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Vers un cadre de travail général pour la théorie de I’'approximation
polynomiale

Résumé

Nous proposcns une extension du formalisme de l'approximation polynomiale permettant
d’envisager de nouvelles classes de résultats. Nous montrons d’une part comment les résul-
tats existants s’'intégrent dans ce cadre et d’autre part quels types de résultats ou questions,
jusqu’alors difficiles & exprimer, y trouvent une place naturelle. Nous exploitons ce forma-
lisme pour établicr des résultats d’approximation pour différents problémes NP-difficiles.
Nous nous intéressons d’abord a la classe des problémes de sous-graphe induit de poids
maximum vériflant une propriété héréditaire. Elle comprend notamment les problémes de
stable, clique ou encore sous-graphe induit ¢-colorable de valeur maximum. Nous propo-
sons d'abord une réduction en approximation qui transforme un rapport p pour un pro-
bléme non pondéré de la classe (cas ol tous les poids sont égaux) en un rapport de la
forme O{p/logn) pour sz version pondérée générale. Cette approche nous permet d’amé-
liorer le rapport d'approximation du probléme de stable de poids maximum (max_WIS):
le rapport finalement établi est le minimum entre une expression du type O(log®n/n)
et O(log u(G)/(k*p{G)(log log u(G))?), ot u(G) désigne le degré moven du graphe instance
et ol k est une constante quelconque. Chacun des deux termes correspond & une avancée
significative par rapport 4 l'existant. En effet, le premier terme est & comparer a O(log® n/n),
le meilleur rapport fonction de n établi pour le cas particulier non pondéré (max_IS) (pro-
bléme de stable maximum). Le second terme quant & lul correspond au premier rapport du
type 2(1/A(G)) pour max_ WIS (A{G) est le degré maximum du graphe instance). Dans un
second temps. en nous appuyant sur des résultats pour la coloration des graphes, nous pro-
posons un algorithme polynomial pour max_ WIS garantissant comme rapport le minimum
entre O{n~Y3) et O(loglog A (G)/A(G)). Cette fois encore, hormis le cas ot max_ WIS peut
gtre approché avec le rapport O(n~%/%) (I'approximation de max_IS garantissant le rap-
port n~! est NP-difficile pour tout € > 0) notre algorithme donne accés au premier résultat
d’approximation impliquant un rapport Q(loglog A(G)/A(G)) pour max_WIS (ceci pour
tout A(G)). Notons que l'approximation de chacune des versions (pondérée et non pondérée)
du probléme de stable maximum avec un rapport £(1/A(G)) est un probléme ouvert connu.
Nous nous intéressons alors au probléme de clique maximum pour lequel aticun résultas
d’approximation impliquant un rapport non-trivial fonction de A{G) n'est jusqu'a présent
établi. Nous proposons des algorithmes polynomiaux garantissant respectivement les rap-
ports Olog® A(GY/AMG)) et O(log® A(G)/A(G) loglog A(G)) pour les problémes de clique
maximum et de clique de poids maximum. Nous obtenons le méme type de résultats pour le
probléme de sous-graphe induit ¢-colorable maximum et sa version pondérée. Sortant de la
classe des problémes de sous-graphe induit maximum vérifiant une propriété héréditaire, nous
nous intéressons alors 4 deux problémes de minimisation : le probléme de somme chromatique
minimum et le probléme de coloration minimum. Pour le premier, nous établissons une réduc-
tion entre sa version pondérée et max_ WIS qui préserve (4 une constante multiplicative pras)
le rapport d’approximation. Elle permet le transfert des résultats obtenus pour max_ WIS
au probléme de somme chromatique pondérée. Enfin, pour la coleration minimum, nous pro-
posons des algorithmes d’approximation améliorant les résultats existants. Plus précisément,
nous cobtenons un rapport de la forme min{O{n~*¢),.O(logn/A(G}loglogn)}. Dans le cas
ol le minimum correspond au terme O(n~¢}, cette expression domine les meilleurs résultats
possibles fonction de n (pour tout € > 0, I'approximation garantissant pour toute instance
de la coloration le rapport n™¢ est NP-difficile}. Par contre, si le rapport correspond 4 la
quantité Ologn/A(G) loglogn), il améliore les meilleurs résultats actuels fonction de A(G)
et correspond au premier rapport de la forme }(1/A{G)) pour la coloration minimurm.

Mots-clé : algorithme o approximation, rapport d’approximation, probléme NP-complet,
complexité, réduction. probléme d’optimization NP.
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Towards a general formal framework for polynomial approximation

Abstract

In a first time we draw a rough shape of a general formal framework for polynomial
approximation theory which encompasses the existing one by allowing the expression of new
types of results. We show how this framework incorporates all the existing approximation
results and, moreover, how new types of results can be expressed within it. Next, we use
the framework introduced to obtain approximation results for a number of NP-hard prob-
lems. In this second part of the paper, we first deal with a class of problems called weighted
hereditary induced-subgraph maximization problems, notable representatives of which are
maximum independent set, maximum clique, maximum f-colorable induced subgraph, etc.
We devise a polynomial approximation-preserving reduction transforming any approxima-
tion ratio p for any unweighted problem of the class. into approximation ratio O(p/ logn)
for its weighted version. This allows us to perform subsequent improvements of the ap-
proximation ratio for the weighted independent set problem (max_WIS), in order to finally
obtain as ratio the minimum between O(log*n/n) and O(log u(G)/ (k2 (@) (log log (G))*),
where p{G) denotes the average graph-degree of the input-graph, for every constant k. In
any of the two cases, this is an important improvement since in the former one, the ratio
for max_ WIS outer-performs O(log? n/n), the best-known ratio for the (unweighted) inde-
pendent set problem (max _IS), while in the latter case, we obtain the first Q(1/A(G)) ratio
for max_ WIS (where A{G) is the maximum graph-degree). Next, based upon graph-coloring,
we devise 2 polynomial time approximation algorithm for max_ WIS achieving ratio the min-
imum between O(n~%/%) and O{loglog A(G)/A(G)). Here also, except for the very unlikely
case where max_ WIS can be approximated within O(n=%/3) (approximation of max_IS
within n¢-! is hard for every ¢ > 0), our algorithm is the first Q(loglog A(G)/ A(G))-
approximation algorithm for max_WIS (for every A{G)). Let us note that approxima-
tion of both independent set versions within ratios {1/ A(@)) is a very well-known open
problem. Then we deal with maximum clique problem for which no non-trivial approxi-
mation ratios, functions of A(G) are presently known. We propose here algorithms achiev-
ing ratios O(log® A(G)/A(G)) and O(log? A(G)/A(G) loglog A(G)) for maximum-size and
maximum-weight clique, respectively. We do the same for the unweighted and weighted
versions of maximum ¢-colorable induced subgraph. We then leave the class of hereditary
induced-subgraph maximization problems and deal with two minimization problems, the
minimum chromatic sum and the minimum coloring. ¥or the former, we show the existence
of 2 polynomial reduction between its weighted version and for max_ WIS preserving (up to
multiplicative constant) the approximation ratios for both problems. This reduction allows
transfer of the results obtained for max_WIS to minimum-weight chromatic sum. Let us
note that this result also is entirely new and non-trivially obtained. Finally, for minimum
coloring, we produce approximation ratios improving all the known ones. More precisely,
we obtain a ratio of min{Q{n~¢),0(logn/A(G) loglog n)}. In the case where the minimum
is realized by the guantity O(n™¢), it outer-performs all the ratios, functions of n, while
if the minimum is realized by the quantity O(logn/A(G)log logn), it outer-performs the
best known ratio. function of A{G) and constitutes the first Q(1/A(G)) ratio for minimum
coloring.

Keywords: approximation algorithm, approximation ratio, NP-complete problem, com-
plexity, reduction. NP optimization problem.
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Part I
Introduction

1 A few words about polynomial approximation

An NP optimization (NPO) problem II is commonly defined (see, for example, [8]) as a four-tuple
(Z,S,vr,opt) such thaz:

* 7 is the set of instances of IT and it can be recognized in polynomial time;

* given I € I, 5{I) denotes the set of feasible solutions of I; for every § € 5(J), |S| is
polynomial in {/|: given any / and any S polynomial in |I|, one can decide in polynomial
time if § € 5(1);

e given [/ € T and S € S(J), v;(S) denotes the value of S; vy is polynomially computable
and is commonly called objective function;

e opt € {max, min}.

The class of NP optimization problems is commonly denoted by NPO. The most interesting
sub-class of NPO is the class of the NP-hard optimization problems, known to be unsolvable
in poiynomial time unless P=NP and people widely thinks that this fact is very unlikely. This
probable intractability of NP-hard problems motivates both researchers and practitioners in
trying to epprozimately solve such problems, i.e., in trying to find in polynomial time, not the
best solution but one solution which, in some sense, is near the optimal one.

Given an instance [ of a combinatorial optimization problem II, w(I), A(I) and B(I) will
denote the values of the worst solution of 7 (in the sense of the objective function), the approx-
imated one (provided by a polynomial time approximation algorithm (PTAA) A supposed to
feasibly solve problem II), and the optimal one, respectively. There exist mainly two thought
processes dealing with polvnomial approximation.

1.1 Standard approximation

Here, the quality of an approximation algorithm A is expressed by the ratio

_ . JAld) B)
O’A(I)—mln{m,m)—}

and the quantity oy = sup{r: ox(I) > r,I € I} is the constant approzimation ratio of A for II.
The ratio induced by the standard approximation will be denoted by o.

Starting from the basic notion of approximation ratio, one can define the one of constant
asymptotic approrimation ratio expressing the performance of 2 PTAA when working on “limit-
instances™. This ratio is defined ([23]) as

sup{r:3M,ox(I) 2 1, ] € Iy}

where Zyy = {I € Z: 3(I) > M} ([23]).

A particularly interesting case of PTAA (representing an “ideal” approximation behavior),
is the one of the polynomial time approzimation schema (PTAS). A PTAS is a sequence A
of PTAAs guaranteeing, for every € > 0, approximation ratio o, = 1 — ¢ with complexity O(n*),
where £ is a constant not depending on n but eventually depending on 1/e. A further refinement
of PTAS is the one of fully PTAS (FPTAS), i.e., of a PTAS of complexity O({1/¢)¥ O(n*)),
where k and k' are constants not depending neither on n. nor on e.



1.2 Differential approximation

Here. the qualisy of an approximation algorithm A is expressed by the ratio

k() = AU

=S =30

The quancity &4 = inf{r: §,(I) > r,I € I} is the constant differential-approzimation ratio of A
for II. The ratio adopted by the differential approximation will be denoted by §. The consiant
asymptotic differential-approzimation ratio is defined as ({19])

) . w(I) = A(I)
S {m} |

The differential PTAS and FPTAS are defined analogously to the standard ones. When oy, or 6,
are equal to 0, we consider instance-depending ratios. i.e., ratios expressed in terms of instance
parameters.

