CAHIER DU LAMSADE

Laboratoire d’Analyse et Modélisation de Systémes pour 1’ Aide 4 la Décision A
(Université Paris-Dauphine)
Unité de Recherche Associée au CNRS ESA 7024

N
|

PARIS IX DAUPHINE

SOLVING MULTIPLE CRITERIA {0, 1}-KNAPSACK
PROBLEMS USING A LABELING ALGORITHM

CAHIER N° 181 M. Eugénia Captivo !
mai 2001 Jodo Climaco 23
134

José Figueira
Emesto Martins °, José Luis Santos ° ©

received: May 2000.

: DEIO-CIO, Faculdade de Ciéncias, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa,
Portugal (maria.captivo@fc.ul.pt).

2 Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal.
. INESC-Coimbra, Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal (jclimaco@inesce.pt).

“ LAMSADE, Université Paris-Dauphine, Place du Maréchal De Latire de Tassigny, 75775 Paris Cedex 16,
France (figueira@lamsade.dauphine.fr).

7 Departamento de Matemdmatica, Universidade de Coimbra, Apartado 3003, 3001-454 Coimbra, Portugal
({eqvin,zeluis] @mat.uc.pt).

8 CISUC, Departamento de Matemdtica, Universidade de Coimbra.

La mort a surpris brutalement notre collégue Ernesto Martins alors que nous terminions
le présent travail. Homme de convictions autani en tant que citoyen et comme
chercheur, malheureusement pas toujours trés bien compris, il a marqué profondément
tous ceux qui ont partagé quelques moments avec lui. La mémoire de Monsieur le
Professeur Ernesto Martins restera vivante auprés de ses amis.

Contents

Résumé i
Abstract i
1 Imivoduction 1
2 Definitions 2
3 Outline of the method 2

3.1 Formulating the knapsack model as a shortest pathproblem 3

32 A new algorithm for the multiple criteria knapsackproblem 5
4 Experimenis and Resulis 8
5 Conclusions 11
References 12

Appendix

LA RESOLUTION DES PROBLEMES DU SAC-A-D0OS MULTICRITERE
PAR UN ALGORITHME DE MARQUAGE

RESUME. Dans cet article, on examine les performances d’un nouvel algorithme de marquage
congu pour effectuer une recherche exhaustive de toutes les solutions efficaces (ou vecteurs non-dominés)
d"un probldme du sac-a-dos multicritére. Cette recherche est effectuée aprés avoir transformé le probléme
du sac-a-dos en un probléme du plus court chemin dans un réseaux sans cycle. On présente également
quelques expériences effectuées avec I’algorithme et les résultats obtenus, 1.7 algorithme s’ est révélé trés
efficace pour les instances du probléme bi-critdre en variables {0, 1} considérées dans cet article.

Mots-clés: Probleéme du sac-a-dos multicritére, Plus court chemin multicritire, Algorithmes de mar-
quage.

SOLVING MULTIPLE CRITERIA {0, 1}-KNAPSACK PROBLEMS
USING A LABELING ALGORITHM

ABSTRACT. This paper examines the performances of a new labeling algorithm to find all the
efficient solutions (or non-dominated vectors) of the multiple criteria {0, 1}-knapsack problem after
converting it into a multiple criteria shortest path problem over acyclic networks. The experiments
and results are also presented. The algorithm is very efficient for the hard bi-criteria {0,1} knapsack
instances considered in the paper.

Keywords: Multiple criteria knapsack problem, Multiple criteria shortest path problem, Labeling
algorithms.

1 Introduction

Most of the existing books and papers on knapsack problems deal with a single criterion function (see
for example the book by Martello and Toth [1990]). The classical knapsack problem seeks to select,
Jfrom a finite set of items that subset which maximizes a linear function of the items chosen, while a
given single inequality constraint must be satisfied. This model describes real-life applications: capital
budgeting problems, cutting stock problems, loading problems and project selection problems, can be
found as a sub-problem of other more general models. Nevertheless, it is insufficient to take into account
many other practical situations. The single criterion model cannot take into account many relevant
aspects of reality that “must be” translated into several criteria. So a multiple criteria model seems to
be more realistic. To mitigate the drawbacks of the single criterion model its multiple criteria version is
introduced. More precisely the paper introduces a new algorithm for the general multiple criteria {0,1}-
knapsack problem and presents results, in terms of CPU time and total memory used, for a large set of
bi-criteria instances. There have been relatively few studies dealing with this new model (Rosenblatt
and Sinuany-Stern [1989], Kwak et al. [1996], Teng and Tzeng [1996]). Knapsack models have also
been used in modeling multiple criteria combinatorial optimization problems in the field of conservation
biology (see Kostreva et al. [1999]).

Recently, several approaches have been proposed to solve multiple criteria knapsack problems:
branch-and-bound procedures by Ulungu and Teghem [1997] and Visée et al. [1998], dynamic program-
ming by Klamroth and Wiecek [2000], tabu search by Hansen [1997], simulated annealing by Ulungu
et al. [1999] and hybrid meta-heuristics (tabu search and genetic algorithms) by Ben Abdelaziz et al.
[1998].

_In this paper a different approach is used which takes advantage of the network structure of the
problem, after converting the multiple criteria knapsack model into a multiple criteria shoriest path
model. The algorithm is inspired on the multiple criteria labeling shortest path algorithms framework for
acyclic networks (Martins and Santos [1999]). But, the new algorithm is much more efficient because
the characteristics inherent to the underlying network are taken into account. To our knowledge this
algorithm is the first one to be designed and implemented to solve multiple criteria knapsack problems
as a multiple criteria shortest path model. However, the computational results presented in this paper
concerns only the bi-criteria problem. In the experiments done we had some difficulties to cope with
the insufficiency of memory requirements which do not allow us to present results for more than two
criteria. We are working on the implementation of an algorithm for more than two criteria and we hope
to obtain new results soon.

Two more approaches to obtain the set of all non-dominated solutions are known in the literature.
The branch-and-bound approach by Ulungr and Teghem [1997] and Visée et al. [1998], which was de-
signed to take into account only two criteria, and the dynamic programming based approach by Klam-
roth and Wiecek [2000], which was designed to take into account more than two criteria. This approach
is also based on the transformation of a knapsack into a network model, but it is only a theoretical
mathematical work and no results are presented.

The meta-heuristic based approaches by Hansen [1997], Ulungu et al. [1999] and Ben Abdelaziz
et al. [1998], generate a good approximation of the non-dominated set. However, approximative algo-
rithms are not in the scope of this paper.

