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Un modele de travail coopératif supportant les
concepts de collaboration et de coordination

Résumé

Dans le domaine du travail coopératif, deux grands axes de recherche ont été explorés
: celui des workflow et celui du travail en groupe. Le premier axe se concentre sur la
coordination de tdches et le second sur la mise en place d'un environnement de travail
partagé permettant la collaboration. Dans les application réelles impliquant le travail
coopératif d'un grand nombre d’équipes, les besoins en coordination et en collaboration
sont étroitement liés. Les nombreux modéles de worflow existants n’intégrent pas le con-
cept de collaboration. Nous proposons, dans ce papier, un modeéle considérant les deux
dimensions, & la fois, celle de la coordination et celle de la collaboration. Notre proposition
est illustrée par une application réelle de spécification de systémes orientée réutilisation.

Mots clés : travail coopératif, collaboration, coordination, modele

A Framework Integrating Collaboration and
Coordination

Abstract

In the cooperative work area, two main directions have been explored: workflow and
groupware. The former focuses on the task coordination and the later on common work
environment, i.e., collaboration between partners. In real world applications involving
a lot of teams, both coordination and collaboration concepts are closely linked. Actu-
ally, modeling workflow is well overcame, nevertheless the integration of collaboration in
workflows is an open issue. In this paper, we propose a framework which integrates collab-
oration and coordination dimensions. Our proposal relies on a real large-scale application
intended to specify complex distribution management systems by reusing product family
components.

Key words: cooperative work, collaboration, coordination, framework



1 Introduction

The specification process of large-scale projects (or systems) requires the collaboration of a
lot of teams with different skills working in a common extent. Specification work is too long
and too complex to be executed as a single task, so the specification process is decomposed
into several specification tasks. The decomposition is motivated by different abstraction
levels of decision which constitute a decision graph. Consequently, the specification phase
can be represented by a specification graph where each node corresponds to a specification
task.

A specification task is in charge of specifying a certain set of elements with respect to
decisions derived from the specification produced by upper level tasks. Several teams may
participate to one specification task. In this case, each of them is in charge of a subset of
elements, and the teams have to collaborate in order to ensure the consistency of the final
specification produced by the task. So, the specification phase of a project can be seen as
a workflow where each specification task gathers all the teams who have to collaborate to
elaborate the specification the task is in charge of.

Take for example a concrete project devoted to distribution management. The final goal
is to build a specific distribution management system for a particular store which may
be a small supermarket as well as an hypermarket. The system will be installed in a
specific country with specific management rules, and of course a specific language. Due
to requirements of the customer, the system may have to respect specific standards and
specific management procedures, and to provide particular functionality. Of course, it has
to be integrated to the customer technical environment. Specifying such a system requires
several decision levels as shown in Figure 1. From a general description of the customer’s
store, and of the needs, the general characteristics of the future system are defined by the
top level specification task. These characteristics are used in two independent specification
tasks at the second level: one defines the general functional specification of the system and
its technical environment, and the other, the organization of the system installation. At
the final level, we find several tasks, among them the tasks which specify all the hardware
and software elements composing the system, the tasks specifying the documentation, and
the tasks defining the relevant customer services. The tasks are represented by squares
in Figure 1. Bullets in a square represent teams, and dashed arrow, the collaboration
links between them. Finally, solid arrows connecting the squares represent precedence
relationships between the tasks. One task cannot begin while all its predecessors have
not produce the decisions used by the task. For simplification reasons, Figure 1 does not
show all the specification tasks. For example, generally, the set of hardware and software
elements is composed of several independent sub-sets of elements. By independent sub-
sets, we mean parts of the system that may be specified independently from each other
without risk of mutual inconsistency. To allow simultaneous work, independent sub-sets
are specified in independent tasks.
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Figure 1: The top-down specification tasks of a distribution management system

In this paper, we are interested by organizing the teams work during one specification
task (for example the hardware software specification task of Figure 1). Such a task
has to provide a complete and consistent specification. Generally the teams involved in
a specification task work as follows: given a set of elements to be specified, organized
in several disjoint subsets, each of them is specified by a specific team who produces
the specification of each element of the subset it is in charge of, so that all the specified
elements of the task are mutually consistent. Remark that in such a work organization, the
work is not shared at the team level. Nevertheless, as the work of each team may impact
the work of the other ones, the work of the different teams have to be coordinate, and
the necessary collaboration between the teams (for example, exchanging opinions about
possible choices) has to be organized. We claim that it is possible to control collaboration
and coordination of several teams in an integrated workflow as long as the control is based
on a well-suited architecture.