In what follows, when we indifferently are referred to either the former or the latter ap-
proximation, or when approximation ratios in both theories coincide, we will use p instead of o
or 8. Moreover, S-APX (resp., D-APX) will denote the class of problems for which the best
known standard (resp., differential) PTAAs achieve fixed constant approximation ratios. Analo-
gously, S- (resp., D-) PTAS or FPTAS will denote the classes of problems admitting standard
(resp., differential) PTASs or FPTASs, etc. We will also denote by on(l) (resp., éu(I)}, the
best standard-approximation (resp., differential approximation) ratio known for II. When ratios
depend on parameters of I, it will be assumed that p(I) € p(I') for any sub-instance I' of .

2 A list of NPO problems

In this paper we speak, in more or less details, about a number of combinatorial problems.
Although all these problems are very well-known in complexity theory, in order that the paper
is self-conrained, we define them in what follows.

2.1 Hereditary induced-subgraph maximization problems

Given a graph G = (1.E) and a set V' C V', the subgraph of G induced by V' is a graph
G' = (V',E'), where E' = (1" x V/)n E. Let G be the class of all the graphs. A graph-
property = is a mapping from G to {0,1}, ie., for a G € G, n(G) = 1 iff G satisfies = and
7(G) = 0, otherwise. Property = is hereditary if whenever it is satisfied by a graph it is also
satisfied by every one of its induced subgraphs; it is non-trivial if it is true for infinitely many
graphs and false for infinitely many ones ([8]). We consider NP-hard graph-problems II where
the objective is to find 2 maximum-order induced subgraph G’ satisfying a non-trivial hereditary
property =. These problems are called hereditary induced-subgraph mazimization problems. For
a graph G. anyone of its vertex-subsets specifies exactly one induced subgraph. Consequently,
in what follows we consider that a feasible solution for II is the vertex-set of G'. Hereditary
induced-subgraph maximization problems have a natural generalization to graphs with positive
integral weights associated with their vertices (the weights are assumed to be bounded by 2",
where n is the order of the input-graph, so that every arithmetical operation on them can be
performed in polynomial time). Given a graph G, the objective of a weighted induced subgraph
problem is to determine an induced subgraph G* of G such that G* satisfies = and, moreover,
the sum of the weights of the vertices of G* is the largest possible among those subgraphs.



Maximum independent set (max_IS).
Given a graph G = (V.E), an independent set is 3 subset V' C V such that whenever
{vi,v;} € V. viv; € E. and the mazimum independent set problem is to find an inde-
pendent set of maximum size. In the weighted version of max_IS, denoted by max_ WIS,
positive weights are associated with the vertices of the input graph and the objective he-
comes to determine an independent set for which the sum of the weights of its vertices is
the largest possible.

Maximum clique (max_KL).
Consider a graph G = (V.E). A cligue of G is a subset 1" € V such that every pair of
vertices of 1 are linked by an edge in £, and the maezimum cligue problem (max_KL)
is to find a maximum size set V” inducing a clique in G (2 maximum-size clique). In the
weighted version of max_ KL, denoted by max_ WKL, positive weights are associated with
the vertices of the input graph and the objective becomes to determine a clique for which

the sum of the weights of its vertices is the largest possible.

Maximum ¢-colorable induced subgraph (max_ C¢).
Given a graph G = (V; £) and a constant ¢ < A(G) (the maximum graph-degree), max_ C¢
consists in finding a maximum-order subgraph G’ of G such that G’ is f-colorable.

Property “Is an independent set” is hereditary (a subset of an independent set is an independent -
set). The same holds for property “is a clique” (a vertex-subset of a clique induces also a clique),
as well as for property “is ¢-colorable” (if the vertices of a graph @ can be feasibly colored by at
most ¢ colors, then every subgraph of & induced by a subset of its vertices can be colored by at
most £ colors).

2.2 Some other NPO problems

Minimum vertex-covering (min_VC).
Given a graph G = (V, E), a verter cover Is a subset V' C V such that, Yuv ¢ E, either
u € V', orv €17, and the minimum vertez-covering problem is to determine a minimum-
size vertex cover.

Minimum set-covering (min_SC).
Given a collection S of subsets of a finite set C, a set cover is a sub-collection &’ C & such
that Ugs,es:S; = C, and the minimum set-covering problem consists in finding a cover of
minimum size. We denote by min_3-SC the restriction of min_SC on 3-element sets.

Minimum coloring (min_C).
Consider a graph G = (\°. E ) of order n. We wish to color V" with as few colors as possible
so that no two adjacent vertices receive the same color. The chromatic number of a graph
is the smallest number of colors which can feasibly color its vertices. A graph G is called
k-colorable if its vertices can be legally colored by £ coiors, in other words if its chromatic
number is at most k; it will be called k-chromatic if k is its chromatic number.

Minimum chromatic sum (min_ CHS).
Given a graph G = (V. E), an [-coloring is a partition of V into independent sets Cy,-.., ;.
The cost of an [-coloring is the quantity Zi—.—; £]C;| (in other words, the cost of coloring a
vertex v € V with color ¢ is i). The minimum chromatic sum problem, denoted by CHS is to
determine a minimum-cost coloring. For the weighted version of CHS, denoted by WCHS,
every vertex v € 17 is weighted by a rational weight wy, the cost of coloring v with color %



becomes fw,, the value of an [-coloring becomes zgzl iw(C;), where w(Ci) = ¥, wy,
and the objective becomes now to determine a coloring of minimum value.

Bin packing (BP).
We are given a finite set L = {z1,...,2,} of n rational numbers and an unbounded
number of bins, each bin having capacity 1. We wish to arrange all these numbers in the
least possible bins in such a way that the sum of the numbers in each bin does not violate
its capacity.

Minimum and maximum traveling salesman problem (min_TSP and max_TSP).
Given a complete graph on n vertices, denoted by K, with positive distances on its
edges, min_TSP (resp., max_TSP) consists in minimizing (resp., maximizing) the cost
of a Hamiltonian cvcle!, the cost of such a cycle being the sum of the distances of its edges.
An interesting sub-case of TSP is the one in which edge-distances are only 1 or 2 (TSP12).

3 Notations

Given a problem II defined on a graph G = {V, E), and its weighted version WII, we denote by
w € IV the vector of the weights, by w, the weight of v € V', and by Winax (G) and wnin(G) the
largest and the smallest vertex-weights, respectively. Moreover, we adopt the following notations:

T the order of G, i.e., n = iV

I'(v): the neighborhood of v € 1;

bs(v): the quantity T{w)NSL SCV,ve V' S;‘

w(V’): the total weight of V' C V, i.e., the quantity Yovey W

Buw(G): the value of an optimal solution for WII;

B, (G): the weight of an approximated WIl-solution of G

d: the vector {d;,...,d,), where d; denotes the degree of vertex v; € V;

A(G): the maximem degree of G, i.e., A(G) = max;{d;};

u(G): the average degree of G, i.e., u(G) = (¥, d;)/n;

taw(G): the quantity 3, o w('(v))/w(V)

x(G): the chromatic number of G (the minimum number of colors with which one can
feasibly color the vertices of G);

G: the complement of G defined by G = (V, E) with E = {ij € V x V,i # j,ij ¢ E}
(obviously, G = G);

G[V']: the subgraph of G induced by V' C V;

n’: the order of the graph G[V'], V! C V, ie., |V'| = n/;

§*(G[V']): an optimal ‘maximum-size} [I-solution in G[V'], V' C V.

YAn ordering (v, va. .. .. vn. of the vertices of K such that v,v; € E{A,) and, for 1 € 7 < n, viviey € E(KR).




Especially for IS and WIS, using standard notations, we will denote the size of a maximum
independent set by a{G), the value of a maximum-weight independent set by ow(G) and the
value of an approximated max_ WIS-solution by ¢, (G). Moreover, when no ambiguity can occur,
we will use Ay, py. Whay and wnin instead of A(G), u(G), pw(G), Wmax(G) and wmin(G).
Given a square matrix B = {m;;);j=1,.n, we denote by Tr{B) and ‘B the trace and the
transpose of B, respectively. Finally, given a vector @, we denote by |&] its Euclidean norm.

4 The scope of the paper and its main contributions

In what follows, we first generalize the notion of the approximation algorithm by introducing the
one of the approzimation chain. This generalization allows us, for example, to express in proper
terms algorithms, of time-complexity O(f{|I]}*) (where f is a polynomial of |/]), achieving ratios
of the form (1) — &' (k) — o(¢(])), where ¢(I) denotes an approximation ratio depending on
parameters of I and «’ is an integer decreasing function of k € IV. This kind of doubly asymptotic
approximation ratio means that one can pre-fix a value for k£ and next the smaller &’s value the
closer to 2(I) — o(y(7)) the ratio {and, of course, the heavier the algorithm’s complexity). This
recalls the notion of the polynomial time approximation schema {without being a such one). On
the other hand, if the term ¢'(k) missed, then ¢(I) — o(w(I)) would be very close to the classical
notion of asvmptotic approximation ratio.

Next, we propose a natural way for classifying NPO problems following their approximabil-
ity behavior, by introducing the notion of the approzimation level; it informally associates an
approximation result with a family of approximation ratios. Premises of such a notion can be
found in the definition of the class F-APX in [35]. However, the authors of [35] restrain them-
selves to problem-classifications with respect to orders of possible approximation ratios. Such
a classification does not allow distinction between ratios of the same order, or between ratios
whose values are polynomially related. For example, based upon [35], one cannot distinguish
approximation classes induced by ratios O{|I|*), where k is a fixed constant, for different val-
ues of k. However, numerous recent approximation results are based upon such distinctions, in
particular when dealing with inapproximability results bringing to the fore hardness factors, i.e.,
values of & for which approximation within better than |I|¥ is hard. For example, for max_IS,
approximation ratio 1/n is guaranteed by any approximation algorithm, while no PTAA can
guarantee approximation ratio (1/n)!=¢, for any € > 0, where n is the order of the input-graph,
unless NP=ZPP ([31]}. Another weak point of [33] is that their problem-classification is defined
with respect to |J|. Certainly, this parameter is among the most interesting ones for-express-
ing non-constant approximation ratios, but is not the only one. For many NPO problems —
max_IS, min_C, min_SC, etc., are some notable examples — approximation results are ob-
tained as functions of different instance-parameters. For max_IS, for example, there exist two
popular types of positive approximation results, the ones expressed in terms of n and the ones
expressed in terms of graph-degree (maximum or average); moreover no links are known until
now between these two types. The latter family of results (ratios, functions of degree) cannot
be expressed in terms of the class F-APX. But even if one tried to mechanically rewrite defi-
nitions of [33] in order to take into account ratios functions of graph-degrees, then, in the case
of max_IS, one would have to face another obstacle. The best known ratios exclusively in terms
of A(G) for max_IS are: k/A(G), for every fixed constant x € IV, for unweighted max_IS ([18})
and 3/(A(G) + 2) for the weighted case. Following the classification induced by [35], max_IS
and max_ WIS are of the same hardness, O{1/A(G)), with respect to their approximability.
This mathematically is not very fair since the improvement of the term in the numerator by just
one unit uses very complicated combinatorial arguments and mathematical techniques. On the
other hand, the best approximation ratios ~ exclusively functions of n - are O(log2 n/n) ([7])




for max_IS and O(log® n/(nlog logn)) for max_WIS (see theorem 3 of section 10.1, page 13).
Consequently, if one chooses n to express ratios, unweighted and weighted max_IS are not (at
the currént state of knowledge) of the same hardness regarding their approximability. A second
example justifying the real need of using classes of approximation ratios larger than these of
constant ratios or of ratios depending on |I] can be taken from [12]. It is proved there that for
the minimum-weight maximal independent set, no SPTAA can achieve approximation ratio that
does not depend on the vertex-weights. In other words. such a problem (in some sense among
the hardest ones regarding its approximation) cannot be included into the classification of 135].
The same holds for min_ TSP which cannot be approximated within better than 27 where P
is a pelynomial of n (this follows by a simple remark from the result of [44]).

