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Resolving inconsistencies among constraints
on the parameters of an MCDA model

ABSTRACT: We consider a framework where Decision Makers (DMs) interactively de-
fine a multicriteria evaluation model by providing imprecise information (i.e., 2 linear
system of constraints to the model’s parameters) and by analyzing the consequences
of the information provided. DMs may introduce new constraints explicitly or im-
plicitly (results that the model should yield). If a new constraint is incompatible with
the previous ones, then the system becomes inconsistent and the DMs must choose
between removing the new constraint and removing some of the older ones. We ad-
dress the problem of identifying subsets of constraints which, when removed, lead to
a consistent system. The identification of such subsets is extremely useful because
they state the reason for the inconsistent information given by DMs. There may exist
several possibilities for the DMs to choose from, in order to resolve the inconsis-
tency. We present some approaches based on mathematical programming to identify
such possibilities and an application to an aggregation/disaggregation procedure for
the ELECTRE TRI method.

Keywords: Inconsistent Linear Systems, Multiple Criteria Analysis, ELECTRE TRI, Ag-
gregation/Disaggregation Approach, Imprecise Information.

Résolution des incohérences dans un systéme de contraintes
sur les paramétres d’un modele multicritere

RESUME: Nous considérons un contexte dans lequel le décideur définit de fagon interac-
tive un modéle d’évaluation multicritére en spécifiant une information imprécise (i.e.,
un systéme de contraintes linéaires sur parameétres du modéle) et en analysant les
conséquences de I'information fournie. Le décideur peut introduire de nouvelles con-
traintes explicitement ou implicitement (sous la forme de résultats que le modéle doit
reproduire). Si une nouvelle confrainte est incompatible avec les précédentes, le
systéme devient incohérent et le décideur doit soit retirer la nouvelle contrainte, soit
certaines parmi les anciennes. Nous nous intéressons au probléme de I’identification
de sous-ensembles de contraintes dont la suppression rend le systéme cohérent.
L’identification de tels sous-ensembles est extrémement utile car elle permet
d’identifier la source de I’incohérence dans I’information fournie par le decideur. Ii
peut exister plusieurs sous-ensembles de ce type ; le décideur doit choisir parmi eux
une maniére de résoudre 1’incohérence. Nous présentons des approches basées sur la
programmation mathématique pour identifier ces sous-ensembles ainsi qu’une appli-
cation dans le cadre d’une procédure d’agrégation-désagrégation pour la méthode
ELECTRE TRI

Mots clés: Systémes linéaires incohérents, Analyse Multicrittre, ELECTRE TRI, Appro-
che par agrégation/désagrégation, Information imprécise.



1. Introduction

Multicriteria decision aiding models usually have many preferential parameters that the
decision makers (DMs) must set. These parameters influence, namely, the manner in
which differences in performances are valued, and the role of each criterion in the ag-
gregation of the performances. Providing precise figures for all parameter values is of-
ten difficult, to the extent that there may exist some imprecision, contradiction, arbi-
trariness, and/or lack of consensus concemning the value of the parameters (Roy &

Bouyssou, 1989).

We will consider an imprecise information context (see, e.g., Weber, 1987; Dias
& Climaco, 2000), where the DMs may indicate some constraints on the acceptable
combinations of parameter values. Such information may be provided in an explicit
manner (e.g., parameter #; belongs to (0.2, 0.3/, or parameter ¢; is larger than parameter
f2), or in an implicit manner (indicating a result that the model should restore, e.g., al-
ternative a; should be better ranked than a,). Methods that accept the latter type of con-
straints to infer parameter values are often called aggregation/disaggregation procedures
(Jacquet-Lagréze & Siskos, 1982; Mousseau & Slowinski, 1998; Nadeau et al., 1991).

In the course of an interactive process, DMs may progressively add constraints
on the parameter values. Let T} denote the set of parameter values that are acceptable to
the DM (according to the constraints they provided) at the &-th iteration. Given this set,
it is possible to provide some output to support the DMs in revising T}
¢ robust conclusions — the results that are valid for all the combinations #€7; (Roy,

1998; Vincke, 1999); for instance, “a; is never contained in the choice set” in a se-
lection problem; “a; is always better ranked than a;” in a ranking problem; or “a;
can only be assigned to category “good” or “very good” in a sorting problem;

e variability information — the results that vary more, according to the combination
chosen; for instance, “the position of a; in the ranking is very unstable: for some in-
put values it may be the best, whereas for other combinations it is one of the worst”
in a ranking problem (K#mpke, 1996);

e inferred parameter values procedures (Jacquet-Lagréze & Siskos, 1982; Mousseau
& Slowinski, 1998) — a “central” combination T} that satisfies all the constraints,
hence able to restore the results that were demanded.

