s to 7)

End if ;

if k is odd then
51 = Uk*l{ :cg,a,?,; U {(s, 7')} )
build soly = (M, \ $1) U {(z§,25)} UED2 (@271, o) (e, a20H1)}
(soly is an Hamiltonian path from s to r)
S2 = {(s,m)} kg {(2,23)} 5
build soly = (M, \ S2) U(’° ~1)/2 {771, 2%9), (a2, 221 1))
(solg is a Hamiltonian path from s to z¥)

Uiy {(ad, 2} U {(s,)} 5

buﬂd sols = (M, \ S5) U {(ah,5)} U5 Y/2 (a9, a29), (a2, 2241)) 4
(sols is a Hamiltonian path from s to r)

End if ;

SOL, = argmaz{d(sol,),d(solz),d(sols)};

End for r;
SOL = argmaz{d{(SOL,) : v € V'\ {s}};

Observe that for any r, the solutions soli, sol; and sols are Hamiltonian paths (from s to different
endpoints) since the additional edges are adjacent to the ones substituted. The time-complexity of this
algorithm is greater than the time-complexity of the previous algorithm but remains polynomial since the
computation of the 2-matching problem is polynomial.

Theorem 4.3 The algorithm [Patching 2—matching]is a %-dz’ﬁeréntz’al approzimation for Maxz HPP;
and this ratio is tight.

Proof: Let I = (K, s,d) be an instance and let SOL* be an optimal Hamiltonian path from s to r*. We
denote loss;, i=1,2,3, the quantity d(sol;) — d(M,-) + d(s,7*). Obviously, loss; < 0 and we have

1
d(SOL) > d(SOL}) > d(M,.) — d(s,7*) + g(lossl + lossy + losss) (4.4)
Moreover, the following structural property holds:
SOL, = Uj=1,2,3(s0l; \ Mpe) U Mye \ (S US2 U S3) is a Hamiltonian path starting from s

d(SOL,) = d(M,-) — d(s,r*) + loss; + losss + losss since d(sol; \ M,-) = loss; + d(S;) — d(s,r*) and
d(Mye \ (S1US; U S3)) = d(Mye) — d(S1) — d(S2) — d(S3) + 2d(s,7*). Hence, we deduce

WOR(I) < d(My+) — d(s,7") + lossy + lossy + lossz (4.5)
Since SOL* U (s,7*) is a particular 2-matching containing (s,7*), we have:

OPT(I) < d(Mye) — d(s,r*) (4.6)



Finally, combining (4.4), (4.5) and (4.6) we obtain:

d(SOL) > %WOR(I) + §0PT(I)

To show that the bound is approachable, consider the following instances. Let I, = (K, s, d) be an
instance defined by: V = {2} : 1<i <3, 1<j < 2n+1} withzd = s, d(ad,2d) = d(z},2)) = d(a!,z]) =
2,¥i=1,.,2n+1,d(=],2{™) =2, Vi=1,..,2n and d(z},2]) = d(a},2]) = 2, Vj = 2,...,2n + L. Let

the cost of all other edges be one. We have:
d(SOL) < 10n +4, OPT(I,) = 12n+ 4, WOR(I,) = 6n + 2

leading to the conclusion Km dpatching 2-matching (In) < Z, a
For the standard ratio, we deduce new improved results from theorem (3.3):

Corollary 4.4 We have the following results:
o Max HPP; is %-standard approzimable and Max HPP;[a,2a) is %—standard approzimable.
o Min HPP[a,20] is 3-standard approzimable.

5 Towards thresholds of differential non-approximation

A useful technic to establish some standard non-approximation thresholds of N P-hard problems consists
in establishing the fact they are not simple. Recall that an NPO problem is called simple Paz and
Moran [25] if its restriction to instances verifying for any fixed integer k, OPT(I) < k can be resolved
within polynomial time. So, we can also prove a standard non-approximation threshold equal to 2/3 for
the Bin-Packing problem because its restriction to instances verifying OPT(I) < 2 is still a N P-hard
problem. Similarly, we will say that « is § — simple if its restriction m, to instances verifying for any
integer fixed k, |WOR(I) — OPT(I)| < k can be solved within polynomial time. Thus, we also have the
following proposition:

Proposition 5.1 If 1 € PTAS(J), then w is § — simple.

Proof: Start from a problem = € NPQO and build the problem ¢(r) defined by:
if w = (D, sol, m, Triv, goal) then ¢(w) = (D, sol,m’, T'riv, Maz) where m'[I,z] = |WOR(I)—m[I,z]|.
® Finally, we use the results of [25] for the standard ratio since we have that p[¢(r)|(I, ) = 6[x](I,z). O

In other words, problems which are not & — simple do not admit differential approximation scheme and
we are even able to establish a differential non-approximation threshold; thus, if the sub-problem verifying
|[WOR(I) — OPT(I)| < ko is NP-hard then for any € > 0, no polynomial time algorithm can guarantee
a differential approximation ratio greater than, or equal to -,;05_9,3 + ¢ for 7. The proposition above allows
to achieve better hardness thresholds given by kg. We conjecture that H PP, is not § — simple for small
values of ko. If this was true, the threshold of proposition (3.5) could be meaningfully improved. Anyway,
that will allow us to better identify the space of feasible solutions and to understand how we can (or not)
polynomially navigate in it.

5Observe that the problem ¢(m) is not in NPO anymore when WOR(I) is not computable in polynomial time, which is
the case in this paper.
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