Next, we introduce a kind of approximation-preserving reduction, called FP-reduction, and
show that many of the reductions known (for example the ones of {41, 46]) can be seen as special
cases of FP-reductions. An interesting feature of FP-reduction is that it can link, for a given
problem, its approximarion behaviors in standard and differential approximations.

In part III, we show that many known approximarion resuits can be expressed very naturally
in the framework proposed in part II and also thar this framework is very suitable for the
achievement of new ones.

More precisely, in section 9, we devise an FP-recuction from weighted hereditary induced-
subgraph problems to unweighted ones transforming any approximation ratio p for the latters
into approximation ratio O(p/ logn) for the formers. '

Such a ratio can be improved when dealing with particular problems. For example, it be-
comes O(p/loglogn) when dealing with the pair max_IS-max_ WIS (section 10.1). Based
upon this reduction we draw first improvements for the ratio of max_ WIS. In section 10.3,
we propose new improved approximation results for max_IS. Next, always based upon the
reduction of section 9. we further improve approximations for max_ WIS and obtain an ap-
proximation ratio for max_WIS with value greater than the minimum between O(log® n/n)
and O(log u(G)/(u(G) log? log 1(G)). This is an imporrant improvement since if the max_ WIS-
ratio obtained is O(log® n/n), it outer-performs O(log” n/n), the best-known ratio for max_IS.
On the other hand, if the ratio obtained is O(log i G}/(1(G}log® log #(G))), then we achieve
the first Q(1/u(G)) ratio for max_WIS. Let us note that this is the first time that non-trivial
results for max_ WIS are produced by a reduction to max_IS. In section 10.4, we propose an-
other PTAA for max_ WIS which further improves ‘although increasing the time-complexity)
the results of section 10.3. We generalize a result of [3], by Linking, devising another FP-
reduction, the approximation of the class max_ WIS of max_WIS-instances with weighted
independence number greater than w(G)/k to the approximation of a class Gy of graph-coloring
instances including the {-colorable graphs. Combining this result with recent works of [34, 38]
about Gy, we obtain an approximation ratio for mex_ WIS of value greater than the mini-
mum between O(n~*?) and O(loglog A(G)/A(G)). Consequently, except for the very unlikely
case where max_WIS can be approximated within O(n=%3) (recall that approximation of IS
within n¢~! is hard for every ¢ > 0, unless NP=ZPP {[31])), our algorithm is the first PTAA
achieving ratio {log log AM(G)/A(G)) for max WIS.

In section 11, we devise a new FP-reduction between max_KL and max_ WKL. Based upon
this reduction and using our results on max_ WIS, we deduce the first Q(1/A(G)) approximation
ratio for the maximum-size and maximum-weight clique problems. e note that the results of
this section work even for unbounded values of A(G).

In section 12, using another FP-reduction from max_ WIS, we obtain improvements of recent
approximation results for min _ WC¢, while in section 13 we devise an FP-reduction guaranteeing
that min_ WCHS is equi-approximable {(up to a multiplicative constant) with max_WIS.

In section 14, we deal with min_C and prove that it can be approximately solved within



standard-approximation ratio min{O(n~¢), O(log n/(:\(G) log logn))}. In the unlikely case whe-
re the minimum is realized by the quantity O(n~%) (in [21] it is proved that for any posi-
tive e, min_C cannot be solved within standard-approximation ratio n¢~1, unless NP=ZPP),
it outer-performs all the ratios, functions of n, while if the minimum is realized by the quan-
tity O(logn/(A(G)loglogn)), it outer-performs the best known ratio, function of A(G), and
constitutes the first Q(1/\(G)) ratio for minimum coloring.

Finally, in section 15 we study FP-reductions between standard and differential approxi-
mations. We first give sufficient conditions for transferring results between the two thought
processes. Next, we mention results dealing with such FP-reductions for a number of NPO
probiems. ‘

Part 11
Roughing out a new approximation framework

5 Approximation chains: a generalization of the approximation algorithms

We first define what in the sequel we will call an approzimation chain which is a generalization
of the notion of approximation algorithm.

Definition 1. Approximation chain.

Consider an NPO problem IT = (Z,S,v;,0pt) and let p : T x IV — [0, 1], (I,k) — p(I,k),
be a mapping increasing in k. An epprozimation chain with ratio p for Il is a sequence of
algorithms (A )kew, indexed by k € IV (by A; we denote the kth algorithm of the chain), such
that, for all k, A is an approximation algorithm guaranteeing ratio at least p(I, k). §

Let T((Ak)kew) be the time-complexity of (Ax)ken. If T((Ax)rew) is polynomial in n (the size
of I} but exponential in k. then (Ag)ken is called polynomial time approximation chain (PTAC),
while if T'({Ax)kew) is polynomial in both n and &, then (Ag)gew is called fully polynomial time
approximation chain {FPTAC). Such chains will be denoted by SPTAC and SFPTAC (resp.,
DPTAC and DFPTAC) when dealing with standard (resp., differential) approximation. When
ratios in two thought processes coincide, we will simply use terms PTAC and FPTAC.

The use of approximation chains suggests to associate approximability results not only with
ratios but rather with sequences of ratios. This allows us, for example, to associate an approxi-
mation level with the existence of a PTAS which is impossible by means of F-APX. In general,
the use of the classification of [35] does not allow us to distinguish, even within S-APX, prob-
lems approximated within constant ratios (for constants strictly smaller than 1) from problems
approximated within ratio 1 — ¢, for every € > 0.

6 Approximation level

The following definition 2 generalizes the notion of classes F-APX.

Definition 2. Approximation level.

Consider an NPO problem II, let Py = {p: T x IV — [0,1},({, k) = p(I, &)} and let P € 2Pn.
We say that P is min-invarient if Y(p, o') € P x P, min{p, o'} € P. An approximation level is
a set P € 277 min-invariant. A problem II is approximable on level P if it can be solved by

a PTAC achieving ratio in P. I

For example:

=1



» if we denote by Py the approximation level {p:Z = [0.1,1 = p(I)}, ie., the set of
ratios independent on k, then a PTAC with ratio in Py corresponds to the classical notion
of PTAA for IT;

o consider level P = {p: (I,k) — (0,1], (1, k) = p(k)}, i.e., the class of approximation ratios
independent on I: then, by simple functional analysis arguments, 3n € [0,1]. o(I,k) — 7
when &£ — o0; if n =1, then our PTAC (Ag)e is nothing else than a PTAS for IT;

e if we consider level Py = P n Py, then a PTAC with ratio in P is exactly the very
well-known constant-ratio PTAA; in other words, Il € APX.

Let us note that one can associate with an approximation level (a set of ratios) P the set of
problems approximately solved by algorithms guaranteeing ratios in P. For example, Pr (the
set of constant — independent on both I and k — ratios) can be seen as the class APX. In the
sequel, when no confusion arises, we will indifferently use P to denote either an approximation
level, or the set of problems with ratios in P. For example, following this convention, APX means
either the class of problems, or the class of fixed constant ratios admitted by these problems.
The same holds also for PTAS.

7 Convergence and hardness threshold

We now introduce and discuss the concept of the convergence of the ratio of a PTAC, which
naturally follows the notion of PTAC.

Definition 3. Convergence (limit with respect to k).
Given a problem Il and j € Py, the approximation ratio of {Ag)ren converges to § if,

Ve> 0,3k, Ve 2 n,VIE€Z, pllk)2p(IN{1—-¢). 1

For instance, 2 PTAS is a PTAC, the ratio of which converges to 1. From the above definition,
one can easily see that p(7, k). seen as I-depending function-sequence, is uniformlv equivalent
to §(I) when k — oc. This remark implies the existence of another weaker convergence referring
to the classical notion of weak equivalence of function-sequences. Under the same notations as
in definition 3, a PTAC (A)rcw admits approximation ratio weakly converging to j if,

Ve > 0,VI € Z,35,Vk 2 k,p(I,k) 2 p(I){1 ~¢).

For instance, for a problem II, an approximation ratio of the form p{|7|)~'/*, where p is a
polynomial of |7}, is an example of weak convergence to 1.

