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Représentation numérique d’ordres d’intervalle POI
Résumé

Nous considérons le probléme de la représentation numérique des ordres d’intervalle
PQI. Une structure de préférence sur un ensemble fini 4 qui contient les relations P
(préférence stricte), O (préférence faible) et [ (indifférence) est un ordre d’intervalle
PQI si chaque ¢élément de 1’ensemble 4 est représentable par un intervalle de fagon que
la relation P est vraie si un intervalle est complétement & droite de ’autre, la relation [
est vraie si un intervalle est inclus dans ’autre et la relation Q est vraie si un intervalle
est & droite de 1’autre mais leur intersection n’est pas vide. Cette structure a été axioma-
tisée seulement récemment. Dans ce papier, nous analysons des concepts tels que la
magnitude, la matrice caractéristique ou le graphe synthétique. Enfin, nous présentons
deux algorithmes : le premier en O(n?) pour la détermination d’une représentation géné-
rale, le deuxiéme en O(n) pour trouver une représentation minimale.

Mots clés : Intervalles, Ordres d’intervalle PQI, Représentation numeérique, Représen-
tation minimale.

Numerical representation of PQI interval orders
Abstract

We consider the problem concerning the numerical representation of PQI interval or-
ders. A preference structure on a finite set A with three relations P, Q, I standing for
“strict preference”, “weak preference” and “indifference”, respectively, is defined as a
PQI interval order if there exists a representation of each element of 4 by an interval in
such a way that P holds when one interval is completely to the right of the other, 7 holds
when one interval in included to the other and Q holds when one interval is to the right
of the other, but they do have a non empty intersection (Q modelling the hesitation be-
tween P and /). Only recently necessary and sufficient conditions for a PQI preference
structured to be identified as a PQI interval order have been established. In this paper,
we are interested in the problem concerning the representation of a PQI interval order,
particularly numerical representations. We will investigate some concepts aiming at
characterising a PQI interval order such as: magnitude, characteristic matrix, synthetic
graph (SG). Finally, we present two algorithms, the first one in O(n’) to determine a
general numerical representation, and the second one, in O(n), to minimise this repre-
sentation.

Keywords: Intervals, PQOI interval orders, Numerical representation, Minimal repre-
sentation.



1 Introduction

In preference modelling and decision support we often have to compare inter-
vals instead of discrete values. This is due to the fact that the comparison of
alternatives is usually realised through their evaluations on numerical scales,
subject to the unavoidable lack of precision and certainty. The conventional
structure adopted in order to compare two intervals, considers that “z is
preferred to 3” (P(z,y)) iff the interval associated to z is completely to
the “right” (in the sense of the line representing the reals) of the interval
associated to y. In all other cases “z is indifferent to 4”. Such a model
(where indifference is not transitive) may conceal the fact that “z being to
the right of ¢” (the intersection being not empty) is a situation intuitively
different from the case where one interval (let’s say z) is included in the
other (let’s say y). The second case can be considered a “sure indifference”
as much as can be considered a “sure preference” the case P(z,y). Under
such a perspective the first case is a situation of hesitation between prefer-
ence and indifference which merits to be considered separately (see Tsoukias
and Vincke, 1997). We may denote such a situation as “weak preference”
and represented it as Q(z,v).

The PQI interval order has been discussed since 1988 by Vincke. The
problem of characterising such a structure was left open until recently.
Tsoukids and Vincke, 2000, presented a theorem providing necessary and
sufficient conditions for a PQI preference structure to be identified as a
PQI interval order. The operational problem of detecting if a given PQI
preference structure satisfies the conditions of the theorem was solved in
Ngo The et al., 2000, through an algorithm which is demonstrated to run in
polynomial time.

In this paper, we are interested in the problem of the numerical represen-
tation of a PQI interval order. For this purpose, our paper is dedicated to
investigate some aspects of the representation of a PQI interval order (once
detected). We introduce and study some concepts aiming to characterise
a PQI interval order such as: magnitude, characteristic matrix, synthetic
graph (SG). These theoretical results lead to two algorithms: the first one
is to determine a general representation and the second one a minimal one.

The paper is organised as follows. Section 2 provides the basic nota-
tions and definitions. In section 3 we recall some definitions and previous
results concerning the numerical representation of interval orders. Section
4 is dedicated to PQI interval orders. Section 5 gives the two algorithms to
construct a general representation of a PQI interval order and to minimise
this representation. Some conclusions are given at the end of the paper.



2 Basic notations, definitions and results

Further on, if not indicated differently, all the relations under consideration
are binary relations defined on a finite set A and denoted by P,Q,I, R, S,T.
The fact that (z,y) € S is denoted either by S(z,y) or zSy. We adopt the
following notation.

ST ={(z,9): S(y,z)}
§¢==8={(z,y) : -S(z,y)}
§4==8"1={(z,9) : ~S(y,2)}
S~ =A*\(Sus)

5% ={(z,y) : Yz, S(z,2)=S(y, ) and S(z,z)=S(z,y)}
ScT: Vz,y, S(z,y)=T(z,y)

ST = {(z,y) : 3z, S(z,2)AT(z,y)}
§2=9.5

SUT = {(2,9): S(,)VT(@,9)}
ST = {S(z, y)AT(z,))
St(a)={z € A:S(a,z)}

If R is an equivalence relation on A then the equivalence class containing
a € A is denoted by [a]p. When there is no ambiguity, we can use simply
[a]. A binary relation R on a finite set A = {a1, a9, ...a,} can be represented
by an n x », 0— 1 matrix ME with Mg = 1 iff (a;, a;) € R. Further on we
use the following definitions (see Roubens and Vincke, 1985).

Definition 2.1 A binary relation S is:

- a partial order iff it is asymmetric and transitive;

- a weak order iff it is asymmetric and negatively transitive;

- a linear order iff it is irreflexive, complete and transitive;

- an equivalence relation iff it is reflerive, symmetric and transitive.

It is easy to verify that
-8~ =8NS
- 8% = {(z,y) : ¥z, 57(z,2)=S5(y,2)}
- a weak order is also a partial order and a linear order is also a weak order.
Let’s introduce now the concept of rank function.

