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Approximation différentielle pour le probléme de la satisfaisabilité et autres
problémes connexes

Résumé

Nous étudions 'approximabilité différentielle de divers problémes de satisfaisabilité op-
timale. Nous démontrons. que, sauf si co — RP = NP, MIN SAT n'est pas approximable &
rapport différentiel 1/m!~%, pour tout € > 0, ol m est le nombre des clauses de la for-
mule. En mettant en évidence que chaque algorithme d’approximation différentielle pour le
probléme de MAX MINIMAL VERTEX COVER peut étre transformé en un algorithme d’ap-
proximation différentielle pour le probléme de MIN kSAT gararantissant le méme rapport de
performance, nous sommes amenés & étudier I'approximabilité différentielle des problémes
MAX MINIMAL VERTEX COVER et MIN INDEPENDENT DOMINATING SET; tous les deux sont
équivalents pour 'approximation différentielle. Pour ces problémes, nous montrons un résul-
tat fort d'inapproximabilité, informellement, si P £ NP, alors tout algorithme d’approxima-
tion différentielle a un rapport d’approximation égal a O.

Mots-clé : optimisation combinatoire, théorie de la complexité, satisfaisabilité, approxima-
tion.

Differential approximation for satisfiability and related problems

Abstract

We study the differential approximability of several optimal satisfiability problems. We

* prove that, unless co — RP = NP, MIN SaT is not differential 1/m!~*-approximable for any
€ > 0, where m is the number of clauses. Broughting to the fore that any differential approx-
imation algorithm for MAX MINIMAL VERTEX COVER can be transformed into a differential
approximation algorithm for MIN ASAT achieving the same differential performance ratio,
we are lead to study the differential approximability of MaAx MINIMAL VERTEX COVER
and MIN INDEPENDENT DOMINATING SET. Both of them are equivalent for the differential
approximation. For these problems we prove a strong inapproximability result, informally,
unless P = NP, any approximation algorithm has worst-case approximation ratio equal to 0.

Keywords: combinatorial optimization, complexity theory, satisfiability, approximation.
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1 Introduction

In this paper we deal with the approximation of classical optimal satisfiability problems as
MaAX and MiN Sat, Max and MIN DNF, as well as of restrictive versions of these problems
as the ones where the size of any clause is bounded, or/and the number of the occurrences of
any literal is bounded. We also deal with some graph-problems as MaX and MIN INDEPENDENT
DOMINATING SET and MAX and MIN MINIMAL VERTEX COVER. We study the approximability
of all these problems using the so-called differential approzimation ratio which, informally, for an
instance [ measures the relative position of the value of an approximated solution in the interval
[worst-value feasible solution of I, optimal-value solution of I].

All these problems have no polynomial time approximation schemata for the standard ap-
proximation (where one measures the ratio between the value of the approximate solution of
an instance and the value of an optimal one). The SAT problems admit algorithms achieving
constant standard approximation ratio, while algorithms for the DNF ones do not guarantee
such ratios (more details about the standard approximability of all these problems can be found
in [CK]). The MIN VERTEX COVER (called MIN MINIMAL VERTEX COVER in this paper)
is standard 2-approximable, while the MAX INDEPENDENT SET (called MAX INDEPENDENT
DOMINATING SET in the paper) cannot be approximated within n!~%, for any ¢ > 0, unless
co— RP = NP ([Has96]). On the other hand, MIN INDEPENDENT DOMINATING SET is stan-
dard approximable within B/2 where, B is the maximum graph-degree ([Kann92]), while the
MaX MINIMAL VERTEX COVER has, to our knowledge, not been studied yet in the standard
approximation.

The initial objective of the paper was to study the differential approximability of the optimal
satisfiability problems defined above. This study has brought to the fore an interesting relation-
ship between MIN 4SAT and MIN MINIMAL VERTEX COVER which can be informally described
as follows: any differential approzimation algorithm for MIN MINIMAL VERTEX COVER can be
transformed into & differential approzimation algorithm for MIN kSAT achieving the same differ-
ential performance ratio. On the other hand, as we will see just below, MAX MINIMAL VERTEX
COVER is equivalent, for the differential approximation, to the well-known MIN INDEPENDENT
DOMINATING SET. We are so led to study differential approximation results for MAX MINIMAL
VERTEX COVER and MIN INDEPENDENT DOMINATING SET.

