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Approximation polynomiale et coloration de graphes

Résumeé

Considérons un graphe G = (V, E) d’ordre n. Le probléme de la coloration minimum
consiste & attribuer d’'un nombre minimum de couleurs aux sommets de V' de fagon a ce que
deux sommets adjacents ne soient pas coloriés avec la méme couleur. Ce probléme est parmi
les premiers démontrés intrinséquement difficiles et, par conséquent, il est trés improbable
qu’il puisse étre résolu optimalement par un algorithme polynomial. Dans cet article, nous
faisons un tour d’horizon des principaux algorithmes d’approximation {ceux pour lesquels
des rapports d'approximation théoriques ont été étudiés) pour le probléme de coloration
et discutons leurs rapports d’approximation et leur complexité. Enfin, nous proposons une
amélioration du rapport d’approximation pour ce probléme.

Mots-clé : graphe, coloration, complexité, NP-complet, algorithme d’approximation.

Polynomial approximation and graph-coloring

Abstract

Consider a graph G = (V, E) of order n. In minimum graph-coloring problem we try to
color V with as few colors as possible so that no two adjacent vertices receive the same color.
This problem is among the first ones proved to be intractable and hence, it is very unlikely
that an optimal polynomial-time algorithm could ever be devised for it. In this paper, we
- survey the main polynomial time approximation algorithms (the ones for which theoretical
approximability bounds have been studied) for the minimum graph-coloring and we discuss
their approximation performance and their complexity. Finally, we further improve the
approximation ratio for graph-coloring.

Keywords: graph, coloring, complexity, NP-complete, approximation algorithm.
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1 Introduction

Consider a graph G = (V, E) of order n. In minimum graph-coloring problem (C), we wish
to color V' with as few colors as possible so that no two adjacent vertices receive the same
color. This problem was shown to be NP-hard in Karp’s original paper ([40]), and remains NP-
complete even restricted to graphs of constant (independent on n) chromatic number at least 3
(for more informations about the complexity of numerous restrictions, or generalizations of C, the
interested reader is also refereed to [35]). The chromatic number of a graph, denoted by x(G), is
the smallest number of colors that can feasibly color its vertices. A graph G is called k-colorable
if its vertices can be legally colored by k colors, in other words if its chromatic number is at
most k; it will be called k-chromatic if k is its chromatic number.

Since adjacent vertices are forbidden to be colored with the same color, a feasible solution
of C can be seen as a partition of V into vertex-sets such that, for each one of these sets, no
two of its vertices are mutually adjacent. Such sets are usually called independent sets. So, the
optimal solution of C is a minimum-cardinality partition into independent sets.

Another combinatorial quantity defined on discrete structures that will be useful in the sequel
is the one of set-covering. Given a family S of sets drawn from a ground set C (satisfying
Ug;es8; = C), a set-covering is a family §' C & such that Ug,esrS; = C.

Both quantities, independent set and set-covering, give rise to two well-known NP-hard op-
timization problems, namely the one of finding the mazimum-cardinality independent set of a
graph, denoted by o{@), and the one of finding the minimum-cardinality set-covering of a set
systemn. In what follows we will denote by IS the former and by SC the latter.

Given the computational hardness of C, if one wishes to devise fast algorithms, then he/she
has to develop polynomial time methods providing, for all instances, feasibie solutions, the values
of which are as close as possible to the value of the optimal ones. This is what in the literature
is commonly called polynomieal time approzimation algorithms (PTAA).

The “goodness” of a PTAA A is measured by the so-called approzimation ratio. Two types
of ratios have been used until now: the one that, in some way, compares the value A(I) of the
approximate solution for I, provided by 4, with the value OPT(I) of the optimal one, and the
one comparing A(J) not only with OPT(I) but also with WORST(I), the value of the worst
feasible solution of I. Each one of these measures draws its proper working-framework into
which every NP-hard problem can be analyzed and implies its proper approximation results.
This is, as we shall see in the sequel, particularly true for C (in general, given an NP-hard
problem, approximation results can be very different when using the one working-framework or
the other). For reasons of simplicity, we will speak about p-framework to denote the former and
about d-framework to denote the latter. Informally:

¢ in the p-framework, the comparison between A(I) and OPT(I) is usually performed by
answering the following question: “what is the ratio between A(I) and OPT(I)#” this
question induces the so-called approzimation ratio;

e in the J-framework, the comparison between A(I), OPT(I) and WORST([) is performed
by answering the question: “what is the least ¢ for which 4 is to an extent of (1 — €) like
the worst algorithm, and to an ertent of € like the ideal one?”; this question induces the
differential-approzimation ratio.

Let A be a PTAA for an NP-hard problem II, let Z be the set of instances of II, let A() be the
value of the solution provided by 4 on an instance 7 € Z, OPT(]) be the value of the optimal
solution for I and WORST(I) be the value of the worst solution of I. Moreover, let for a fixed
constant M, Tys be the subset of 7 defined as Ipy = {I € T : OPT(I) > M}, and let o(I) be
the number of the feasible solutions of I.



s Approximation ratio p:
~ the approzimation ratio pa(I) of the algorithm 4 on an instance I € T is defined as

__AD
() = 5BT(H

the approzimation ratio py of 4 for Il is defined as

{ sup{r : pa(I) > r,¥I € I} TI a maximization problem

Pa inf {r: pa(I}) < r,¥I € I} 1l a minimization problem

the asymptotic approzimation ratio p3° of 4 for I1 is defined as

o sup{r : AM, pa(I) 2 r,¥I € Ty} II a maximization problem
Pa = inf {r : AM, ps(I) £ r,VI € Ipy} II a minimization problem

- the epprozimation ratio pyy for Il is defined as

_ | max{py:4aPTAA for IT} II a maximization problem
m= min {p; : A a PTAA for IT} II a minimization problem

¢ Differential-approximation ratio ¢:

— the differential-approximation ratio 64(I) of the algorithm 4 on an instance I € T is

defined as
WORST(I) — (1)

WORST(I) — OPT(I)
— the differenticl-approzimation ratio 6y of 4 for Il is defined as

&(I) =

da=sup{r:&(I)>rIecT}

— the asymptotic differential-approzimation ratio 65° of 4 for Il is defined as

50— s eun J _WORST(D) — A(D)
AT 0% U;p WORST(]) - OPT(])

=

— the differential approzimation ratio érp for II is defined as

dn = max {ps : & a PTAA for IT}

Let us note that the best expected case for the behavior of an approximation algorithm is
that it could guarantee an approximation ratic tending to 1. More formally, the ideal would
be that we had a PTAA & receiving as inputs an instance I of an NP-hard problem and a
fixed constant € and guaranteeing approximation ratio (resp., differential-approximation ratio)
1+ € or 1 — € depending on if the problem at hand is a minimization or a maximization one
(resp., 1 — ¢, for the §-framework), for every € > 0. In this case, we have, in fact, a se-
quence (A¢)eso of approximation algorithms having the desired approximation properties just
described. Such a sequence is called a polynomial time approzimation schema (PTAS) or, in the
o-framework, differential PTAS (DPTAS). Moreover, we can further classify such schemata fol-
lowing the time-complexity of algorithm 4.. We so speak about PTAS (DPTAS) if its complexity
is O(f(|I{)®(/9)) and about fully PTAS (FPTAS), or fully DPTAS (FDPTAS) if its complexity
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is O(g(1/€)O({I|F)), where |I| is the size of I, f and ¢ polynomials not depending on |I| and &
a fixed constant (not depending neither on I}, nor on €). A PTAS, or FPTAS {resp., DPTAS,
or FDPTAS) is called asymptotic if, for every instance I, it guarantees approximation ratio
1+e+¢/OPT(I) or 1 - ¢~ ¢/OPT(I), depending on if the problem at hand is a minimization
or a maximization one (resp., 1 — ¢ — ¢/(WORST(I) — OPT(I)), for the d-framework), for some
fixed constant ¢ and for every e > 0.

The approximation of C by efficient algorithms is a central problem in complexity theory.
In p-framework, people knew quite early that a polynomial time approzimation schema cannot
exist for it, since a lower bound 2 was proved for the ratio of every PTAA supposed solving C;
this result, due to Garey and Johnson, has been published in 1976. But even if the researchers
conjectured that approximation ratios greater than 2 were equally unlikely, such a result was not
formally produced up to the early 90’s when the impossibility of approximating C by a constant
ratio approximation algorithm is proved by Lund and Yannakakis. This result, motivates from
then on, many researchers for searching either for approximation algorithms with improved
approximation ratios, or to strengthen the existing inapproximability results. On the other
hand, in é-framework, C is better-approximable than in the p-one, since constant differential-
approximation ratio PTAAs exist since 1994,

This paper, even if it surveys both positive and negative approximation results! about C
in both the approximation frameworks, is rather oriented towards the positive ones. For this
reason, positive results are presented and commented in detail and the underlying algorithms are
specified in a kind of “pseudo-PASCAL”, while the inapproximability ones are simply mentioned.
Before presenting positive results, we give the intuition (or key-idea) behind them. The ob jective
of this survey is double: to present already known results and to introduce some new ones. In
order to be as short and easy to read as possible, only new results are proved, while already
existing results are stated without proofs. Also, in section 3 a coloring method is discussed using
a randomized algorithm that has been derandomized later by rather complicated techniques.
Since both random algorithm itself and its derandomization are long, and on the other hand,
paper does not deal with probabilistic methods, only the underlying idea is discussed, while we
omit to specify the overall algorithm.

Let us consider a simple undirected connected graph G = (V, E) of order n. Sometimes, we
will denote by |G| the order of G and by V(G) its vertex-set. Given a set V' of vertices of a
graph G, we will denote by G[V'] = (V', E(G[V"])) the partial subgraph of & induced by V*. For
every vertex v € V, we denote by I'c(v) the set of neighbors of v (neighborhood of v) and by d°(v)
the quantity [Cq(v)|, this quantity is classically called the degree of v; A(G) = max,ey{d°(v)}
is the maximum degree of G. The notion of neighborhood can be extended to apply to a set
V' C V; we denote by I'a(V”) the set of neighbors of the vertices of V7, i.e., Tg(V") = Uper T (v).
Whenever no ambiguity can occur we use notation I'(v) instead of ['g(v). Given vertices v and u,
we denote by d(v,u) their distance, i.e., the length (number of edges) of the shortest elementary
path linking v and u (since G is undirected d(v,u} = d(u,v)). By K, we denote a complete
graph on t vertices. All logarithms of the paper are to the base 2 unless otherwise noted. Finally,
the following well-known expression ([10]) links x(G) and «(G) and will be used later:

A{G)x(G) = |G| , | (1)

'For an NP-hard minimization {resp., maximization) problem II, an approximation result is called positive
if, given an approximation algorithm A, it provides an upper (resp., lower) bound on the approximation ratio
guaranteed by A when used to solve IT; it is called negative or inapproximability result when it provides a lower
(resp., upper) bound for the ratic of an algorithm or of a whole class of approximation algorithms for IT -



Part 1
Graph-coloring in standard approximation

2 How can one always color a graph with A(G) colors?

We first recall some standard graph-theoretic concepts used in what follows in this section (for
more details one can be referred to {10, 15]). Consider a connected graph G = (V, E). A subset
A C 'V is called articulation set if G[V \ A] is not connected; an articulation set of size 1 will
be called articulation point. A graph G is k-connected iff |G| 2 k + 1 and iff it does not contain
articulation set of size less than k. As a consequence, G is biconnected iff |G| > 3 and it does
not admit articulation points (i.e., for every pair (z,3) € V x V, there exist two vertex-disjoint
elementary paths between z and y). A bloc in G is a set A C V such that G[A] is connected,
without articulation points, and maximal (i.e., for any v € V' \ A4, G[4A U {v}] is either not
connected, or it has at least an articulation point). Then if |A] > 2, G[4] is biconnected, while,
if |A] = 2, it is an isthmus, i.e., an edge whose removal increases the number of the connected
components of the graph. Obviously, the set of blocs of & covers V. A bloc B is called eztremal
if it contains a vertex z such that for any other bloc B, either B and B’ are vertex-disjoint, or z
is their only common vertex.