This paper is organized as follows. In Section 2, some definitions and the necessary background
for carrying out the proposed approach are presented, In Section 3, the method is outlined and it is
discussed: (i) how to formulate a knapsack model as a shortest path problem, and (j7) the main charac-
teristics of the labeling algorithm applied to the particular acyclic network generated from the knapsack
model. In Section 4, computational experiments are reported and the efficiency of the new approach is
discussed. Finally, in Section 5, some possible improvements are advanced as well as some suggestions
for further research.

2 Definitions
Notation concerning the knapsack problem includes:

o [is the number of items;
o r is the number of criteria;

o vk is the K value (or the & profit) of the j item, fork = 1,..., (vj will be used when r = 1);

wj is the weight of the j'* item;

o]

©

W is the total weight limitation of the knapsack (or the capacity of the knapsack).

The multiple criteria knapsack problem can be stated as follows:

!
mx i) = 3y
=1

!
mex f(x) =) viy;
j=1 (D
!
subject to: Y wiyi <W

j=1
yje {0,1}, J: 17“'!1

-wherey; =1, j=1,...,1, if and only if item j is to be included in the knapsack, W > 0, v5,wj > 0 holds
forall j=1,...land k= 1,...,r.

To better understand the approach some additional notation and definitions from graph theory (Ahuja
et al. [1993]), linear (Boolean) programming and multiple criteria combinatorial optimization are nec-
essary.

Let G = (Q,2) be a directed and connected graph, where Q is the set of veriices with | @ |=nand
A C Qx Qs the set of arcs with | 4 |= m. It is denoted by (i, j) the arc linking the vertices i and Jj.and
by ¢'(i,j),--.,¢ (i,), the values concerning the criteria associated to the arc (#,7). A path p from a
starting point s to an end point ¢ in G is a sequence of arcs and vertices from s to ¢, where the tail vertex
of a given arc coincides with the head veriex of the next arc in the path. Let Jx(p) denote the value of
a path p regarding criterion k, for all k = 1,...,7, where k is a minimization criterion. A path p® is said
efficient if and only if, there does not exist any path p in G such that filp) < fulp®), forallk=1,...,r,
with at least one strict inequality. The multiple criteria path problem consists of computie the set of all
efficient paths from a starting point s to an end point ¢ in G. Let P denote the set of all efficient paths
fromstotin G. :

3 Outline of the method

In order to take advantage of the particular structure of network problems, the multiple criteria knapsack
model is transformed into a multiple criteria shortest path problem over an acyclic network, being then
possible to use a special labeling algorithm to search for all the efficient solutions. This transformation
does not improve the theoretical complexity of multiple criteria knapsack problems which is known
to be hard to solve as well as multiple criteria shortest path problems (Hansen [1980] and Martins
and Sanios [1999]). The major advantage of our approach is to compuie non-dominated solutions for
multiple criteria knapsack problems faster than other approaches.

3.1

Formulating the knapsack model as a shortest path problem

This sub-section shows how to formulate the single knapsack problem as a shortest path model (see
Ahuja et al., 1993). However, in a first stage, it is necessary to convert the knapsack model into a
longest path problem. Then, in a second stage, this model is easily transformed into a shortest path
problem by setiing the arc 'costs” equal to the negative of the arc values or profits, There is a one to one
correspondence between the set of feasible solutions of the knapsack problem and the set of paths from
s ot in G. Both, the path in G and the solution of the knapsack have the same (but symmetric) value or
profit. In a mono-criterion framework, the problem is no more than to search all the optimal solutions.
The basic ideas of this technique can be stated as follows:

L.

Determine the set of vertices by using a layer technique.

Each intermediate layer has several veriices. The first layer (layer 0) includes the single vertex
s. Then, layer j can be directly obtained from layer j — 1, for all J =1,...,] where each layer,
from j = 1to [, has at most W -+ 1 vertices, j°,..., j%,..., /. Finally, the last layer (layer [+1)
concerns the single veriex ¢. So, |Q] < (W4 1){-+2.

. Define the set of arcs and the arc costs.

The vertex s has always two outgoing arcs (s, 1°) with c(s,1°) = 0, and (s, 1*1) with ¢(s, 1) =
—vi. The first arc represents the decision not to include item 1 in the knapsack, and the second
arc represents the decision to include it. Concerning the layers from 1 to — 1, each vertex J4, for
a=0,...,W, has at the most two outgoing arcs:

o The arc (j¢,(j+ 1)) with (5, (j + 1)¢) = 0, meaning that item (j + 1) is not included in
the knapsack.

o The arc (j*,(j +1)“™i+) with ¢(j%, (j + D#¥ie1) =~y if a+wjpr < W, meaning
thatitem (j+1) is included in the knapsack, if and only if it has sufficient capacity to contain
this item.

Finally, all vertices belonging to layer [are connected to the veriex z. Thus, there are at most
W +1 dummy arcs with cost ¢(I%,1) = 0, forall e = 0,...,W.

In order to built efficiently the network we proceed as follows:

L.
2.

Let T and V be two lists of superscripis related to the vertices in layers Jjand j+1, respectively.

In the first layer, define the vertex s and the outgoing arcs from s, that is, (5,1°) and (s,1%1).
The list T is initialized with two superscripts, 0 and wy (T + {0,w1}), while V is an empty list
V+{h.

. Then, build the network, layer by layer, until layer I. At each iteration, list T contains all super-

scripts related to the vertices in layer j and successively a new list, V, is built with the superscripts
of all vertices in layer j+1. The set of the arcs between the vertices with the superscripts in " and
the vertices with the superscripts in V are thus created simultaneously. It should be noted that the
elements in T follow the FIFO rule. The procedure stops at iteration] — 1,

. Finally, dummy arcs are added to the network by connecting all the vertices with superscripts

belonging to T with the last vertex, .

Building a network shortest path model.
{ Converting a knapsack model into a shortest path problem. }

(1) begin

(2) Set Q¢ {s}, T+ {0,w;} and V « {};
(3) Q¢+ Quil%1m},

@) SetA+ {(s5,19,(s,1*)}

(5) ¢(5,19) «0 and ¢(s,1%1) = —vy;

(6) for (j=1Dto({-1)do

(7 begin

(8) while (T 3 {}) do

(9) begin

(10) Let a be the first element in T and remove it from T;
(11) if (a ¢ V) then

(12) begin

(13) V+vu{ah

(14) Qe QU{(j+1)7)

(15) end

(16) ﬁt{—ﬁw{(j“,(j+1)“)};

(1an c(j“,(j-{-l)") «—0;

(18) if (a+wj <W)then

(19) begin

(20) if(a+w;iy ¢ V) ihen

(21) begin

(22) Vevu{atwin h
(23) Qe QU{(j+1)HinY;
(24) end

(25) A au{ (G +1))
(26) C(J"a:(f + 1)a+wj+') = VL
27 end

(28) end

(29) TV and V+ {}

(30) end

(31) Q+Quit};

(32) while (T # {}) do

(33) begin

(34) Let a be the first element in 7" and remove it from T;
(35) A+ au{{en);

(36) c(l?1) «0;

(37) end

(38knd

Figure 1: Network converting algorithm.