Let us now introduce the second type of ratio-convergence, the convergence with respect to I.
This generalizes what in polynomial approximation is commonly called “asymptotic approxima-
tion ratio”. In general. in either standard or differential approximation, in order to define the
asymptotic ratio, a set of instances, called also “interesting” instances, is used. Many criteria
are used to express these instances as, for example, the optimal value (see section 1.2), the size
of the instance or, for graph-problems, the maximum degree, or even (especially in differential
approximation) the number of feasible values of an instance ([19]). Using asymptotic ratio con-
sists of dropping the non-interesting instances out and of studying the approximation behavior
of an algorithm ounly on the interesting ones. Interesting or not-interesting instances in which
sense? A very popular general criterion for delimiting interesting from non-interesting instances
of a problem is their computational hardness. Given an NP-complete problem II, a sub-class C
of Z is considered as interesting, or hard, if II is better approximable (or even optimally solved
in polynomial time) in Z\ € than in C. Moreover, it is natural that one is interested in how an



algorithm behaves on large-size instances, i.e., on instances the size of which tends to 2¢. The
notion of instance-hardness together with the one of instance tending to oc have produced several
more specific criteria about which instances are considered as interesting or not. For example,
in [4} a notion of problem’s simplicity, called A AP-simplicity in the sequel, is defined as follows:
a problem II is AAP-simple if its restriction to the set of instances

Ty ={I€I:|w{l)—B(I)| €M > any fixed constant }

is in P. Remark that many NP-complete problems, for example max_IS, min_SC, max_C¢,
min_ C, BP, etc., are AAP-simple. On the other hand, in [43] another notion of simplicity, called
PM-simplicity in what follows is defined: a problem II is PM-simple if its restriction to the set

of instances
Ky={IeZ:[(I)<M M any fixed constant }

is in P. Under this definition of simplicity, max_IS, min_SC, or, finally max_C{ are PM-
simple, while min_C. or BP are not. Both notions delimit the interesting instances from the
non-interesting ones in a fairly intuitive way. For example for an AAP-simple problem, interesting
instances are the ones in T\ Jar, while for a PM-simple problem the interesting instances are
the ones in T \ Kss. Another instance-interest criterion is the one defined in [19] relying upon
the notion of the radial problem. Informally, a problem II (with integer objective values) is
radial if, given an instance I of IT and a feasible solution S € S(I), one can, in polynomial
time, on the one hand deteriorate S as much as one wants (up to finally obtain a worst-value
solution) and, on the other hand, one can greedily improve S in order to obtain (always in
polynomial time) a sub-optimal solution (eventually the optimal one). This definition generates
another boundary between interesting and non-interesting instances, since, as it is proved in [19],
denoting by [v(S{I})| the number of the feasible-solution values of I and setting

Lyr={I€Z:{w(S))| < M, M any fixed constant}

then the restriction of a radial problem (with integer objective values) to instances in Jas, or
in Ly is in P. Here. in order to unify the different criteria upon which the several definitions
of interesting instances are based, we propose the following definition of what we call Aardness

threshold.

Definition 4. Hardness threshold.

Consider II = (Z, S, vr.opt), and an approximation level P C Pp such that, under a complexity
theory hypothesis (for example P#NP) II is not approximable within P. Then, h: T —=INisa
hardness threshold with respect to P if, VM € IN, the restriction of II to the instance-set

{I € Z,h{I} < M}
admits a PTAC with ratio in P. I

For example, under the hypothesis P#NP:

¢ h(I) =n is a hardness threshold for every NP-hard problem, with respect to the approxi-
mation level P = {1} (the exact solution);

o A{I) = log(max(I}). where max{I} is the largest number of the instance, is 2 hardness
threshold for the weakly NP-hard problems {[23]) with respect to P = {1}

e Rh(I) = B(I) is a hardness threshold for the PM-simple NP-hard problems with respect 0
P={1}



R(I) = w(I_) — 3(I) is a hardness threshold for the AAP-simple NP-hard problems with
respect to P = {1}:

h(I) = {¢(S(1))} and A(I) = w(I) — 3(I) are hardness thresholds for the radial NP-hard
problems (with integer objective values) with respect to P = {1};

R(I) = A(G) is a hardness threshold for max_IS with respect to P = APX:

o (I} = Hz;:z; < 1/3}| is a hardness threshold for BP with respect to P = {1} ([33]).

Definition 5. Asymptotic approximation ratio (limit with respect to I).
Given a problem II and a hardness threshold & with respect to an approximation level P,
chain (Ar)rew has asymptotic ratio o’ € Pp if

Ve>0.vke N 3HNVI€I,h(I) 2 H, p(I,k) 2 p(IE)(1—¢). 1
Finally, let us remark that one can combine definitions 3 and 5 to obtain the following definition
of asymptotic convergence.

Definition 6. Asymptotic convergence.
Under the hypotheses of definition 5, (Ax)rew admits approximation ratio asymptotically con-

verging to g € P if
Ve> 0,3k € IN.Vk 2 6, IH NI € T,h(I) 2 H, p(l,k) 2 5(I)(1 —¢). I

Let us now show that many results can very naturally (and quite elegantly) be expressed by
means of chains convergence.

o There ezists an O(n*) PTAC for maz_1IS achieving epprorimation ratio usymptotically
converging to 6/ A(G) ([30]).

* There ezists an O(nlE|) FPTAC for maz_ IS guaranteeing asymptotic approzimation re-
tio 6/ A(G) ([18]}.

¢ There exists ¢ SPTAC for min_ 3-SC with approzimation ratio converging to o = 3/7 {[28]).
 There ezists an Ofnlogn) DFPTAC with ratio asymptotically converging to § = 2/3
for BP ({19]).
8 Functional approximation-preserving reductions

We propose in what follows a new polynomial reduction, the functional approzimation-preserving
reduction (FP-reduction). This new reduction encapsulates several approximation-preserving
reductions, for example the ones of {10, 40, 46].

Definition 7. FP-reduction.
Let II = (Zy1, S, vrg, opty) and 11 = (Zr. Sty vr,,, 0Pty ) be two NP optimization problems.

A FP-reduction from IT to IT' with expansion g, denoted by II % IT, is a triple (£, &, g) such that:
L. f:In - I and, for any I € Iy, f(I) € Iy is computable in time polynomial in }fl;

2. h:In xSy — Sp and, for any I € Iy and for any §' € Sw(f(I)), h(I,5') € Sy is
computable in time polynomial in max{|7|,|5’|}: '
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3. ¢:Pr — Pn is a mapping such that, ¥I € Iy and for every PTAC (A% )kew guaranteeing
approximation ratio p: {f(I),k) — p{f(I).k), for IT', algorithm A; = ho A’k o f guarantees
approximation ratio g{p) for IT. §

If P C Py and P’ C Pry are approximation levels for IT and IT, respectively, such that g(P") c
P, then the FP-reduction transforms P' into P. In particular, if P = P’, then FP-reduction
preserves level P and will be called level-preserving reduction.

Proposition 1. FP-reductions are transitive and compose.

The L-reduction of [41] corresponds to FP-reduction for which
9:0(f(1)k) = 1= (ab{l=-p(f(I),k)))

where ¢ and & (a.b < 1) are constants appearing in the original definition of [41]. Here,
g(PTAS) C PTAS, ie., L-reduction preserves the level of the approximation by polynomial
time approximation schemata. For minimization problems, g(APX) C APX while, for maxi-
mization ones, g(APX) ¢ APX, unless P = NP N co — NP {[9)).

On the other hand. the continuous reduction of [46], is an FP-reduction with functional
expansion

) pep pe P
g { p— 0  otherwise

Here, g(APX) C APX.

In the literature ({10, 40, 41, 46]), most of the known approximation-preserving reductions
are more restrictive than the one of definition 7, since they impose conditions on how optimal
and approximated values are transformed. The value of the expansion (and, consequently, of
the new ratio) is a consequence of these conditions. Moreover, several existing reductions use
the very strong underlying hypothesis that II' is solved by (fixed) constant-ratio approximation
algorithms. As we will see in the sequel, such hypothesis is not used by FP-reduction.

A very interesting problem dealing with approximation-preserving reductions is how approx-
imation algorithms devised for unweighted problems can be transformed to efficiently work for
their weighted versions. in particular when these algorithms do not guarantee constant approx-
imation ratios. There exist, to our knowledge, very few reductions between weighted and un-
- weighted versions of the same problem inducing expansions leading to interesting approximation
ratios for the latters. Unfortunately, works as the ones of [11, 42], etc., despite their interest,
neither produce satisfving results, nor propose general tools for the design of such reductions.
We think that FP-reductions can contribute to the design of such tools. In what follows, we de-
scribe some reductions guaranteeing expansions that contribute to the achievement of non-trivial
approximation ratios for a number of NP-hard weighted problems.

Another equally interesting domain of FP-reductions is the investigation, for a given NP-
hard problem, of the approximation links between its standard and differential approximations.
In part III, we give sufficient conditions for transferring results between standard and differential
approximation. Moreover we present results dealing with FP-reductions linking standard and
differential approximation of specific problems. '

11



Part III
Achieving approximation results in the new

framework

9 Induced hereditary subgraph maximization problems

Consider a hereditary property 7, an induced subgraph problem II stated with respect to
and the weighted version WII of II (we suppose that weights are positive). We propose in this
section an FP-reduction between max_II and max_ WIL The underlying idea of this reduction
is the following. Suppose, without loss of generality, that the subgraphs induced by all the
singletons of vertices (every such subgraph is reduced to a single vertex) verify . Partition the
input-graph G into clusters G{V@], V{3 ¢ V, and, by ommitting the vertex-weights, compute
the solution of an unweighted max_IT on any such cluster. Let S be a solution for GV,
Then, G[1W)[S®] = G[SD] verifies ; hence SG) is feasible for G, Next, by reconsidering the
vertex-weights, choose the heaviest among the solutions obtained and argmax, oy {w;} as the
final solution for max_ WII.

Theorem 1. max WII % max _II, with g : p— O(p/ logn).

Proof. Fix 1M > 2 and set, for i = 1,...,

" . Wmax(G) Umax(G)

r = sup {f : Bw (G LQL{ISE V(i)J) < ﬁwiSG)}

G, = a[ U vw]

1<igz

Geep = G[ u v(ﬂJ

1igz+1

Gy = G[V\ U Vfi)J.

1gige
Of course, 8,(Gyg) > 8(G)/2 and By(Gry1) > Bu(G)/2.
Lemma 1. There ezists ¢ PTAA for max _ WII achieving approzimation ratio M= /(2n).

Proof of lemma 1. The algorithm claimed consists in siply taking v* € argmax, ¢y {w;} as
max _Wll-solution. Then, 3,,(G) = wmax(G) and
" . w G
8u(6) < 234 (Ga) < 218" (G| wmax (G) < 215" (G| 2e2lE)

Consequently,

By (G) M= M= Mz
Bu(C) > 5G] Z o Pmax_wn(G) > T N (1)

2n
Remark 1. For every i > 1, the weight of any max_II-solution §) of G[V(?)] lies in the interval
[15@ fwmas (G) /AL, SO wma (G)/M*1]: it is at least |Swmin(GIVO]) 2 |SO|wima(G)/M?
and at most | S |wmax{G{1W)) € | S ewimay (G) /011, 3

Let us now prove the following lemma which is the central part of the proof of the theorem.

12



Lemma 2. Assume r > 0,

1. Let 8y(G)/2 2 3u(Gs) 2 (M - 2)/2M)3,(G) and p € argmax; ¢« {8 (G[1@))}.
If max _II is epprorimable on level Pmax  n(G[V]) in G[VP)], then max _ WII is gp-
prozimable on level ((M — 2)/2$i1/f2)Pmax:n(G)-

2. Let 3u(Gr) < ((M=2)/2)M)5,(G). Ifmax _TII is approzimable within Pmax_ (G =+
in GIVEFFY] then max _ WII is approzimable on level (1/-‘1[2)Pmax_ﬂ(G)-

Proof of item 1. Obviously,

k1
Buw (Gz) € 28y (G[V(_D)]) (remzr. )I

s (@[] %

!

and, by the hypothesis of the item,

5u(C) < 3258 (Go) € gzl (o [vo] )| HmlO)

On the other hand, application of a PTAA guaranteeing approximation ratio pmax_1(G) < 1
for max_IT in G[V(®)] constructs a solution S® of max_ WII of weight at least

wmax(G)

| S| wnin (G I |5 P

Note that S js max_ [I-feasible for G. Moreover, starting from this solution, one can greedily
augment it in order to finally produce a maximal max_ Wil-solution for G. This final solution
verifies B,(G) > iS(P)}wmu(G)/.MP.