We consider interactive processes in which DMs start the first iteration with
very little information. Each iteration will provide an opportunity to add, delete or
modify a specific supplementary constraint. Adding a single piece of information at
each iteration facilitates the control of the information supplied by the DMs. This inter-
active process stops when DMs are satisfied and the set T}, as well as the results of the
model match their view of the decision problem.

We will consider that all the constraints are linear (7} is a polyhedron) and that
the polyhedron T+, that corresponds to the next iteration is obtained by adding a single
constraint, i.e., by intersecting 7} with a half-space or a hyperplane. A difficulty occurs
when Tp+; becomes empty, meaning that the new constraint contradicts some of the pre-
vious ones. To resolve the inconsistency that appeared in the linear system of con-
straints, one must either drop the new constraint, or some of the older ones. The choice
should belong to the DMs, after they learn which are the sets of constraints that lead to a
non-empty Ii+; if removed. Notice that when we refer to the removal of one or more
constraints, the DMs may choose to relax these constraints instead (e.g., increasing the
right-hand side of an Ax<b system).

Many authors have previously addressed the subject of infeasibility analysis in
linear programming (see, J.W. Chinneck, (1997) for a complete summary of the state of
the art in infeasibility analysis algorithms) according to different perspectives, namely:



1. Some authors (Loon, 1981; Chinneck, 1994; Tamiz ef al., 1996) are interested in
determining an Irreducibly Inconsistent System (IIS). An IIS is a subset of con-
straints that corresponds to an inconsistent system, which is minimal, in the sense
that any proper subset of an IIS is a consistent system. Let us remark that the incon-
sistency in an IIS can be removed by deleting any constraint, but if there are other
IISs, then the initial system of constraints can remain inconsistent.

2. A different problem is to determine the minimum number of constraints that has to
be removed to restore the consistency in the initial system, which is equivalent to
solve the minimum-cardinality IIS set-covering problem (Chinneck, 1996; Murty et
al., 2000).

3. Finally, we can mention the problem of determining the minimum weight (or cost)
alternative to restore the consistency in a system, which is equivalent to determine a
minimum-weight IIS set-cover (Chinneck, 1996; Murty et al., 2000).

The perspective we are interested in is close to problem 2, with the following
specificities:

¢ we are also interested in sets of constraints that restore the consistency if removed
that are not of minimum cardinality, since the DMs may rather drop two constraints
they consider unimportant than drop a single important one;

e we know that one of the constraints caused the inconsistency, hence removing that
constraint is a trivial manner to resolve the inconsistency; the guestion here is what
other alternatives exist.

Hence, we may formulate the problem we are addressing as: to determine the p
“smallest” sets of constraints (in terms of cardinality) that, if removed, restore the con-
sistency to the initial system.

In the context of the interactive processes we are considering, solving such
problems will allow us to propose alternative ways to resolve an inconsistency that ap-
peared at a given iteration. This helps the DMs to understand how their inputs are con-
flicting and to question previously expressed judgments. Analyzing and confronting the
altermative solutions of such problems provide opportunities for the DMs to leam about
their preferences as the interactive process evolves.

In the next section we define our problem formally and propose two techniques to solve
it. One of the techniques consists in solving a succession of mixed-integer linear pro-
grams, while the second one uses only linear programming. Section 3 presents an appli-
cation to the aggregation/disaggregation approach for ELECTRE TRI, reviewing this
approach and including a numerical example. Section 4 indicates some extensions and
concludes the paper.

2. Two different methods to cope with inconsistent systems

Consider a problem in which the DM has interactively specified constraints on the pa-
rameters by defining a polyhedron of acceptable values denoted by Tj.; (at iteration k-
1). This polyhedron is defined by the following (general) consistent system of m-I lin-
ear constraints on » variables x;, ..., Xy
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Let 7={1,...,m} be the set of indices of the constraints defining 7 (at iteration %, i.e.,
with the new constraint that makes 7; empty). Hence,

n
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Let § = 7 denote a subset of indices of constraints. We will say that § resolves (2) if and

only if the system ia,;,-x ;2 B;,ViellS, is consistent. Let [§| denote the cardinality of
J=I

the set S. Formally, the problem we are addressing is to determine p distinct sets S, ...,

S, (if they exist) such that:

i.  S;resolves (2),iefl,...p};

n Sz S, ijefl,...p}, i#;

iil. |8} <18, ij€fl,...p}, i</

iv. If there exists a set S such that S resolves (2) and S 7 §; (i £{1,...,p}), then
|81 2 |Sl.