All the problems we deal with in this paper have the characteristic that computation of both
their optimal and worst solutions is NP-hard (for example, considering an instance ¢ of MAX
kSAT, its worst solution is an assignment satisfying the minimum number of the clauses of @,
ie., an optimal solution for MIN kSAT on y). Remark also that, given a graph G = (V, E), the
complement, with respect to V' of a minimal vertex cover (resp., maximal independent set) is a
maximal independent set (resp., minimal vertex cover) of G. In other words, the objective values
of MIN (MAX) MINIMAL VERTEX COVER and of MIN (MAX) INDEPENDENT DOMINATING SET
are linked by affine transformations. On the other hand, the differential approximation ratio is
stable for the affine transformation, in the sense that pairs of problems, the objective values of
which are linked by affine transformations, are differential equivalent. Hence the following fact
holds: Min (MAX) MINIMAL VERTEX COVER and MAX (MIN) INDEPENDENT DOMINATING
SET are differential equivalent.

In what follows, we first study differential approximation preserving reductions for several
optimal satisfability problems. Combining them with a general result linking approximability of
maximization problems in differential and standard approximations, we obtain interesting differ-
ential inapproximability results for optimal satisfiability. We also prove that MIN kSaT(B, B)
and MaX kSAT(B, B) reduce to MIN MINIMAL VERTEX COVER-B’ and MIN INDEPENDENT
DOMINATING SET-B', respectively. These reductions lead us to study the differential approx-



imation of MiN {NDEPENDENT DOMINATING ggr. For this problem we prove & Strong inap-
proximabiiity result, informally, unless P = NP, ony appromimation algorithm has worst-case
approscimation ratio equal t0 g. To our knowledge, DO such result Was previously known for the
differential a.pproximation.

2 Preliminaries

We first recall a few definitions about differential and standard a,pproximabiiities. CGiven an
instance T of an optimization problem and a feasible solution y of =, W€ denote by miz,y) the
value of the solution ¥, BY opt(z) the valye of an optimal sotution of % and by w(z) the value of
a worst solution of z. The standard performance; or appromima.tion, ratio of ¥ 18 defined as

| qmiay) o
““”‘m“{omwrmmm)

while the diﬁerential performance, or appmm'imat'ion, ratio of ¥ 18 defined as

sy e
pla) = pt(a) — w@)

1t is easy to €€ that the differential approxima.tion ratio is stable for the affine transformation
of the objective function of a problem, while this does not hold for the standard approximation
ratio.

For a function f, f(n) > 1, an algorithm s 3 standard f (n)-appromimation algorithm for 2
problem 11 if, for any instance T of T1, it returns & solution y such that r(z,9) § (|z}), where \z|
is the size of z. We say that an optimization problem is standard constantly app'roa:imable if,
for some constant ¢ =~ 1, there exists & polynomial time standard c—approximation algorithm
for it. An optimization problem has a standord polynomial time approximatiori schema if 1t
has @ polynomial time standard (1 + E)—apprommation, for every constant £ > 0. Similarly,
for a function f, f (n) < 1, an algorithm is a diﬂerential f (n)-appro:cimation algorithm for a
problem 11 if, for any instance  of 11, it returns & solution y such that p(z,¥) 2 F(lzl)- We say
that an optimiza.tion problem is diﬁe'rentz'al constantly appromimable if, for some constant & < 1
there exists 2 polynomial time differential B-approximation algorithm for it. An optimization
problem has 2 diﬂerential 'polynomial time appm:m'ma,tion scheme if it has 2@ poiynomia.i time
differential 1+ 5)—approximation, for every constant € = 0. We say that two optimisation
problems are diﬁerential equivalent if a Jdifferential 5-approximation algorithm for one of them
implies 2 differential 5-approxima.tion algorithm for the other one. '

In this paper, We study the Jifferential approximability of the following NP-hard optimal

satisfiability problems-

Max (MIN) SAT

Input: 2 set, of clauses Cr,.-- ,Crm, OB T variables Z1.--- , T

Output: & truth assignment £0 the variables that maximizes (minimizes) the number of clauses
satisfied. '