Combination of the above expressions for 3 (G) and 8, (G) yields

Bu(G) _ (M -2 5@ M -2 @]} s M =2
B:;J(G) > (21:‘»1'2) (55* EZ) 2 Dpag? Pmex (G [V pD 2 3o Pmex_n(G)

and, consequently, y
M-=-2
Pmax_Wl’I(G) 2 Wﬁma:(_l’[(G)- ) (2)

This concludes the proof of item 1. &
Proof of item 2. We now suppose that Buw(Gz) € ((M -2)/2M)43,(G). Note that since z is
the largest £ for which 3, (G[U1¢iceV?)) < 8,(G)/2. set V&) i non-empty.

Let S°(G;41) be an optimal max_ WII-solution in Gor1 (L8, Bu(Gre1) = w(S%HGe1))).
Let S(Gz) = S°*(G,+1)NT(G2) (where V(G, ) denotes the vertex-set of G:) and S(G[VETI]) =
SOPHGz1)NVEH (in other words, {S(Gs), S(G[V==V])} is a partition of S°P*(G..;)). Since 7
is hereditary, sets S(G;) and S(G[V(=*1)]), being subsets of S Gz41), also verify = (and,
consequently they are feasible max_ Wil-solutions for G, and Gvi=+)] respectively). We then
have:

w(8(Gz)) < 3w (Gx)
w(s(e[ve])) < a(e[ver))
Pu(Cent) = w(S@D+u (S (¢[V])) < 8u(Ga) + 8 (0 [vr])

/AN

() + 8. (G [i7=-0])
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and also 3,(Gz41) 2 Ju(G)/2. It follows from the above expressions that ﬁw(GW @+l >
Bw{G)/Al and this tocrether with remark 1 yield, after some easy algebra,

5 (6 [re])] Wnax(G) 3

£
%ulG) < M=-1

As previously, suppose that a PTAA provides a solution $**1) for max_II in G[V(I'“*‘l)], the
cardinality of which is at least pmax _n(G[VETV])|S*(G[VE+1])|. Then,

*S(I_H}l Wmax(G)

(G { S("‘“}l W, (G[I-'(”"“l ]) s (4)
Combination of expressions {3) and (4) yields
3,(6) (1 |$=1] 1 @]} s L
Therefore,
1
pma.x_WI'I(G) = mpmax_n(G) (5}

and this concludes the proof of item 2 and of the lemma. I

Remark 2. For the case where z =0, i.e., 8, (G[VY]) 2 ﬁu (G’) /2, arguments similar to the
ones of the proof of item 2 in lemma 2 lead to prmay _wn(G) = G)/Bu(G) 2 pmaz_{G)/2M,
better than the one of expression (5). i

-Consider now the following algorithm where we take up the ideas of lemmata 1 and 2 and where,
for a graph G', we denote by A(G’) the solution-set provided by the execution of the [I-PTAA A
on the unweighted version of G'.

BEGIN (*Wi*)
fix a conmstant M > 2;
partition V in sets V(% — {Vi ! Vmax/M* < 5  Wgax /M)
S© — v* & {argnax, ev{w}};
OUTPUT argmax{w(S %), w(A(G[VE])),i =1,...};
END. (*WAx)

Revisit expressions (1), (2) and (5). It is easy to see that

ME ([ M-=-2 1
prse_wn(G) 3 pia(@) > max {3 min {5522 ree_n(G) gzomes_n(@)}} 6)

By expression (1) and by the fact that the approximation ratio of any PTAA for max_ WII must
be less than 1 {max_ WII being a maximization problem), z § O(logss 7). Taking this value
for z into account in expression 6, concludes the proof of the theorem which, obviously, works

also in the case where weights are exponential in n. K

10 Maximum independent set

10.1 A first improvement of the approximation of the maximum-weight indepen-
dent set via theorem 1

It is well-known ([46]) that. 7k > 1, the general weighted independent set problem polynomially
reduces to max _PWIS(k) ‘the max_ WIS-subproblem where the weights are bounded by n),

14



by a simple scaling and rounding technique. This reduction preserves (within a factor of (1 ~¢))
the ratios for max_WWIS and max_PWIS(k), ¥k > 1, and works also for instance-depending
ratios. On the other hand, the following approximation preserving reduction from max_ PWIS
to max_IS working only for constant ratios is established in [48].

Definition 8. Given a weighted graph (G = (1, E }. 1), an unweighted graph Gy = (V,,, E,)
can be constructed in the following way:

Vo = {{ud):ueVie{l,... ,u}}
E, = {(u.-i)(v,j):z’e{l,...,wu},jE{l,...,wU},u#v, uv € E}.

In other words, every vertex u of V' is replaced by an independent set W, of size w, in G,, and
every edge uv of E corresponds in G, to a complete bipartite graph between W, and W,,.

One can easily show that every independent set S of & of total weight w(S) induces, in Gy, the
independent set {(s,i) : s € §,i € {1,...,w}} of size w(S}), and conversely, for every indepen-
dent set Sy of Gy, theset § ={ueV:3 ¢ {1,...,wu}, (u,i) € Sy} is an independent set
of weight w(S} > |S,. Consequently, 0, (G) = @(Gy) and, by applying a p(G)-approximation
max_IS-algerithm to Gy, one can derive an approximated max_ WiS-solution of (G, ) guar-
anteeing ratio p{Gy).

By the above reduction, a ratio p(n, A(G)), non-increasing in A, for max_IS transforms to
a ratio p(w{V), wmax (G)A(Gy)) > P(Ww(V), Wmax(G)A(G)) for max_ WIS, i.e., except from the
case of constant approximation ratios, the reduction above results in max_ WiS-ratios depending
on the weights. More precisely, the following result can be easily proved.

Proposition 2.  For every ¢ > 0 and every constant k > 0, there ezists an FP-reduction
from max _ WIS to max _IS transforming approzimation level p(n, A, u) for the latter into ap-
prozimation level converging to p(n'**w(V)/wmax(G), nITEA, ) 2 p(n?E nlteA A) for the
former.

Unfortunately, the approximation results known for max_IS do not allow achievement of inter-

esting approximation ratios for max__ WIS using proposition 2.
Revisit expression (6) in the proof of theorem 1 and let II be max_IS. Set, for every k,

M = 6. Then:

* ifz > kloglogn, log M, then pmax _ wis(G) > log* n/2n;

¢ if z < kloglogn/log M, then Pmax_wis(G) 2 0.099pmax _18{G}/(kloglogn)
and the following theorem holds. '

Theorem 2.  For every fized ¢, every approzimation level Pmax _1s(G) for maz_IS can be
transformed into approcimation level

logtn 0.09905(G)
2n " floglogn [

Pmax _ WIS(G) 2 min {

In terms of n, the best-known approximation ratio for max_IS is, to our knowledge, O(log? n/n)
achieved by the max_IS-PTAA of [7]. Embedding it in pmay _15(G)-expression of theorem 2, we
obtain the following concluding theorem.

Theorem 3.

log?n
. > —= 1.
pmax__WIS(G) z0 (n log logn)

The above result improves by a factor O(log log n} the best-known approximation ratio function
of n for max_ WIS (O(log? n/(nlog? log n)), due to [27)).
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10.2 Approximation chains for maximum independent set with ratios functions of
graph-degree
10.2.1 An approximation chain with ratio function of A(G)

The main result of this section is based upon the following facts; fact 1 is proved in [18] while
fact 2 is proved in [1. 30].

Fact 1. If there exists an algorithm guaranteeing, for every £ € IV and every graph without
clique of order ¢. an approximation ratio p, for max_IS, then, for every graph G, for
every € > 0 and for every A > 0, there exists an algorithm guaranteeing for max_IS
approximation ratio bounded below by

2(6-—6)(1—)\)}

. ’ -
min {)\,e (1= A)pe, NEFS

where ¢ is such that 1/(£ —¢) = (1/£) +¢. 1

Fact 2. There exists a fixed constant c such that, for every constant £, there exists a polynomial
time approximation algorithm L_FREE({,G) such that, for every graph G of order n
without cliques of order ¢, it provides an independent set of cardinality greater than, or

equal to, enflog|(log u(G)}/€]/u(G). N

Consider now the following algorithm of time-complexity O(max{n|E|, T(¢, n), A(G)*2|E|})
where by T(¢,n) we denote the complexity of L_FREE.

BEGIN (*MDCHAIN¥)
S + any non-empty independent set;
REPEAT
bl — FALSE;
b2 « FALSE;
IFIvev\s:T(v)NS=0
THEN S — SU {v};
ELSE bl — TRUE;
FI
IF {u.v} CVAS: (T(WUL(W))NS={s}ur ¢ E
THEN 8 — (S\ {s}) U {u,v};
ELSE b2 — TRUE;
FI
UNTIL bl AND b2;
Ve—{vev\S:é(v)22}Us;
compute a maximal collection C; of disjoint {-cliques in G[¥];
Xpe—{veV:ve¢lcg,C); :
S¢ «— L_FREE(£. G[X;));
QUTPUT § « argmax{|S|, [S¢}:
END (*MDCHAIN*)

Consider a constant « and set £ = [(x/2)} + 1. Then, using facts 1 and 2 and appropriately
choosing A and e, the following theorem holds.

Theorem 4. ({18]) For every fized integer constant s, algorithm MDCHAIN is a PTAC guar-
anteeing asymptotic (with respect to hardness threshold A(G)) approzimation ratio x/A(G)
for max IS in time O(n'=21),
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10.2.2 An approximation chain with improved ratio function of 1(G}
We first recall the well-known greedy max_ IS-algorithm, called GREEDY in the sequel.

BEGIN (+#GREEDY*)
S —@;
REPEAT
v — argming ev{6(vi)};
S— 8L {v};
Ve=V\{{v}ur(v);
G — G[V];
UNTIL V=0;
END. (*GREEDY*)

The improvement of the result of theorem 4 is based upon the following facts, the first proved
in [18] and the second in {47].