Definition 2.2 Let S be a linear order on a finite set A. Its rank function
is defined as:

g AN

g9(a) =8%(a)| +1



We have the two following fundamental results from Fishburn 1985:

Theorem 2.1 If S is a partial order then

i) 8% is an equivalence relation;

#) 8 =58.8"=8~8;

i) S¥(z,y)e{z : S(z,2)} = {z: S(y,2)} and {2: S(z,2)} = {z:
S(z, )}

w) (A/S%,S) is a partial order;

Theorem 2.2 If S is a particl order then the following are equivalent:

i) S is a weak order;

i) 8™ is transitive;

ifi) S~ = §%;

i) §=8.87=58".5;

v) (A/S~,8S) is a linear order;

In addition, S is a linear order iff S~ is the identity relation Iy = {(z,z) :
z € A}

In this paper we will consider relations representing strict preference,
weak preference and indifference, respectively denoted as P, @, I. Such re-
lations satisfy some “natural” properties announced in the following two
definitions.

Definition 2.3 A (P, I) preference structure on a set A is a couple of binary
relations, defined on A, such that:

- I is reflezive and symmetric;

- P is asymmetric;

- TUP is complete;

- P and I are mutually exclusive(PNI=0).

By definition, a (P, I} preference structure is perfectly characterised by
P or § = PUI. This means that we can represent it by a matrix just as
the case of a binary relation.

Definition 2.4 A (P, Q,I) preference structure is a triple of binary rela-
tions, defined on A, such that:

- I is reflezive and symmetric;

- P and Q) are esymmetric;

- ITUPUQ s complete;

- P,Q and I are mutually exclusive (PNQ=PNI=QNI=0).



In this case, we have three relations. As they are mutually exclusive, we
also can represent it by a matrix M9 with Mg @ = X where X = PQ,I
and X (a;,a;),Va;,a; € A.

The notion ”ex sequo” is formally defined as follows:

Definition 2.5 The equivelence relation associated to a set of relations B =
{P,Q,R,...} defined on a set A is the binary relation E, defined on the set A,
such that, Vz,y € A: E(z,y) iff V2 € A: R(z,2)&R(y,2), R or Rl ¢
B.

All z,y € A such that E(z,y) are called "ex equo” w.r.t. B. When there is
no ambiguity, B is not mentioned.

By definition, it is obvious that £ = P® N Q% N R¥.... Particularly,
E = P¥ in a (P,I) preference structure and F = P¥NQ~ in a (P,Q,I)
preference structure.

A useful tool to study the minimal numerical representation of preference
structures is the potential function in a valued graph. Let G = (4, U, v) be
a valued graph on a finite set of nodes A; a real value v(a, b) is attached to
each arc (a,b) of U.

Definition 2.6 A potential function of the valued graph G = (A, U,v) is a
function g : A — R such that , ¥(a,b) € U, g(a) > g(b) + v(a,b).

It is easy to see that if g is a potential function whose minimal value is
0, then g(a) cannot be smaller than the maximal value of the paths starting
from a. A fundamental result is the following (Roy 1969).

Theorem 2.3 A valued graph admits potential functions iff there is no cir-
cuit of strictly positive value in the graph. The smallest non-negative poten-
tial function assigns to each node the mozimal velue of the paths starting
from the node.

3 Interval orders

Definition 3.1 A (P, I) preference structure on a finite set A is an interval
order iff A, v : A R such that, Vz,y € A:

i) r(z) = i(z);

i) Pz, y)el(z) > U(y);

iii) I(z,y)=l(z) < r(y) and l(y) < r(z);

Any couple (I,r) satisfying the above conditions is a general representation
of the interval order.



For a finite set A, definition 3.1 is equivalent to the condition P.I.P C P
which is an alternative definition of an interval order (see Fishburn 1985).

Since A is finite, given a general representation (I,r) of an interval
order, there exists a positive constant € = ming,pep {I(a) —7(b)}. The
triple (I,7,€) is called an e-representation of the interval order. With an
e-representation, condition #¢ of definition 3.1 can be rewritten as:
P(z,y)=l(z) = l(y) +e

Among all the possible e-representations (with the same €), the min-
imal e-representation is of special interest. Naturally, it is defined as an
e-representation (I*,7*,€) satisfying, for any other e-representation (I,r,€),
Va € A, I*(a) < l(a) and r*(a) < 7(a). The construction of the minimal
representation is based on the following results.

Theorem 3.1 Let (P,I) be an interval order on o finite set A, and let
T =P, T.=I.P. Then

i) Ty, T, are weak orders on A;

)Ty, T are equivalence relations

and T}, T, are linear orders on A/T}, AJ/T;;

i) E =T NTo.

Proof See Fishburn 1985.

Let define two copies of A, say A;, and A,.
We define Ty on A; U A, as follows:

% To(a,g, b[)<=>Tz (a, b);

- To(ar, b )T (a,b);

- To(at, br )} P(a, b);

- To(ar, bi)=I(a,b) or P(a,b).

Theorem 8.2 Let (P,I) be an interval order on a finite set A, and let
T, T, To defined as above. Then

i) To is a weak order on (AjUA;) ;

i) Ty is an equivalence relation end Tp is a linear order on (AU A,) /Ty’ ;
i) (A1 UA)/T5 = (Ai/TF) U (Ar/T2);

w) z € A4fT = To(y, z) for somey € A JT7,

y € A /T = To(y,z) for some x € A/},

To(z1,22), 1,20 € AT = 1 To y To z2 for some y € A /T, and,
finally,

To(y1,v2), y1,v2 € A /T = y1 To x To yo for some z € A /T,

Proof See Fishburn 1985.



T} (T) represents the order of the left (right) end points of the intervals
associated to elements of A. Each equivalence class in A/T}, (A/T7) rep-
resents a group of elements whose left (right) end points can be identical.
Two elements are ex zequo if both their two end points are identical. Tp rep-
resents the order of all end points. Theorem 3.2 shows that the equivalence
classes of left and right end points are alternative, i.e., after a class of left
end points there is a class of right end points.

Theorem 3.3 Let (P, I) be an interval order on a finite set A, and T}, T,, Ty
defined as above, then
i) AJT and AJT have the same cardinality, say m;
i) If AJT) = {Am To Am—1To ... To A1}
and A/T> = {By To Bm-1T0 ... Ty B1} then
(AU A/T5) = {Bm, Am, ..., B1, A1},
and
By To Am To Bi—1 To Am-1... To B1 T Ay

Proof See Fishburn 1985,

The construction of the minimal e-representation of an interval order is
direct from theorems 2.3, 3.3. The number m is called magnitude of the
interval order. With € = 1, the minimal 1-representation is a representation
on the smallest possible interval of the set of integer numbers.