Some properties of the network generated by the procedure given in Figure 1:

1. It has no cycles,

2. Thereis a one to one correspondence between the set of feasible solutions of the knapsack problem
and the set of paths from s to ¢ in G.

3. The shortest path from s to ¢ represents the optimal solution for the knapsack model and the value
of this solution is the negative “cost” of the shortest path in the network.

The multiple criteria generalization of the model is obvious. It is only necessary to assign a vector
with r components to each arc of the network, (c' (i, j),...,¢ (i, f)).

To exemplify, consider the following bi-criteria knapsack exarple:

max z1 = 8y 4+ 9 4+ 3y3 + Ty + 6ys
max zz = 3y; + 2y2 + 10y3 + 6y; + O9ys
subject to: Iy o+ 2y 4+ 2ys 4+ 4y 4+ 3ys < 9

with y; € {0,1} for j = 1,...,5.
The following network model is obtained:

@ (0,0) (0,0) 0,0 (0,0) 0.9

@©
(0,0) *@

Figure 2: Network model,

where |Q| = 32 and | 4| = 49.
Algorithm of Figure 1 is only pedagogical, because in our computations networks are not explicit.

3.2 A mew algorithm for the multiple criteria knapsack problem

The algorithm described in this subsection (see Figure 3) is a pariicular implementation of the Iabeling
algorithms for multiple criteria shortest path problems on acyclic networks. For more details about
labeling algorithms for general networks see Martins and Santos [1999] (attp: [fwow . mat..uc.pt/ ~
eqvm/eqvm.html).

The new algorithm proposed here takes into account the following characteristics of the network
model which results from the multiple criteria {0, 1} knapsack problem:

o This network is also generated, layer by layer; it is only required the knowledge of the veriices
belonging to layer j-I in order to construct the set of veriices of layer J and the arcs connecting
these two consecutive layers. Thus, all the other vertices and arcs are not taken into account in
this procedure. With this technique a lot of memory space is saved which does not happen when
using general networks,

o Bachveriex j, fora=0,...,W, has atmost two incomingares ((j—1)¢, j*) and ((j— 1551, %),
In this way, the labels of j* can be easily obtained from the labels of vertices (j—1)* and
(j —1)“7"i. So, the whole set of labels of j* is generated only in one iteration. In future it-
erations it is not necessary to update the set of non-dominated labels for each node as it is usnal
when applying labeling algorithms to general networks.

In our algorithm, as well as in labeling algorithms for multiple criteria shortest path, all the labels,

for each vertex, can be lexicographically ordered, but in the particular case of bi-criteria problems, the
following property exists: the values concerning the first criterion are placed by non-decreasing order,
while the values of the second one are placed by non-increasing order. So, in order to see if a new given
label is dominated or not, it is only necessary to compare this new label with the last non-dominated
label already determined. For more than two criteria the new label must be compared with all the labels
already determined. This operation is too much time consuming.

The main steps of the algorithm can now be described as follows:

1. Let T and V be two lists of superscripts related to the vertices in layers j~ 1 and j, respectively.
2. Let.S(j*) be the set of non-dominated (ND) labels concerning the set of all paths from s to j*,

3. Initialize sets S(1°) and $(1*1) with the labels (0,...,0) and (—v},...,—v}), respectively. These
two sets contain the whole set of labels of layer 1.

4. Then, for each of the remaining layers j (j = 2,...,1), build the set S(j) in the following manner:

a) If j* has only one incoming arc, then consider two different cases (see Figures 4a) and 4b)):
i) If the arc is ((j—1)%j%), ie. a belongs to T but g — w;j does not (see Figure 4a)),
Then, S(j*) is equal to S((j — 1)4) (see the computation of S(4?) from S(32) in Figure

5).

f) If the arc is ((j— 1)~*4, j*), i.e., a does not belong to T but a — w; does (see Figure
4b)). Then, the labels in S(j*) can be obtained by summing the vector (—-v},..., —V))
to each of the labels of set ((j — 1)*~*/) (see the computation of S(4%) from S(3) in
Figure 5).

b) If j* has two incoming arcs, i.¢., zand g —w j belong to T (see Figure 4c)). Then, build S(j¢)
by choosing the ND labels simultaneously from the labels in S((j- 1)#), and from the labels
obtained by summing the vector (—v},- y+-+5— V%) to each of the labels of set S (- 1ewr),

To clarify the last case of this procedure an example will be presented.
Figure 3 shows the algorithm described above.

Computing non-dominated vectors for the multiple criteria shortest path problem.
{ A new labeling algorithm to determine non-dominated vectors. }

(1) begin

(@) SetS(1%) « {(0,...,0)} and S(1*1) {(—v{,. =Dk

(3) SetT ¢ {0,w }andV « {};

4) for(j=2toldo

(5) begin

(6) for (a=0)to W do

P begin

(8) if (@ € T) then

9) begin

(10) V«vu{ah

(11) if (a—w; € T) then { two incoming arcs are defined }
(12) S(j?) + Set of ND labels of(S((jm l)a)U
(122 {(_V}.,...,—u;)}es((j—1)a—w;));

(13) else { only the arc ((j— 1)“,j“) is defined }

(14) S(j"){-—S((j—l)");

(185) end

(16) else

an begin

(18) if (a—w; € T) then { only the arc ((j— 1)““"'1,j") is
(18a) defined }

(19) begin

(20) e (I L (TR B
(21) V+VU{a}h

(22) end

(23) { else The vertex j® does not exist }

(24) end

(25) end

(26) T+«VandV+{}

(27) end

(28) S(1) 4~ Set of ND labels of U, S(i9);

(29knd

Figure 3: The new algorithm.

In the above filtering algorithm:

{hempYos(i-1r) = {0y €5 y=)

Now, the case 4b) is clarified by using the bi-criteria example (see the computation of $(5°) from

8$(4?) and $(4°) in Figure 5):

1. In this example S(4%) = {(~9,~2),(~3,~10)} and 5(4%) = { (—17,-5),(—-11,-13)}. The
labels of each set are placed by non-decreasing order of the first criterion.