Fact 4. Consider, for every fixed integer constant Z, the simultaneous existence of L_FREE({, G)
and of an algorithm computing, for every graph G, & maximal independent set of size
at least nf{G). Then, there exists a PTAC solving max_IS within approximation ratio
bounded below by minf{e' pg, (£~ ¢€) f(G)}, where p; is the approximation ratio of L_FREE
and ¢ is such that 1/{(£ —¢) = (1/4) + €. 1

Fact 5. GREEDY computes, in a graph G, 2 maximal independent set of size at least n/{1(G)+1}. 1

BEGIN (*ADCHAIN*)
S «— GREEDY(G);
compute a maximal collection Cp of disjoint f-cliques in G;
Xe — {veEV:v¢UcC};
Sy — L_FREE(¢.G[X¢]);
QUTPUT S — argmax{|S|,|S¢};
END. (*ADCHAIN®*)

Using facts 4 and 5 with £ = x and € = 1, the following theorem holds.

Theorem 5. ([18]) For every fized integer constant s, ADCHAIN gugrantees, in O(n®), asymp-
totic (with respect to hardness threshold 1(G)) approzimation ratio bounded below by

, k  ,loglog A(G)
m‘“{u(c)”‘ A(G) }

where k' = '/ (k(k = 1)), for a fized constent ¢

The result of theorem 5 further improves (sometimes quite largely) the result of theorem 4.

10.3 Towards (1/A) -approximations

In this section we show how one can use the clique-removal method of {7] to obtain, for every A,
Q(1/A)-approximations for max_IS and max_WIS. The authors of [7] repeatedly call a pro-
cedure computing either a k-clique (clique of order k), or an independent set of expective size.
At most n/k cliques can so be detected, while at each clique-deletion the independence number
decreases no more than 1. If the independence number of the initial graph is large enough, a
large independent set is necessarily detected during one execution of the procedure. In all, the
following theorem summarizes the thought process of [7].
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then the ratio guaranteed is largely superior to the best-known n-depending ratio for IS (for in-
stance, consider the case £(n) = loglogn). In fact, if K log"™ n/n < logn/(é(n)(u +1) loglogn)
and n 2 Cp, for a fixed Co, then n/p > Ké(n)(loglogn)log®™~!n and in this case GREEDY
guarantees ratio bounded below by logf™ -1 n/n. In all, the following corollary can be deduced.

Corollary 1. Given a graph G and ¢ such that, ¥n. 2 < ¢(n) < loglogn, at least one of the
two following conditions holds:

1. GREEDY guarantees ratio bounded below by log™™~n/n (improving the best known p(n)-
ratio if £ > 3);

2. STABLE guarantees ratio bounded below by logn/(é(n)(p + 1) loglogn) (achieving so ra-
tio Q(1/u)).

The discussion above draws an interesting remark about the instance-parameters expressing
non-constant approximation ratios. Until now, studies about the approximation of max_ IS were
limited in expressing ratio using only one instance-parameter (either the size or the degree). The
results of this section show that considering both parameters, it is possible to reach tighter and
more interesting approximation ratios.

Combination of theorems 8 and 2 allows the achievement of important approximation results
also for max_ WIS.

Theorem 9. For every constant k, max _ WIS can be approzimated within ratios on the level

& - ok
min { log®n 0.099logn } > mia {ioo n 0.0991og u } .

n 7 k(k+1)(u + 1) log? logn n T k(k+1)(p+ 1) log® log i

In other words, theorem 9 guarantees for max_ WIS the existence of PTAAs achieving either n-
depending ratios much better than the ones known for max_IS (and comparable with the ones
of corollary 1), or the first Q(1/u) ratios for max_WIS (recall that the best-known p(A)-ratio
for max_WIS - without restrictions on A - was, until now, the one of [27}, bounded below

by 3/(A +2)).

10.4 Further improvements

In this section, we propose a polynomial approximation result for max_ WIS not deduced by
reduction from the unweighted case. It improves all the approximation results of section 10.3,
for both weighted and unweighted cases, but the corresponding complexity is higher.

10.4.1 A weighted version of Turan’s theorem

Recall that 44 {(G) = 3, o w(T(v))/w(V') (note that u,,(G) < A(G)) and consider the following
algorithm for max_ WIS.

BEGIN (*#WGREEDY*)

S —B;

WHILE V5 0 DO
v — argminy{u(T(v))/u(v)}
§ —SU{v};
Ve VA ({v}ur(v);
update E;

a0

QUTPUT S; END. (*#WGREEDYx)
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Then, the following easy theorem holds {an unweighted version of it - see also [29] - is the famous
Turan’s theorem).

Theorem 10. For every weighted-graph with mazimum degree A, algorithm WGREEDY computes
an independent set of weight at least w{V)/(uw{G) +1) 2 w(V7)/(A + 1). :
Proof. Consider algorithm WGREEDY and suppose that its WHILE loop is executed ¢ times. For
i € {1,...t} let us denote by G, = (V;, E;) the surviving graph at the beginning of iteration i,
by v; the vertex selected during the ith execution and by I';(v) the neighborhood of v in G;.
Then, Vi € {1,...¢},
w (L (v
Y owren> Y wme) > L pume) @

v&({ve JUI(w:)) ve{{v; JUT: (w:)) u

and, consequently, by adding side-by-side the expressions (7) above, for i = 1...¢, we get (note
that V' = U=y e {{vi} U Ti(ws)}),

[

w(Vyme 2 30 LD (0 i) )
i=l vi
On the other hand,
¢
w(V) = (wy +w (T (1)) (9)
i=1

and using expressions (8) and (9), we get by the Cauchy-Schwarz inequality
w (s (v:)))? 5, (w(V))?

Wy, =g
’ 2.
Wy,
i=1

£
w(V) (o +1) 3 30 T
i=1

which concludes the proof since the weight of the greedy solution is Zt'=1 wy;. B

An easy corollary of theorem 10 is that whenever ay(G) € w(V)/k, then WGREEDY achieves
in G ratio k/(A +1) for max_ WIS. Consequently, in order to devise O(k/A)-approximations for
every graph, one can focus himn/herself on the approximation of max_ WIS in graphs with large
weighted independence number. For an integer function k = k(n) € n, we denote by max WIS,
the class of graphs with o, (G) > w(V')/k; for reasons of simplicity we assimilate this class with
the corresponding max_WIS-subproblem. The work of [7] and its improvement by [3] show
how max_IS; (the unweighted version of max_WIS;) can be approximated within O(n¢~1)
where e, depends only on k (note that using the reduction of [46], one immediately gets a
ratio O{w(V)%~!) for max_WIS).

10.4.2 Graph coloring and the approximation of max_WIS;

In this section, we adapt the method of [3] (originally devised for the unweighted max_IS) to
the weighted case and relate the approximation of max_ WIS, to the coloring of a class of graphs
{called Gr4; in the sequel) containing the (k + 1)-colorable graphs. We first recall two notions
very closely related, the Lovdsz 8-function and the orthonormal representation of a graph.

Definition 9. ([37]) Consider a graph G = (V,E), V ={1,...n}:

the Lovasz 6-function §(G) of G is the maximum value of 3°7';_; bij where B = (byj)ij=1..n

ranges over all positive semidefinite symmetric matrices with trace 1 and such that b;; =0
for every pair (i.}), i # j.ij € E;
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the orthonormal representation of G is a system of n unit vectors (Gi)i=t.n in a n-
dimensional Euclidean space, such that for every (¢,7) such that ij € E, 4; and u; are
orthogonal. I

Proposition 3. (/37]) Given ¢ graph G, the following holds:

* given an orthonormal representation (1G;)i=1 of G, and a unit vector az there exists i €
{1,...n} such that 8(G) < 1/(d - 0})?;

* o(G) < 8(G) € x(G).

For an integer function £ = ¢(n) < n, set Ge = {G : 8(G) € {}. By proposition 3, every
£-colorable graph belongs to G,. In [34] it is shown that every graph in G; with order n and
maximum degree A can be colored with O(min{A!=%¢]og8/2 p n1-3/(¢+1) log'/?n}) colors in
randomized polynomial time ([34]). The algorithm of [34] has been derandomized later in [38].

Theorem 11.  Let k = k(n) < n be an integer function and fr(z,y) be a function from
IN x IN to IN, non-decreasing with respect to both r and y. If there exists o O(T(n)) algo-
rithm 4 computing, for every graph G € Gpyy, V] € n, a fi(n, A)-coloring, then there ezists
@ O(max{n3,T(n)}) PTAA for max _ WIS, guaranteeing ratio 1/(k(k + 1) fi(n, A)).

Proof. Let (G = (V, E), ) be an instance of WIS, of order n and G, be as in definition 8 of
section 9. Since the weights are supposed to be integral and (G) > w(V)/k, we have

(v}, wv) 1
1 REFD T E

ay(G) = a (Gw) 2 ;:

In [23] it is shown that:
e 9(Gy) is equal to the maximum value of Zf:jd V&iWsbi;, where b;; are as in definition 9;

* one can compute, in O(n3) by the ellipsoid method, a positive semidefinite symmetric
matrix B = (b;;); j=1.n satisfying '

i

T
2 TWsbi; 2 0(Gy) -k >0 ij¢E (10)
]

1
ij =0 R

o

Given that B is symmetric and positive semidefinite, there exist n vectors 4; € R ic
{L,...n} (R" being seen as Euclidean space) such that, ¥(i,7) € {1,...n}?, 4 05 = by
In particular, we have b; > 0. For our purpose we just need to compute n vectors u; satisfying
the following expression (11) for € = 1/{2knw(V')):

-y = by, iF ]
G2 =by+e>0
n

3 152 = Tr(B)+ne=1+ne (11)
]
i T 2 n n

VU 2 Y Y SEwsb

=1 i=]j=1

Such vectors can be seen as non-zero approximations of g, 1 = 1...n. The system of vec-
tors (Ui)i=1..n can be computed ({24]) by applying Cholesky’s decomposition to the symmetric
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positive definite matrix B + el (where I is the identity matrix); one gets (in O(n3)) an n-
dimensional triangular matrix U7 such that B = ‘Ul — ¢l. Let then (% )i=1..n be the columns
of U; they clearly satisfy expression (11).

Set, for ¢ € {1,...n},

n
L L Ve
d = =L
Zﬁ{
. _ @
=

and note that # constitutes an orthonormal representa.tlon of G. Without loss of generality, we
can assume that (d-71)2 > (d- )2 > ...(d- &)%

Lemma 3. Set

i=1

i = max{ie{l,...,n}:zwzg
=1

K = G[{Ut"z’:l’?.?}]

Then, (d- %)% 2 1/(k + 1) which implies K € Gy_.;.