We propose a framework for declaratively specifying a workflow integrating coordination
and collaboration. The framework consists of three components. The first component
is a cooperation architecture, the second one is a language for specifying collaboration
forms, like, for example, iterative conversations between participants, discussions where
each participant alternately develops its propositions and the different propositions are
communicated to all the group, negotiation [Munier, Shakun, 1988]. Finally, the third
component is a language for specifying a coordination protocol which stipulates and me-
diates the articulation of the collaborative work. Changes to the state of the protocol
induced by one actor (a person or a process) are conveyed to the other actors. The execu-
tion flow of the protocol may be disturbed by user interventions like stopping, restarting
or iterating an activity.

The remainder of the paper is organized as follows. Section 2 formulates the problem and
provides an example inspired of a real large-scale project which is used throughout the
paper to illustrate the different notions and solutions. Section 3 is the corner stone of
the paper, it describes the framework. Section 4 exposes some existing work in modeling
workflows. Finally, section 5 concludes and presents future work.



2 Problem Formulation

In this section, the general context of a complex project specification is given. Then, the
support for each specification task is presented. Finally, the problem considered in this
paper is precisely defined.

2.1 Context of a complex project specification

Actually, enterprises tend to reuse their knowledge and know-how as much as possible.
So, they constitute a “corporate memory” that describes experiments, and work done in
the past, plus lessons from them. The corporate memory contains design options that
are available for a system related to high-level user requirements and the effects of new
design proposals on the overall system. It is used for specifying new projects, in particular,
part of existing specifications may be reused. In this paper, we suppose that a knowledge
base containing all existing specifications is used as the support of the specification of any
new project. In particular, the knowledge base contains information over compatibilities
and incompatibilities between object versions which have been established by previous
experiments, or by any external knowledge.

We explained in the previous section that a specification phase is composed of several
specification tasks (simply called tasks for short) and that the decomposition is motivated
by the different levels of decision. A given task is in charge of specifying a certain set of
interdependent objects with respect to decisions produced by upper level tasks. In turn,
it produces as result, a set of decisions about the objects it has to specify.

2.2 Task view

The support of a specification task is a view of the global knowledge base concerning the
objects to be specified by the task, where versions being contradicting with upper level
decisions have been discarded. It is commonly admitted that it is necessary to take into
account the product evolution due to the long span of life of the products and to their
reusability feature. So, it seems realistic to explicitly give the possibility of creating a new
version for certain objects in a specification task view.

In the following, we propose an example of a task view organization which fits with the
requirements above. Let us remark that our framework does not depend on any particular
form of task view organization. Our goal in presenting a precise organization for the task
view is to provide a well understandable application example, and thus clearly illustrate our
proposal. The view for a given specification task is a collection of consistent configuration
descriptions (simply called descriptions for short in the remaining). Each of them provides
three information for each object specified in the task: positive compatibility, evolution
possibility and recommendation about the presence of the object.

A positive compatibility for an object is a set of compatible existing versions of the object.
The set of positive compatibilities of a description represents consistent configurations hav-
ing successfully tested and validated in previous projects. In other words, if, for each object
of the task, a version is chosen among the versions provided by its positive compatibility,
the resulting configuration will be consistent.



Evolution possibility for an object allows or forbids the building of an innovative config-
uration by the creation of a new version of the object or by the use of a version which is
not included in the positive compatibility of the object. It is composed of:

1. a novelty recommendation, e.g., no novelty, strong novelty recommendation,

2. in the case where novelty is authorized (or encouraged), additional information in-
tended to avoid identified inconsistency risks. This information consists of a set of
forbidden versions, i.e., versions which will surely lead to inconsistent configurations.

Recommendation about the presence of an object indicates if the object is mandatory or
optional. More refined values may exist, e.g., possible but not recommended, absence or
indifferent absence, or presence.