Since we already know that the system (1) is consistent and the system (2) is inconsis-
tent, we can obviously set S;=¢{m/}. From condition (i), this implies that the remaining
sets Sz, ..., Sp will not include {m}. In section 2.1 and 2.2, two alternative methods to
solve this problem are proposed.

2.1. A method based on the {0,1} linear programming model

This first method is based on {0,1} linear programming techniques. It allows us to
identify p subsets of constraints that, when removed, make the polyhedron T feasible.



A similar approach can be found in Kim & Ahn (1999): this is done through p-/ succes-
sive optimizations (PMy, PM;, ..., PMg).

The program PM; minimizes the number of constraints to be removed in order
to make T feasible. The subset S;={m/} is obviously the smallest subset verifying (i) to
(iv). The first problem PM; to be solved has the following form:

PM2:
m=1
min Zyi :
i=1

n
Zayxj+Myi =g, forieli{m}
J=1

f
Zay-xj 2f;, fori=m
j=1
20 j=L..m y;€{01} i=1L..m-1
where M is a positive large number. The variables y;, i=1, ..., m-I, are binary variables
assigned to each constraint. The indices of constraints for which y;*=1 (at the optimum
of PM;) constitute the subset S-.
PM; is defined in order to compute 3. This new program is derived from PM; by add-
ing a single constraint of the following form:
2.vi $[82|~1
ies 2
This constraint prevents PM; from finding an optimal solution that corresponds to (or
includes) §. The indices of constraints for which y;*=/ (at the optimum of PM;) con-
stitute the subset S3. In order to compute Sy, ..., Sp, we proceed similarly: each new pro-
gram is formed by adding one constraint to the previous program.

An outline of the algorithm is the following:
Let Solutions be a FIFQ whose elements are subsets of {1,...,m-1} that resolve (2).

Begin
For k=2 to p do
Solve PM,

Se—{ieI\{m}: :y;*=1}
Add constraint ZieSk ¥ SlSki—l te PM; in order to,define PM,.,
End for
End

Let us consider the following example:

—005x; =~ x, = =-—40 [1]
-05%, - x, = =50 [2]
-12%;, - x, = =70 [3]
—45%; - x, = -179  [4]
x4 > -35 [5]
—13x;, + x, = =30 [6]
—075%y + x, = -14 [7]
06x; + %, = 55 8]

Here, system [1]-[7] is consistent, but when [8] is added the system [1]-[8] becomes
inconsistent.



Figure 1: Feasible set.

We then build the following PM model:

7

min _Zyi

st.: —z0_.105x1 - x5, 2 —40 - My [1]
-05x, - x, > =50 - My, [2]
—12x; - x, = =70 - My, [3]
~45xy - x, 2z -179 - My, [4]
-x; > -35 - My, [5]
~13x; + x, 2 =30 - My, [6]
—075%; + x, 2 -14 ~ My [7]
O6x; + x, = 55 [8]

where y; € {0,1} fori =1,...,7.
Let us compute, step by step, all the feasible solutions for the above example as follows,

0. §;={8} (trivial solution).
1. In the first stage, we obtain S;={1,2}, i.c., ¥ = 3, =1. The constraint y; + y; <1

is then added to the constraint set.
2. In the second stage, after optimizing PM the solution is §;={2,3}, ie.,

y; = y; = 1. We add the constraint y; + y; </ to the model.
3. In the third stage, we obtain S¢={3,4,5,6}, i., 33 = 3 =s= v, =1. We add the
constraint ys + ys + y5 + ys £ 3.



4. The problem becomes infeasible, meaning that there are no mMore alternatives 10

solve our problem.