Example 3.1

Let’s consider the following (P, I} interval order.

alb|ec
P|P
I

~| o) o e

| Y| o) | @

| | o) | e

M| | | o) | ol
e I M A I I o1 v |

@ (oo oo

ATy ={A1 = {h, g, e}, A2 = {fi}, As = {dy, a1}, Ay = {B}, A5 = {ay}}
?/1}—'7; = {Bl = {gr}:B2 = {81" fT}}B3 o= {dr-: hr}|B4 = {cnb'r}lB5 =
ar

The 1-minimal representation of the interval order is:
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4 PQI! interval orders

First, we recall some definitions and fundamental results concerning PQI
interval orders.

Definition 4.1 A PQI preference structure on a finite set A is a PQI
interval order iff 3: 1,7 : A R, such that ¥V z,y € A:

i) r(z) = lz);

i) P(z,y)el(z) > r(y);

it) Q(a, y)er(x) > r(y) > Uz) > ly);

w) Iz, y)er(z) 2 r(y) 2 Wy) 2 U(z) or r(y) 2 r(z) = I(z) > I(y). A
couple (I,7) satisfying these conditions is a general representation of the
PQI interval order.

Theorem 4.1 A (P,Q,I) preference structure on a finite set A is a PQI
interval order iff there exists a partial order I; such that:

i) I =L UI Ul where Iy = {(z,z),z € A} and I, = Iz_l;

#w) (PUQUIL).PCP;

i) P(PUQUIL)CP ;

w) (PUQUL).QC PUQUI ;

v) Q(PUQUIL)C PUQUI,.

Proof. See Tsoukias and Vincke, 2000.

An algorithm to detect a PQI interval order, i.e. to construct I;, was
presented in Ngo The et al., 2000. In this paper, we assume that I; is
known. From the above results, [j(z,y) iff r(y) > r(z) > l(z) > I(y), and
L(z,y) iff r(z) > r(y) = (y) > l(z) with at least one strict inequation.

Since A is finite, there exists :

e=min{ min_{i(a) ~r(®)}, min {r(a) = (), L(e) — UD}}}

The triple (I,r,€) is called an e-representation of the PQI interval order.
as P(z,y)el(z) > I(y) + € and Q(z,y)er(z) 2 r(y) +€ and 7(y) > I(z) >
I(y) + e. The minimal e-representation of a PQI interval order is defined
similarly to that of the interval order.

The following theorem presents the interval order associated to a PQI
interval through the reduction of the two relations I, Q into 1.



Theorem 4.2 If (P,Q,I) is a PQI interval order and [ = TUQ U Q™!
then (P, 1) is an interval order.

Proof. See Tsoukias and Vincke, 2000.

Let’s define the following relations:
fi=2k

1. =1.P;
We introduce two copies of A, say A; and A, and we construct the relation
'l:’g on A; U Jflr as follows:
2:0(0‘1: b;)@i’z(a, b))
To(ar, b )T (a, b),
To(az, b)) P(a, b),
Tﬂ(ara b£)<=>—|P(b, G’)'

Since (P, [ ) is an interval order, we can apply theorems 3.1, 3.2, and 3.3 for
the relations T}, 7%, Tp. We obtain:
= |A /T,, | = IA,./T | the magnitude of the interval order (P, D;
- (40 ATy = (AT U (A, T,
- AI/Tg = {4, To m—1Tp .. A1 };
-A /T”—{B To B m— 1T0 Bl}
- B Tp Am To Bm—1 To Am—1... To By Tp As.

We extend now the relations Tg, f‘,., Ty into 11, T, Tp as follows:
Q=QuUL.QUQ.LUILQ.IL;

Qr=QUL.QUQ.LUL.Q.IL;

Ty =TUQy

Ir=1; 1 Qr;

To(ar, b)) Ti(a,b),

To(ar, by )T (a, b),

Tg(al,b )@P(a b)

To(ar, b)e—P(b, a).

It is obvious that Ty C Ty, as T} C T} and 7% C T

Proposition 4.1 Let (P,Q,I) be a PQI interval order on a finite set A,
and let I, I, T}, Ty, Qi, Qr, T, T, defined as above. Then

) QL CcQUIL and I,.QC I.UQ;

i) P.I; C PUQUI; and I, PC PUQUI,;

i) P.Q™! C (PUQUIg) and @ LP C (PUQUL);

w)Q;ﬂTl Q,.OT“ =0,

) PUQCTic[UPUQ and PUQCT.CL.UPUQ;

vi) (PlUuQlUlL)c-T,c(PluQ-luful,), and

(PAUQtUh) o= e (Pru@t uu L)



vit) T, P C P and PT, C P
vitt) P.T; C T} and T..P C T,

Proof
We provide only the proofs for I; (those of I are similar).

i) aQblic = [(r(a) > 7(b) = l(a) > (b)) and (r(c) > r(b) > I(b) >
l(c))] = r(c) = I(a) > I(c) = (a,c) e QU I,

ii) aPblic = [(i(a) > 7(b)) and (r(c) > r(b) > i(b) > I(c))] = l(a) >
l(c) = (a,c) e PUQUI,.

iii) aPbQ~tc = [(i(a) > r(b)) and (r(c) > r(b) > Uc) > I(b))] = l(a) >
l{c) = (a,c) e PUQU .

iv) Otherwise, Jz, (z,2) € (QU .Q U Q.; U I;.Q.Il).ﬁ. By theorem
4.1 and 4,4 we have (QUI.QU QLU I.Q.I})) C (QU PU ) and
(QUPUIL).PCP.