2. Determine the set S(5°). In this example c!(42,5%) = —6, ¢%(42,5%) = —9, and cl(4%,5) =
A (#°,5%) =0.

3. Now determine the labels of S(5°) in the following way:

Figure 4: Different cases of incoming arcs.

o First of all, compare the first label of $(4%) with the Iabel obtained from the first element
of S(4%) plus (c'(4%,5%),c%(4%,5%)), i.., (—17,-5) with (=9, ~2) + (—6,~9). The lexi-
cographic minimum element between (—17,—5) and (—15,~11) is (—17, —5). So, this is
the first label of the set S(5°). The label (~17,-5) can be removed from S$(4%). The first
element of S(4°) is now (—11,-13).

o Secondly, proceed similarly by comparing (—11,~13) with (=9, —2) + (—=6,-9) = (-15,
~11). The lexicographic minimum is (—15,~11). In order to know if (-15,~11) is dom-
inated or not, compare this label with the last element in S(5%). Label (—15,—11) is also
non-dominated. So, add (~15,~11) at the end of S(5°). Label (~9,—2) is removed from
§(4%). The first element of S(42) is now (—3,—10).

o Thirdly, compare the first label of S(4°) with the first label of S(42) plus (¢!(42,5%), c2(42,
5%)), i.e., (—11,~13) with (=3,~10) + (—6,—9). The lexicographic minimum element
between (—11,—-13) and (~9,—19) is (—11,—13). When comparing this vector with the
last label in the new set $(5°) it is easy to see that (—11,— 13) is also non-dominated. Then,
the label (—~11,~13) is added to $(5°) and it is removed from S(4°), which becomes an
empty set.

o Finally, compare the vector (—3, —10) + (—6,—9) = (=9, —19) with the last Iabel of S5
Label (—9, ~19) is also non-dominated. So, §(5%) = {(~17,-5), (~15,-11), (~11,~13),
(=9,-19)} is obtained.

The illusteative example has 7 non-dominated solutions: $(r) = {(—24,-11),(-23,-14), (-22,
-17),(-19,—18),(-18, ~21),(=17,-22),(—16,-25)}. The solutions for the bi-criteria knapsack
example can be easily rebuilt by using a backtracking technique.

Since the network is built layer by layer, during the optimization process, ranking algorithms (Cling-
co and Martins [1982], Martins [1984] and Martins and Santos [2000]) cannot be used because they start
by computing the shortest tree using the entire network. A previous study had used Martins and Santos
[2000] ranking shortest paths algorithm. The algorithm appears inefficient because it quickly reaches
the maximum memory capacity available. So, it was not possible to solve problems with more that 20
items.

s@)={(-9-2,(-3,-10} 5@)={(-9-2),(-3,-10)}

O—=—@

{(-6,-9)} @sar) =
={(-15,~11),(-9,-19)}

&
:
9

5(#) = {(~17,-5),(-11,-13)}

(@—m=e

5(55) = {(— 17,-5),(=15, - 11), (~11,— 13),(-9,—19)}

s(46) = {(—16,—8),(~10,—16)}

Figure 5: An illustrative example.

4 Experiments and Results

This section deals with the computational behaviour of the algorithm on certain sets of randomly gener-
ated instances. In this study we considered only bi-criteria {0, 1} knapsack instances because multiple
criteria instances are much more demanding memory requirements. The design of the computational
experiments was inspired by the framework proposed in Martello and Toth, [1990], for the classical
single criterion {0, 1} knapsack problem. For the uncorrelated instances, the values vt i v? and w; are
uniformly random generated in the range [1, /] (U represents an upper bound for the values v},, v? and

, . B
w;). For each data set the value for W is computed as the nearest integer value of 100 Z w; (where P

i
is a percentage of)" w;).
=1
Six types of correlated instances were generated as follows:
1. Weakly correlated instances, where w is correlated with v}, i.e., w; € [111,1000], and v} € [1w; —
100, w; +100]. The value of v} is generated in the range [1,1000].

2, Weakly correlated instances, where wj is correlated with v, i.e., w; € [111,1000], and Vi € [w;—
100,w; + 100]. The value of v is generated in the range [1,1000].

3 Weakly correlated instances, where v} is correlated with V3, ie. v} € [111,1000], and vi e [vi -
100, v} + 100]. The value of w; is generated in the range [1 1000].

4, Weakly correlated instances, where v} is correlated with v}, i.c., v € (111,1000], and v} € [—
100, v% + 100]. The value of w; is generated in the range [1, 1000].

5. Strongly correlated instances, where w; is correlated with vj, ie., wj € [1,1000], and v}- =wj+
100. The value of v% is generated in the range [1,1000].

6. Strongly correlated i mstances where w; is correlated with V7, i.e., w; € [1,1000], and v} = w; +
100. The value of v is generated in the range (1, 1000].

For the whole set of instances, P = 50.
The numerical experiments have different aims:

1. To identify the hardest uncorrelated instances and the most interesting instances in terms of the
number of efficient solutions (see Table 1).

2. To know the size of the network generaied by a given knapsack instance.

3. To analyze the performances of the algorithm (in terms of the CPU computing time) when search-
ing for all efficient solutions for all the instances (both uncorrelated and correlated).

4. To analyze the total number of labels used and consequently the memory capacity requirements.

In this study, 20 different instances were generated for each problem. Every instance was built with
the help the C version procedure random.h of NETGEN (Klinginon et al. [1974]). The random seed-
numbers 100, 1000, and 2000 were used on a PC to get the values (concerning the first instance) of

v}, v, and wj, respectively. The remaining instances were generated by successively increasing those

seed-numbers by 10. The code! was executed on a Pentium 11 (two processors, 256 Mhz over Linux, 64
MB of RAM) at the CISUC (University of Coimbra, Portugal).

The results shown in Tables 1 to 8 (see Appendix) concern the average obtained from a set of 20
different instances. The memory space available is around 2 Gbytes.