2.1 A non-constructive theorem and its ulterior constructive proof

Theorem 1 below (known also as Brook’s theorem and non-constructively proved in [17]) was
constructively proved by Lovész in [42] in a rather condensed way. We give in this section a
personal interpretation of this result. The proofs are given in the appendix.

Theorem 1. ([17]) If G is connected with A(G) > 3 and if it contains no subgraph K A(@)+17
then it is A{(G)-colorable.

Consider a graph G, and order its vertices, say i, zs,...,2,. One can color them one-by-one
in the following way: color x; with 1; then, color x5 with 1, if s ¢ E, with 2 otherwise and
continue coloring each vertex with the smallest color it can be assigned at that stage. Denote this
algorithm by LEGAL_C and suppose it is called with inputs @ and 1, zs,...,2,. The following
easy lemma holds for LEGAL_C.

Lemma 1.  LEGAL_C colors the vertices of any graph G with at most A(G) + 1 colors, in
polynomial time.

Proof. Since A(G) is the maximum graph-degree, A(G) + 1 colors are sufficient to legally color
any vertex of G and all its neighbors. §

The key-idea of the algorithm of [42] is to construct “good” orderings of the vertices of G, so
that LEGAL_C colors them with no more A(G) colors.

2.1.1 Coloring 3-connected graphs

Consider a graph G = (V, E} such that: it is connected, A(G) > 3, it does not contain a X A(G)+1
and it admits at least a pair of vertices, the removal of which does not disconnect . Note that a
3-connected graph verifying the conditions of theorem 1 can be such a graph. Also consider the
following algorithm 3C_COLOR. We consider in what follows two types of execution for 3C_COLOR.
The first one is parameterized by a graph G, when it is executed starting from line (1). The
second one is parameterized by a graph & and two vertices v and u, when we suppose that
lines (1) and (2) are omitted and its execution starts from line (3). This is the case of execution
of 3C_COLOR in the body of algorithm A_COLOR in paragraph 2.1.3.

4



BEGIN *3C_COLOR*
(1) let {i,...,A{(G)} be the set of colors to be used;
(2) choose vertices v and u such that d{v,u)=2
and G’ « G[V\ {v,u}] remains connected;
(3) let w be a vertex adjacent to both v and u;
(4) arrange the vertices of G in a sequence (w=Xy,Xj,...,%y-2) such that
each vertex x;,1 > 2 is adjacent to a vertex xy,j € i;
*this can be done breadth-first-search (BFS,[1]) starting from w+
(6) color v and u with the color 1;
(6) DUTPUT {1} ULEGAL_C(C/,%n_2,%n_3,..,%1);
END. *3C_COLOR*

Lemma 2. Let G be a 3-connected graph not containing a K, A(e)+1- Then 3C_COLOR computes
a legal A(G)-coloring for G in polynomial time.

2.1.2 Coloring connected graphs containing vertices of degree less than A(G)

We now give another algorithm assigning at most A(G) colors to the vertices of a connected
graph with at least one vertex of degree < A(G).

BEGIN *1V_COLOR*

(1)  let{i,...,A(G)} be the set of colors to be used;

(2) choose a vertex v such that d°(v) < A(G);

(38) arrange the vertices of G in a sequence (V=Xi,Xs,...,%;) such that
each vertex x;,1 22 is adjacent to a vertex X5, €1;
*this can be done by BFS starting from v*

(4) OUTPUT LEGAL_C(G,Xpn,Xa—1,...,%1);

END. *1V_COLOR*

Lemma 3. Let G be a biconnected graph, not containing o Ka(G)+1, with ot least one vertex
of degree < A(G). Then 3C_COLOR computes a legal A(G)-coloring for G in polynomial time.

2.1.3 The overall algorithm

Given a coloring, we will call color-permutation the exchange of a color i to j and of j to i on all
vertices colored with these colors (when j has not been used, then color-permutation between 2
and j becomes in using j instead of ¢}. We are well-prepared now to specify an algorithm legally
coloring the vertices of any graph G by using at most A(G) colors.

BEGIN *A_COLOR*
(1)  compute all the blocs of G;
(2) FOR every bloc 4 of G DO

(3 IF A(G[A]) < 3 THEN

(4) order arbitrarily the vertices of A, say xi,Xs,X3;
(5) LEGAL_C(G[A}, x4, X2,%3) ;

(6) GOTD (2);

(7 FI

(8) CASE |Al DO

(9 |4| < 8(G)+1: color A with colors 1,...,4(G) and GOTO (2);
(10) |A| = A(G) +1: 1V_COLDR(G[AI) and GOTO (2);

(11) |4] > A(G) + 1:



(12) IF G[A] is 3-connected THEN 3C_COLOR(G[Al) and GOTD (2) FI

{13) IF G[A] is biconnected THEN

(14) choose arbitrarily a vertex x with d°(x) > 3;
(15) IF G[A\ {x}] is biconnected THEN

(16) let y € A be such that d(x,y) = 2;
a7 3C_COLOR(G[A],x,y) and GOTO (2);

(18) FI

(19) IF G[A\ {x}] is not biconnected THEN

(20) let B; and By two extremal blocs of G;
(21) let z; € By and 23 € B, adjacent to x;
(22) 3C_COLOR(G[Al,zy,23);

(23) FI

(24) FI

(25) oD

(28) 0D

(27) order the blocs in such a way that each bloc has at most a vertex

' in common with the blocs preceding it in the ordering;
(29) OUTPUT the union of the colors used by permuting them if necessary;
END. *A_COLOR=*

Theorem 2. Let G be a connected graph with A(G) 2 3 and not containing subgraph K, A(G)+1-
Then, algorithm A_COLOR legally colors the vertices of G with at least A(G) colors, in polynomial

time.

2.2 A A(G)/3 approximation ratio for graph-coloring

Suppose now that 1_COLOR is an algorithm receiving an input-graph G and deciding if G is an
independent set and, if yes, coloring its vertices with one color. Obviously, this can be done in
polynomial time. Also, let 2_COLDR be another algorithm deciding if G is bipartite. This can be
done by starting with two colors and by coloring a vertex with one of them and its neighbors
with the other one. If at the end all the vertices of G are legally colored, then it is bipartite and,
moreover, a 2-coloring is discovered. Finally, consider the following PTAA. for C.

BEGIN *APPROX_COLOR*

1_COLOR(G);

2_COLOR(G);

A_COLOR(@);

QUTPUT the smallest of the legal colorings produced;
END. *APPROX_COLOR*

Theorem 3. pueerox_coLr < A(G)/3.

3 Towards ratios of o(A(G))

A well-known method for solving numerous NP-hard problems approximately uses the following
schema, denoted by SCHEMA in the sequel:

[Phasel] optimally solve the linear-programming relaxation of the problem (this can be done in
polynomial time ([5]));

[Phase2] round this solution to a feasible (but approximate) solution for the original (integer
programming) problem.



Recently an evolution of the above schema uses an extension of linear-programming relaxations,
the ‘so-called semidefinite programming relazations ([3, 30]). As opposed to the formers, the
latters offer rounding techniques leading to feasible integer solutions that are guaranteed to be
within a specified fraction to the optimal ones. Semidefinite programming in computing approx-
imate solutions for combinatorial problems is originally used by Goemans and Williamson ([29])
for maximum cut and maximum 2-satisfiability problems. Based upon the work of [29], Karger et
al. ([39]) devise a randomized approximation algorithm for C achieving approximation ratio o(A).
Their method can be shortly described as follows.

3.1 A semidefinite relaxation for graph-coloring

Consider a k-colorable graph. Instead of assigning integers (or colors) to the vertices of the
. graph, a unit vector #; € R is assigned to any vertex v; € V, i = 1,...,n. In order to capture

the fact that adjacent vertices are assigned with different colors, the vectors assigned to adjacent
vertices have to be different in some specific (but natural) way. This requirement leads to the
vector k-coloring.

Given a graph G = (V,E) of order » and a real k > 1, a vector k-coloring of G is an
assignment of unit vectors ¥; € R™ to any vertex v; € V, such that for any two adjacent vertices v;
and v; the dot product of ¥; and ¥; satisfies (v;,v;) € —1/(k ~ 1) (in other words, the angle
between the vectors corresponding to adjacent vertices must be sufficiently large).

The so-defined vector k-coloring is seen in [39] as a kind of relaxation for C that plays
the role that a hypothetical fractional k-coloring would play if one used a conventional linear-
programming relaxation for the problem. This is justified by the following lemma.

Lemma 4. ([39])
o Fuvery k-colorable graph has e vector k-coloring.

o Moreover, for all positive integers k and n with k < n+ 1, there exist k unit vectors of R®
such that the dot product of any distinet pair is —1/(k—1).

Remark that the k vectors of the second item of lemma 4 fulfill the specification of the vector k-
coloring (the emphasized proposition just above). Furthermore, one can immediately bijectively
map these vectors to k distinct colors in order to produce a k-coloring of a graph @ of order n.

Following [Phasel] of SCHEMA, one has now to determine a vector k-coloring of G. This
can be done using the following auxiliary problem. Given a graph G = (V,E) of order n, @
matriz k-coloring of G is an n X n symmetric positive semidefinite matriz M with my; = 1 and
mi; € =1/(k— 1) for viv; € E. The key-point of the relationship between matrix and vector
colorings of a graph is given by the following lemma.

Lemma 5. (/39])
o A graph has a vector k-coloring if and only if it has o matriz k-coloring.

» If a graph has a matriz k-coloring, then a vector (k + ¢€)-coloring can be constructed from,
this matriz coloring in time polynomial in n and in log(e™?).

o Conversely, if a graph G has a vector k-coloring, then a matriz (k + ¢)-coloring of G can
be constructed in time polynomial in n and in log(e™1).

We have supposed at the beginning of the current paragraph that G is k-colorable. Therefore,
by the second item of lemma 4, there exists a vector k-coloring for G and, by the first item



of lemma 5, there erists a matriz k-coloring of G. This matrix coloring can be constructed by
solving the following semidefinite optimization problem:

min o
M = {my;} positive semidefinite
SDP = My <o for VU € E
Mig = M4
my =1

Remark that, by definition of the matrix coloring given just above lemma 5, the solution of SDP
specifies the entries of a matrix k-coloring M. Since G has a vector (and, by the first item
of lemma 5, a matrix) coloting, there exists a solution to SDP with ¢* = —1/(k — 1). If one
uses a linear-programming method, she/he is able to determine a feasible solution of SDP with
o £ =1(k + € — 1), for some carefully chosen ¢ € R. This solution, by the definition of the
matrix coloring, specifies a matrix (k + ¢)-coloring of G. This, by the second item of lemma 5,
can produce a vector (k + 2¢)-coloring of G. In order to simplify presentation, the error € can
be ignored since it can be made very small as to be irrelevant to the analysis in [39]. So, the
following proposition holds.