We have (z,2) € (QUL.QUQ.LU.Q.I).T; c (QUPUIL).PI C
Pi= T;, impossible as Ty asymmetric.

v) AsPc PIcT cT and QCT then PUQ C T}
QUL.QUQ.LUTL.Q.L; c PUQUI; (theorem 4.1 and 7).
Ty=P(IuQuUQ™),PICPPQCPand PQ-'c PUQUI, (by
ii¢). Therefore, T; C PUQ U I,.

vi) Direct consequence of v.

vii) TP C P and PT, C P
I, P=PIPUQPULQPUQLPULQLPCP(as)PCP
and Q.P C P).

vii) PT; C Ty and T,.P C T, ) .
PT = P.PJUP.QUP.I;,,QUP.Q.IUP.I;.Q.I; C P.IUPUP.(PUI) C T.

a
For the construction of the minimal e-representation of a PQI interval
order, we will extend theorems 3.1, 3.2, 3.3 using 7}, T, Tp.

Theorem 4.3 Let (P, Q,I) be a PQI interval order on a finite set A, and
let Ty, T, defined as above. Then

i) T}, T are weak orders on A;

i) T, T are equivalence relations

and T}, T, are linear orders on AJT}y", A/T;;

i) T NI C E.

w)Va€ A: [ajr~ C [a]TIN and [a]7 C [a]..



Proof We consider only T} (7} is similar).
i) We show that 7} is asymmetric and negatively transitive.

o Asymmetry. We recall that if R, S are two asymmetric relations
and RN.S~! = then RU S is asymmetric.
P, Q, I are asymmetric and mutually exclusive = (PUQUI) is
asymmetric = Q; C (PUQ U ;) is asymmetric too.
As T} and Q; are asymmetric, furthermore @, ﬂf’l._l = {} (propo-
sition 4.1.3v), T} is asymmetric.

o Negative transitivity. We recall that the formula;
Yz,y, 2 ~Ti(a, b)A-T;(b, ¢)—=Ti(a, c)
can be reformulated (through simple logical equivalences) as:
Vz,y, 2 _'Tl(b7 C)ATI (a! C)"’Tl(a: b)
We will demonstrate this second formulation.
By proposition 4.1.vi, we have (b,c) € =T} = (¢,b) € (PUQU
Liu If-).

Since T; ¢ PUQ U I;, we consider three cases.
1- (a,c) € P. Then, if (¢,b) € (PUQUI,), we have (a,b) € P C
Ti. If (c,b) € I; then (a,b) € PI, c T, C ).
2 - (a,¢) € Q. Then, if (¢,b) € (PUQ) we have (a,b) € (PUQ) C
Ti. If(c,b) e ) = (a,b) € QL C Ty If (¢,b) € I, = (a,b) €
(PUQUL). If (a,b) € (PUQ) = (a,b) € T}, otherwise,
(b,a) € I, = (b,c) € .Q C T, impossible as (b, c) € —T;.
3-(a,¢) € (TI\ (PUQ)) C I. We also have (a,¢) e TiuQU
L,QUQ.LUIL.Q.L\(PUQ)Cc PQTIUPLUL.QUQ.LUL.Q.],
(theorem 4.1, proposition 4.1).
Let’s consider different possibilities of (e, b).
— (&,b) € (PUQ) then (e,b) € (.,PUL.Q) C (PUL.Q)CT;.
== (C, b) € 1.
We have (a,b) € (PQ'UPLULQUQ.LUL.QI).I; C
(P.Q_I.I; UPIL.LUL.QLUQ.L.I UL.Q.0.0)).
By proposition 4.1, I,.Q ¢ L UQ = Q 1., c Q-1 U,
Therefore, PQ~'.I; c PQ " 'UPL c T
PLILCcPLCT.
L.QLUQ.L.LULQI.I C LQLUQ.LUuL.Q.IL CT,.
- (¢, b) € I,..
We consider five possibilities for (a,c).
% (a,¢) € PQ7! = 3z € A,s.t.(aPzxQ ') and bl;cQz =
(bz) e (PUQUIL).

10



If (b,z) € P = bPzQ e = (b,c) € T}, impossible as
(b,c) € =T;.
If (b,2) € Q = aPzQ b = (a,b) € T.
If (b,z) € [; = aPzxI.b = aPb= aTb.
« (a,¢) € PI; = 3z € A,s.t.(aPzlic)
If (b,z) € P = bPzQ 'c = (b,¢c) € Tj, impossible.
If (b, z) € (QUIUP~TUQ™Y) = aPz[PU(QUQIUI)]b =
aPz(PUI)b= (a,b) € (P.PUT) CT.
¢ (a,c) €EN.Q =3z € A, s.t. (aljzQc)
If (bz) € (PUQUIL) = (be) € (PUQUI).Q C
(PUQU I.Q) C T, impossible.
If (b, z) € Ir = 2liblic = xIjc, impossible as (z,¢) € Q.
If (z,0) € (PUQ) = al;z(PUQ)b = (a,b) € I;.PUL.Q C
PulQcT.
x (a,¢) €Q.Ly =3z € A, st. (aQzlic)
If (ba) € (PUQUIL) = (b) € (PUQUIL).QL C
(PUQUIL).QIL. But we have P.Q.I; ¢ PI, C T,
and Q.Q.I; C (PUQ).; C T and I;.Q.I; C T}, then
(b,¢) € T}, impossible.
It (b,a) € I, = (bz) € L.Q C L UQ. If (bz) €
I. = (z,b) € I = aQzLib = (a,b) € T, otherwise
(b,z) € Q = bQxljc = (b, c) € Ty, impossible.
Therefore (a,b) € PUQ C T,.
x (a,¢) € [.Q.I; = 3z,y € A, st. (alzQylic)
(P luQYa= aTib.
If (b,a) € (PUQUI) = (b e (PUQUIL).L.Q.IL C
PLQLUQL.QILU I;.Q.I;. We have 1,.Q.5; T}, and
P.(I,.Q).I, c P.(PuQul).I, c PP.LUP.Q.LJUPI.I; C
PIcTiand Q.(PUQUIL).L; C Q.PLUQ.Q.LUQ.I C
PLuUQ.L CcTyie., (bc) €T}, impossible.
If (b, @) € I.., we continue to consider the five possibilities
of (b,y).
- b(PUQ)yl; = (b,¢) € Ty, impossible.
- blyy.
If 5(P U P~1)z then we have either (bPa), impossible
as (blra), or (zPa), impossible too as z1,a.
If 5(Q U I))zQylic = (b,e) € Q.Q.LUIL.QL C Tj,
impossible.
If Q 'z = aljzQb = aT}b.
If bI.x = z)bliy = zliy, impossible as zQy.
<H(PTUQ Ny = y(PUQh = alizQy(P U Q)b =
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(a,0) e HQ.PUL.Q.QC I,PUIL.Q CT;.
- by = yhib = aljzQulib = aT}b.

ii) Immediate from theorems 2.1, 2.2 and 1.

i) NI C B If (2,y) € T NTY = (2,y) € HTUT ' UT UTHL
Suppose that (z,y) ¢ E then 32 € A, zR;z and 2Ry with R, # Ro.
Consider, for example, R; = P, we have:
2P~ ly = yP2zPz = yTiz, impossible.
2Qy = yQ 2Pz = yI.Pz = yT,z, impossible.
2Q™ 'y = yQzPzx = yT)z, impossible.