Concerning the experimental cornputations, some comments can be made.

o Problems generated with a percentage close to 50% of the total sum of w; are bigger (considering
the cardinality of P¢) than problems generated with a percentage far from this central value. Table
1 gives us an idea of this fact. The average was determined from a set of 20 instances. When P
is very low, the number of solutions is small. Consequently, the efficient solutions are also few.
When P is very high the number of items belonging to a given solution is also high, i.e., almost
all the items belong to every solution, The number of solutions is very high, but the efficient
solutions are scarce. There are a few number of efficient solutions which dominate all the other
solutions.

e The storage memory capacity limits the computational experimentation. So, uncorrelated bi-
criteria knapsack instances with more than 210 items (when the data are generated in the range
(1,1000)), and more than 320 (when the data are generated in the range [1,300]) items could not
be solved (see Table 2).

o Concerning the uncorrelated (hard) instances, we observe that, for a given number of items, the
number of efficient solutions is similar when data are generated either in the range [1,300] or in
the range [1, 1000 (see Table 2).

o An interesting result occurs when uncorrelated instances are compared with weakly correlated in-
stances of Types 1 and 2. Weakly correlated instances are more difficult to solve than uncorrelated
instances (¢f. Table 2 with Tables 3 and 4). The number of efficient solutions concerning these
correlated instances is higher than the number of efficient solutions related to the uncorrelated
instances.

IThe software can be directly obtained from José Luis Santos (zeluistmat.uc. pt). The knapsack generator is available
from José Figueira (figueira@fe.uc.pt).

10

o It should be noted that the number of efficient solutions is very low when the values of v and v
are correlated (see Tables 5 and 6).

o Strongly correlated instances are easier to solve than weakly correlated and uncorrelated instances
(¢f. Table 7 and 8 with Tables 2 to 6).

o Unexpected results occur when strongly correlated instances are solved. Strongly correlated in-
stances of Type 5 (see Table 7) are easier to solve than strongly correlated instances of Type 6
(see Table 8). In fact, the strongly correlated instance 2 of Type 6 with 600 items is a pathological
one. It is too much time and space memory demanding. The number of labels estimated at the
last iterations is around 4,000,000,000 while the average number of labels for the remaining 19
instances is 1,609,998,720 (see Table 8).

o In general the parameters studied grow with the number of the items. However, the number of
vertices, the number of arcs and the number of efficient solutions grow more slowly than the total
number of labels created, the memory space and the CPU time. It should be noted that the memory
capacity used depends on the amount of labels in two consecutive layers. This fact explains why
problems of larger dimension cannot be solved.

o However, the code is very fast for the instances being considered here even when huge networks
are considered. See for example Table 7 for { = 900. In such a case, the number of vertices is

* greater than 149,000,000 and the number of arcs is greater than 297,000,000. The CPU time is
around 70 seconds.

5 Conclusions

The results presented in this paper are only preliminary. Future research is needed. There are certain
algorithmic improvements and many computational experiments that can be executed. In particular,

1. To perform some experiments for more than two criteria for instances with a smaller number of
iterns.

2. To compare the algorithm with the available approaches applied to the same kind of knapsack
instances. For the moment, it was not possible to compare the proposed approach with other exact
approaches because until now, it was not possible to obtain the data used by other approaches or
their codes. It should be noted that in the above results, the size of instances which can be solved
strongly depends on the way the instances are generated. In this study, instances of greater scope
can be solved by choosing the “right” seed-numbers (see, for example, what happens with the
results presented in Tables 7 and 8). So, any comparison with other codes requires the use of
exactly the same set of instances. The comparison of the proposed approach with meta-heuristics
techniques is not adequate.

3. To analyze the CPU time with a more advanced version of ranking algorithms (Martms et al.
[1999a,b]) and/or other ranking paths algorithms.

4. To apply this approach to multiple criteria interactive procedure contexts, where a specific type of
local search is needed.

5. To test the model in real-world applications,

The main conclusion of this article consists of showing the efficiency of the labeling algorithm for both
uncorrelated and (weakly and strongly) correlated bi-criteria {0, 1} knapsack instances considered in
this work.

11

6. REFERENCES

AHUJA R.K., MAGNANTI T.M. and ORLIN J.B. (1993): Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

BEN ABDELAZIZ F,, SAOUSSEN K. and JOUHAINA, C. (1998): A hybrid heuristic for multiobjective
knapsack problems”, in S. Voss, S. Martello, I. Osman and C. Roucairol (eds.), Meta-Heuristics: Ad-
vances and trends in local search paradigms for optimization, Kluwer Academic Publishers, Dordrecht.

CLiMAcO J. and MARTINS E, (1982): A bicriterion shortest path algorithm”, Europeon Journal of
Operational Research, 11, 399-404,

HANSEN P. (1980): "Bicriterion path problems”, in G. Fandel and T. Gal (Eds.), Multiple Criteria
Decision Making: Theory and Applications, Lecture Notes in Economics and Mathematical Systems,
Vol. 177, Springer-Verlag, Heidelberg, 109-127.

HANSEN M. (1997): "Solving multiobjective knapsack problems using MOTS”, Conference Poper,
presented at MIC’97, Sophia Antipolis, France, July, 21-24, 9p.

KLAMROTH K. and WIECEK M. (2000): “Dynamic programming approaches to the multiple criteria
knapsack problems”, Naval Research Logistics Quarterly, 47(1), 57-76.

KLINGMAN D., NAPIER A. and STUTZ, I. (1974): "NETGEN: A program for generating large scale
capacity assignment, transportation, and minimum cost flow problems”, Management Science, 20(5),
814-821.

KOSTREVA M., OGRYCZAK W. and TONKYN D.W. (1999): "Relocation problems arising in conserva-
tion biology”, Computers and Mathematics with Applications, 37, 135-150.

KWAK'W., SHI'Y,, LEE H. and LEE C.F. (1996): “Capital budgeting with multiple criteria and multiple
decision makers”, Review of Finance and Accounting, 7, 97-112.

MARTELLO S. and TOTH P. (1990): Knapsack Problems: Algorithms and Computer Implementations,
Wiley and Sons, Chichester.

MARTINS E. (1984): “On a multicriteria shortest path problem”, European Journal of Operational
Research, 16, 236-245,

MARTINS E. and SANTOS J.L. (1999): "The labelling algorithm for the multiobjective shoriest path
problem”, Technical Report 99/005 CISUC, Departamento de Matemética, Universidade de Coimbra,
Poriugal, 24p (http: / /uww.mat .uc.pt/~ equm/equm.html).

MARTINS E., PASCOAL M. and SANTOS J.L. (1999a): "Deviation algorithms for ranking shortest
paths”, International Journal of Fundations of Computer Science, 10(3), 247-261.

MARTINS E., PASCOAL M. and SANTOS J.L. (1999b): "A new improvement for a K Shortest paths
algorithm” To appear in Investigacdo Operacional.

MARTINS E. and SANTOS J.L. (2000): A new shortest path ranking algorithm”, Investigagcio Opera-
cional, 20, 47-61.