‘ Proposition 1. ([39]) Given a k-colorable graph G a vector k-coloring of G can be determined
in polynomial time.

3.2 The rounding phase

Once [Phase!] accomplished, one has to process [Phase2] that implies the rounding of the relaxed
solution to a feasible integer one. The original rounding technique proposed, called semi-coloring
in [39], is randomized and produces an assignment of colors with “relatively few” identically
colored adjacent vertices. This semi-coloring is then transformed into a legal graph-coloring.
More formally, ¢ k-semi-coloring of a graph G is an assignment of k colors to at least half of its
vertices such that no two adjacent vertices receive the same color. Dealing with semi-colorings,
the following holds.

Lemma 6.  (/39]) If an algorithm SEMICOLOR can ky-semi-color any subgraph of order p
of a graph G in randomized polynomial time (where ky increases with p), then SEMICOLOR can
polynomially color the whole graph G with O(k,logn) colors.

In other words, a semi-coloring of G' can be transformed into a legal coloring by losing only
a logarithmic factor with respect to the colors used for the semi-coloring. The randomized
algorithm transforming vector colorings into semi-colorings is not given here. The interested
reader can be referred in [39]. In any case, the following can be shown.

Proposition 2. (f39]) For every integer function k = k(n), a vector k-colorable graph G can
be semi-colored with at most O(A(G)1~ /% /log A(G)) colors in randomized polynomial time.

Combination of lemma 6 with the first item of lemma 4 and with propositions 1 and 2 implies
the following. '

Proposition 3.  ([39]) Any k-colorable graph G of order n can be colored in randomized
polynomial time with at most O(A(G)1~ /%), flog A(G) logn) colors.

Two last points remain to be settled: (i) can the randomized method proposed be transformed
into a deterministic one, and (i} how one can make this method to run for any graph (recall
that until now the graph is supposed k-colorable?)?

This means that the input of C is a graph ¢, an integer k € n and the information that G is k-colorable.



For point (i) the answer is found in [44]. The authors propose there a clever (but long) poly-
nomial derandomization of the algorithms in [39] achieving the same approximation guarantees
than the original (random) ones. On the other hand, for point (if), the following procedure, that
will be used later also, can be used. Since the complexity of the overall k-coloring algorithm is
polynomial in k, one can run it for all & € {2,...n} in this order (multiplying so its worst-case
complexity by n), and stop it for the first k£ for which a feasible solution is produced. As it is
pointed out in [51], this thought process can be implemented by divide-and-conquer in such a
way that the whole complexity of the derived algorithm will be multiplied not by k but by log &.
So, in the light of the above settlements, proposition 3 holds for any graph and the algorithm
claimed runs in deterministic polynomial time.

Finally, run both algorithm A_COLOR and the schema dealt in the current section (parameter-
ized by the algorithms of [39], derandomized by the method of [44], and extended so as it runs
for any graph by the remark settling point (ii) above), and take finally the best of the solutions
produced. Then, the following concluding theorem holds.

Theorem 4. C can be approzimately solved in polynomial time and in any graph G within
approzimation ratio

A@©) (A(G)l“\/—logA_logn)}

fo < min { NEk %(©)

4 The greedy coloring-algorithm

4.1 An excavation schema for graph-coloring

When one tries to approximately solve C, the first algorithm coming in mind is the greedy one
described by the following “excavation schema” executed with parameters G and an IS-algorithm
INDEPENDENT,_SET.

BEGIN #*EXCAVATION=
REPEAT
S « INDEPENDENT_SET(G);
color the vertices of S with the same not already used color;
remove S from G;
UNTIL G becomes empty;
OUTPUT X the set of used colors;
END. *EXCAVATION=*

Algorithm EXCAVATION has two mterestmg properties, expressed by items 1 and 2 of proposition 4
below. Item 1 is proved in [31], but has been implicitly used in [11, 37, 51] and explicitly in [31].
Item 2 is proved in [36] for the case where S is a maximum independent set and is generalized
in [2] for the case where § is any independent set. Here it is mainly used in section 8.

Proposition 4.

1. Any iterative application of algorithm INDEPENDENT_SET that computes an independent set
of size 1(G) = B(n!/?), t > 1, in a k-colorable graph G of order n, produces a coloring X
verifying | X| < 2n/u(G).

2. pexcavaron < In7n/prvoeeemnent  seT-



4.2 Instantiating INDEPENDENT_SET by the greedy algorithm

An interesting polynomial instantiation of the schema described above, where the independent
set is found via a greedy algorithm, has been studied by Johnson in [37]. We give in what follows
an outline for both the greedy IS-algorithm and the greedy C-algorithm that ensues.

BEGIN *GREEDY_IS*
S —0;
REPEAT
v «— argming ey{d°(vy)}:
S«—8su {v};
Ve v\ (fr} UT());
G — G[V];
UNTIL V = 0;
OUTPUT 5;
END. *GREEDY_IS*

BEGIN *GREEDY_Cx*
REPEAT
S «— GREEDY_IS(G);
color the vertices of S with the same non already used color;
Ve—V\S;
g~ G[V];
UNTIL V=§;
OUTPUT the set X; of used colors;
END. *GREEDY_C*

The complexity of algorithm GREEDY_IS is O(|E|) and will be called at most n times within
the REPEAT loop of algorithm GREEDY_C, each such call strictly decreasing V. Hence, the overall
worst-case complexity of GREEDY_C is O(n|E|).

Let us denote by V© the vertex-set of the current, surviving, graph at the beginning of
the £th iteration of GREEDY_C. The key-point for the study of its approximation performance is the
following. If a graph is k-colorable, then, at each iteration £ of GREEDY_C, d°(v;) < [V|—=[|V|/k],
where v; is the minimum-current-degree vertex chosen by GREEDY_IS. Therefore, the vertices
colored during £th iteration (i.e., the constructed maximal independent set during this iteration)
will be of size at least logy [V|. This leads to the following lemma, proved by Wigderson in [51].

Lemma 7. ([51]) Algorithm GREEDY_C colors any k-colorable graph G with | X ;| < 3n/log, n
colors.

By lemma 7, the approximation ratio of algorithm GREEDY_C in a x(G)-chromatic graph becomes:

|XJI< 1 3nlogx(G)< n

<
PeREEDY_C S x(G) T x(@) logn " logn 2)

leading so to the following concluding theorem.

Theorem 5. ([37]) PGREEDY ¢ < n/log 7.
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5 Improving the ratio for graph-coloring

The improvement of the approximation ratio of C has remained open for 9 years until 1982 when
Wigderson has shown in [51] how to obtain better performance guarantees. His method, outlined
in what follows, is based upon the following observations:

1. the neighborhood of any vertex in a k-colorable graph is (k — 1)-colorable;
2. 2-coloring is polynomial (see section 2).
These observations (the second being a termination condition) lead, as we will see, to a nice

recursive approximation strategy for C.

5.1 Coloring k-colorable graphs

We first present the following procedure, called with parameters k and G and 4 (where i means
that G will be colored with colors 4,4 + 1,...), that colors a k-colorable graph with “relatively”
few colors. Set, for k =2,3,..., fi(n) = n{t=({1/(k=1))}

BEGIN *k_COLOR~*
(1) CASEk DO

(2) k = 2: QUTPUT 2_COLOR(G);
*yertices of G will be colored with colors i and i+1%
(3) k > log|G|: color V(G) with a distinct color per vertex;
*vertices of G are assigned colors i, i+1,...,i+]G|-1*
(4) k < log|G|: WHILE A(G) > [fx(|G])] DO
€)) let v be such that d°(v) = A(G);
(6) H « G[[e(v}};
(N {i,i+1,...,i4j—1} «— k_COLOR(x — 1,H,i);
(8) color v with i+j;
(9) ie—1i+73;
(10) G +—G[V\ (Te(v) U{v})];
(11) oD
(12) {i,i+1,...,} < A_COLOR(G);
(13) OUTPUT X;x_c the set of used colors;
(14> 0D

END. =*k_COLOR*

In the initial graph, algorithm is called as k_COLOR(k,G,1). Line (12) of k_COLOR will be
executed on graphs with A(G) < [fi(|G})], using so less than [f(|G|)] unused colors. The
“algorithm called in line (2) is the one deciding if a graph is bipartite, and if yes, computing a
2-coloring of its vertices.

Lemma 8. (f51]) k_COLOR assigns, in O(k(n + |E|)), the vertices of any k-colorable graph
with at most 2k[ fi(n)] = 2kn~(/&=1D7 colors.

5.2 Expanding k_COLOR to run for all graphs

As we have already mentioned at the end of paragraph 3.2, one can expand algorithm k_COLOR
(destinated to color k-colorable graphs) to run for any graph. Recall that she/he only has to
run it for all k£ € {2,...n} in this order, and stop it for the first k for which procedure k_COLOR
produces a feasible solution. This can be implemented as follows.

11



BEGIN *Ek_COLOR*
(1) FORp+ 1 TO [logn] DO

(2) X — k_COLOR(2?, G, 1);
(3) IF X is feasible THEN pp + p and GOTO (5) FI;
(4) 0D

(6)  apply binary search in {211 ...2%} to find the least k « ko
for which k_COLOR produces a legal coloring;

(6)  DUTPUT Xg < k_COLOR(ko, G, 1);

END. =*Ek_COLOR=*

Since, given a graph G-
(i) the execution of line (2) of algorithm Ek_COLOR produces a legal coloring for all k > x(G),
(ii) G is always x(G)-colorable, and
(iif) ko is the smallest & for which the execution of line (5) will produce a feasible coloring,

the following lemma holds.
Lemma 9. (f51]) ko < x(G).

Combining lemmas 8 and 9, we get the following concluding theorem for the approximation
performance of algorithm Ek_COLOR.

Theorem 6. ({51]) Ek_COLOR colors, in O((n + [E|)x(G)log x(G)), the vertices of G with at
most 2x(G) [n1=/ &K@~ colors.

5.3 The whole improvement

By theorem 6, prc_coror < 2[n(~(/04®)=0))] and function f(z) = 2[n(~(/@=1))] is increasing
in z. On the other hand, by lemma 7 and expression (2), pereepy ¢ < 3nlog x(G)/(x(G)logn)
and function g(z) = 3nlogz/(xlogn) is decreasing in z. Let us combine the two algorithms to
produce the following final algorithm.

BEGIN #W_COLOR#*

g — Ek_COLOR(G);

X7 «— GREEDY_C(G);

QUTPUT Iy = a_rgmin{|XE|, |X3|};
END. *W_COLOR#*

Of course algorithm W_COLOR composed by polynomial component-algorithms is also polynomial.

A little algebra shows that the intersection point of the curves f(z) and g(z) is in the
neighborhood of z = [nloglogn/2logn]. Algorithm Ek_COLOR is superior to GREEDY_C for
X(G) < logn/loglogn while, for x(G) > logn/loglogn GREEDY_C is more performant than
Ek_COLOR. For x(G) = logn/ loglogn, both pgx coLar 2nd perespy ¢ are of O(nlog?logn/ log®n)
and the following theorem concludes the section. B

Theorem 7. ({51]) pu_coLor < 3nlog®logn/log?n.
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6 A better approximation ratio for coloring

Seven years later, Berger and Rompel, using thought processes quite close to the ones adopted
in [51] (i.e., coloring first k-colorable graphs, extending the result to work for every graph, the
chromatic number of which belongs to a certain interval of values, and next composing the
algorithm produced with another well-working in graphs with chromatic-number values out of
the interval considered), perform, in [11], a further notable improvement of the approximation
ratio of C.