2.2. An algorithm {0 propose solutions for inconsistency using LP

In this section We propose a second algorithm t0 solve the problem We are addressing,

ie., to find the sets Sy, ...s Sp (SINCE WE are considering S ={m}). The algorithm is based

on the results presented below:

Proposition 1. LetS < {1,...m-1} be a set of indices of cons
i subject to constraints of system (1), exclud-

- . n
the linear program to maximize . &mi*
j=I

ing the constraints in S:

LP(S): max{iamjxj:ia,jxjzﬂi,VieI\(Su{m})%
j=1

Then,
a) LP(S) is always feasible, and

solves (2) < LP (S)1s anbounded or its optimal value is not less than S

Prodf
a) Since the system (1) 1
its constraints; hence, the linear pro gram 18 feasible.

b) When LE(S)is unbounded or when the optimal value 0

equal to, B, then all the constraints except the ones in S are satisfied, including

¢ consistent, it remains consistent after removing some of

£LP(S) is greater than, or

the last constraint in system (2), ie. S resolves (2). Otherwise, the last con-
straint in system 2)is violated and § does not resolve (2)-

0

Let x (5) = arg max{iam,-xj: iatjxj z B Vi eI\(Su{m})} denote an optimal solu-
j=1 j .

J=1

tion for the linear program above.
Let B(S) be the set of indices of the constraints that are active (binding) at the solution

x (5):
B(S) ={i eI\(Sw{m}): ilay-x; (S)= ﬁf} .
j=

Proposition 2. Let R and § be any tWo subsets of \m}, such that:

e SCR;

o S does not resolve (2%
o R resolves (2)-

Then, B(S) NR\S # .

Proof-
From Proposition 1,
R resolves (2) = LP(R) is unbounded or its optimal value is not less than B, and

g does not resolve (2) =>the optimal value of LP(S) is less than B
Let x (S) denote the optimal solution of the lnear program LP(S). Now, note that
% (S) is also an optimal solution of the linear program that would be formed by de-
leting all the constraints that are not binding at x (S),



n
max{Zamjx I ia,-jx 2B, VieB(S )}, otherwise it would not be optimal to
J=1 J=I

LP(S).
Since the polyhedron {x eR” :Z?jz’=1ag'xj 2 B;,VielI\(S u{m})} is con-

tained in the cone {x eR” 12?;105595 2B, VieB(S ))}, then the value of the

objective function of LP(S) can increase only if (at least) one of the constraints in
B(S) 1s removed. Thus, the fact that the objective function does increase when S is
replaced by R (i.e., when I\(S(4m}) is replaced by IR {m}) by removing con-
straints in R1S), implies that at least one of the constraints in RIS belongs to B(S).

g

Based on this result, an alternative manner to solve our problem is the following algo-
‘rithm:

Let Candidates be a FIFO whose elements are subsets of {7,...,m-1}.
Let Solutions be a FIFO whose elements are subsets of {1,...,m-1} that resolve (2).

Begin
Create an empty FIFO Candidates;
Create an empty FIFC Solutions;
SolutionIndex « 2;
Solve LP{(&);
For each constraint index ieB(&) do
InsertInFIFO (Candidates, {i})
While NotEmpty (Candidates) and SolutionIndex < p do
§ := RemoveFromFIFQ (Candidatesg)
Solve LP(S)
If LP(S) is unbounded or has an optimal > S, then
InsertInFIFO (Sclutions, &)
SolutionIndex « ScolutionIndex + 1
Else
For each constraint index ieB(S8) do
InsertInFIFO{Candidates, Su{i})
End if
End while
Show elements in Solutions to the Decision Makers:
End

Justification for the algorithm:

1) This algorithm presents the solutions S, to Sp by non-decreasing order of cardinality.
Before the while loop, the algorithm considers as candidates sets of cardinality equal
to 1. In the while loop, when the set § at the head of the Candidates FIFO is tested
(by solving LP(S)) and fails, the algorithm places at the tail of that FIFO other po-
tential solutions whose cardinality equals |S| + 1. All candidates of cardinality S} are
tested before those of higher cardinality.

2) If a set R resolves (2) and no subset of R resolves (2), then the algorithm will find R
Jor a sufficiently large value of p.

We will show that this is true by induction. Suppose that there exists a set R={s,, 53,
---» S|z that resolves (2). Before the while loop, the elements in B(2) are considered
as candidates. From Proposition 2, B(Z)nR=, i.e., there exists an element s.)eR
that enters the FIFO Candidates.