ROSENBLATT M.J. and SINUANY-STERN Z. (1989): "Generating the discrete efficient frontier to the
capital budgeting problem”, Operations Research, 37(3), 384-394,

TENG J.-Y. and TZENG G.-H. (1996): A multiobjective programming approach for selecting non-
independent transportation investment alternatives”, Transportation Research-B, 30, 291-307.

ULUNGU E.L. and TEGHEM J. (1997): "Solving multi-objective knapsack problems by a branch-and-
bound procedure”, in J. Climaco (ed.), Multicriteria Analysis, Proceedings of the XIth International
Conference on MCDM, 1-6 August, Coimbra, Portugal, Springer-Verlag, Berlin, 269-278.

ULUNGU E.L., TEGHEM J., FORTEMPS, Ph. and TUYTTENS D. (1999): “Mosa Method: A tool
for solving multi-objective combinatorial optimization problems”, Journal of Multi-Criteria Decision
Analysis, 8, 221-236.

12

VISEE M., TEGHEM J., PIRLOT, M. and ULUNGU E.L. (1998): “Two-phases method and branch and
bound procedures to solve the bi-objective knapsack problem”, Journal of the Global Optimizaiion, 12,
139-155.

13

APPENDIX

Table 1: Average results for uncorrelated instances with:
w;,v},9; € [1,1000], 1 = 50, and W = {55 57! w;.

Total number CPU Total

P W n m of labels | Pe| time memory

created {seconds) used (Mbytes)
10 2,435.15 78,143.70 135,108.80 235,987.25 13.15 0.03 1.55
20 4,870.10 173,174.05 323,549.69 846,833.69 24.35 0.08 5.11
30 7,305.20 260,064.84 496,824.84 1,702,653.25 35.75 0.15 10.54
40 9,740.35 336,412.56 649,260.81 2,648,163.00 43.65 0.18 17.53
50 12,175.15 401,911.31 780,121.12 3,537,664.50 43.60 0.21 25.33
60 14,610.45 456,660.44 889,534.19 4,285,977.50 43.00 0.19 33.17
70 17,045.50 499,687.19 975,507.19 4,770,651.50 36.10 0.22 40.19
80 19,480.70 530,599.94 1,037,266.12 5,053,485.00 25.60 0.35 45.61
90 21,915.75 549,376.31 1,074,775.25 5,170,086.00 12.80 0.27 49.04

Table 2: Average results for uncorrelated instances with:

wj, v}, v} € [L,U] and W = &% =1 Wi
Total number CPU Total
U ! w n m of labels |Pe| time memory
created (seconds) used (Mbytes
10 2,363.40 1,126.50 1,611.35 1,175.00 4.00 0.00 0.3
20 4,908.25 37,293.70 66,893.85 77,756.95 9.75 0.04 2.2
30 7,445.60 121,021.60 228,378.95 466,598.75 19.65 0.11 6.4!
40 9,769.60 241,556.95 464,428.50 1,461,549.62 30.45 0.19 13.5¢
50 12,175.15 401,911.31 780,121.12 3,537,664.50 43.60 0.21 25.3!
60 14,629.80 601,491.38 1,174,242.25 7,195,329.00 60.40 0.34 42.7
70 17,233.90 844,104.38 1,654,160.38 13,434,125.00 83.60 0.52 68.6.
1000 80 19,881.10 1,126,660.25 2,213,888.75 22,916,352.00 101.95 0.90 99.6¢
90 22,433.25 1,443,420.38 2,842,250.00 36,360,640.00 126.30 1.05 138.4:
100 24,932.25 1,794,925.25 3,540,228.00 54,559,704.00 147.90 1.50 186.4'
120 30,059.85 2,620,489.50 5,181,052.50 109,194,928.00 200.70 2.57 306.5¢
140 34,861.30 3,577,586.00 7,085,609.50 193,496,672.00 246.60 4.11 458.11
160 39,764.45 4,689,653.00 9,299,918.00 320,856,384.00 317.20 6.38 680.4"
180 44,767.10 5,959,491.00 11,829,573.00 504,200,544.00 403.85 9.44 957.1¢
190 47,272.25 6,651,830.00 13,209,230.00 620,352,640.00 449.75 18.57 1,109.8¢
200 49,674.45 7,371,979.00 14,644,720.00 753,986,624.00 477.70 13.02 1,274.1¢
210 52,083.60 8,129,389.00 16,154,717.00 907,709,440.00 527.50 24.02 1,465.9:
10 755.45 921.10 1,368.15 994.55 3.80 0.00 0.1«
20 1,473.95 14,020.55 25,617.10 33,629.90 10.05 0.01 0.7¢
30 2,260.70 40,920.70 77,562.30 181,812.25 20.35 0.04 2.3:
40 3,032.55 79,682.75 153,465.16 559,105.12 31.10 0.07 4.9¢
50 3,743.10 128,777.50 250,188.84 1,283,317.25 42.05 0.14 8.71
60 4,522.85 191,145.05 373,338.41 2,662,555.75 60.85 0.16 14.5¢
70 5,271.40 264,406.69 518,350.84 4,626,435.50 84.55 0.21 22.4(
80 6,053.60 350,354.91 688,664.62 7,710,385.50 108.25 0.49 32.8¢
90 6,795.75 446,267.41 878,989.19 12,085,538.00 125.90 0.40 45.3¢
100 7,577.25 554,811.31 1,094,504.38 18,136,050.00 147.20 0.82 61.2¢
300 120 9,112.35 805,540.12 1,592,883.38 36,208,744.00 209.75 0.86 104.87
140 10,628.80 1,100,999.25 2,180,763.00 67,121,896.00 271.40 1.10 159.3¢
160 12,074.45 1,435,843.62 2,847,554.00 111,260,800.00 344.65 2.25 231.04
180 13,602.10 1,823,631.00 3,620,068.75 175,067,696.00 421.85 3.30 317.5¢
200 15,116.95 2,255,463.25 4,480,701.00 261,069,984.00 503.70 3.75 426.84
220 16,651.20 2,734,668.25 5,436,041.00 376,112,160.00 590.25 6.88 563.27
240 18,230.35 3,266,026.00 6,495,507.50 526,541,632.00 679.50 5.40 723.63
260 19,700.65 3,829,434.00 7,619,472.00 713,292,608.00 786.15 12.30 908.26
280 21,209.90 4,443,209.50 8,844,003.00 947,385,664.00 895.50 16.37 1,124.06
300 22,794.35 5,113,660.00 10,181,734.00 1,240,443,264.00 1,001.20 22.89 1,378.52
320 24,286.40 5,814,675.50 11,580,778.00 1,374,251,776.00 1,132.85 28.70 1,6562.17

Table 3: Average results for weakly correlated instances of Type 1.