Max (MIN) DNF

Input: 2 get of conjunctions Ciy-- ,Cmoon 7 yariables Ti,.« -2 %

Qutput: & truth assignment 0 the variables that maximizes (minimizes) the nurmber of cor
junctions satisfied. _ :

For a constant K 2 9. Max kSAT, Max LDNF, MIN kSaT, MIN LDNF are the yersions of MAX
gaT, MAX DNF, MIN SAT MmN DNF where each clause ot conjunction has size ot most K- For

- constant B 2 1 Max kSat(B, B), MaX LDNF(B, B), MIN LSaT(B, B), MIN LDNF(B, B),



Max SAT(B, B), MAX DNF(B, B), MiN SAT(B, B), MiN DNF(B, B) are the versions of these
problems where each literal appears at most B times.

Max NAE 3SaT

Input: a set of conjunctions Ch, ..., Cp, of three literals on n variables x1, ..., on.

Output: a truth assignment to the variables that maximizes the number of conjunctions satisfied
in such a way that any one of them has at least orie true literal and at least one false literal.

MIN (MaX) MINIMAL VERTEX COVER

Input: a graph G = (V, E).

Output: a minimal vertex cover (a set S C V such that, V(u,v) € E,ugSorveds)of
minimum (maximum) size.

Min (MaX) INDEPENDENT DOMINATING SET

Input: a graph G = (V| E).

Output: a maximal independent set (a set § C V such that, Yu,v € S, (u,v) ¢ E and
Yu & S,3v € 8, (u,v) € E) of minimum (maximum) size.

In what follows, we denote by MIN (MAX) INDEPENDENT DOMINATING SET-B and MIN (MAX)
MiNIMAL VERTEX COVER-B the versions of the above problems on graphs with maximum degree
bounded by B.

3 Satisfiability problems

3.1 Approximation preserving reductions for optimal satisfiability

We first prove the differential equivalence for MAX SAT and MiN DNF and for MIN SAT and
Max DNF.

Theorem 1. MAX SAT and MIN DNF, as well as MIN SAT and Max DNF are differential
equivalent.

Proof. We construct a reduction from MAX SAT to MIN DNF that preserves the differential
approximation ratio. Let I be an instance of MAX SAT on n variables and m clauses. The
instance I’ of MIN DNF contains m clauses and the same set of n variables. With each clause
01V. ..V of I we associate in I’ the conjunction 7] A.. .AZ;, where £; = E; if £; = z; and b= z;
if £; = Z;. It is easy to see that opt(I'} = m—opt(]) and w(I') = m—w(I). Also, if m(I’,y) is the
value of the solution y in I’, then the same solution y has in I the value m(Z,y) = m —m(I’,y).
Thus, p(I,y) = p(I’,y). The reduction from MiN DNF to MAX SAT is the same.

By an exactly similar reduction, one can prove that MIN SAT and MaAX DNF are also
approximate equivalent. ll

By the proof of theorem 1 one easily can deduce that for each constant k& > 2, MAX kSAT
and MIN KEDNF as well as MIN £SAT and MAX kDNF are differential equivalent.

Consider an instance I of a maximization problem II, an approximation algorithm A for II
and denote by § a feasible solution of II computed by A in I. Then,

ma(l, ) — w(I) ma(l, S)
opt(Z) —w(l) pt(0)
and the following proposition immediately holds.

w(I)>O mA(I S)

S e

6=

26+ (1-0w(l) =

Propositibn 1. Approzimation of e mazimization problem II within differential approzimation
ratio ¢, implies approzimation of Il within standerd approzimation ratio 1/6.

Combining the res_t_llts of theorem 1 and proposition 1 with the fact that for k > 2 and B >
3, Max kSat(B, B) and MaX kDNF(B, B) have no standard polynomial time approvimation
schemate ([PY91]), one deduces the following.



Corollary 1. Fork > 2 and B > 3, MAX kSar(B, B), Max kDNF(B, B), MIN kSat(B, B)
and MIN kDNF(B,B) have no differential polynomial time approzimation schemata, unless
P =NP.