The other cases are quite similar.

iv) Immediate from T, c Ty and T, C To..

Remark 4.1 In general, we don’t have E = T)"NTY". For example, consider
the following PQI interval order:

alb|lec|d
a V1|7
b QI
c I
c

One of its representations is:

albleld
a L|L|L
b Q| L
c L
c

We have (a,b) € E\T" NT;.
If we assume the absence of ex equo, then obviously, I NT> = E = Iy,

Theorem 4.4 Let (P,Q,I) be a PQI interval order on a finite set A, and
B T T T T defined as above, then

i} Tp is a weak order on (AU A,);

i) Tg” is an equivalence relation and Ty is a linear order on (4; U A,)/Tg;
i) (AU A/ T3 = (A/T7) U (A /T7);

12



Proof.

i) We first demonstrate that Tp is asymmetric and negatively transitive.

— Asymmetry.
To=(ToN A x AYU(ToN A, x A YU(ToN (A x A, U A, x 4)),
where (To N A; x A;) (resp. (ToN A, x A)) is in fact isomorph
to T} (resp. 7). As each component of Ty is asymmetric and
belongs to, respectively, A; X 4;, A, x A,, A; x A,UA, x A; which
are mutually exclusive, Tp is asymmetric.

— Negative transitivity.
—To(z,¥), "To(y, z). We have the following case with z, v, 2.

z|y| =2
1 Q) bg Cy
2la|b|ec
3 ajp br Cl
4| a; | b | e
5la-| b | o
2lar b | e
3 Qp b?- C]
4| ar | b | e

We only have to provide a proof for cases 1,2,3,4.

* Case 1: a—Toby—~Toc; = a;=Tib—Tic; (by definition).
= a;—Tjey, (T; is a weak order).
= a;~Tocy, (by definition).
x Case 2: aj—Toh—Toe, = a-The,
i.e. aT}b, ~P(b,c) = —P(a,c)
i.e. P(a,c),~P(b,¢c) = Ti(a,b)
where-=P = PluQuQ-lul=P1lu]j
P(a,c),~P(b,c) = (a,b) e P(PUD C T,
* Case 3: a;~Tob-—~Toc; = a;—Togy
i.e. =P(a,b), P(c,b) = —Ti(a,c)
i.e. Ti(a,c), P(c,b) = P(a,b)
Ti(a, c), P(c,b) = (a,b) € T}.P C P, (by proposition 4.1.vii).
x Case 4: a;—Tob,—Toer = ai—Tyer
i.e. P(a,b),-T.(b,c) = —P(a,c)
Similar to case 2.

ii) Immediate from theorems 2.1, 2.2 and 3.
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iii} Consider [z]r;,z € AU A,. We will demonstrate that “if z = ai(z =
a) for some a € A then [z]ry = a7~ ([2]Ty = [ar]T)”.
By construction of Tp, if ~Tp(z,y) and —T(y,z) then (z,v) & A; x
A-UA, x A
Suppose now that = = a;, if y € (]~ then y = &) for some b € 4, and
~To(az, b) and ~To(b, ;)
& T(ay, by) and =Ti(by, 1) = by € [ar] T~
The case x© = a, is similar.

Theorem 4.5 Let (P,Q,I) be a PQI interval order on a finite set A, and
T, T, To, T, T To,m = |A/TY |, L= |AJT | 7 = |AJTE |, AJTY = {Asyi =
1.m}, A/T> = {B;,i = 1..m} defined above, then
i) classes of AjfT7", A, /T can be arranged in such a way that
ATy = {:X[ To X121 To ...Xgll To :}{11_1 To Xi,—2 To '"X'!"’,"'

A‘:n Ar:—l
Kim1-1To X, -2 T '"Xl.}’

Ay
AT ={Y, To Y,-1 To Yy Top Yric1 To Yoy 2 T0 . Yoy o
B:n Bim-1
}/;'m-l"'l T{} Yf‘m—1—2 T[} YIJ}’
B
ii) with this arrangement, the linear order Ty on (A;U A,)/T§" becomes:
YiToYey.Yoy To Xi To Xj1 To . Xy To ...

Y,

[ -
.

Bo Am
-1 ToYe, 1 —2To.Y1 To Xi,_,-1 To Xi,,_1—2 Tp ... X1
By Ay

Proof.
i) Immediate from Ya € A, [a]~ C [a]TIN, HuLe Ty

i) Immediate from 7 and theorem 3.3.

]
We can now arrange the elements of ((4; U A,)/T5’, To) using its rank
function (% is the rank of Z;).
(A U AT, To) = {Z14r To Z14r—1 T .z}
The relation between Ty and an e-representation is shown in the following
proposition.
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Proposition 4.2 Let (I,r,€) be an e-representation of a PQI interval order
on o finite set. We have:

i) To(ay, by)=l(a) > U(b) +¢;

it) To(ar, br)=r(a) > 7(b) +¢;

i) To(ay, by)=>l(a) > r(b) + €

i) To(ar, by)=r(a) = U(b);

Proof.

i) To(ay, &) = Ti(a,b) = (a,b) €e PUPQUPQ'UPLUPIL UQU
L.QUALUL.QL CPUQUPLUL.QUQ.LUIL.Q.L. If aPb then
la) > r(b)+e>1(b) +e.

If a@Qb then i(a) > I(b) + €.

If aPclib then l(a) > 7(c) + € > l(e) + € = I(b) +e.
If al;cQb then l(a) > l(¢) > I(b) + €.

If aQclib then I(a) > I(c) +€ > I(b) +e.