The key-observation in [11] is a kind of refinement of the respective observation of [37).
Recall that, as we have seen in section 4, Johnson observed that if G is k-colorable, then there
exists an independent set of size at least [|V]/k] and, consequently, any node v in this set
has d°(v) < |V]— [|V|/%]; this observation enabled him, using algorithm GREEDY_IS, to find
an independent set S of Oflogy [V|) small-degree vertices to which gave the same color. The
refinement lying at the heart of the method proposed in [11] is that any subset S’ of S verifies
IT(S") < V| = [|V|/k]. This allows them to somewhat modify algorithm GREEDY_IS to choose
at each step a set (instead of one) of O(logy, |V|) small-degree vertices that are independent and
have small neighborhood. They are so able to legally color O[(logy |V'])?] vertices with the same
color.

Let us now outline how Berger and Rompel produce feasible colorings for k-colorable graphs.
We consider, without loss of generality, that the colors are drawn from the set {1,2,...}.

6.1 Improving GREEDY C in k-colorable graphs

Consider the following algorithm k_COLORING parameterized by an integer k, a fixed & > O and a
graph G. The first condition in line (10) receives TRUE if the set 5 is an independent set, FALSE
otherwise.

BEGIN +k_COLORING*
(1) IF k> min{n’2 n®} THEN OUTPUT GREEDY_C(G) FI
(2) m+ |alogn};

(3) c«1;

(4) UNCOLORED « V;

(5) WHILE |UNCOLORED| > km DO

(6) U «— UNCOLORED;

(7 WHILE |U' =2 km DO

(8) He G[U];

(9) FOR 8 C H such that |S| = m DO
(10) IF S AND |Tu(8)| < |U| - {jU|/k) THEN GOTO (13) FI
(11) oD

(i2) QUTPUT ‘G not k-colorable’;
(13) color S with color c;

(14) U—TU\[sUTk(s)];

{15) UNCOLORED<—-UNCULDRED\\S;

(186) 0D

(17 c—c+1;

(18) 0D

(19) color the UNCOLORED-vertices with colors c, ..., c+|UNCOLORED|-1;
*assigns an unused color per UNCOLORED-vertexs

{20) OUTPUT the colors used;

END. *k_COLORING*

13



Remark 1. Line (9) in algorithm k_COLORING can be implemented in the following way:

partition the vertices of U into £ = ||U|/km] sets B;, i=1,...,¢, such that
Bj, 3=1,...,£—1, contains km elements and
B; contains the remaining ones (km < |Bg| < 2km);

FOR j +— 1 TO £ DO FOR 8 C By such that [$| =m DO GOTO line (10);

By the pigeonhole principle, at least one of the sets B; will contain a set S of size m and this set
can be found by exhaustively searching the Czi};f‘;n = O(n) subsets of each B;. Consequently,

implementation of line (9) of algorithm k_COLORING can be done in polynomial time. lI

Theorem 8. ([11]) For any a > 0, algorithm k_COLORING colors, in O[n3+32/(klog; n)], the
vertices of any k-colorable graph with 2n/(alogs n) + O(n/logi n) colors.

6.2 Modifying algorithm k_COLORING to run on all graphs

The following algorithm (parameterized by o and @) modifies, in the spirit of [51], algorithm
. k_COLORING to work on any graph. Algorithms 1_COLOR and 2_COLOR called by k_COLORING are
as in section 2.

BEGIN *Ek_COLDRING=*

(1) IF 1_COLOR(G) feasible THEN OUTPUT 1_COLOR(G) FI
(2) IF 2_COLOR(G) feasible THEN OUTPUT 2_COLOR(G) FI
(3) FORp+« 1 TO [logn] DO

(4) X «— k_COLORING(2P, &, G);
(5) IF X is feasible THEN po «+ p and GOTO (7) FI;
(6) 0D

(7)  apply binary search in {27141 ...2P} to find the least k «+ ko
for which k_COLORING produces a legal coloring;

(8) OUTPUT Xg « k_COLORING(ko,c,G);

END. *Ek_COLORING#*

The complexity of algorithm Ek_COLORING is O(n*+3%/logn) (it calls at most n — 2 times

k_COLORING). Morecover, with the same arguments as the ones for lemma 9, ky € x(G). So,
the coloring produced satisfies

Xg| € — +O( i ) | 3)

o logi(g) n logi(G) n

6.3 The whole improvement

Recall that pex coron < 2[n1=/ (X(G}‘l)))'l and this bound is increasing in x(G). On
the other hand, by theorem 8 and expression (3), pme couomme < 2n/(ax(G) logi(c) n) +
o(n/ logi(G) n) and this last bound is decreasing in x(G). For x(G) = O([logn/loglogn]),
both bounds are at most O(n log® logn/log®n). The following algorithm, BR_COLOR, combines
algorithms Ek_COLOR and Ek_COLORING into an algorithmic schema for C. Its running time is
of O(max{nt+CHm) /logn, (n + | E|)x(G) log x(&)}) ([11]).

BEGIN *BR_COLOR*
fix a large > 0;
OUTPUT Xg « Ek_COLORING(7/7,G);
OUTPUT X; « Ek_COLOR(G);
QUTPUT argmin{|Xgl, |X&|};

END. *BR_COLOR*
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Theorem 9. (f11]) pgr_coroz < 71 log® logn/log® n.

Let us observe that algorithm BR_COLOR has a fairly serious drawback since its execution time
requirements (being polynomial in n for fixed ) is exponential in . This means that the better
the approximation ratio achieved, the higher its execution time.

7 A still better approximation ratio for graph-coloring

In 1993, a further improvement of coloring’s approximation ratio has been-published by Halldérs-
son in [31]. The spirit of this work is quite similar to the previous ones (except the one of [42]),
i.e., one colors a graph by excavating independent sets, but the used IS-algorithms are quite
different from the greedy one used until then. It is well-known to people working on the de-
sign of approximation algorithms that very frequently the efficiency of an algorithm strongly
depends on the value of the optimal solution of an instance. Some algorithms work well for
small optimal values, while some other ones work better on instances with large optimal values.
The key idea of [31] is to combine into an excavation schema two IS-algorithms, one of them
(OPT-CLIQUE_REMOVAL) behaving efficiently in graphs with small chromatic numbers, while the
other one (COLOR_IS) behaving well in graphs with large chromatic numbers. Simultaneous run-
ning, at each iteration of the excavation schema, of both algorithms and coloring largest among
the independent sets computed with an unused color leads to an improved ratio for any value
of x(G}.

7.1 Finding large independent sets ...

We first briefly describe the two IS-algorithms, OPT-CLIQUE_REMOVAL and COLOR_IS, used in 31]
for excavating independent sets.

The idea of using the former is based upon the fact that independent sets in graphs without
cliques or with small cliques are larger than independent sets in general graphs. Furthermore
satisfactorily large independent sets (achieving improved approximation ratios) can be polyno-
mially found there (see for example [49, 50], where the author deals with triangle-free graphs).
Hence, given a graph G, one can reduce it by removing cliques of a certain size £. In the surviving
graph (that is £-clique-free), in particular if its size remains large (in some sense), she/he can
apply some efficient algorithm computing a “large” independent set. Excavation of such “large”
independent sets is possible as long as the initial and the consecutive (surviving) graphs contain
“few” disjoint cliques. Of course, if large independent sets are excavated, by item 1 of proposi-
tion 4, the graph can be colored with relatively few colors. On the other hand, if the initial graph
contains many disjoint cliques, then a(G) must be small and, by expression (1), x(G) must be
large. In both cases the approximation ratio for C can so be improved.

Algorithm COLOR_IS originally operates in k-colorable graphs. Informaily, it recursively finds
an independent set S of a certain size and takes the union of S with the result of its recursive
running on the graph G{S NT(S)]. This is done as long as the order of the surviving graph
exceeds a fixed threshold ¢. As soon as the order of the surviving graph becomes smaller than ¢,
OPT-CLIQUE_REMOVAL is called. The final independent set is the union of the independent sets
recursively computed by COLOR_IS together with the one computed by OPT-CLIQUE_REMOVAL.
Running COLOR_IS for any value of k and retaining the best result, one can obtain an independent
set at least as good as the result of the execution COLOR_IS(x,G), and then using item 1 of
proposition 4, one can hope to compute a small coloring for G.
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7.1.1 ...By removing cliques

We first present an intermediate algorithm, originally devised in [16], and used, directly or
undirectly, by both OPT-CLIQUE_REMOVAL and, COLOR_IS. It is based upon the following result
due to Ramsey.

Theorem 10. For any pair (s,t) of integers, there is an integer n for which every graph of
order n contains either a cliqgue K, or an independent set S of size t. '

If we denote by R(s,t) the minimal value of n for which the above theorem holds, then the best
known upper bound for R(s, t), due to Erdds and Szekeres ([25]), is R(s,t) < C57F2. Let us set
C:H? = ¢(s,t) for all positive integers s and ¢ (by convention, if one of s and ¢ is negative or
zero, then C;~{*2 =1}, and let ¢,(n) = min{t : r(s,£) > n}.

Algorithm RAMSEY (parameterized by a graph G and an integer s) developed in [16] and
strongly inspired by the proof of the upper bound for R(s, t) ([25]) finds, in time O] E)), either a
clique K of order s, or an independent set S of size ¢t. Moreover, r(s,t) > n and s.t > c(logn)?,
for some constant c.

BEGIN *RAMSEY*
S —0;
K« @;
WHILE |V{G)] > 1 DO
choose v € V(G);

t « tg{n);
IF |T(v)} > r(s — 1,t) THEN K — KU {v};
G «— G[T(v)j;
s«—a—1;
ELSE 8 — SU {v};
G — GIV\ ({v}UT(™))];
FI

oD

OUTPUT K — KU V(G);

OUTPUT S «— SUV(G);
END. *RAMSEY*

It is next combined with a greedy mechanism of clique removal and the following IS-algorithm
(parameterized by a graph G and an integer s) is derived in [18].

BEGIN *CLIQUE_REMOVAL+*
(8,K) «— RAMSEY(G,s);
WHILE |K| > = DO
G «— G[V\K[;
(8,K) < RAMSEY(G, s);
oD
OUTPUT S;
END. *CLIQUE_REMOVAL#

In order that the final coloring-algorithm is the best possible, one needs to find the value of s for
which the approximation ratio of algorithm CLIQUE_REMOVAL is the best possible (in other words,
the independent set computed is the largest possible). Then, one can follow the thought process
originally proposed in [51], i.e., one can use binary search to define a “good” s. This leads to
the following final version of CLIQUE_REMQVAL, called OPT-CLIQUE_REMOVAL and parameterized
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by a graph G, of complexity O(|E!nlogn), where we denote by p; the approximation ratio of
CLIQUE_REMOVAL(G,i).

BEGIN =0PT-CLIQUE_REMOVALx*
guess an s;
S + CLIQUE_REMOVAL(G, s);
IF pe > (n/s?){*/®) THEN RETURN S FI
REPEAT run CLIQUE_REMOVAL(G,p) with p = 2¢, £= [logk],...;
UNTIL the first £« { for which pp > (n/p?)(1/P);
REPEAT apply binary search in {2%=1 .41, .. 26},
UNTIL the least p « po for which pp, > (n/p3)/Po);
OUTPUT S — CLIQUE_REMOVAL(G, po);
END. =*0PT-CLIQUE_REMOVAL=*

Lemma 10. (f31]) Running algorithm 0PT-CLIQUE_REHOVAL on a graph G of order n with
o(G) = tn, t > 1/logn, returns an independent set of size at least e~ 1nt/t.