3.2 MinN SAT and MIN VERTEX COVER

MIN VERTEX COVER is as the MIN MINIMAL VERTEX COVER defined in section 2 modulo the
fact that the feasible solutions for the former are not mandatorily minimal. We show that the re-
duction used in [CST96] from MIN VERTEX COVER to MIN SAT is also differential approximation
preserving. This will allow us to establish an inapproximability result for MIN SAT.

Theorem 2. Unless co— RP = NP, MIN SAT is not differential 1/m~¢-approzimable for
any € > 0, where m is the number of clauses of the instance.

Proof. The reduction of [0ST96] from MIN VERTEX COVER to MIN SAT works as follows. Let
G = (V, E) be a graph on n vertices and denote by V = {1,...,n} its vertex set. In order to
construct an instance I of MIN SAT, at each edge (4,7) € E,i < j we associate a variable z;;.
For each vertex 7 we define a clause C;, where

C; = \/ Ty vV \/ Tjs.

Ji(i,5)eEni<y Fil6g)EBA>]

From a vertex cover C of G we define an assignment as follows. For each ¢ ¢ C and each
(4,j) € B, zjy =11if 4> j and z;; = 0if ¢ < 7. Since C is a vertex cover, this definition is not
contradictory. If i ¢ C, then C; is not satisfied and so opt(I) < opt(G).

Given an assignment v of [, let C = {i : C; is satisfied}. Note that set C is a vertex cover
since for (¢,7) € E, at least one of C; and C; is satisfied and so at least one of the vertices
1,7 appears in C. So, at each assignment v of I, we associate in G a vertex cover C with
m(G, C) = m(I,v). This also proves that opt(J) = opt(G).

Finally, using w(I) < w(G), it is easy to show that p(G) = p(I).

We have seen that MiN VERTEX COVER is differential equivalent to MAX INDEPENDENT
SET (which is as MAX INDEPENDENT DOMINATING SET modulo the fact that the independent
set to compute has not to be minimal). On the other hand since the worst solution for MAX
INDEPENDENT SET is the empty set (in other words, w(I) = 0, ¥I), standard and differential
approximation ratios coincide. Furthermore, MAX INDEPENDENT SET is not differential 1/n17-
approximable for any £ > 0, unless co — RP = NP ([Has96]). Consequently, MIN VERTEX
COVER is not differential 1/n'~*-approximable for any £ > 0, unless co — RP = NP and the
result claimed follows. I

From the above proof the following corollary is also deduced.

Corollary 2. MIN SAT(B, B) for B = 1 is not differential 1/m!'~¢-approzimable for any e > 0,
unless co — RP = NP. :

3.3 A positive differential approximation result for Max NAE 3Sar

We show in this section that a restrictive version of MAX NAE 3SAT, the one on satisfiable
instances is differential constantly approximable by the standard 1.096-approximation algorithm
of [Zwick98].

Theorem 3. MAX NAE 3SAT on satisfiable instances is differential 0.649-approzimable.



Proof. Consider a satisfiable instance ¢ of MAX NAE 3SAt defined on m clauses; obviously,

opt{¢} = m. Run the standard 1.096-approximation algorithm of [Zwick98] on ¢ to obtain a

solution C satisfying m{y, C) = m/1.096. On the other hand any random assignment by values

in {0,1} of the variables of y, where any of the two values is assigned with probability 1/2,

will feasibly satisfy 3m /4 clauses (in other words, the assignments (1,1,1) and (0,0, 0) are to be

excluded from the eight possible assignments for each 3-clause); consequently, w{p)} < 3m/4.
Using the values for opt(y), m(p, C) and w(yp), we get

m

m{p,C) —w rp) —3m 0712

= = 0.64963504.
opt(@) —w(p) = m-— 3m 1.096 !

On the other hand, using proposition 1 and the result of [Zwick98] that MAX NAE 3SAT is not
standard approximable within 1.090, unless P=NP, the following is deduced.

Proposition 2. Max NAE 3SAT is not differential 0.917-approzimable.

4 Optimal satisfiability and MiN INDEPENDENT DOMINATING SET

The reduction of [CST96] from MIN SAT to Min VERTEX COVER is standard approximation
preserving but not differential one. However, if one considers MIN MINIMAL VERTEX COVER
instead of MIN VERTEX COVER, then this reduction can work also for the differential approxi-
mation.