Thus, each description of a task view is so that:

1. if, for each object of the task, a version is chosen among positive compatibility of
the object, the resulting configuration will be surely consistent,

2. if, for one object which has a novelty authorization, a version is chosen among the
forbidden ones or a new version is created, the resulting configuration will be able
to be inconsistent.

Example of a task view. Let us come back to example of Figure 1, and consider
the task which is in charge of specifying the cash sub-system (such a task is one of the
hardware-software specification tasks). This task will be used to illustrate the different
notions presented all along the remaining of this paper.

A cash subsystem is composed of a scanner, a check reader, a card reader, a keyboard, and
a program named TCF. The existing versions of each of these objects are those defined in
Table 1. The view for the cash sub-system specification task is presented in Table 2. It
consists of two descriptions d and d'.

Let us explain the first description, d. It says that:

1. The compatibility between versions AU33_SD Board 3 and AU32_N Board 3 of the
program TCF, version PEACH of the scanner, version DASSAULT of the check
reader, versions GEMPSY 9600 bauds and ICL 1200 bauds of the card reader and
version FPI of the keyboard is successfully tested.

2. Except for the keyboard, specifying every object is mandatory.

3. No evolution possibility is given for the specification of the scanner, the card reader
and the keyboard. On the opposite, it is possible to create new versions of the
program TCF, i.e., versions other than AU33_SD Board 3 and AU32_N Board 3.
Nevertheless version AU33.SD Board 3 cannot be chosen (that may be due to previ-
ous experiments which revealed incompatibilities between this program version and
the other object versions in d). Creating a new version for the program is encouraged
and it is the same for the check reader.



object versions

program TCF | AU33.SD Board 3
AU33.ND Board 3
AU32_N Board 3

scanner PEACH
NCR

check reader | DASSAULT
ICL
IBM

card reader GEMPSY 9600 bauds
ICL 1200 bauds
DASSAULT 1200 bauds
keyboard FPI

Table 1 : Objects and object versions of the cash sub-system specification task

2.3 Problem definition

In this paper we address the problem of organizing the collaboration between teams par-
ticipating in a specification task so that:

1. the resulting decisions provide a consistent specification of the objects, and

2. the work needed to reach a consensus is minimized in terms of time and negotiation
efforts.

More precisely, we propose a framework for specifying an extended worflow from con-
straints (the task view), team working modes, and specific domain application knowledge.
By extended workflow we mean a worflow which integrates collaboration and integration
Due to frequent changes in the knowledge over the constraints (for example technical evo-
lution leading to new object versions), over the teams (e.g., team merging or splitting),
the framework have to provide facilities:

1. to declaratively define the different parameters entering in the workflow,

2. to reuse part of existing workflow (i.e., a worflow actually in the knowledge base).

Our framework consists of a cooperation architecture, a model for defining team working
modes, and a workflow specification language. The components of the framework are
described in the following section.



desc.

definition

d_program:

d_scanner:

d_check reader:

d_card reader:

d.keyboard:

{object : program TCF, presence : mandatory
positive compatibility : AU33.SD Board 3, AU32_N Board 3
evolution possibility : encouraged novelty (forbidden : AU33.ND Board 3)}

{object : scanner, presence : mandatory
positive compatibility : PEACH
evolution possibility : no novelty}

{object : check reader, presence : mandatory
positive compatibility : DASSAULT
evolution possibility : strong novelty recommendation (forbidden : ICL)}

{object : card reader, presence : mandatory
positive compatibility : GEMPSY 9600 bauds, ICL 1200 bauds
evolution possibility : no novelty}

{object : keyboard, presence : optional
positive compatibility : FPI
evolution possibility : no novelty}

d’_program:

d’_scanner:

d’_check reader:

d’_card reader:

d’_keyboard:

{object : program TCF, presence : mandatory
positive compatibility : AU33.SD Board 3, AU33_ND Board 3
evolution possibility : encouraged novelty (forbidden : AU32.N Board 3)}

{object : scanner, presence : mandatory
positive compatibility : NCR
evolution possibility : no novelty}

{object : check reader, presence : mandatory
positive compatibility : ICL, DASSAULT
evolution possibility : strong novelty recommendation (forbidden : IBM)}

{object : card reader, presence : mandatory
positive compatibility : ICL 1200 bauds, DASSAULT 1200 bauds
evolution possibility : no novelty)}

{object : keyboard, presence : mandatory
positive compatibility : FPI
evolution possibility : no novelty)}

Table 2 : The cash sub-system specification task view

3 The Framework

First, the cooperation architecture is described, then the team working modes model and
the workflow specification language are presented. Finally, workflow execution model is
depiected.