Total number CPU Total

! w n m of labels | P#| time memory
created (seconds) used (Mbytes)
10 2,836.50 1,116.45 1,605.15 1,183.20 5.30 0.00 0.41
20 5,558.15 39,449.15 70,511.15 117,016.00 16.70 0.05 3.42
30 8,308.25 129,448.50 244,219.59 884,646.81 33.75 0.10 12.57
40 11,155.90 266,245.56 511,701.69 3,144,457.00 53.80 0.20 29.99
50 13,855.15 443,670.16 860,922.12 7,860,288.00 79.75 0.28 57.96
60 16,627.70 665,527.06 1,298,934.00 16,621,605.00 111.05 0.48 101.07
70 19,401.00 930,063.38 1,822,341.62 31,096,588.00 143.70 0.80 160.48
80 22,156.50 1,236,558.25 2,429,748.25 53,032,964.00 179.15 1.59 229.50
90 24,921.00 1,584,363.75 3,119,738.50 84,201,704.00 221.80 2.20 322.64
100 27,791.45 1,978,891.25 3,902,998.75 127,081,920.00 260.05 3.26 430.77
120 33,341.65 2,886,468.50 5,706,975.50 256,987,216.00 362.75 5.35 731.43
140 38,745.55 3,951,615.25 7,826,393.00 467,984,224.00 480.35 9.74 1,137.81
160 44,204.75 5,183,585.00 10,279,378.00 783,581,824.00 595.05 16.54 1,656.98
170 47,048.05 5,871,005.00 11,648,514.00 993,145,536.00 643.65 23.22 1,977.08

Table 4: Average results for weakly correlated instances of Type 2.
Total number CPU Total

l w n m of labels |Pe] time memory
created (seconds) used (Mbytes)
10 2,836.50 1,116.45 1,605.15 1,162.15 5.65 0.00 0.40
20 5,558.15 39,449.15 70,511.15 109,515.80 14.40 0.03 3.20
30 8,308.25 129,448.50 244,219.59 785,160.62 28.70 0.18 11.04
40 11,155.90 266,245.56 511,701.69 2,818,977.50 47.90 0.19 27.94
50 13,855.15 443,670.16 860,922.12 7,140,872.00 70.95 0.39 52.64
60 16,627.70 665,527.06 1,298,934.00 14,996,848.00 97.80 0.52 80.12
70 19,401.00 930,063.38 1,822,341.62 27,631,044.00 127.40 0.89 135.99
80 22,156.50 1,236,558.38 2,429,748.25 46,638,620.00 162.80 1.52 200.85
90 24,921.00 1,584,363.75 3,119,738.50 74,155,824.00 200.85 2.10 286.68
100 27,791.45 1,978,891.62 3,802,998.75 113,421,400.00 246.70 2.79 404.64
120 33,341.65 2,886,468.50 5,706,975.50 234,624,976.00 344.00 5.42 680.58
140 38,745.55 3,951,615.25 7,826,393.00 429,999,712.00 451.70 9.25 1,060.89
160 44,204.75 5,183,585.00 10,279,378.00 724,166,592.00 572.65 16.82 1,631.44
170 47,048.05 5,871,005.00 11,648,514.00 918,991,872.00 634.05 29.00 1,826.98

Table 5: Average results for weakly correlated instances of Type 3.

Total number CPU Total

l w 7 m of labels 17| time memory
created (seconds) used (Mbytes)
10 2,400.45 1,129.80 1,616.85 1,131.95 1.15 0.00 0.35
20 4,856.45 36,933.95 66,179.20 41,247.00 1.40 0.03 1.21
30 7,445.70 121,022.95 228,381.66 148,925.09 1.95 0.05 2.11
40 9,770.05 241,565.34 464,445.25 325,160.66 1.75 0.12 3.02
50 12,175.60 401,922.41 780,143.31 587,161.31 2.50 0.08 4.08
60 14,629.80 601,491.38 1,174,242.25 951,950.81 3.45 0.11 5.34
70 17,233.90 844,104.38 1,654,160.38 1,448,895.62 3.75 0.13 6.81
80 19,881.10 1,126,660.25 2,213,888.75 2,091,244.00 3.75 0.30 8.40
90 22,433.25 1,443,420.38 2,842,250.00 2,885,715.75 4.65 0.15 10.27
100 24,932.25 1,794,925.25 3,540,228.00 3,858,098.00 5.55 0.18 12.19
1560 37,265.00 4,111,134.75 8,147,887.00 12,491,885.00 9.60 0.39 26.51
200 49,674.45 .7,371,979.00 14,644,720.00 - 30,639,232.00 13.60 0.66 49.11
250 61,769.50 11,533,629.00 22,943,804.00 62,602,060.00 17.85 1.42 79.01
300 74,109.35 16,645,086.00 33,142,026.00 113,651,760.00 24.35 2.28 118.74
350 86,409.65 22,674,196.00 45,175,632.00 190,489,072.00 29.50 3.55 172.43
400 98,482.25 29,584,598.00 58,972,276.00 300,213,792.00 34.20 3.94 240.65
450 110,663.75 37,423,768.00 74,626,256.00 451,934,016.00 44.25 5.64 319.56
500 122,737.65 46,151,184.00 92,056,928.00 652,767,936.00 49.50 8.26 419.88
600 147,143.95 66,402,648.00 132,511,024.00 1,241,959,040.00 67.70 16.12 658.84
700 171,388.16 90,273,920.00 180,205,088.00 >2,147,483,647.00 84.65 27.21 1,007.18
800 195,507.91 117,724,592.00 235,058,208.00 >2,147,483,647.00 108.85 43.31 1,435.93

Table 6: Average results for weakly correlated instances of Type 4.