7.1.2 ...In k-colorable graphs

Let us now consider the second IS-algorithm (parameterized by an integer k and by a graph G)
presented in [31] and running in k-colorable graphs. As for algorithm k_COLORING in section 6,
the first condition in line (3) receives TRUE if the set S is an independent set, FALSE otherwise.

BEGIN *k-COLOR_IS*
(1) IF |V}=1 THEN OUTPUT V FI;
(2) FOR S CV such that [S|= logen DD

(3) IF 8 THEN

(4) IF |G[V\ (SUT(S))]]| = nlogn/(2kloglogn)

(5) , THEN OUTPUT S U k-COLOR_IS(k,G[V\ (SUT(S))]);

(6) ELSE I « OPT-CLIQUE_REMOVAL{G[V\ (SUT(S))[)US;

(7) IF |I| = (1ogn)3/(6loglogn) THEN OUTPUT SUI FI;
(8) FI

(9) FI

(10) 0D

(11) OUTPUT G not k-colorable;
END. *k-COLOR_IS*

Note that remark 1 holds also for algorithm kx-COLOR_IS. Consequently, the execution of the FOR
loop of line (2} is performed in polynomial time.

We can modify algorithm k-COLOR_IS to work for ail graphs (i.e., for any k) producing so
the following IS-algorithm (parameterized by G) of complexity O(n|E|x(G)). The IF-condition
in this algorithm receives TRUE if S; is independent.

BEGIN *COLOR_IS*
FORk+ 1 TO n DO
Sy « k-COLOR_IS(k,G);
IF Sy THEN store Sy FI
OUTPUT the best among the Sy’s stored;
0D
END. *COLOR_IS*

Lemma 11. ([31]) The application of algorithm COLOR_IS in G produces an independent set
of size at least log, ) nlogn/(2 max{log(2x(G) loglogn/logn), 1}).
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7.2 The overall coloring-algorithm

We are ready now to outline the overall C-algorithm of [31], the worst-case complexity of which
is O(n?|B|).

BEGIN *H_COLOR*
REPEAT
SCR + OPT-CLIQUE_REMOVAL({G);
SCS « COLOR_IS(G);
S + argmax{|SCR|, |SCS|};
coclor the vertices of S with the same unused color;
Ve—V\S;
G—G[V\S8];
UNTIL V= (;
OUTPUT the set of the colors used;
END. =H_COLOR*

Suppose first x(G) < logn/(2loglogn). Then, by lemma 10, algorithm OPT-CLIQUE_REMDVAL
guarantees an independent set of size

|H

(&) 1
ISCR| > e 1222 = e~y (G)n 0.
Pice)

By item 1 of proposition 4, an excavation schema using OPT-CLIQUE_REMOVAL (algorithm H_COLOR
is instantiation of such a schema) computes a coloring of size

X|=0 (——"’?—) -0 (”’—1—73) @
e~ 1x(G)n ¥ x(G)

On the other hand, if x(G) > logn/(2loglogn), then by lemma 11, algorithm COLOR_IS guar-
antees an independent set of size

log®n 1

ISCS[ = log X(G) 2 max {log (%@—n) : 1}'

By item 1 of proposition 4, algorithm H_COLOR (using COLOR_IS) will produce a coloring with
nlog x(G) max {10g (Ml_g_n.) , _1}

logn

[X|=0 (5)

log®n

The corresponding ratios are the right-hand sides of expressions (4) and (5) divided by x(G), the
former being decreasing and the second increasing in x(G). For x(G) = logn/(2loglogn), the
values of the two ratios are both of O(nlog®logn/log®n) and the following theorem concludes
the section.

Theorem 11. (f81]) pu_coor = O(n log?logn/ log®n).
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8 A further improvement of the performance guarantee for the approxima-
tion of graph-coloring

Revisit for a while algorithm OPT-CLIQUE_REMOVAL of section 7. In [23], the following proposition
is proved.

Proposition 5. ({23]) For every function £ such that, ¥z > 0, 0 < £(2) < loglog , there ezist
constants x and K such that algorithm OPT-CLIQUE_REHDVAL computes, for every graph G of or-
dern > &, an independent set S such that if o{G) 2 £(n)nloglogn/logn, then S| > K logh™ n.

In what follows, we denote by EXHAUST, an exhaustive-search algorithm for C. Without loss of
generality we suppose that vertices are colored with 1,2, ... Moreover, let X and % be as in the
quoted proposition above.

BEGIN *COLOR#
(1) IF n< & THEN QUTPUT EXHAUST(G) FI
(2) S« OPT-CLIQUE_REMOVAL(G);

3y 1ie1;

() R0

(5) V(@) «0;

(6)  WHILE |S| > Klog‘n DO

(M color S with color i;

(8) v(G) — V(@) us;

) G« G[V(®)];

(10) T —3%u {i};

{11) ie—i+1;

(12) G« G[V\s];

(13) IF G= {0 THEN QUTPUT % FI
{14) S +— OPT-CLIQUE_REMOVAL(G);
(15) 0D

(16) X — A_COLOR(G);
(17) OUTPUT X « R UX;
END. *COLOR

Theorem 12.

2n 2A(G)e(n) log logn}

<
po S mex { klogt—1n’ logn

Proof. Obviously, if line (1) of algorithm COLOR is executed, then it returns a minimum coloring
for G in polynomial time. The WHILE-loop of the algorithm above (lines (6) to (15)) is an
application of EXCAVATION(G,OPT-CLIQUE_REMOVAL). Observe also that, for every iteration i of
the WHILE-loop, if we denote by G; the graph G[V \ V(&)] (G1 = G), then

K log?IG:) G;
POPT-CLIQUE_REMOVAL (Gi) 2 —g%l-—u (6)

Then by item 2 of proposition 4 and by expression (6):

) 1n‘c":[ log G” fc‘
PEXCAVATION (G) < K10gt(1%) |6 = TogeK togtleD E klogtleD-1 ’G‘ g
@] <]
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Set G = GV \ V(G)] (in other words, & is the subgraph of G input of algorithm A_COLOR in
line (16)). Then, by proposition 5 and expression (1), application of A_COLOR in G will compute
a set X of colors verifying

e oo (é) _ ’fi‘ . Al.og(fl) _ A (é) ¢ (lé:)uloglog}ét -
x(6) W log 6]
The following holds for the set X of colors computed by algorithm COLOR:
X! = *X‘ + ‘.ﬂ < PEXCAVATION (é) X (é’) + fa_coLoR (é) X (é)
< max {PEXCAVATIDN (é) » PA_CCLOR (é)} (X (é) TX (é)) (9
Obviously, both x(&) and x(&) are smaller than x(G). So, using expressions (7), (8 and (9),
one gets '
_x) 2|¢ 2A (é) £ OéD loglog ‘é{
PCOLOR = KCE)" £ max { kloge(lé“_l ]é{ , g ‘é}
€ oy

This completes the proof of the theorem. il

As we have already seen, in terms of n the best known approximation ratic for C
is O(nlog?logn/log® n) (section 7) and the very tight analysis of [31] does not allow improve-
ment of this ratio even in particular classes of graphs. Let £ > 5 and suppose first that the
maximum in expression (10} is realized by the term O(n/log®~n). Then, for graphs with
A(G) = O(n/log"2n), C is approximable within ratio O{n/log~! n) and theorem 12 improves
the ratio of [31] by a factor Q(log?log nlog®*n).

Revisit now the ratio in theorem 4 and remark that the first function is decreasing in x(G),
while the second one is increasing for x{(G) < 2log A(G) and decreasing for x(G) = 2log A(G).

o If x(G) < 2log A(@), the ratio expression in theorem 4 attains its minimum value when
the two terms are equal, in other words when (A(G))*X(®) = ©(\/log A(@)logn), ie.,
when x(G) = ©(log A(G)/loglogn). In this case, the minimum and therefore the value of
the ratio guaranteed by the expression in theorem 4 become O(A(G) loglogn/log A{G)).
On the other hand, by theorem 12, when A(G) = Q(n/(log* > nloglogn)), the ratio
O(A(G) loglogn/logn) is always achieved independently on the values of x(G). Hence,
for A(G) > n/log?2n and x(G) < 2log A(G), the result of [39] (second term of the ratio
in theorem 4) is improved by a factor logn/log A(G).

o If x(G) > 2log A{G) (and A(G) > n/log"2n), then the ratio of theorem 4 is bounded

above by O((A(G))1 ¥/ 182G ogn/,/log A(G)), while the ratio of COLOR remains
bounded above by O(A(G)loglogn/logn). Therefore, in this case also, algorithm COLOR
dominates the one of theorem 4.

Corollary 1.

e For £ > 1, C is approzimable within O(n/log®~1n) in graphs with mazimum degree at
most n/ logt=?nloglogn;
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o (is appro:czmable within O(A(G)loglogn/logn) in graphs with mazimum degree af least
n/logt % nloglogn.

Remark finally that ratioc A(G)/x{G) can always be achieved if after the first line of COLOR
algorithm 4_COLOR(G) is executed and if the minimum between the solution computed by this
call and the set X U X is finally retained. In this case, the ratio achieved is

min {2((((;';))’max {O (logiln) e, (A(G%Ol;ilogn) }} .

9 Inapproximability results

9.1 Negative results via graph-theoretic gap techniques
Historically, the first negative approximation result about C is the one affirming that no PTAA

can guarantee approximation ratio strictly smaller than 4/ 3. This result can be obtained by
application of the following more general theorem.

Theorem 13.  (f28]} Let Il be a minimization problem having all solution values in IN7,
and suppose that, for some fired x € INT, the decision-problem Il: “given an instance I of I,
is OPT(I) < &% is NP-complete. Then, unless P = NP, no PTAA A for 1 can guarantee
pr < 14+ (1/k). As a consequence, II cannot be solved by a PTAS.

Really, consider a problem II verifying the hypotheses of the theorem and suppose that there
exists a PTAA A guaranteeing, VI, pp(I) = A(I)/OPT(I) < (k+ 1)/x. Consider also a typical
instance I of II. We will show how A can be used to solve II, in polynomial time. We run A on I.
Then, if:

MI) > K + 2, the inequality A(J) < ((k+1)/x)OPT(I) leads to OPT(I) > r{x+2)/(k+1) > &
and 4 answers “no” for Il;

A(T) < &, in this case OPT(I) < A(T) < x and A answers “yes” for Il,;

A(I) = Kk +1, the expression « + 1 = A(I) < ((k + 1)/x)OPT(I) gives OPT(I) >  and A
answers “no” for Il,.

Consequently, given A(I) (obtained in polynomial type following the hypothesis on 4), one can
solve Il in polynomial time, a contradiction.

The result of theorem 13 has a direct application in C. In fact, since deciding if a graph is
3-chromatic (denote this problem by Cs) is NP-complete, C cannot be approximated within a
ratio 4/3, unless P = NP; so, we get the following corollary.

Corollary 2. No PTAA for C can guarantee ratio strictly smaller than 4/3, unless P # NP.
Consequently, C cannot be solved by a PTAS.

Always in [28], the above result is further strengthened to apply even to asymptotic ratios and
the following theorem holds.