Proof of lemma 3. By Cauchy-Schwarz inequality and expressions (10) and (11), we get:

{1 +Tl€)Zw:Z (rf- z";-)z (th&lz) Zwi ( ) (Zd w,u,)
i=1 i=1 i=] i=1
DY VEEhy > 6 -5 > alGu)- o

i=1 j=1
wlV) | w() 1
Z k+1 k(k+1D) 2%

2

w,-"-

W

(13)

On the other hand, since for 7 € {1,...n}, d-7 < 1, (recall that dand ,4=1...n are unit

vectors), .
(1 + ne) Zw,( -4.2) \Zwi(i-ﬁ)z-f-%c». (14)

=t

Consequently, combining expressions (13) and (14), we get

w(V w(V) | .
Z“"( '”‘) k+1+k(k+1)' (15)

Recall that (d- #)% > (d- %)? 2 ...(d- 7)2. We have (d- %)? > 1/(k + 1) > 0 since, in the
opposite case,

() S e S (4 5) < 2wV

>owi(da) < ;wi"‘;wi (¢5) < K+l T ERTD

i=t

which contradicts expression (13).
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As noticed in [3}, (d- #)? 2 1/(k + 1) > 0 implies that the subgraph K of G induced by
vertices v, ¢ = 1...7. satisfies §(K) < % + 1; this follows from the fact that Zi. 1 € {l,...7},
is an orthonormal representation of K with value less than 1/(d-5)2 < k+1 (see [37]). Note
that this expression holds for the unweighted 6-function of G; so, K € §i.;. This completes the
proof of lemma 3. 1

Lemma 3 is originally proved in [3] for the case of (unweighted) max_IS. As one can see from
the above proof, extension of it for max_ WIS is non-trivial.

Let us now continue the proof of theorem 11. By lemma 3, the algorithm A (claimed in the
statement of theorem 11) computes a fi(n, A)-coloring of K. Then, the maximum-weight color
is an independent set of K = (Vk, £x) (and of G) of total weight at least w(Vi)/ fel(d, A(K)).
Since w(Vi) > w(V)/(k(k + 1)) (see expression 12), 7 € n and A(K) < A, the maximum-
weight color is an independent set of G of weight at least w(V)/(k{k + 1) fr(n,A)). On the
other hand aw(G) € w(V), and consequently the following algorithm WIS_k guarantees ratio
1/{k{k + 1) fu(n, A)) for max_ WIS,.

BEGIN (*WIS_kx*)

(1) compute the matrix B = (bij)ij=1,.a by the ellipsoid method;
(2) e —1/(2knw(V));

(3) compute the Cholesky’s decomposition of B+ ¢€l;

(4)  compute vectors d and zi,i € {1,...0};

(6)  sort vertices in decreasing order with respect to (d-z})?;
(6) compute j and X;

(1) IF(d-Z)% > 1/(k+1)

(8 THEN

(9) call A to compute a coloring (Cy,...C;) of K;

(10) 8 — argmax{w(C;}:i=1...1};

(11) complete S to obtain a maximal independent set of G;
(12) ELSE S « {;

(13) FI

(14) OUTPUT S;
END. (*WIS_k+)

To conclude the proof of the theorem, let us note that lines (1) and (3) are executed in O(n%),
line (5) in O(nlogn) and line (11) in O(n?). Finally, the time-complexity of line (9) is bounded
above by T'(n). I

Of course, unless P==NP, inclusion of a graph in max_ WIS, cannot be polynomially de-
cided. However, algorithm WIS_k runs on every graph within the same complexity. In fact
{by instruction (7)), if K € Gyy4, then algorithm A returns a non-empty independent set S;
otherwise, § = 0. Consequently, if S # 0 (in particular if G € max _WIS,), algorithm WIS_k
guarantees the ratio claimed by theorem 11. In the opposite case, the input-graph does not

belong to max_ WIS,. '
Using for 4, the derandomized version of [34] presented in [38], theorem 11 leads to the

following approximation result for max_ WIS, for 2 k{n) < n.

Corollary 2. max _ WIS, is approzimable within ratios on approzimation level

1
(k + 1)A1-2/(k+1) [og3/2

15 {G) =
pwis, (G) P

23



10.4.3 The main result
Consider rnow the following algorithm, the worst-time complexity of which is the same as the one
of WIS_ k.

BEGIN (#WIS*)
QUTPUT S «— argmax{w(WIS_k(G)), w(WGREEDY{G)}};
END. (*WIS%)

By theorems 10 and 11, 3¢ such that

k d
p (G} 2 min , 5 . 16
e S {-\" +1 gk + A= log% n} 18)

By an easv but somewhat tedious algebra, one can prove that the right-hand side of expres-
sion (16) is at least as large as

| & o }
min . - (17)
{A 1k + 1) 0g

for a constant ¢. Let us suppose k constant. Then, the following theorem holds.

Theorem 12. For any fized integer k > 2 and for t = 3(k+ 1)/4, max _ WIS is approzimable
within ratios on approzimation level

: k B
Pmax _wis(G) 2 min {m, O (log n)} .

Furthermore, in the case where min{k/(A + 1}, O(log ¢ n}} = O(log™* n), A+1 < O(log’n) and
then algorithm WGREEDY already guarantees a wonderful (given the result in [31]) approximation
ratio.

Corollary 3. Consider a graph G end k 2 2. Then, there ezists t > O such that at least one of
the two following conditions holds:

1. algorithm WEREEDY achieves ratio bounded below by O(log™* n);
2. algorithm WIS is a PTAC achieving ratio bounded below by k/(A 4 1).
Revisit expression (17) and set k& = logn/(3loglogn); then,

143k 3(k+1) 4/3

1
3ng 2 1,Yn 2 ng, E};(k+1) z log= 4 ngn

and, since instances with n € ng can be solved by exhaustive search in constant time, the
following theorem holds and concludes the section.

Theorem 13. max _ WIS is approzimable within ratios on approzimation level

| log oy
p- .
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11 Maximum-weight clique

We describe in this section a new FP-reduction, working for both weighted and unweighted cases,
between independent set and clique. Let us note that the classical reduction “independent set
in ¢ — clique in G” preserves constant ratios as well as ratios depending only on n but it does

not preserve ratios depending on A.
Let G = (1 E) be an instance of max_KL and let V = {1,....n}. We consider the n graphs
G =G[{i}UT({)], i =1,...,n and denote by n; their respective orders. We also consider then

graphs G;. Then, the following proposition holds (recall that in every graph G, the size of a
maximum clique is never greater than A{G) + 1).

Proposition 4. For everyi € {1,... .}, the following three facts hold:
L n; € AG) +1 and A(G;) € A(G);

2. cliques (resp_., independent sets) of G; (resp., G;) are also cligues (resp., independent sets)
of G (resp G); moreover, 3i* such that a mazimum cligue (resp., independent set) of G-
(resp., Gi-) is ezactly a mazimum clique (resp., independent set) of G (resp., G );

3. items 1 and 2 hold also for max WKL and max _ WIS if we consider weighted cliques and
independent sets.

Let & be any max_ WIS-PTAA achieving ratio p{n, A); we shall use it to produce a max_ WKL-
solution for G. This can be done by the following algorithm.

BEGIN (#WKLx*)
OUTPUT K — argmax{w(&(G;)):i=1,...,n};
END. (*WKL=*)

Since K is an independent set of G, it is a clique (of the same weight) in G. Moreover, by
items 1 and 2 of proposition -, algerithm WKL achieves, in polynomial time, approximation
ratio p(A + 1, ) for max_WKL.

The reduction just described is, to our knowledge, the first one preserving p(A) ratios between
independent set and clique {in both weighted and unweighted cases).

Given the IS result of [7] and the one of theorem 3 we conclude the following.

Theorem 14.

1. max _KL is epprozimable within ratios on level
log? A
Pmax __ KL 2 O( g/_.\ );

2. max _ WKL is approzimable within ratios on level

log? A
= —— ],
Pmax _ WKL 2 O (Aloglogﬂ)

The results of theorem 14 represent, to our knowledge, the first non-trivial p(A) ratios for the

clique-problem.
The discussion above shows that, when dealing with max_ KL, every approzimation ratio f(n)

can be transformed into approzimation ratio f(A) and vice-versa. Such a result remains still an
open problem when dealing with max_IS.
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12 Maximum £-colorable induced subgraph

Let us note that we can assume ¢ < A. If not, then G' = G (see the definition of max_C¢
in section 2 and recall that the polynomial time coloring-algorithm of [36] always guarantees a
A-coloring of G, unless G is a (A + 1)-clique). Consider the graph ‘G = (‘V,%E) defined as
follows:

o= Ux{l...,4

‘E o= {(n) () [[i=DAv €ElVE# ) A (w=2)]]}

For max_ WC{ the weight of vertex (v,4) equals wy, ¥i = 1,...,£. The following holds for ¢G:

EVJ = {n
{f_\(c;) = AG)+0-1 (18)
p(fG) = p(Gy+t-1

(for all (vg,i) € *V, v € V, i < ¢, the degree of (vg,i) equals the degree of v plus £ — 1).
Moreover,

1. if § € ¢V is an independent set of G, then the family S; = {v € V : (v,4) € §},
t=1,...,¢, is a collection of mutually disjoint independent sets of G; so, the graph G{U;5;]
is £-colorable;

2. conversely, for every é-colorable subgraph G' = (V',E') of G and for every -coloring
(S1,...,S¢) of G, theset § = {(v,4):i€{1,...,£},v € S;} is an independent set of ¢G.

Consequently, every independent set (resp., maximum independent set) of a certain size in ¢G
corresponds to an #-colorable induced subgraph (resp., maximum-order ¢-colorable induced sub-
graph) of the same order in G and vice-versa. The same correspondence holds between max_ WIS
and max_WC/ if one considers weights instead of sizes.

12.1 £ is a fixed constant
By theorems 8 and 13, the following concluding theorem holds for max_ C¢ and max_ WCY.

Theorem 15. Consider f such that, Vz > 0, f(z) < loglogz. Then,

1. max __C/¢ is approzimable within ratios on level

_ log/(én) n, logn :
Pmax_c¢(G) 2 min {O ( n "fln){(p+ Dloglogn [’

2. max _WC{ is approzimable within ratios on level

) . logn —4/5 }
Pma.x_WCE(G) 2 mm{3(£l+1)10glogn’o(n ) .

12.2 £ depends on graph-parameters

For max_WC¢, let us consider the following algorithm where by A_COLOR we denote the A-
coloring algorithm of [36] and by WIS the algorithm of section 10.4.3. :
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BEGIN (#WCL#*)
(1) IF £ aY?