Theorem 4. MiIN kSAT(B, B) is differential reducible to MIN MINIMAL VERTEX COVER-B'.

Proof. Let I be an instance of MIN kSaT(B,B) with n variables and m clauses. In the.
instance G of MIN MINIMAL VERTEX COVER, with each clause C; of I we associate a vertex 7.
We draw an edge between ¢ and j if there is a variable = such that C; contains z and C; contains .
The vertex-degrees of the so constructed graph are bounded above by B’ = kB.

From an assignment v of I we define a vertex cover C as the set of vertices that correspond
to clauses satisfied by v. So, opt(G) < opt(]). '

From a vertex cover C of G we define a partial assignment v as follows: if i ¢ C and z; € G;
then z; =0, and if ¢ ¢ C and %; € C; then z; = 1. Hence, if 1 ¢ C then C; is not satisfied by v.
By the way v has been defined, the number of the non satisfied clauses in I is greater than, or
equal to, the number of vertices that are not in C, i.e., m(I,v) < m(G, C‘) This, together with
opt(G) < opt(I) proved just above, implies opt(G) = opt(I ).

If C is a minimal vertex cover (for each 7 € C there exists j ¢ C such that (4,5) € E), then
m(I,v) = m(G, C) since the clause C; is satisfied by v when i € C. Consequently, in particular, -
w(I) = w(G) and this concludes the proof of the theorem. § '

By a proof similar to the one of theorem 2, one can show that MAX kSAT(B, B) reduces to
MAX MINIMAL VERTEX COVER-B’. Since the former is differential equivalent to MIN INDE-
PENDENT DOMINATING SET-B’ the following theorem concludes the section.

Theorem 5. Max kSAT(B, B) is differential reducible to MIN INDEPENDENT DOMINATING
SET-B'. ,

5 MIN INDEPENDENT DOMINATING SET

The results of section 4 naturally bring us to study the differential approximation of MiN IN- |
DEPENDENT DOMINATING SET. The reductzon devised in the following theorem is inspired

from [Irvo1].



Theorem 6. If P # NP, then, for any é(n) € (0,1), (6 decreasing in n), MIN INDEPENDENT
DOMINATING SET on graphs of order n is not differential 8(n)-approzimable.

Proof. We show that, for any §(n) € (0,1), a polynomial time differential 6(n)-approximation
algorithm A for MIN INDEPENDENT DOMINATING SET, could distinguish in polynomial time if
an instance of SAT on n variables is satisfiable or not.

Given an instance ¢ of SAT with n variables z1, . .., z, and m clauses Cy, ..., Cy, we construct
a graph G, instance of MIN INDEPENDENT DOMINATING SET as follows. With each positive
literal z; we associate a vertex u; and for each negative literal Z; we associate a vertex v;. For
i =1,...,n we draw edges w;v;. For any clause C; we add in G a vertex w; and an edge
between w; and each vertex corresponding to a literal contained in C;. Finally, we add edges

in & in order to obtain a complete graph on wy,. .., wn.
Remark that an independent set of G contains at most n + 1 vertices since it contains at
most one vertex among wi,..., Wy and at most one vertex among u; and v; for i = 1,...,n.

An independent dominating set containing the vertices corresponding to true literals of a non
satisfiable assignment and one vertex corresponding to a clause not satisfied by this assignment
is a worst solution of G of size n + 1.

If ¢ is satisfiable then opt(G) = n since the set of vertices correspondmg to the true literals
of an assignment satisfying  is an independent dominating set (each vertex w; is dominated by
a vertex corresponding to a true literal of C;) of minimum size. On the other hand, if ¢ is not
satisfiable then opt(G) =n + 1.

In fact any independent dominating set of G has cardinality either n, or n -+ 1. Hence, if 4
computes a solution of value n then ¢ is satisfiable, otherwise ¢ is not satisfiable. i

An interesting consequence of theorem 6 above is that unless P = NP, any polynomial time
approrimation algorithm for MIN INDEPENDENT DOMINATING SET has worst-case differential
approximation ratio equal to 0. This makes MIN INDEPENDENT DOMINATING SET one of the
hardest problems for the differential approximation. Let us note that, to our knowledge, no
problem verifying a statement as the one of theorem 6 were known until now for the differential
approximation.