Theorem 14. (f28]) No PTAA 4 for Il can guarantee p°® < 4/3 for C, unless P = NP.

The proof of the above theorem is based upon a classical technique, that can be seen as a polyno-
mial reduction of a problem II to a problem I, establishing that if II is constant-approximable
by an algorithm 4, then a gap between the values of A(J) would allow us to correctly answer “yes”
or “no” about the decision-version of IT'. For the case of theorem 14, the key-idea for the proposed
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reduction is the construction of a kind of graph-composition (or graph-product) where, given two
graphs G1 and G, their composition graph G1[G2] can be produced by replacing each vertex
of G by a copy of G2 and then replacing each edge of Gy by a complete bipartite graph joining
every vertex in the copy representing to one endpoint to every vertex corresponding in the copy
corresponding to the other endpoint. So, if we consider an instance G of Cs, by constructing,
for a sufficiently large m, the composition G =Kpn [G], then we can prove that following the
values of the coloring-solution provided by a hypothetical constant-ratio PTAA for C in C:’, one
can correctly determine if & is 3-chromatic or not.

In [27], based upon a finer very nice gap-technique, the approximation-bound of theorem 14
is non-trivially improved and the following result is proved.

Theorem 15. (f27]) No PTAA 4 for Il can guarantee pi° < 2 for C, unless P = NP.

9.2 Negative results via interactive proofs

The result of theorem 15 remained for long years the strongest one about C. But in 1991, the
notion of fransparent proof was introduced by Babai et al. ([7]) and has generated the exciting
concept of probabilistically checkable proofs or interactive proofs. Shortly, in language-theoretic
(and hence in complexity-theoretic) terms, an interactive proof system is a kind of particular
conversation between a prover (P) sending a string £, and a verifier (V) accepting or rejecting it;
this system recognizes a language L if, (i) for any string £ of L (sent by P), V always accepts it,
and (it), for any ¢ ¢ L, neither P, nor any imposter substituting P, can make V accept ¢ with
probability greater than 1/3. An alternative way of seeing this type of proofs is as maximization
problems for which the objective is to find strategies (solutions) maximizing the probability
that V accepts £.

Interactive proofs have produced novel very fine characterizations of the set of NP languages,
giving rise to the development of very sophisticated gap-techniques (drawn rather in an alge-
braic spirit than in a graph-theoretic one) that lead to extremely important corollaries in the
seemingly unrelated (to the one of probabilistically checkable proofs) domain of polynomial ap-
proximation theory. The most important among these corollaries, that has constituted a kind
of break-through for the achievement of negative answers for numerous open problems in poly-
nomial approximation, is the one of Arora et al. ([4]) that no MAX-SNP-hard problem admits
polynomial time approximation schema. The class MAX-SNP is introduced by Papadimitriou and
Yannakakis in [47] and, informally, is a class of problems admitting PTAAs with constant ratio.
The completeness of a particular problem in MAX-SNP, holding under a special kind of ratio-
preserving reduction, called L-reduction in [47], means that if this problem admits a PTAS, then
so do all the problems in MAX-SNP.

For the case of C, Lund and Yannakakis, inspired from thought processes and tools developed
in [4], prove in 1992 the following theorem.

Theorem 16. ([{3]) There exists 7 > 0 such that it is NP-hard to approzimately solve C
within stendard-approzimation ratio n7.

Theorem 16 does not precise values for factor n {called hardness threshold in the literature).
Nevertheless, this result has the great merit to use interactive proof systems dealing with mini-
mization problems, while these systems seem to be (intuitively) better-adapted for maximization
ones.

Subsequent strengthenings of the above negative results, obtained thanks to characterizations
of NP firer than the ones of [4], have been performed by Bellare and Sudan in [9] and increased the
factor n. In [9], several such factors under several complexity theory hypotheses are provided.
For instance, n = 1/10 under the hypothesis NP ¢ coRlS, n = 1/13 under the hypothesis
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coRP # NP, 7 = 1/14 under the hypothesis P # NP (for the definition of the complexity classes
mentioned, see [38, 46]). In [8], further strengthenings are obtained, always using characterization
of complexity classes via interactive proofs. The main results providing the best known hardness
factors asymptotically different from both 0 and 1 (in any case n €]0,1]) are the ones of the
following theoremn:.

Theorem 17. C cannot be approzimated:
e within ratio n'~¢ for any constant € > 0 unless NP C coRP ([26]);
o within ratio n\Y/%)=¢ for any € > 0, assuming NP # coRP ([8]);

o within ratio nY/1~¢ for any € > 0, assuming P # NP (8]).

Part 11
Graph-coloring and differential approximation:

maximizing the number of unused colors

10 A few words about the worst-value solution for graph-coloring

The é-framework has been axiomatized in [21](although it has marginally and occasionally been
used by some researchers, cf. [6], since 1980, this use was restricted to particular problems).

Key-requirement of the -framework is the stability of any adopted approximation ratio with
regpect to the affine transformation of the objective function. In what follows, we call affine-
equivalent problems for which the objective function of the former is an affine transformation
of the objective function of the latter. Affine transformation is very natural and frequent in
combinatorial optimization {the pair independent set — vertex covering is the most known but
not the only example of such a transformation), and the stability of the approximation ratio
under this type of transformation is not taken into account in the p-framework.

We give in what follows polynomial differential-approximation results for C. As we will see,
in this framework C is well-approximable since one succeeds to devise constant-ratio DPTAAs.
But first, let us make some remarks that will immediately introduce an information about the
worst-value solution of an instance of C (recall that in differential-approximation ratio intervenes,
except the values of the approximate and of the optimal solution, the value of the worst case
one).

Let A be the edge-vertex incidence matrix of G. In order to define C as a mathematical
program, we have to define a priori a set of eventual colors X; let |X| = I. The variables of
the program are then (i) 7 € JR), the characteristic vector of the selected colors of X, and (ii} I
vectors £; € R™, ¢ € {1,...,1}, the characteristic vectors of the independent sets corresponding
to each one of the [ colors. More precisely, C can be formulated as follows:

,

min 1 g
AT Vie{l,...,1}
#-y1<0 Vie{l,...,I}
C = l -+
g S5 =1
e {01}

fe{0,1}® Vvie{l,..,0}
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We distinguish four blocks of constraints: the [ stability constraints of £, the { exclusion con-
straints meaning that if color ¢ is not selected, then the independent set having characteristic
vector Z; is empty, the partition constraint guaranteeing that every vertex is colored with ex-
actly one color, and finally, the 0-1 usual constraints for the characteristic vectors. We can
choose n =1, i.e., we consider that there is no more colors than vertices in G. This very simple
remark supposes that we have anyway a certain initial knowledge of the problem without which
we would not be able to define 7. Solution 7= T corresponds to the solution where we affect a
distinct color per vertex, solution “unwarranted” and feasible for every graph. Consequently, one
can consider that one has a resource of n colors for coloring the vertices of G. Then, if a PTAA A
computes a coloring of size x4(G) for G, the quantity n — x4(G) (the enumerator of the dif-
ferential approximation ratio) is exactly the number of colors A has left unused. Hence, under
the differential approximation, C has a natural and picturesque interpretation as the problem of
maximizing the number of unused colors.

11 A differential-approximation algorithm based upon affine-equivalence
In [19], the following thought process for the differential-approximation of C is proposed:

(i) transform C into the following affine- -equivalent maximization problem AEC: “given a graph
= (V,E), find a partial sub-graph H of G (the complement of () having a maximum
number of edges and such that

(a) H is acyclic (or, equivalently, H is a forest), and
(b) every connected component (tree) of H is included in a clique of &7

(ii) devise a DPTAA for AEC and run it on G;

(iii) transform the solution provided for AEC into a solution for C (thanks to the affine-
equivalence, the two approximate solutions will induce the same differential-approximation
ratio).

Items (ii) and (iii) of the above thought process are summarized into the following DPTAA for C
where we denote by T a tree of H.

BEGIN =*D_COLOR1*

(1) determine G;

(2) compute a maximum matching M in G;

(3) HeM;

(4) FOR ecE DO IF HU{e} is feasible for AEC THEN H<—HU{e} FI 0D
(8) FOR T<H DO color the vertices of T with a new color OD

(6) color the vertices of V\V(H) using a new color per vertex;

(7) OUIPUT the set of used colors;

END. *D_COLOR1x*

Theorem 18. ([19]) AEC is affine-equivalent to C. Algorithm D_COLORZ is an O(n®5) DP-
TAA achieving differential-approzimation ratio 1/2 for both C and AEC. This ratio is tight for
D_COLORY.

Despite the fact that, as we shall see, the approximation ratio induced by theorem 18 has been
substantially improved in the sequel, it has its own interest since it is obtained by forwardly
exploiting the notion of affine-equivalence that, as it is shown in [21] as well as in a later pa-
per {[20]), can reveal very useful in analyzing the approximation performance of DPTAAs for
several NP-hard problems.
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12 From matching to 3 - independent sets

A little later in 1994, Hassin and Lahav ([34]) have improved the differential-approximation of C
by proposing the following algorithm directly working on the instance of C. In what follows, we
denote by ¢-IS an independent set of size <. '

BEGIN =D_COLOR2*
(1)  WHILE there exists 3-IS SCV DO

(2) ¢olor the vertices of S with a new color;
(3) Ve V\8;

(4) G« G[V];

(5) 0D

(6) compute a maximum collection C of 2-IS in G;
(7) FOR S&€C DO color 8 with a new color OD

(8) color G[V\V(C)] using a new color per vertex;
(9) OUTPUT the set of used colors;

END. *D_COLOR2*

Theorem 19. ([34]) Algorithm D_COLOR2 is an O(n%5) differential-approzimation algorithm
for C achieving a differential-approzimation ratio 2/8. This bound is tight for D_COLORZ.

One can remark that there exist many similarities between algorithms D_COLOR1 and D_COLOR2.
The only notable difference is that the former, instead of searching for independent sets on 2
vertices (a collection of independent sets on 2 vertices in a graph corresponds to an equal-sized
matching in its complement), first searches for such sets on 3 vertices. If we keep the same spirit
of these algorithms, there exists a natural way to improve the approximation ratio for C:

(i) by replacing the independent sets on 3 vertices by larger ones, and

(ii) by devising efficient approximation algorithms for the case where the surviving graph has
independence number greater than, or equal to, 3.

13 Coloring graphs via set-covering

A clever improvement of the approximation ratio for C, using the solution of a particular SC
problem, is presented by Halldérsson in [33]. Before outlining the devised algorithm, we need to
describe a kind of local improvement, called ¢-improvement in [33], applied on any SC-solution.

Consider an instance (S, C') of SC and a set covering &' C S. A t-improvement of 8’ is formed
by sets 81, 5%,...,5)in & and by sets $1, 85, ..., 5;_1 in S such that 8" = (S"\{8},8,... ,Shu
{51,82,...,8;-1} is also a cover. Obviously, |S”| < [S!|. A cover is t-optimal if it contains no
t-improvement. Moreover, for fixed #, t-improvements can be done in polynomial time, so does
the verification of t-optimality.