(2) THEN construct {G;

3) . WIS(fe);

(4) OUTPUT G[U;S:! (item 1 just above};

(5) ELSE A_COLOR(G);

(8) OUTPUT the subgraph induced by the [A}/°] heaviest colors;
(73 FI

END. (#WCLx)

Theorem 16. max _WC{ is approzimable within ratios on level

logn
' > mi ) ~8/9 .
Pmax_wce(G) 2 min { Aloglogn' 0 (n ) }

Proof. If £ < A9, then following expression (18), the solution computed by algorithm WCL in
line (4) guarantees ratios on approximation level

_ logn + log Al/® ( 1 ngno logn ( 1
=
'mn{3(3+f_\1/9)1og(iogn+1ogA1/9)’O arais)[ 2 " 8hToslogn’ O \ o7 } (19)

On the other hand, if £ > A9, let us prove that the total weight of the solution computed at
line (6) verifies

Ao w(V)
NG) 2 Alng (20)

Consider first that the heaviest of the non-chosen colors (let us denote by wpy,y its weight} has
weight at least w(V)/A. Then, since the colors chosen by WCL are heavier than it, expression (20)
holds. Suppose now that wh,, < w(V)/A and denote by W the total weight of the colors chosen
at line (8). Then, it is easy to see that w(V) < W +{A=AY%)uT,,, and on the hypothesis uf, €
w(V)/A this implies expression (20) which together with the fact that 8{G) < w(V), introduces
an approximation ratio A78°. Then, comparison of this ratio with the one of expression (19)
concludes the proof of the theorem. il
Of course, the results of theorem 16 hold also for max_C¢.

13 Minimum chromatic sum

Let us consider the following standard “excavation schema” originally introduced in {32]. In such
a schema one solves a minimization graph-problem Ilyi; by iteratively solving a maximization
sub-problem Imax and by removing from the input-graph the subsequent solutions of the latter.

Consider min_CHS instead of Ilmin and max_IS instead of [Imax and let IS be any max_IS-
algorithm. We then have the following instantiation of the excavation schema.

BEGIN (+#EXCAVATION*)
i<0;
WHILE V£ 0 DO
i—i+1;
Cy — IS(G):
V e V\ C:i.;
remove from E the edges adjacent to vertices of C;;
oD
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14 Minimum coloring

In what follows, we denote by x(G) the chromatic number of G. It is well-known ([6]) that

a(G)x(G) 2 n - (21)

14.1 An algorithmic chain for minimum coloring with improved standard-approxi-
mation ratio

Revisit the excavation schema presented in section 13 and consider min_C instead of Il
and max_IS instead of IImax. As it is proved in [32], for the case where Iy, is optimally
solved, and in [2], for the case where it is approximately solved, if opin(G) and oma(G) are the
standard-approximation ratios of [Imin and Hmax, respectively (omax(G) = 1 for the case where
the latter is optimally soived), then

Tmax(G) - (22)

Omin(G) > T2

Revisit also theorem 7 of section 10.3, consider £(n) constant and denote it by £. Denote by
EXHAUST, an exhaustive-search algorithm for min_C and, as in section 12.2, by A(G)_COLOR the
A(G)-coloring algorithm of [36]. Without loss of generality we suppose that vertices are colored

by 1,2,... Moreover, let A and C be as in theorem 7 and denote by |G| the quantity {V(G)].

BEGIN (*COLOR*)
(1) IF n<C THEN OUTPUT EXHAUST(G) FI
(2) S« LARGEIS(G);

(3) ie1;

(4) X~0;

(5) WHILE |$| > KlogtG| DO

(8) color 3 by coler i;

(7) 2—2%u{i};

(8) ie—i+1;

(9) G — G[V\ 8I;

(10) IF G =0 THEN QUTPUT % FI
(11) 8 —.LARGEIS(G);

(12) oD

(13) X~ A_COLOR(G);
(14) OUTPUT X~ RU¥;
END. (*COLOR#)

It is easy to see that the WHILE-loop of algorithm COLOR is nothing else than an application of
algorithm EXCAVATION of section 13 with LARGEIS in the place of IS. Observe also that, for every
iteration 7 of the WHILE-loop, if we denote by G; the graph — input of iteration i (G, = G) and
by n; its order, then
K log*n; .
ovareers (Gi) 2 ‘“";ag“—z (23)
H

Denote now by G the subgraph of G induced by the union of the independent sets S colored
during the executions of the WHILE-loop, and by 7. its order. Then, by expressions (22) and (23):

2\ L Klogtta
OWHILE (G) 2 Tn (24)
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Let G be the subgraph of G input of algorithm A_COLOR (i.e., G = G[V \ V(G)]), 7 be its order

and A(G) be its maximum degree. Observe that, following theorem 7,

= {nloglog i (21 = log 7 .
“(6) <« e =1 (0)> g o

Application of A_COLOR in G will compute a set X of colors verifying (using expression (23))

N plon log A (G)
Oa_coor (G) % ,_l\og(ig)n ? A (@) £loglog A (é)

(26)

Using expressions (24) and (26), the following holds for the set X of colors computed by algorithm

COLOR:
«(¢)  x(9
OWHILE é) Oa_ cOLOR (é)

max{ L : (é)} (x(¢) +x(&))

~ 1
OuHILE (G) Oa_COLOR

X <

x| = M +

M

F/AN

1 1 -
i {UWHILE (G) , O3 __COLOR (é) } G 0

Hence, by expression {27) one gets

. | Klogttn log A(G)
G) 2 , .
ocorea(G) > min { ' ZA(G)¢log log A(G)
In all, the following theorem has been proved in this section.

Theorem 20. Jk > 0, such that for every fired constant € > 0, min _C can be approzimately
solved by a PTAC within ratios on approrimation level

[ klogtln log A(G)
. > '
Tmin_c(G) 2 min { n " 20A(G)loglog A(G)

Let £ > 3. In both cases theorem 20 improves either, by a factor O{(log®logn)logé=*n), the
ratio of [26], or, by a factor O(log A(G)/ loglog A{G)), the ratio of [36].

One can further improve the ratio in theorem 20 by the following way. Denote by COLORING
the algorithm of [26] achieving approximation ratio O(log® n/(n log? logn)) for min_ C and recall
that n is the order of the input-graph of COLOR. Replace line (13) of algorithm COLOR by the
following instruction-block.

IF |G} 2 n/logf~n
THEN X — A_COLOR(G);
ELSE X « COLORING(G);
FI
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Corollary 6. Ve >0, min_C can be solved by a SPTAC within ratio on level

1 logn
f 2 —_——
Omin_c(G) 2 O (mm {nf A(G}log logn})

The left-hand member of the ratio-expression obtained in corollary 6 is slightly better than the
ore in corollary 4. On the other hand, the time-complexity of algorithm COLOR in section 14.1
is much smaller than the one of C given that the de-randomization techniques of [38] imply
important execution times.

15 FP-reductions between standard and differential approximation

As we have shown in many papers ({14, 16, 13, 39]) results obtained in standard and differential
approximations can be very different the ones from the others, even for the same problem.
However, this does not mean that bridges between the two thought processes do not exist. Such
bridges exist and allow transfers of positive or negative approximation results from one theory
to the other. They can be seen as FP-reductions preserving, or prohibiting, some approximation
levels. :

15.1 Sufficient conditions for transferring results between standard and differential
approximation

We first note that positive (resp., inapproximability) approximation results are immediately

transferred from differential (resp., standard) to standard (resp., differential) approximation in

the case of maximization problems. In fact, consider any differential PTAA A guaranteeing

differential-approximation ratio § for every instance I of a maximization problem II. Then,

Al = w(d)

w(sfs);o /\A(I)
B —ur) 20T D 2 D + L= ull) =2 i > 6

In what follows, we refine the above by giving some sufficient conditions in order that approxi-
mation results are transferred between the two thought processes considered, even in the case of
minimization problems. We first prove the following theorem.

Theorem 22.  Consider any NP-hard problem I = (Z,S,vr,opt) and an instance I € T.
Let D and S draw the sets of possible approzimation levels for the differential and standard
approzimations, respectively.
1. If de > 0 such that (1) — B(I)] € emin{w(I), B(I)}, then there exists an FP-reduction
II i Il such that f and h are the identity functions end

D — S
1 — -
g: 5 1 Tre(1=3) opt = min
e opt = max

2. If 3¢ > 0 such that jw(I) — B(I)| > emax{w([), B(I)}, then there ezists an FP-reduction
11 Z [T such that f and h are the identity functions and

S - D
g: 222l opt = min
g = gde—1 =
——— Opt = max
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Proof. We prove the theorem in the case of a minimization problem, the case of maximization
being completely analogous. For item 1, after some easy algebra, one can easily see that

<(I) = M) s} 1
-«'(I)~6(I);'5=>/\(I)25+(1~5)% (30)

Using the hypothesis of item 1, one gets the standard-approximation level claimed.

Item 2 is proved with exactly the same arguments,

For example, we devise in [39] a differential PTAA for max_TSP12 guaranteeing differential-
approximation ratio § > 3/4. Observe that, for every instance K, of max_TSP12, 8(K,) —
w{Kp) € 2n—n =n. Then, application of item 1 of theorem 22 with & = 3/4 and € = 1 leads to
the following corollary improving, for the case of max_TSP12, the standard ratio 3/4 presented

in [43].

Corollary 7. ([89]). max _ TSP12 is approzimable within standard-approzimation ratio boun-
ded below by 7/8.

The counter-part of item 1 (resp., item 2) of theorem 22 is that if there exists ¢ > 0 such that no
algorithm for IT guarantees standard- (resp., differential-) approximation ratios in level 1 — ¢ (¢
is commonly called approximation threshold), then there exists ¢’ > 0 such that no algorithm
guarantees differential- (resp., standard) approximation ratios in level 1 — €', For instance,
if opt = min, then, by item 1, a standard-approximation threshold ¢’ implies a differential-
approximation threshold € = 1 — (¢//(e(1 — ¢'))).

For min_TSP12, using the standard-approximation result of [20]2 and item 1 with e = 1, the
following holds.

Corollary 8. (/39]). Unless P=NP, no DPTAC can approzimately solve min _TSP12 within
ratio converging to 5379/5380.

15.2 Bin packing

In [15], we propose another FP-reduction (not implied by theorem 22) between standard and
differential approximations for BP. Next, based upon this reduction, we devise a differential
PTAS for BP (recall that in standard approximation process, BP can be approximated only by
asymptotic PTAS ([22])). In all, the following is proved in [15].

Theorem 23. ({15]).

¢ There exists an FP-reduction for BP transforming any constant standard-approzimation
ratio o into differential-approzimation ratio 1/(2-0). Consequently, it transforms approz-
imation level S-APX into approzimation level D-APX ;

» BP € D - PTAS.

.15.3  Minimum vertex-covering ‘
Let us now denote by min_VC(2n/3), the restriction of min_VC in graphs where the size of a

minimum vertex cover is bounded above by 2n/3 (of course, such graphs are not recognizable in

polynomial-time). The following theorem is proved in [17].

*¥¢ >0, no PTAA can guarantee standard-approximation ratio less than, or equal to, 5380/5381 — ¢ unless
P=NP.
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