If aljcQdIb then i{a) > I(c) = I(d) + € > I(b) +e.

ii) Similar to 4.
iii) To(ay, br) < Pa,b) = l(a) = r(b) +¢.
iv) To(ar, by) < -P(b,a) = r(a) > I(b).

=]
The construction of the minimal e-representation of a PQI interval order
is a direct consequence of proposition 4.2 and theorems 4.5, 4.4.

Corollary 4.1 Given a PQI interval order on a finite set A and a positive
constant €, let define

-1*(a) = (i — j + 1)e where a; € Z; C A;;

-7*(a) = (i — j)e where a, € Z; C B;;

where A;, Bj, Z; defined as above.

Then (I*,7*,€) is the minimal e-representation of the PQI interval order
and the values of I* and r* are integral multiples of e.

Proof.
We consider the valued graph G = ((A4; U A,.)/T§”, To, v) where v is defined

as follows:
0 if z={a,;),y=[by for some a,be A

€  otherwise
Since T is a linear order => there is no circuit = there exists a potential
function (theorem 2.3). We will prove that the maximal value of the paths

v(z,y) =
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starting from a node ¢; (a,) (being also the smallest potential function) is :
g(a) = I"(a)
g9(ar) =7*(a)

The nodes of G can be presented as Zj1, To Ziyr_1 To ...Z1. Let’s
remind that Z;TpZ; iff 2 > j and all the arcs of G are either 0 or € > 0. By
proposition 4.2 and theorem 4.5, in two consecutive arcs, there is at least
one arc with value e.

For each Zj, consider the path ® = Z;ToZ;_;...79Z; and denote V(&)
its value. Any other path &’ starting from Z, is obtained from @ by applying
(recursively) the following operation:

- drop out the last arc (z,y), obviously V(®) > V(¥') (v(z,y) > 0).
- replacing a portion (Z;, Z;_1,...Z;) by (2;,Z;). As V(Z;,Z;) < € and
V(Z{, Zi 1, ZJ) > ¢ then V(@) > V(@l)

Therefore, ® is the path with maximal value starting from Zj.

By theorem 4.5, along @, all the arcs are ¢, except (a,,b;) which are
transitive arcs connecting B; to A;. If Z; = a; € A, then there are (j — 1)
transitive arcs = V(®) = (i — j + 1) xe. If Z; = a, € B;, then there are j
transitive arcs = V(®) = (i — j) * €.

0]

M = l+r—mis called the magnitude of the PQI interval order as in the
minimal e-representation of a PQI interval order, the leftmost endpoint is €
and the rightmost endpoint is Me. It is easily to verify that when! =r = m,
then @ = @, the preference structure in question is an interval order, and its
magnitude is M = m.

Example 4.1 Let’s consider the following PQI interval order (L stand for
n)

alblec|d|e|flg]|h
a P|\P|\P|P|P|P|P
b QI P|P|P|PIP
e Q|P|P|P|Q
d P|P|P|L
e QIP|L
f QL
g L
h

Wehavem=5,l=T,r=7T,M=1l+r-m=29.

ATy = {A1 = {lu, @, i}, A2 = {e1}, As = {di, &}, As = {bi}, As = {a;}}

?/(T);‘u = {B1 = {gT}:B2 = {ff:er}=B3 = {dr>hr}1B4 = {Cr,bf-},Bs ==
ar}} '
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A[TY ={X1 = {h, g}, X2 = {1}, X5 = {e1}, X4 = {di}, X5 = {c1}, X6 =
{0}, X7 = {a1}}

AT = ={¢g:},Y2 = {fi},Va ={e},Ya = {&, 1.}, Vs = {c;}, V5 =
{4}, Y7 = {ar}}

After the reassignment of indices

2y ={hiai}, Zo = {fi}, 23 = {9:}, Zs = {@}, Z5s = {f+}, Z6 = {er}, Z7 =
{di}, Zs = {a}, Ze = {dr,he}, Z10 = {b}, Z11 = {er}, Z12 = {br}, Z13 =
{a}, Z1a = {a,}

The 1-minimal representation of the PQI interval order is

a|blel|d|le|flyg
1976|5321
r*|9(8[7|6|4]|3](2

| =]

5 Algorithms

A direct application of the above results in order to determine a minimal
e-representation of a PQI interval order is rather complicated as it has to
pass by the determination of 73,7, 1y, T, To, (A1 U A)/T57.... In this sec-
tion, we will present some more results allowing us to determine a minimal
e-representation using two algorithms. The first algorithm (in O(n?)) de-
termines a numerical representation where all endpoints are distinct. The
endpoints which should be identical will be unified in the second algorithm
(in O(n)) to obtain a minimal e-representation.

Proposition 5.1 Let (P,Q,I) be a PQI interval order on a finite set A,
(1,7) be a representation with all distinct endpoints, B = {I(z),r(z),z € A},
the relation T' defined on (4, U A;) as:

- T(aﬁai);

- T(ay, by)>P(a,b) or Q(a,b) or Ij(a,b);

- T(ar, br)=P(a,b) or Qa,b) or I.(a,b);

- T{ay, b, )= P(a,b);

- T(ar, b))=—P(b,a).

Then :

t) To C T, i.e. T is an extension of Tp.

i) (A4 U A, T) is a linear order and an isomorphism of the linear order
(B, >).

Proof.

1) (msy) € TO-
If 2 = aj,y = by then (a,b) € T; C PUQ U I, then T(z,y). The same
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argument for z = a,,y = b,.
By construction of T and Ty, if * = a;,¥ = b, or £ = a,,y = b; then
T(z,y).

ii) It is obvious that (B, >) is a linear order as I(z), 7(z) have all distinct
values. With the mapping ¢ : A4 U A, — B defined as: ¢(a;) =
l{a), d(a;) = 7(a),Va € A, it is easily to verify that ¢ is a bijection
and T'(z,y) & é(z) > ¢(y).
H
We can consider now the valued graph (4; U A,,T,v) where v(z,y) =
€,vz,y € A. It is obvious that ({(a) = € x g(a;),r(a) = € x g(a,), €), where
g is the rank function of G, is a minimal representation with all endpoints
distinct.
From proposition 5.1, we have:
Yai € A2 TH(ay) = {@, 2 : Pla,z),z € A} U{z; : Q(a,z),z € A} U {z; :
Ii(a,z),z € A};
Va, € A, : T%(a;) = {a,z € A} U {z,,z, : P(e,z),z € A} U {z,z, :
Qa,z),z € A} U{z;: QY a,x),2 € A} U {z; : Ii(a,z),z € A}U {z, 2, :
I(a,z),z € A};
This result leads us to the following formula of the rank function:
Ya € A,
gla) = [T*(ar)] + 1 =2[P*(a)] + |QF (o) + |} ()] + 1;
g9(ar) = [T*(ar)| +1 = 242|P*(a)|+2|Q* ()| +|Q | +| " (a)| +2|IF (o).
The function g can be implemented using the following algorithm whose
complexity is 221 je. O(n2).