In what follows, let us denote by 3SC the class of SC where the sets of S are all of cardinalities
at most equal to 3; moreover, we recall that the 2SC, i.e., the SC with sets of cardinality at
most 2, can be solved in polynomial time ([10, 28]). In fact, given an instance I = (8, C) of 25C,
one can construct a graph Gy = (V, E) where V' = C and E = {v;v; : 39 = {c;,¢;} € S§}°.
Then, every edge-covering of Gy (i.e., every set of edges covering the vertices of V) corresponds
exactly to a set-covering of the same size of I. Consequently, optimal 2SC-solution of I is a

30f course, this transformation is reversible, i.e., given a grapk G, one can obtain a 28C-instance Ig = (S, C)
setting V = C and § = {{c,¢;} : yv; € E}.
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minimum edge-covering of G and finding such an edge-covering can be performed in polynomial
time ([10}).

The following PTAA, where we denote by 2_SC the algorithm optimally solving 28C in
polynomial time, is proposed in [33] for 3SC. Moreover, algorithm t_IMPROVE called in line (8)
of algorithm 3_SC repeatedly applies t-improvements until ¢-optimality.

BEGIN *3_SCx*

(1) find a maximal collection & of mutually disjoint sets in (S,C);
(2) € e C\Usyes,S::

(3 S’e—-—{siﬂc’:SiES,SiﬂC’;é{D};

(4) S« 2._8C(8,¢);

() fix a large integer t;

(6) OUTPUT & « t_IMPROVE(S;US,);

END. #*3_5C#*

It is easy to see that the instance of SC obtained in line (3) of algorithm 3_SC is really an
instance of 28C, so it can be optimally solved in polynomial time in line (4).

If one chooses an even fixed t arbitrarily large, the analysis of algorithm 3_SC, performed
in [33] produces an approximation ratio at most (7/5)+0(4/t), that constitutes also an interesting
improvement for the approximation ratio of 3SC. The only draw-back of this result is that the
complexity of the algorithm is of O(n®®) and therefore the closer to 7/5 the ratio, the higher
the execution time of algorithm 3_SC; but, in any case, even of high complexity, it remains, for
a fixed t, always polynomial.
~ The following algorithm is the one proposed for C in [33] (we use the term 4-IS to denote
an independent set on 4 vertices); moreover, once more we suppose that colors are integers in

{1,...,n}.

BEGIN *D_COLOR3*

(1) find a maximal collection S, of mutually disjoint 4-IS’s V; in G;
(2) FOR i+ 1 TD |S;) DO color the vertices of V; with i OD

(3) Ve V\Uyes,Vi;

4) G+« G[V];

(5) find the collection Sz of all the independent sets of G;

6 &« 3_8C((85,V));

(7)  color each member of & with a new unused color;

(8) OUTPUT the union of colors used in lines (2) and (7);

END. =*D_COLOR3=*

In algorithm D_COLOR3, since all the disjoint independent sets on 4 vertices have been removed
in line (1), the surviving graph G has independence number at most 3; so, the instance (Ss, V)
on which algorithm 3_SC is applied is really a 38C-one (constructed in polynomial time since
[S5] = O([V]®).

Theorem 20. ([38]) Algorithm D_COLOR3 is o DPTAA for C achieving in O(n®®) differen-
tial-approzimation ratio 3/4.

Let us note that, in [32], a PTAA of approximation ratio 5/7 for C is presented. This algorithm
is essentially the same as algorithm D_COLOR3, but it contains no ¢-improvements.

14 Coloring, set-covering and semi-local optimization

Revisit for a while the t-improvement seen in section 13 and its application at line (6) of al-
gorithm 3_8C. It is easy to see that the intuition behind such improvement is the replacement
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of a constant number of sets in the current cover by a hopefully smaller number of other sets
in such a way that the cover so obtained remains feasible. In [24], the following refinement
of t-improvement, called semi-local improvement, is proposed. A semi-local (s, t)-improvement
for 38C (s > t) consists of the insertion of at least s sets of size 3 and the deletion of at least t
such sets from the current cover. In addition the elements remained uncovered by the semi-local
improvement are optimally covered by algorithm 2_SC. In other words in such improvement, one
tries to augment the number of the 3-sets used in the cover (covering so more elements by these
sets) and to reduce the number of the smaller sets used (2- and 1-sets).

Based upon semi-local improvement, a refinement of algorithm D_COLOR3 is devised in [24].
The basic idea remains the same: one greedily finds a collection of independent sets of up to a
certain constant size k + 1, colors any of them with a new color and removes all of them from
the input graph; next she/he transforms the surviving graph into an instance of kSC as we have
seen in section 13 and approximately solves £SC in this instance. In [24], £ = 6. The algorithm
for 65C proposed includes three phases. The first one is totally greedy and consists of finding
a maximal collection of disjoint 6-sets in the initial 6SC-instance (S, C). The elements covered
by this collection are next removed from C and the remaining sets are updated. Of course this
update will eventually create some 1-sets. The second phase is more restrictive than the first one.
Here a maximal collection of disjoint 5-sets, then 4-sets is constructed but with the restriction
that any such set is chosen to make part of the collection only if its choice does not increase the
number of 1-sets created during the first phase. This is done greedily by considering a set and
by examining if the removal of its elements will create additional one sets. In what follows, we
denote by STRICT_PHASE the procedure implementing the second phase. The elements covered
by collection so-constructed are removed from C and the remaining sets are updated. Finally, the
third and last phase, applied in the surviving 3SC-instance, is a semi-local (2,1)-improvement.
In what follows, we denote by SL_OPT21 the algorithm repeatedly applying semi-local (2, 1)
improvement until no such improvement is possible.

BEGIN *6_3C*
greedily choose a maximal collection S; of mutually disjoint 6-sets in (S,C);
CeC \ US;LGS],SJ'.;
S {81NC:8;€8,8:NC#D};
8, — STRICT_PHASE(S,C);
C+—C \ USiEsti;
S—{8NC:8; €8,8NC#D};
S « SL_OPT21(8,C);
OUTPUT & — S, US, USs;
END. *6_SC=*

Based upon algorithm 6_SC, the following coloring algorithm is proposed in [24] (we always
suppose that colors are integers in {1,...,n}).

BEGIN *D_COLOR4*

(1)  {find a maximal collection & of mutually disjoint 7-IS°s V; in G;
(2) FOR i+ 1 TO |S7| DO color the vertices of Vi with i OD

(3) V¥ \ UViES'rVi;

(@) G« @V;

(5) find the collection Ss of all the independent sets of G;

6) &+ 6.5C((S,V));

(7) color each member of & with a new unused color;

(8) OUTPUT the union of colors used in lines (2) and (7);

END. *D_COLOR4x*
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Theorem 21.  Algorithm D_COLOR{ is a DPTAA for C achieving in O(n®®) differential-
approzimation ratio 289/360.

15 Unifying the above algorithms

We now show that the four D_COLOR-algorithms presented above are instantiations of the following
general schema (parameterized by a graph G and an integer k). In what follows, we denote
by k_SC a PTAA for kSC, ie., the class of SC where the sets of & are all of sizes at most k.

BEGIN *DC_SCHEMA*

(1) find a maximal collection Sxyy of mutually disjoint (k+1)-IS’s V; in G
(2) FOR i1 TO [Sgta| DO color the vertices of Vi with i Q0D

(3) Vi + V\Uyes. Vis

(4) G « G[Vi];

(6) find the collection S of all the independent sets of G;

(6) c§ - k_SC((Sk, Vk));

(7)  color each member of & with a new unused color;

(8) OUTPUT the union Xp¢ of colors used in lines (2) and (7);

END. *DC_SCHEMA*

Obviously, if k is fixed, line (5) can be executed in polynomial time (at most O(nF)). Moreover,
the set-system (S, V) is-an instance of &SC.

Theorem 22. If algorithm k.SC approzimately solves kSC within differential approrimation
ratio & < k/(k+1), then DC_SCHEMA approzimately solves C in polynomial time within differential-
approzimation ratio d.

Proof. Let xri1 and xi be the numbers of the colors assigned by the execution of lines (2)
and (7), respectively, and denote by xpc(G) the number of colors computed at line (8), ie., the

size of set Xpc produced in line (8).
Since algorithm k_SC achieves differential approximation ratio 4, the following holds for any

kSC-instance I :
|3| < (1 - syworsT(1) + s0PT(2) (11)

In general, when dealing with SC, there exist two natural values that can be considered as worst
solution-values for an instance I = (8, C): |S| and |C|. The former corresponds in taking all the
sets of the family S and the latter in taking a subset of S per element of C. In order to be as
restrictive as possible, it seems natural to consider -

WORST ((S,C)) = min {|S], |C]}.

In instance (S, V%) (line (6)), since all the independent sets have already been produced in
line (5), singletons, corresponding to vertices of Vj, are also included. Hence, a solution taking
a set per vertex of V}, is feasible, and moreover, |Si| = [Vi|. Consequently,

W (Sk: Vi) = Vil = n— (k + D)xe1- (12)

So, using expression (11) for I = (g, Vi), expression (12) and the facts: (i) the optimal set-cover
of (Sk, V) is in 1-1 correspondence to the optimal coloring of Gy, and (i), x(Gx) < x(G), the
following holds:

Xk < (1= 0) [Va| + 6OPT ((Sk, Vi) < (1= 6) (n = (b + )xer1) + 6x(G) (13)
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On the other hand, xp¢(G) = xk+1 + X and using expression {13), we get

xoe(G) € Xre1+ (1= 0) (n— (k+ Dx+1) + 6x(G)
& .
n—x0c(G) > 6(n—x(C)+xps1 (k= 8(k+1) > §(n=x(G))
for § < k/(k +1). We so derive (n — xpe(@))/(n — x(G)) = 4, that concludes the proof of the
theorem.
The result of theorem 22 can be extended to work for any § in the following way. Set, without
loss of generality, Sgy1 = {81,82,...,5;}, the collection produced at line (1) of algorithm

DC_SCHEMA; S; =k +1,¢=1,...,q. Then the following holds:

WORST(G) = WORST (S, Vi) + q(k + 1) (14)
xoe(G) = xx+g (15)
x(Gv) € x(G) (16)

Combining expressions (14), (15) and (16), we get

WORST(G) — xoc(@) WORST (8, V) + q(k +1) — (xx +9)
WORST(G) — x(G) >~ WORST (S, Vi) + gk + 1) — x (Gr)
WORST (Sk, Vk) — %k + gk > min {5 _L}
WORST (S, Vi) — x (Gi) + a(k+1) = PESY N

In all, the discussion just above derives the following theorem.

Theorem 23. If algorithm k_SC epprozimately solves kSC within differential approzima-
tion ratio 8, then DC_SCHEMA approzimotely solves C in polynomial time within differential-
approzimation retio min{é, k/{k+ 1)}.

15.1 Recovering algorithm D_COLOR4

Algorithm DC_SCHEMA(G,6) is nothing else than algorithm D_COLOR4. A careful lecture of the
proof of theorem 4.2 (pp. 260-261) of [24] together with a preliminary remark just above the
statement of theorem 4.2 (... instead of charging cost 1 to a chosen set, now we will charge
a cost (k— 1) to a chosen k-set ...), make clear that this proof is also the one of the fact
that the differential-approzimation ratio of algorithm 6_SC is bounded above by 289/360. Then,
application of theorem 22 derives the ratio claimed by theorem 21.

15.2 Recovering algorithm D_COLOR3

Suppose that DC_SCHEMA (G, 3) is executed. This is exactly algorithm D_COLOR3 that calls algo-
rithm 3_SC for which the following is proved in [33]:

[5‘ < %WORST((Sg,V)) + Z ‘5‘

where & is the solution produced at line (6) of algorithm 3_SC and S is some cover of the
system (S, C). Consequently, theorem 22 is applied with § = 3/4.
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15.3 " Recovering algorithm D_COLOR2

Revisit now algorithm D_COLOR2 and observe that lines (6) to (9) can be seen as the polynomial-
time algorithm of [10] optimally solving 28C, or, equivalently, minimum edge-covering in the
graph G input of line (8).