3.1 The cooperation architecture

In what follows, a team is an agent (possibly human) in charge of an object or of a group
of objects specified together. Of course, a team may be actually a group of agents, which
will functionally be considered as only one.

Teams do not directly communicate with each other and a team does not necessarily know
the other teams. A coordinator is in charge of the teams coordination and drives the work
sequencing among the teams by sending messages to them. In the same way, the teams
report the result of their work by messages sent to the coordinator.

The cooperation semantics is described by (1) the knowledge used by the coordinator to
elaborate the messages sent to the teams, (2) the knowledge conveyed by the messages,
(3) the coordinator execution model.

The cooperation model is based on a fixed architecture shown in Figure 2. The corner stone
of the architecture is a coordinator having a fixed execution model. It uses a dynamic and
a static knowledge. The first is fixed, while the other is the medium of the collaboration
specification for a given application. The static knowledge consists of (1) a task view as
defined in section 2, (2) the team definition, i.e., the mapping between the objects of the
task view and the teams, (3) the definition of the collaboration types, (4) the coordination
protocol that is first the work steps definition, each work step specifying how the teams
collaborate by associating a collaboration type with a set of teams, and second the control
of the work steps: static scheduling together with exception specifications in the form of
external or internal events. Points (3) and (4) are described in detail later in this section.

The dynamic knowledge consists of (1)the history of the work evolution, i.e., the history
of the messages exchanged with the teams, plus the exception event occurences, and (2)
the current state of the work execution.

A message sent by the coordinator to a team contains information about the work to
do: (1) the concerned objects, (2) the collaboration type to respect, (3) a subpart of the
task view that is relevant for the objects, and (4) possibly some knowledge over the work
evolution that is useful for the team work.

The main feature of this architecture is that only the coordinator has a global knowledge
over the cooperation (at every moment it knows the history and the plan for the future
steps), while the team knowledge is local and instantaneaous (a team has no way to
anticipate the future).

The coordinator controls the cooperative work as follows. Every time an exception event
or a message from a team arises, this event (or message) is registered in the history. Then,
the coordinator executes the following algorithm:

on receive message from a team or an exception event
(C, T) := compute_next_step();
for t in T do
m := compute_message(C,t);
send_message(m,t) ;
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od;

The compute_next_step function computes a collaboration type C and a set of teams 7.
To do that it uses both the static knowledge plus the current state of the work and of
the history. As a side effect, the function updates the current state of the work. The
compute-message function uses the collaboration type C to compute the message to send
to each team in 7. '

static knowledge

dynamic knowledge

task | teams | collaboration| coordination history of the | current state

view types protocol work evolution | of the work
coordinator
sent | |[received
message| |message
team team team

Figure 2: Collaboration architecture

3.2 Cooperation Specification

In our model, we consider that specifying a cooperation requires to define a workflow,
and also collaboration between teams. For example, suppose that two teams A and B
cooperate for specifying objects @ and b, respectively. During a first step, the teams
discuss and exchange opinions over the versions to choose for the objects, then a decision
step starts where A (resp. B) chooses one version of a (resp. a version of b). The
workflow for this scenario is depicted in Figure 3, it contains two work steps: discussion
and decision. Each of theses steps is a sub-workflow. The discussion sub-workflow consists
of two activities: “A discusses about ¢”, and “B discusses about 4”, these activities may
be iterated. Similarly the decision workflow consists of two activities: “A decides about
a”, and “B decides about b”, there is no iteration in the decision step, first B decides and
then A. To be precise the worflow specification has to include the number of discussion
iterations and the exception events for both steps. What is not appearant in the workflow
is the activity description. What is the meaning of “A discusses about a” and “B discusses
about b”? For example what is the action of A4 and B:

e may a team produce several propositions?
o how can a team give its preferences between different propositions?

o has a team to consider the propositions made by the other team during previous
iterations?



o may a team raise an exception in order to interrupt the work step?