Total number CPU Total

l W n m of labels | P¢ time memory
created (seconds) used (Mbytes)
10 2,400.45 1,129.80 1,616.85 1,132.70 1.15 0.00 0.35
20 4,856.45 36,933.95 66,179.20 40,804.40 1.30 0.03 1.20
30 7,445.70 121,022.95 228,381.66 147,886.16 2.25 0.06 2.09
40 9,770.05 241,565.34 464,445.25 322,582.59 2.40 0.11 3.01
50 12,175.60 401,922.41 780,143.31 582,351.88 2.25 0.13 4.08
60 14,629.80 601,491.38 1,174,242.25 939,805.00 2.60 0.14 5.22
70 17,233.90 844,104.38 1,654,160.50 1,421,028.12 2.70 0.14 6.63
80 19,881.10 1,126,660.25 2,213,888.75 2,043,228.38 3.80 0.15 8.27
90 22,3325 1,443,420.38 2,842,250.00 2,831,194.50 4.75 0.13 10.17
100 24,932.25 1,794,925.25 3,540,228.00 3,792,381.25 5.70 0.20 12.12
150 37,265.00 4,111,134.75 8,147,887.00 12,197,453.00 7.50 0.37 25.33
200 49,674.45 7,371,979.00 14,644,720.00 29,241,920.00 11.05 0.79 45.75
250 61,769.50 11,533,629.00 22,943,804.00 59,028,648.00 15.50 1.33 74.49
300 74,109.35 16,645,086.00 33,142,026.00 107,622,312.00 23.25 2,12 115.34
350 86,409.65 22,674,196.00 45,175,632.00 182,277,600.00 27.95 2.97 168.89
400 98,482.25 29,584,602.00 58,972,276.00 290,068,192.00 33.056 3.94 232.74
450 110,663.75 37,423,768.00 74,626,256.00 438,990,752.00 39.00 5.77 315.63
500 122,737.65 46,151,184.00 92,056,928.00 638,551,936.00 45.30 8.27 417.92
600 147,143.95 66,402,648.00 132,511,024.00 1,232,632,576.00 65.40 26.83 678.90
700 171,388.16 90,273,920.00 180,205,088.00 >2,147,483,647.00 79.95 26.44 1,028.89
800 195,507.91 117,724,592.00 235,058,208.00 >2,147,483,647.00 100.35 44,92 1,496.91

Table 7: Average results for strongly correlated instances of Type 5.

Total number CPU Total

l w n m of labels |Pe] time mermory
created (seconds) used (Mbytes)
10 2,400.45 1,129.80 1,616.85 1,149.25 3.35 0.00 0.35
20 4,856.45 36,933.95 66,179.20 48,615.20 5.45 0.03 1.40
30 7,445.70 121,022.95 228,381.66 205,729.30 9.45 0.08 2.80
40 9,770.05 241,565.34 464,445.25 497,843.75 11.65 0.12 4.43
50 12,175.60 401,922.41 780,143.31 969,781.88 13.80 0.12 6.36
60 14,629.80 601,491.38 1,174,242.25 1,649,708.38 16.10 0.18 8.69
70 17,233.90 §44,104.38 1,654,160.50 2,624,917.75 19.55 0.20 11.79
80 19,881.10 1,126,660.25 2,213,888.75 3,022,242.76 21.90 0.18 15.13
90 22,433.25 1,443,420.38 2,842,250.00 5,566,7565.50 25.35 0.18 18.76
100 24,932.25 1,794,925.25 3,540,228.00 7,591,037.50 27.70 0.30 22.81
150 37,265.00 4,111,135.25 8,147,888.00 24,745,222.00 37.40 0.72 47.72
200 49,674.45 7,371,979.00 14,644,720.00 57,953,332.00 50.50 1.06 82.22
250 61,769.50 11,533,629.00 22,943,804.00 112,346,176.00 61.20 1.45 126.30
300 74,109.35 16,645,086.00 33,142,026.00 193,848,096.00 68.75 2.74 179.54
350 86,409.65 22,674,196.00 45,175,632.00 306,942,592.00 78.30 4.87 240.93
400 98,482.25 29,584,598.00 58,972,276.00 455,952,192.00 85.05 5.97 312.61
450 110,663.75 37,423,768.00 74,626,256.00 648,949,568.00 95.00 8.50 397.16
500 122,737.65 46,151,184.00 92,056,928.00 891,502,592.00 105.80 11.83 494.80
600 147,143.95 66,402,648.00 132,511,024.00 1,549,186,304.00 119.40 20.90 710.68
700 171,388.16 90,273,920.00 180,205,088.00 >2,147,483,647.00 134.20 34.01 972.93
800 195,507.91 117,724,592.00 235,058,208.00 >2,147,483,647.00 148.20 50.47 1,260.56
900 220,187.80 149,068,448.00 297,696,576.00 >2,147,483,647.00 159.85 71.53 1,610.71

Table 8: Average results for strongly correlated instances of Type 6.

Total number CPU Total

l w) m of labels 1Pe| time memory
created (seconds) used (Mbytes)
10 2,400.45 1,129.80 1,616.85 1,146.45 3.75 0.00 0.35
20 4,856.45 36,933.95 66,179.20 47,687.00 5.50 0.01 1.37
30 7,445.70 121,022.95 228,381.66 198,618.16 7.65 0.01 2.71
40 9,770.05 241,565.34 464,445.25 480,546.25 11.50 0.02 4.35
50 12,175.60 401,922.41 780,143.31 946,441.62 12.85 0.05 6.38
60 14,629.80 601,491.38 1,174,242.25 1,632,511.38 17.20 0.07 8.74
70 17,233.90 844,104.38 1,654,160.50 2,587,452.25 20.15 0.15 11.39
80 19,881.10 1,126,660.25 2,213,888.75 3,843,505.25 21.45 0.256 14.52
90 22,433.25 1,443,420.38 2,842,249.75 5,422,356.00 24.10 0.18 18.02
100 24,932.25 1,794,925.25 3,540,228.00 7,374,461.50 26.00 0.23 21.84
150 37,265.00 4,111,134.75 8,147,887.00 24,208,830.00 36.70 0.67 46.94
200 49,674.45 7,371,979.00 14,644,720.00 57,523,532.00 50.75 0.87 83.64
250 61,769.50 11,533,629.00 22,943,804.00 112,958,000.00 59.10 2.34 130.26
300 74,109.35 16,645,086.00 33,142,026.00 196,828,176.00 70.30 2.89 186.90
350 86,409.65 22,674,196.00 45,175,632.00 315,192,384.00 80.30 4.28 260.51
400 08,482.25 29,584,598.00 58,972,276.00 477,039,008.00 91.95 7.11 351.62
450 110,663.75 37,423,768.00 74,626,256.00 697,288,448.00 105.60 7.26 493.19
500 122,737.65 46,235,544.00 92,224,992.00 923,362,880.00 104.42 13.65 512.99
(*)600 147,143.95 66,552,872.00 132,810,600.00 1,609,998,720.00 120.74 25.26 746.21

The asterisk (*) means that only 19 instances were solved.