Consider the refinement, due to Arora et al. [Aro92], of Cook’s theorem on the NP-hardness
of 3SAT.

Theorem 7. ([Aro92]) Let L be a language in NP. There exists a polynomial-time algorithm
and a constant 0 < € < 1 such that, given any input z, the algorithm constmcts an instance Qg
of 3SAT which satisfies the following properties:

1. if z € L, then @, is satisfiable;
2. if ¢ & L, then no assignment satisfies more than o fraction (1 — £) of the clauses.

Using now the L-reduction of [PY91] from Max 3SAT to Max 3SaT(4,4), and observing that
satisfiable instances are mapped into satisfiable instances, the above result holds also if we replace
3SAT with 35AT(4,4) and ¢ with some constant €.

Theorem 8. MIN INDEPENDENT DOMINATING SET-B is not differential f(B)-approzimable,
for f(B)=1-(2¢'(B ~5)/(2B — 5)), unless P = NP.

Proof. We show that if MiN INDEPENDENT DOMINATING SET-B was differential f{B)-ap-
proximable, then we could distinguish in polynomial time if an instance of MAX 3SAT(4,4) is
satisfiable or at most a fraction (1 — &’) of the clauses are satisfied.

Given an instance ¢ of 3SAT(4,4) with n variables 21, ...,z, and m clauses Ci, ..., Cp,, we
construct a graph G, instance of MIN INDEPENDENT DOMINATING SET-B, as follows. With



each positive literal z; we associate a vertex i, and with each negative literal Z; we associate a
vertex v;. For i==1,...,n we draw in G the edges u;u;. Also with each clause C; we associate
¢ = |(B —1)/4] vertices wj1,...,wje. For each clause C; we add in G an edge between each
wjk, k=1,...,c and any vertex corresponding to a literal contained in Cj.

Suppose that each literal appears at least once. Remark that an independent set of G contains
at most m - ¢ vertices. An independent dominating set containing the vertices corresponding to
the m clauses of ¢ is a worst solution of size m - c.

If ¢ is satisfiable then opt(G) = n since the set of vertices corresponding to the true literals
of an assignment satisfying ¢ Is an independent dominating set (each vertex w;i is dominated
by a vertex corresponding to a true literal of C;) of minimum size. On the other hand, if the
optimal value of ¢ is m’ < (1 —&')m then opt(@)=n+(m—-m)-c2nte -m-c

We show that a differential f(B)-approximation algorithm A for MIN INDEPENDENT DOMI-
NATING SET-B with f(B) =1 — (2¢'(B — 5)/(2B — 5)) gives in the case where ¢ is satisflable a
solution of value less that the value of the optimum solution in the case where ¢ is not satisfiable.

Denote by val the value of the solution computed by A. Then, (m-c—val)/(m-c—=n) 2
F(B). Since c< (B—1)/4andm < 8n/3,val<n+ (m-e'(B-5)/4) <n+m: g e qedl

6 Discussion

‘We have given in this paper differential inapprokimability results for optimal satisfiability prob-
lems, as well as for MIN INDEPENDENT DOMINATING SET. For this problem we have shown that
any polynomial time approximation algorithm has worst-case differential approximation ratio 0.
This result brings MiN INDEPENDENT DOMINATING SET to the status of one of the hardest
problems for the differential approximation.

Differential approximation for optimal satisfiability misses until now in positive results. De-
spite our efforts, the only one we have been able to produce is the one of section 3.3 on a class of
instances of MAX NAE 3SaT, the satisfiable ones. It is interesting to produce non-trivial such
results and this is a major open problem posed by our work. However, it seems to us that, in the
opposite of the standard approximation, obtaining constant differential approximation ratios for
optimal satisfiability is a rather hard task.

As we have already mentioned, results as the one of theorem 6 have not been produced until
now. However such strongly negative results are very interesting since they draw the hardest
of the NP-hard problems classes in the differential approximability hierarchy. Establishing such
results for other problems is an equally interesting open problem.