The responses for A are valid for B, they determine the semantics of the discussion between
A and B. Quite similar questions arise for the meaning of “A decides about a”, and “B
decides about b”. Even the questions are the same, the responses are probably different
depending on the fact that A and B are discussing or deciding. In our example, we need
to provide responses concerning the discussion and those concerning the decision.

In our model we specify the collaboration via the concept of collaboration type, and the
coordination via what we call a coordination protocol.

n times

discussion decision

Figure 3: An example of cooperation

3.2.1 Collaboration type

A given collaboration form between teams implies that all the teams have a certain be-
haviour in common. So defining a collaboration form comes to describing this common
behaviour. As, in our model, the artifact of the collaboration consists of messages ex-
changed by the coordinator and the teams, the way of specifying the required common
behaviour is to declaratively specify what knowledge has to be conveyed by the messages.

A collaboration type is an abstract data type modelling a collaboration form. This type is a
nuplet < id, history synthesis, collaboration recommendation, task view filter, team_to_coordinator,
exception> where:

o id is the name of the collaboration type (this name is unique, two different collabo-
ration type have different names),

o history synthesis is a function that computes a synthesis of the collaboration evolu-
tion from a work evolution history.

o collaboration recommendation describes the required behaviour of teams with regard
to the collaboration evolution.

e task view filter is a function extracting a part of the task view from a work evolution
history and a task view.

o team_to_coordinator describes the information that has to be put in the responses of
the teams.

o exception is a set of events associated with particular states of the work evolution
history.

10



An example of collaboration type: ”controlled discussion” The controlled dis-
cussion may be used when partners having to collaborate for specifying a set of objects
need to exchange their opinions. The teams are invited to strongly collaborate (i.e., each
team has to consider as much as possible the choices of the other teams), nevertheless
each of them has the possibility to veto solutions proposed by the other teams. The re-
sult of a controlled discussion may range a spectrum from a convergence of the opinions
toward one (or several) solution(s), to a total divergence (the teams veto all the possible
solutions). So a controlled discussion type provides two exception events: “convergence”
and “divergence”. When such events occur, there is no matter to go on the discussion.

This collaboration type may be used in the application presented in Section 2, it is also
often used to elaborate teacher plannings.

A controlled discussion consists of three phases.’ During an initial phase, the partners
are informed of the collaboration recommendation, then a set of possible specifications is
gradually built during the second phase, finally the partners agree to set up specifications
preference criteria.

Phases 1 and 2 of the collaboration type applied to the example of Section 2 are as follows:

phase 1: a set of consistent configurations is gradually built. To do that one team elab-
orates a proposition by giving weighted versions for the object it is in charge of. Then
another team elaborates its proposition by giving weights to versions of its objects that
are consistent with the choices made by the first team (i.e., it can only choose versions
which match with at least one of the versions mentionned by the first team), and so on for
the remaining teams (each of them taking into account the propositions of the preceding
teams).

phase 2: starting from the set of weighted configurations produced in the first phase, the
goal of this phase is to find an agreement over the weights.

The normal discussion processus described above may be aborted by the occurrence of a
convergence or divergence event.

This behaviour is achieved by the components of the collaboration type specification. In
order to illustrate how each of these components work, we give the step-by-step execution
of a discussion beetwen two teams A and B as represented by the discussion work step of
Figure 3. Teams A and B are respectively in charge of scanner and card reader objects
specified by the task view of Table 2. The execution steps for phases 1 and 2 are shown
in Table 3.

11



p| H |T| HS task view filter team_to_coordinator
111 ] A ] s4,1: d-scanner r4,1: d.scanner, 8
d’_scanner d’_scanner, 6
211|541 |B| rag | sB2 (dscanner,8), d.card reader | rps: d-card reader, 5
TA1 (d’_scanner,6), d’_card reader d’_card reader, 9
3|12 |sa1 A rag | sas rai&rpp r4,3: d-scanner,7
TA &rp 2 _ d’_scanner,7
$B,2
TB,2
412 |sa1 | B 782 raises convergence
T &razs
S$B,2
TB,2
54,3
TA,3

Table 3: Controlled discussion execution

The discussion runs in four execution steps (column 1). P (column 2) indicates the
collaboration phase, H is the current state of the working evolution history (history for
short), it consists of all the messages sent (Stecam,ezec_step Messages) to the teams and
returned by them (rteam,ezec_step Messages). T is a team. H S is the result returned by the
history synthesis function, this result consists of a concatenation of messages extracted
from H. The task view filter column gives the result returned by the associated function,
namely a message to send to a team, it may raise the exception event “convergence” or
"divergence”. The last column of the table is the message returned by the teams. Such a
message consists of a set of weighted object descriptions.