Then, it is easy to see that DC_SCHEMA(G,2) is exactly D_COLOR2. Let us denote by OPT(Is)
the optimal 25C-solution computed by algorithm D_COLOR?2 (see footnote 3), by S(I¢) some other
25C-solution and by WORST(I) the worst-value one consisting of taking an edge per vertex
of G (i.e., a set per element of C); obviously, WORST(Ig) = |G|. We then have:

1 2
OPT (Ig) = gOPT {Ig) + §OPT (Ig) < |Gl + = ]S(Ig)|
In other words, we are in the case of an application of theorem 22 with 6 = 2/3.

15.4 Recovering algorithm D_COLOR1

Observe that the subgraph H produced in line (3) is feasible for AEC. Moreover, execution
of line (4) may, at worst, not change the number of the connected components of H. In this
case, algorithm D_COLOR1 is nothing else than DC_SCHEMA (G, 1) and the SC-instance produced at
line (6) of DC_SCHEMA is an 1SC with the vertices of V' \ V(H) as ground set and the singletons
containing these vertices as collection of subsets. Taking all these singletons is an optimal solution
for the corresponding instance. Then, in a completely analogous way as the one of section 15.3
and denoting by Xp; the set of colors retained in line (7) of D_COLOR1, we get,

1 1
OPT(GIVAV(H)]) = |[Xn| = 5 VA V(H)| + 5;OPT(G[V \ V(H)]).
We are here in the case of an application of theorem 22 with § = 1/2.

16 Using A_COLOR to color “sparse” graphs

Consider a graph G verifying A(G) = o(n). Then, it is immediate to see that running algorithm
A_COLOR in such graphs provide colorings achieving approximation ratio
n — o{n)

— ey ],
n=X(C)

Proposition 6. Whenever A(G) = o(n), liMp—o0 da_coror = 1.

17 Negative results

Since C is well-approximable in é-framework, the negative results one can obtain here have a
character much less “dramatical” than the ones of the p-framework.

In an unpublished paper of 1993 (some of its results have later been pubhshed in [22]), the
following inapproximability result has been proved for C.

Proposition 7. Unless P = NP, C cannot be approximated neither by a DFPTAS, nor by an
asymptotic DFPTAS guaranteeing, for every € > 0, differential-approzimation ratio of the form
0 =1-—¢e—{1/[n— x(G)]}" where 1 is a fivzed positive constant.

This result has been strengthened in [32] where, by a reduction from the 3-dimensional matching,
it is shown that C is MAX-SNP-hard.

30



Theorem 24. ([32]) C is MAX-SNP-hard. Hence, it cannot be approzimated by a DPTAS,
unless P = NP.

Let us recall that in [48], an optimization problem is called simple if, for every fixed constant k,
its restriction to instances verifying OPT(]) < k can be optimally solved in polynomial time.
For instance, IS or SC are simple, while C (since 3-coloring is NP-complete) or bin-packing are
not. The notion of simplicity has a natural extension in the differential-approximation framework
where we call D-simple an optimization problem, the restriction of which to instances verifying
|WORST(J) — OPT(I} < k can be optimally solved in polynomial time (observe that o(I) <
[WORST(I) — OPT(I)|). For instance, it is easy to see that IS, SC or, even, C and bin-packing
are D-simple. For D-simple problems the following theorem can be proved (see also [45]).

Theorem 25. Every D-simple problem has a DPTAS iff it has an asymptotic DPTAS.

Proof. Suppose II a minimization problem, i.e., WORST(I) — OPT(I) > 0. Of course, if II
has a DPTAS, then it has an asymptotic one. Suppose that II has an asymptotic DPTAS
with a constant ¢ (see definition of asymptotic DPTAS in section 1) and denote by EXACT the
algorithm (parameterized by an instance I of IT and an integer &£ > 0) deciding if [WORST(I) —
OPT(I)| € k and, if yes, computing the optimal solution of I. Also, denote by AD_SCHEMA the
asymptotic DPTAS for II and suppose that it is parameterized by I and € > 0. Then, the DPTAS
claimed is as follows.

BEGIN *D_SCHEMA=*
fix a constant ¢ > 0;
IF EXACT(I,2c/e) successfully terminated THEN OUTPUT EXACT(I,2c/e) FI;

OUTPUT L(I) < AD_SCHEMA(I,¢/2);
END. #D_SCHEMA*

We now prove that D_SCHEMA is a DPTAS for II. Observe first that 2¢/e is a fixed constant.
Moreover, if EXACT(I, 2¢/¢) has not successfully terminated, then

WORST{I) — OPT(I) > -26—0 = c< % (WORST(I) — OPT(I)) (17)
In this case, execution of AD_SCHEMA achieves
WORST(I) — L(I) > (1 - g) (WORST(I) — OPT(I)) — ¢ (18)

Combining expressions (17) and (18), one immediately gets

WORST(D) - L(I) _,
WORST(I) - OPT{I) © =~

concluding so that D_SCHEMA is a DPTAS for I1. i
Combining theorems 24 and 25, the following concluding corollary holds.

Corollary 3. Unless P = NP, C cannot be solved by an asymptotic DPTAS.

18 Final remarks

For reasons of size of the paper, we have not extensively discussed approximation results on
k-chromatic graphs (the most popular of them being the 3-chromatic ones), except when such
results are used to produce approximation ratios for the general coloring problem.
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In the p-framework, positive results for k-chromatic graphs are given in [13, 39], while for the
special case of k = 3, one can refer to [13, 14, 39]. Let us note once more that the results in [39]
and [14] (ratios of values bounded above by O(|V|1=/*+1 1og |V|) and O(|V 13/ 410g”M [V)),
respectively) are originally guaranteed by randomized PTAAs. These algorithms have been
derandomized in [44] in such a way that they still attain the same performance guarantees.
Finally, the stronger inapproximability result for 3-coloring is, to our knowledge, the one of [41],
where a lower bound of 5/3 — ¢, Ve > 0, for the ratio of every 3-coloring PTAA is provided.

When k is fixed, the results of [14, 39, 44] induce that one can legally color the vertices of
a graph in polynomial time with o(n) colors. Then, the differential-approximation ratios of the
corresponding algorithms are (n — o(n))/(n — k) and tend to 1. In other words, the differential
approximation ratio for 3-coloring is asymptotically equal to 1.

Other interesting approximation issues not considered in this paper are the approximation
of C in random graphs, or in special classes of graphs (for example in planar ones). Work
about the former issue, as well as a certain number of references, are presented in [12, 13], while
information about the latter can be found in [18].
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A Proof of the results of section 2

A.1 Proof of lemma 2

Since G is 3-connected, there always exist appropriate vertices v and u. Execution of line (4)
is always possible by BFS since ¢ remains connected. The coloring-operation in line () can
be successfully come up since every vertex to be colored has always less than A(G) neighbors
already colored. Finally, concerning w, since it has two neighbors legally colored with 1, there
exists at least one legal color for it. All the operations of algorithm 3C_COLOR can be performed
in polynomial time.

A.2 Proof of lemma 3

Execution of line (3) is always possible by BFS since G is biconnected, consequently G[V \ {v}]
remains connected. In line (4) coloring is possible since every vertex to be colored has less
than A(G) neighbors already colored. Finally, dealing with v, it can be legally colored since its
degree is € A(G) — 1. Obviously, all the operations of 1V_COLOR are performed in polynomial
time.

A.3 Proof of theorem 2

Let us first note that articulation points and biconnected components of a graph can be found in
polynomial time ([1]). Consequently, given any graph, its blocs can be identified in polynomial
time (any edge not contained in a biconnected component is an isthmus).

Consider a bloc A of G. Then, following the unraveling of algerithm A_COLOR, the following

cases may occur.

A31 A(G[A]) <3

Let us first prove lemma 1. Starting from an arbitrary vertex, we apply a BFS on G by
coloring every vertex and its neighbors with distinct colors. Since no vertex has more than A(G)
neighbors, 1+ A(G) colors are largely sufficient to legally color all the vertices of G. BFS-
algorithm being polynomial ([1]}, the whole process is polynomial.

Consequently, since A(G[4]) < 3 = A(G[4]) £ 2, following lemma 1, one can color A

with 3 colors.

A32 |[Al<A(G)+1
Here also, using lemma 1, A can be colored with A(G) colors.

A33 |Al=AG)+1

Then, since by hypothesis G[A] # Ka(g)+1, it certainly contains a vertex of degree A(G) ~ 1.
Hence, by lemma 3, A can be colored by algorithm 1V_COLOR using at most A(G) colors.

A.3.4 G[A] is 3-connected
By lemma 2, algorithm 3C_COLOR colors A with at most A(G) colors.

A.3.5 G[A] is biconnected
Consider an arbitrary vertex = with d°(z) > 3. Then the following two cases can occur.
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G[A\ {z}] is biconnected. We prove by contradiction that there exists a vertex y such that
d{z,y) = 2. Suppose that, Yy, d(z,y) < 2. Then, no neighbor of z is linked to a vertex
which is not neighbor of z also; consequently, 4 = zUI'(z), in other words |A| = |zUT'(z)] <
A(G) +1, a contradiction since |4] > A(G) + 1.

G[A\ {z}] is not biconnected. Consider then two extremal blocs B; and By (G[A \ {z}]
being connected and containing at least one articulation point, such blocs always exist)
and denote by ay € B; and a2 € B; two articulation points of G[4 \ {z}]. Since G is
biconnected, there exist z1 € By \ {1} and 2z € B\ {a2} adjacent to #. Suppose that
one of z1, z, say 21, does not exist. Then, every path from z to any v € B \ {a1}
would include a;, contradicting so the biconnectivity of G. Finally, observe that, since
d°(z) 2 3, G[V'\ {21, 23}] remains connected.

A.4 Constructing the final coloring in line (29)

Let us now show that the union of the colorings obtained (applying some color-permutations if
necessary) leads to a feasible coloring for G.

Observe first that any two blocs have at most only one vertex in commeon. Let us suppose the
contrary, i.e., that there exist two blocs B and B’ having two vertices, & and ¥, in common. Of
course, G[BU B’] is not biconnected because, in the opposite case, B and B’ would not be blocs
(recall that blocs are maximal). Consequently, at least one of b, ¥ is articulation point. But if
one removes b, G[(B U B') \ {b}] remains connected because G{B] and GIB’] remain connected
and have &' in common; the same holds if we remove ¥, a contradiction. ‘

On the other hand, we can always order the blocs in such a way that each bloc has at most
one vertex in common with the union of the blocs preceding it in the ordering considered. In
fact, one can construct a graph where a vertex represents a bloc and an edge links two vertices
iff they represent two blocs having a vertex in common. Using the maximality condition in the
definition of a bloc, one can easily see that the graph constructed is connected and acyclic, i.e., a
tree. In this tree, we can apply a BFS to obtain the ordering claimed. Finally, when we integrate
the vertices of a new bloc to the existing coloring, i.e., we increase the subgraph the vertices of
which have been definitely colored, it is always possible to perform a color-permutation in the
bloc in such a way that the common vertex (between the subgraph and the bloc), if any, has the
same color in both the bloc and the subgraph.
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