10



During the while loop, at a given moment, the candidates of cardinality k (1<k<|R|)
will start to appear at the head of the Candidates FIFO. If one of these elements S is
such that ScR, then solving LP(S) yields an optimal value which is less than Bn. From
Proposition 2, B(S)R\S%D, i.e., there exists an clement sy, that belongs to R and
does not belong to §. This element is appended to S'to constitute a set {Sy .. SmPeR
that enters the FIFO Candidates.

Some iterations later, the candidates of cardinality |R| will start to appear at the head
of the Candidates FIFO. One of these candidates is R, which will be declared a soly-
tion since LP(R) will either be unbounded, or have an optimal value that is not less
than g,.

the initial LP(@) and to save the simplex tableay corresponding to the removal of each
constraint put in Candidates. In the while loop, solving LP(S) will amount to perform a
single simplex iteration from the corresponding saved tableau. Then, for each set put in
Candidates a new tableau must be saved. This would be faster, but would require more
memory usage.

The operation InsertInF IFO() should not be performed whenever the set to insert is
equal to, or includes, a set previously inserted. The elements of the set in the FIFQ
should be ordered by their indices to facilitate the search for this condition.

Return 1o the example
0. Initially, Candidates and Solutions are empty FIFQOs.

LP(<Z) amounts to maximize 0.6x+x3, subject to constraints [1] to [7].

The solution of LP(%) vields an optimum value of 52.857, meaning that the con-
straint 0.6x;+x,>55 [8] cannot be satisfied, The set of indices of the constraints that
are active (binding) at the optimal solution is B(3)={2,3}. This implies that at least
one of these two constraints must be dropped to satisfy the constraint [8]. The sets
{2} and {3} are added to Candidates.

1. The set {2} is removed from Candidates,
The solution of LP({2}) yields an optimum value of 54.348 < 55,
B({2})={1,3}. The sets {1,2} and {2,3} are added to Candidates.

2. The set {3} is removed from Candidates.
The solution of LP({3}) yields an optimum vale of 53.5 < 55,
B({3})={2,5}. The set {3,5} is added to Candidates (the other set {2,3} is already in
the FIFQ).

3. The set {1,2} is removed from Candidates.
The solution of LP({1,2}) yields an optimum value of 70 > 55, Therefore, {1,2} en-
ters the FIFO Solutions: if the DM removes these two constraints, the consistency is
restored. No element is added to Candidates.

4. The set {2,3} is removed from Candidates.
The solution of LP({2,3}) yields an optimum value of 59.25 > 55. Therefore, {2,3}
enters the FIFO Solutions.

5. The set {3,5} is removed from Candidates.
The solution of LP( {3,5}) yields an optimum value of 53.675 < 55.

11



The algorithms provide the information (and the corresponding constraints) to re-
move in order to retrieve consistency. In this case, the DM should choose to delete one
of the three following constraints: [6), [7] or [10].

4, Conclusion and further research

In this paper, we have proposed two alternative algorithms to de///al with inconsisten-
cies among constraints on the parameters of a MCDA model. The inconsistencies con-
sidered here correspond to situations in which the DM specifies a list of linear con-
straints on preferential parameters value that originate an empty polyhedron. More spe-
cifically, these algorithms allow us to compute subsets of constraints that, when re-
moved, yield a non-empty polyhedron of acceptable values for preferential parameters.

The algorithms presented in section 2 are particularly useful within the context of
preference elicitation through an aggregation/disaggregation process. Section 3 de-
scribed and illustrated how these algorithms can be used when inferring the weights in
the Electre Tri method from assignment examples.

The results presented in this paper suggest further research. First, it is obvious that
the proposed algorithms can be used to solve inconsistencies on preferential parameters
in various aggregation models.

Second, if some ordinal confidence index is attached to each constraint provided by

the DM, it might be interesting to find the "smallest" subsets of constraints in which the
DM has the least confidence. This problem leads to complex ordinal optimization pro-
grams.
Third, the proposed algorithms are specifically designed for the case in which the last
constraint added causes infeasibility. Further research should be performed so as to fig-
ure out whether a variation of the algorithms could be used in the general case in which
a set of constraints which is infeasible is given to begin with.

Lastly, we consider the reduction of inconsistencies through the deletion of subsets
of constraints. It might be very interesting to try to relax some constraints (rather than to
delete them) in order to restore consistency.
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500BA (ICCTI/Ambassade de France au Portugal). The authors are thankful to John W,
Chinneck for comments on early versions of this paper.
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