The content of the table reflects the following policies:

e history synthesis: during phase 1, the fuction returns the team-to-coordinator mes-
sages contained in the history. During phase 2, it returns the most recent message
returned by each team.

o task view filter: takes in input the result P computed by the History synthesis
function, and a team 7. During phase 1, it uses the task view to complete each
configuration described in P with a consistent description of objects of 7. During
phase 2, the function tests P to detect if there is still reason to go on with the
discussion because there is no more choice problem to solve. If that is the case, it
raises the convergence event. In our example, after step 3 going up in the discussion
as no sense. Indeed, as the same weight has been attributed to both descriptions of
the scanner, B team may choose what it wants for the card reader. Now, suppose
that 74,1 and rp are [(d_scanner, veto), (d’-scanner, 6)], and [(d.card reader, 5),
(d’-card reader, veto)], then the discussion would be stopped after step 2 by raising
a divergence event.

3.2.2 Coordination protocol

A coordination protocol for a given specification task defines the work steps and their
relationships. A work step applies a collaboration type to a set of teams. For example in
Figure 3, the work step discussion applies the controlled discussion collaboration type to
teams A and B where A has priority over B.

12



In this section we first give a language to specify relationships between work steps, then
we provide a formal definition of the coordination protocol concept.

Coordination expression. A coordination expression is intended to express the re-
lationships between the work steps. It is based on a specific control structure called
coordination iterator.

A coordination iterator is a loop statement which is controlled by: (1) a classical iteration
control expression, (2) exception exit event(s) together with exception handling specifica-
tion, and (3) execution environment description.

An exception exit event may be a simple event or a composite event built from simple (or
composite) events by using some event algebra. The exception handling specification for
a given event specifies the action(s) to undertake when the event occurs'. The execution
environment description specifies a view of the history. A coordination expression is
recursively defined by applying the following rules:

R1. a coordination iterator enclosing a work step is a coordination expression,

R2. a coordination iterator enclosing coordination expressions assemblied by either se-
quence (;) or parallel (|} operators is a coordination expression,

R3. only expressions satisfying rules R1 and R2 are coordination expressions.

Take the controlled discussion example of Section ?7?, then the underlying coordination
expression E would be:

[{(controlled discussion applyied to (A, B)} {iteration number = 3} {convergence => exit,
time_out(1 day)or divergence => abort} {Initial history = }]

In this expression we have used arbitrary symbols to delimit the coordination iterator ([ ]),
and its components ({}). Following, this expression the opinion exchanges betweem teams
A and B take place during three iterations, except if an exception exit event occurs. The
action to undertake depends on the fact that the exception event is convergence or the
composite event “one day time out or divergence”. In the first case the execution of the
iterator is ended, and in the second case the execution of the entire protocol is aborted.
The execution of the expression starts with an empty history.

Formal definition of a coordination protocol. A coordination protocol is a nuplet
< Ct,Te,Ws, Ev,Ce >, where ;

o ('t is a set of collaboration types,

e Te is a set of teams,

o Ws is a set of pairs, each of them consisting of a collaboration type of Ct and an
ordered set of teams included in Te,

1Giving a language for specifying exception handling is out of the scope of this paper, one may envision
to use event action rules, or any specification (or programming) language

13



o FEwv is a set of primitive events including exception events associated with collabora-
tion types of Ct,

o (e is a coordination expression built over Ws and Ew.

The expression E given in the previous paragraph is an example of coordination proto-
col. Here Ct = {controlled discussion}, T'e = {A, B}, W's contains one element namely
<controlled discussion, (4, B)>, Ev = {convergence, divergence, time_out(1 day)}, and
Ce is the expression F.