n=|A|
f1[1..n],fr(1..n] /* g{a;),g(a,) =/
M[1..n,1..n]; /* matrix representing P,Q,I;*/
procedure numerical_representation
forall i
f1[i]=0
fr[il=1
endfor
forall i, j, j > i
switch (M[i,j])
case P:
f1[il=f1[i]+2
frlil=fr[i]+2
case P~1:
£1[j1=£1[j1+2
frjl=fr[jl+2
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case (}:
f1[i]=£1[i]+1
frlil=frlil+2
frjl=fr[jl+1
case Q71:
f1[j1=£f1[j1+1
frjl=fr[jl+2
frii]l=fr[il+1
case Ij:
f1[il=£f1[i]+1
friil=frlil+1
fr(jl=fr(jl+2
case [.:
f1[j1=f1[j]1+1
fr(jl=fr[jl+1
frlil=frlil+2
endswitch
endfor

Example 5.1 We keep on working with the same example.

alblel|d]|e|f|g]|h|g(z)]|glz)
a| |P|P|P|[P[P|P|P]| 15 | 16
b Q|P|P[P|[P[P| 12 | 14
c QIP[P[P[Q| 9 | 13
d P|P[P[L| 8 | 10
e QIP|L| 5 7
I QiL| 3 6
g Ll 2

h 1 | 11

By definition, Tp C T, i.e., T is an extension of Tp, furthermore, this
extension adds only pairs of either type T'(a;,b;) and T'(a,,b,) to Ty. We
have seen in the previous section that the minimal e-representation is based
on Ty. The unification of endpoints is indeed a reduction from 7" to Tp: two
consecutive left (right) endpoints (in 7) which are not related by Ty can
be unified. Two consecutive endpoints a,T'b; can always be unified because
To(ar, by) requires only r(a) > I(b).

Proposition 5.2 Let (P,Q,I) be a PQI interval order on a finite set A,
T;,T.,T as defined above then:

i) if a3, b € T are two consecutive endpoints and To(a;,b;) then Q(a,b);

ii) if a, Tb, are two consecutive endpoints and To(a,,b,) then Q(a,b).
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Proof.

i) If (as, &) € Tp then (a,b) € T} = PIUQUL.QUQ.L U L.Q.I;. With
the exception of @, there is always at least an endpoint z such that
o TzThy, i.e., a;, by are not consecutive. For example, (a,b) € I;.Q then
Jdec € A, aljcQb, and we have a;T¢;Th;. The other cases are similar.

ii) Similar to i.
|

As a consequence, two consecutive endpoints zTy can be unified if,
Jda,b € A such that one of the following conditions is satisfied
-z =an,y=b;
-z =a,y=b and Ij(a,b);
-z =ar,y=b, and I.(a,b).

We obtain the following algorithm in O(n) to unify endpoints:

Rank([1..2n]; /* 1..2n rank of element z € AU A,*/
Id[1..2n]; /#* identification of element z € Ax/
LR[1..2n]; /* left endpoint, right endpoint#*/
M[1i..n,1..n]; /* matrix representing P,Q,I;*/
X=0; /* number of unifications realised, to be subtracted
from the rank to obtain the minimal representation */
procedure minimal numerical_representation
for i=1..2n do
Rank[i]=Rank [i]-X;
if i=2n then stop endif;
Rank[i]=Rank[i]-X;
if [LR[i]l=left and LR[i+1]=left and M[Id[i+1],Id[i]]= ;]
or [LR[i]=right and LR[i+1)=right and M[Id[i+1],Id[i]]= I,]
or [LR[i]=left and LR[i+1]=right] then
X=X+1;
endif;
endfor;

Example 5.2 We keep on working with the same example.
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Id | Rank | X | Rank — X | observation
hy 1 0 1 L1, Ii(g,h)
a 2 1 1

fi 3 - 2 I

gr 4 2 2

e 5 - 3 Ir

fr 6 3 3

er 7 4

dy 8 — 5

cr 9 - 6 I

d-.| 10 4 6 r, 7, I(a,d)
h-| 11 5 6

b 12 - 7 I,

Cr 13 6 7

b, 14 | - 8

ay 15 - 9 I

a 16 7 9

The result confirms those from the previous example 4.1.

6 More about the representation of PQI interval
order

In this section we examine some other aspects of the representation of a PQI
interval orders: the characteristic matrix and the synthetic graph (SG).

6.1 Characteristic matrix

Given a PQI interval order on a finite set A, by theorem 4.5, we have:
(AYTr, T) = X T Xima T Xa

(AT T} =AY T ¥og BT

With such partitions, each one being a linear order, we define the charac-
teristic matrix M of the PQI interval order as the 0 — 1 matrix defined on
{0:7) : #= L., = 1.r]) by

M. =11 if Iz A, reX;nY;}

Y71 0 otherwise

Thus M;; = 1 if some element z € A has the left endpoint in X; and the
right endpoint in Y.

We can observe that this matrix does not contain enough information
to characterise a P@QI-interval order as it does not contains information
about the order of all (classes of ) endpoints. It must be completed by
a partition of the rows (A;/7;”) as well as of the columns (4, /T,) using
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Ty and T7*. These two partitions enable the merge (see theorem 4.5 and
proposition 4.2) of two linear orders, (4;/7;~,T;) and (4, /T, T;), into the
linear order ((A;UA,) /Ty, To) = {Z1, Za, ...Z11r }. The characteristic matrix
M completed by ((A;UA:)/Ts", To) totally characterises the associated PQI
interval order.

The characteristic matrix associated with the example 4.1 is the following
one. Here, next to each 1, the corresponding element in A is presented.