3.3 Protocol execution model

Take the coordination protocol C1 above, the control of execution of C1 is a standard
workflow execution control. Indeed, executing C1 can be seen as executing a workflow
having two activities A4 and Ap (an activity per team). The end of an activity may be
normal (by returning a message) or exceptional (by raising an exception). The controller
tests iteration conditions and exception events at the end of each activity. These events
may be events raised by activities or external events as for example, time-out. Then the
controller decides to start the following activity or to iterate the workflow or to execute
actions associated with occurred exception events or to exit the protocol.

Protocol C'1 is an example of a very simple protocol consisting of only one collaboration
iterator, ie., a protocol built from rule R1. The execution mechanism depicted for C1
is generalized to any protocol (i.e., protocols built by using rule R2). The expression
E defining a R2 protocol C is an iterator enclosing a set Ei, ..., E, of coordination
expressions assemblied by sequence of parallel operators. Executing C can be seen as
executing a worflow having n activities A;, ..., A,, where 4; is the activity associated
with expression Fj;.

Exception handling. The model allows to handle exception events by using standard
mechanisms as those proposed in programming languages like for example Java or ADA:
at the level of a given iterator, events may be locally processed by using corresponding
actions specified in the iterator definition. An event for which no action is defined at a
certain level may be processed at an upper level.

Let us revisit the example of Figure 3. A complete coordination protocol P should be
of the form:

P =[{E; F} {iteration number = 1} {decision failure => action, {Initial history = 0} ]

where F is the coordination expression for the discussion given above and F a coordination
expression for the decision. By supposing that a decision collaboration type has been
already defined, F' should be:

F' = [ {(decision applyied to (B, A)} {iteration number = 1} {decision failure => raise
decision failure} {Initial history = the most recent messages returned by teams during the
execution of E } |

The exception event decision failure may be raised in F, the action undertaken at the F
level consists in stopping the execution of F' without processing some specific action. The
event is handled at P level.
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Possible actions undertaken for event exception handling may be: disconnecting from the
current protocol, and linking to another one, turning back to some previous work evolution
point, stopping the entire protocol, interrupting the protocol execution, or executing some
dependent application process.

4 Related Work

This section focuses on the modeling of wokflows and the needs. The needs are well
analyzed in [Schmidt, Simone, 1996] and in [Sheth, Kochut, 1997]. In the first paper,
the authors define a coordination mechanism as ”a construct consisting of a coordinative
protocol (an integrated set of pocedures and conventions stipulating the articulation of
interdependent distributed activities) on one hand and on the other hand an artifact in
which the protocol is objectified”. A coordinative protocol is a resource for situated
action in that it reduces the complexity of articulating cooperative work by providing
a precomputation of task interdependencies which actors, for all practical purposes, can
rely on to reduce the space of possibilities by identifying a valid and yet limited set of
options for coordinative action in any given situation”. The malleability quality of a
workflow model, i.e., its capacity to support dynamic changes, flexible process definitions
and graceful handling exceptions, is underlined. In [Sheth and Kochut, 1997], on top of
WFMS qualities cited above, the authors stress on the necessity to consider coordination
and collaboration. Particularly, the modeling of collaboration and of the relationships
between collaboration and coordination tasks are pointed out.

Some researchers adopt advanced transaction models to specify workflows. The tradi-
tional concept of transaction has been extended to support long-duration activities and to
solve the problem of constraint enforcement in design applications. [Bernstein, Newcomer,
1998] discusses several advanced transaction models, e.g.,: Split-Joint Transactions [Pu,
1988], Flexible Transactions [Elmagarmid & al., 1990], Acta [Chrysanthis, Ramamritham,
1991], Sagas [Garcia-Molina & al., 1991], Contract [Waechter, Reuter, 1992], Open Nested
Transactions [Weikum, Schek, 1992].

The main idea of these models is to relax the well-known properties of atomicity, consis-
tency, isolation and durability of the conventional transaction model which would make
data unavailable for long time (since transactions may run for days or weeks). Most ad-
vanced transaction models allow transactions to be composed of other nested transactions
forming a transaction tree. Results of nested transactions are visible to the other sibling
transactions or even to external ones. Some models allow the specification of dependencies
between transactions. Acceptable states for termination of a transaction in which some
sub-transactions may be aborted may be specified by the designer. When concurrency
conflicts or failures happen, the compensation concept is used in place of the standard
rollback: inner transactions are associated with compensating transactions which leave
the database in a consistent state.

Advanced transaction models were developed from a database point of view. Their main
concern is the preservation of database consistency. Thus, users and programs are not
considered. The disadvantages of this approach were developed in [Alonso & al., 1995]
and [Rusinkiewicz, Sheth, 1995].
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Other researchers have proposed specific models for workflows. Some of them provide a
graphical representation of the flow of activities. This representation is completed by a
definition, in a formal language, of the different elements of the workflow: programs used
to execute tasks, concerned human actors and related roles, grouping of tasks in activities,
start and exit conditions of activities, data structure used, activity execution dependencies
and workflow execution failure cases. Among workflow definition languages, let us quote
WEFDL in [Casati & al., 1995] in which actors and roles concepts do not exist, METEOR
in [Sheth & al., 1996], ATREUS in [Grifoni & al., 1997] which provides a lot of possibilities
to define activity dependencies, ICN in [Kim, Paik, 1997].

Some other workflow models are based on rules or agents. An example of a rule-based
model is provided by [Gokkoda & al, 1997]. Workflows are implemented by using the
Acta transaction model and the rule specification language provides Acta-like facilities to
declare task dependencies and compensated activities.

[Leymann, Roller, 1998] and [Divitini & al., 1996] propose agent-based models. Both pa-
pers concentrate on agent communications. But, the first paper focuses on the implemen-
tation of agent communications while the second one is concerned with the specification of
communications. In more details, [Leymann, Roller, 1998] describes a conceptual workflow
architecture based on persistent queues. Each agent has an input and an output queues.
Communications between agents are realized by messages put in the agent input queues.
Messages are deleted from the input queues by its consumer. The results of agent actions
are messages inserted by the agents in their output queue.

[Divitini & al., 1996] presents a language, IL, which allows to define the interoperabil-
ity between agents in a multi-agent-based CSCW systems. IL integrates the malleability
and linkability qualities of computational coordination mechanisms. In particular, special
working modes, like conversation (what we called discussion in our examples), awareness
and iteration are treated as independent and linked coordination mechanisms. IL provides
low-level means to define communications between the different agents of a coordination
mechanism (awareness with or without acknowledgement of receipt, sending of informa-
tion, task activation, warning) and between different coordination mechanisms. IL allows
to define conditions associated with the communications. The real executed protocol will
depend on the satisfaction of these conditions (malleability quality).

Another idea is provided by [Ailamaki & al.,1998]: workflows are represented as schemas
of an object-oriented database. Two kinds of classes exist: one for data used or produced
by the tasks and one for tasks themselves. Relationships connect each task to the data it
uses and to the data it produces. The execution of tasks are controlled by triggers on the
relationships.

5 Conclusion

In this paper we describe a framework for specifying cooperative work integrating both
collaboration and coordination between partners. The both aspects are modeled in an
unified way in the form of a workflow where, instead of considering the workflow tasks
as black boxes, we consider that the tasks (called work step in our model) may con-
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cern several teams having to collaborate. So the workflow specification is enriched by
the description of the collaboration aspect which is present inside the tasks. We provide
a declarative language for specifying what we call a coordination protocol from existing
ones: by adapting one worflow, or by assembling several workflows in a serial or parallel
manner leading to nested workflows. The language allows to define exception events, to
specify circumstances where the events may be raised, what actions have to be undertaken
when exception events occur, and at what point in the workflow these actions have to be
executed. The main advantages of such a declarative approach are to provide collabo-
rative workflows which are easy to understand, thus easy to re-use and to adapt. This
approach is particularly well-suited in the context of large-scale project designing which
involves different engineering and management expertise. In such a context, collaborative
workflows may be kept in the corporate memory to be further used by new members who
want to learn the work done in the past. In our framework, the generic collaboration

“type may easily contribute as a constituant of the corporate memory. Providing generic
specification of coordination protocols is actually an open issue that we envision to study
in a near future. Other works we are interested on, deal with the implementation of our
model, in particular the algorithmic aspect of the history management.
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