Z332 Z513 26:4 Zgis Z]177 Z1218 Zl419
Zl:l 19 1h
Z212 ]-f
Ze3] [ | 1e | |
27,5 1d
Z836 le
Z10,7 | | 1
[Z59] [ | 1 I [ Ile

It is easy to verify that if in M, an element 1 corresponding to Z;, (row)
and Z,, (column) then I; < r;. Intuitively, as Ty represents the order of all
endpoints, for any interval, its left endpoint must precede its right endpoint.
We can also verify that there is at least one 1 in every row and every column.

Conversely, given an [ x 7 0 — 1 matrix M, let X = {Xj,..., X;} be the
set of rows and let ¥ = {¥1,...,¥;} be the set of columns, two partitions
X = {A1,...A4}, Y = {Bi,...Bn}, then we can enumerate the rows and
columns, first by all the row in A;, and then all the columns in By, then As,
Bj... The result of this rearrangement is Zy,...Z,. If
(i) there is at least one 1 in every row and every column of M;

(ii) for all element 1 whose row and column correspond respectively to Z,
and Z,j, we have I; < 1,
then M is a characteristic matrix of a PQI interval order.

We can also verify that two PQI interval orders without "ex zequo”
are isomorphic if and only if they have the same characteristic matrix with
partitions on rows and columns.

6.2 Synthetic graph (SG)

The idea of the synthetic graph is to find the graph as simple as possible
to represent a preference structure. A PQI interval order, once identified
(I determined), can be entirely described by the relations P, Q, I,. We will
procede by eliminating all redundant elements from the above relations in
order to obtain simpler ones.
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Let us consider the relation 7% on A defined as the restriction of T
on Ay, ie, T® = PUQ.I,, TE being a linear order (of all right end-
points). If we arrange the elements of A by the linear order T® such that
A= {alTRagTR...an}, its representation matrix has the upper triangle con-
taining only P, @, I,. On each row, all the elements on the right of each P
are P too. We will define a relation P’ containing only the leftmost P on
each row, and then preserve P’ instead of P. On the left of P’ (until the
diagonal), we have only @ and I,. So, if we represent all the I, elements,
the other elements are obviously Q. In fact, we can choose to preserve Q
instead of I., but here, we prefer I, because each chain of I. is a linear
order,i.e., the elimination of redundant arcs and the reconstruction of I, are
quite straightforward. These observations will be formalised hereafter.

We define the following relations:

P'(z,y) iff P(z,y) and Vz # y, P(z, 2) = R(y, z), P' preserves the leftmost
P element on each row (if exists).

Q' = Qn (TE\TETE), Q' preserves only Q-arcs connecting consecutive
elements (ordered by 7). It is necessary to arrange the elements of A.

I;'* = I \ IL.I,

Proposition 6.1 let T'F = TR\ TETR, Then TR Cc PPUQ' UI..

Proof. If (z,y) € (P\ P’) then 3z # y, P(z, ) and =T%(y, 2) Since TF
is a linear order, =T%(y, 2) & TE(z,v).
Therefore, (z,y) € PTR c TRTE, ie., (z,9)- € T'R.
Obvious for the two other cases ((z,y) € (Q\ Q') or (z,y) € I.\ I.).

H

TR represent arcs connecting consecutive elements, necessary to arrange
the elements of A (ordered by T'%).This results show that we don’t have to
preserve T'F as it is included in (P’ U Q' U I%),

Proposition 6.2 The relations P,Q, I can be reconstructed from P',Q', I
using:

i) TR, I, being the transitive closures of, respectively, (PPUQ'UIL) and I.
i) P= P U P.TE,

W) Q = (TR\ (PU L))

Proof i) and iii) are obvious.
P C P YU PL.R)
If P(z,y) and —P'(z,y) then 3z, P(z, z) and TR(z,y).
If P'(z,2) then we have P'.TF(z,y), otherwise, we can find out another
2, P(z,2') and TE(2/,2), or, by transitivity of R, P(z,2) and TR(',y).
Since A is finite, the process must end up to a point such that we have
PLTR(z,y)
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(P'UP.TR c P)

We have
PcP

P'TRc PTR=P(PUQUI.)=PPUPQUPI C P.

Example 6.1

After the rearrangement of elements of A by T, we have the following
representation matrix (R stands for I.).

alblcld|el|flglh|i|ljlk]l|m]n
a Q|Q|P|P|\P|P|P|P|P|P|P|P|P
b Q|P|P|P|P|{P|P|P|P|P|P|P
¢ Q|R|Q|Q|Q|P|P|P|P|P|P
d RIR|Q|R|Q|P|P|P{P|P
e Q|Q|P|P|P|P|P|P|P
f Q|R|Q|P|P|(P|P|P
g R|Q|P|P|P|P|P
h Q|P|P|P|P|P
3 P|P|P|P|P
J QIR|Q|P
k RIR|R
l P|P
m P
n

Using P’, I, the representation matrix become a synthetic representation

matrix as follows (as 7%/ has already been considered in the order of rows
and columns, there is no need to represent @ in the matrix).
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o P
b P
c R P
d R | R P
e P
i R P
g R P
h P
1 P’
j R P’
k R |R'|R
l P
m P
n

The synthetic graph is the graph associated to the synthetic representa-
tion matrix.

7 Conclusion

In this paper we try to extend some well known results concerning the numer-
ical representation of interval orders in the case of PQI interval orders.Such
preference structures appear when, while comparing intervals, it might be
interesting to distinguish a situation of hesitation between “sure” prefer-
ence (empty intersection of the two intervals) and “sure” indifference (one
interval included in the other).

The aim of this effort is to find under which foundations it is possible to
construct a numerical representation of a PQI interval order as soon as it has
been demonstrated that such a representation exists. Not surprisingly we
are able to demonstrate that there exist two weak orders, one representing
the order of the left extreme points and one representing the order of the
right extreme points of the intervals and that on this basis it is possible to
construct a numerical representation.

In the paper we demonstrate the theorems which enable to show what
the numerical representation of a PQI interval order represents. We also
show how it is possible to obtain a “minimal” representation and we provide
alternative characterisations of PQI interval orders (in terms of characteris-
tic matrix etc.). With such results we are able to define two algorithms, the
first constructing a numerical representation for a given PQI interval order,
the second minimising it. Both algorithms are shown to run in polynomial
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time (O(n?) for the first and O(n) for the second).
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