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DETERMINATION DE L’ENSEMBLE DES SOLUTIONS NON-DOMINEES
DANS LE CADRE DES PROBLEMES DE FLOT BI-CRITERES : UNE
APPROCHE BASEE SUR LES TECHNIQUES DE PARTITION ET

EVALUATION SUCESSIVES

RESUME

Cet article présente une nouvelle méthode pour identifier tous les vecteurs non-dominés concernant le
probléme de flot & “coiit minimum” bi-critére dans le cas entier. D’approche combine trois techniques
différentes : la méthode e-contraint, la méthode du simplexe en théorie des graphes et la méthode de la
partition et évaluation sucessives. L’avantage principal de cette approche consite a identifier toutes les
solutions efficaces sans détruire la structure de réseau inhérente aux problémes de flot. L’article présente
aussi une méthode fondée sur la programmation paramétrique ayant pour objectif la déterminaison de
tous les vecteurs non-dominés supportés. Parfois, ces vecteurs nous donnent une approximation de

I'ensemble complet de tous les vecteurs non-dominés. Cette information peut étre utilisée dans le con-
texte des procédures interactives ol le décideur définit une zone d’intérét pour effectuer une recherche
plus détaillée.

Mots-clés : Critéres multiples, Analyse combinatoire, Graphes et réseaux, Programmation en nombres
entiers.

ON THE INTEGER BI-CRITERIA NETWORK FLOW
PROBLEM: A BRANCH-AND-BOUND APPROACH

ABSTRACT

This paper presents a new method for identifying all the non-dominated vectors for integer bi-criteria
“minimum cost” network flow problems. The method combines a network simplex algorithm, the e-
constraint method and a branch-and-bound algorithm. The set of all non-dominated vectors in criteria
space (or efficient solutions in decision variable space) is determined by solving an £-constraint problem
with branch-and-bound techniques. The main advantage of the proposed method concerns the identifi-
cation of non-integer solutions exploiting only network structures. We suspect that it can be many times

faster than general LP-algorithms. The paper also presents a method for finding the set of non-dominated

supported vectors based on parametric programming techniques. Sometimes supported non-dominated

vectors represent a rough approximation of the entire set of non-dominated vectors and allow us to define
zones of potential interest for decision makers where a more detailed search must be done.

Key words: Multiple Criteria, Combinatorial Analysis, Networks and Graphs, Integer Programming.
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1. INTRODUCTION

Network flow problems arise in all walks of life, whether in planning highway systems, or in planning daily
production electricity, or in planning manufacturing and distribution systems. The field of network flows
has a rich tradition in many other domains. In all of the areas of application of network flow methods, it is
frequent to wish to “optimize” not only one but several criteria simultaneously. In general the criteria are
mutually conflicting. The concept of optimal solution is thus replaced by the concept of efficient solution.
In such solutions it is not possible to improve the evaluations of one criterion without incur in a degradation
of the evaluations of at least one of the remaining criteria.

Multiple criteria analysis deals with the help of decision-makers to make “good” decisions in the presence
of multiple but usually conflicting criteria. Multiple criteria combinatorial optimization is a field of multiple
criteria analysis. It has not been very intensively investigated in spite of its importance from the practical
standpoint. In the field of bi-criteria "minimum cost” network flows (both linear and integer cases) we can
mention the following works:

o Fruhwirth et al. (1989), proposed two different rules (the angle and the slope bisections) in a method
designed to approximate the set of all non-dominated vectors.

o Malhotra and Puri (1984), and Lee and Pulat (1993), generalize the out-of-kilter method.

o Lee and Pulat (1991), Pulat et al. (1992), and Calvete and Mateo (1996), generalize network simplex
algorithm.

Multiple criteria “minimum cost” network flow problems are known to be hard to solve. Ruke (1988)
proves, for a particular instance with only two criteria, that the number of non-dominated extreme points
(in criteria space) grows exponentially with the number of vertices of the network.

Our research is intended to reflect the concern with the design of new algorithms for multiple criteria
combinatorial problems. So, this paper provides a new method for identifying all the non-dominated vectors
for integer bi-criteria “minimum cost” network flow problems. The method combines a network simplex al-
gorithm, the e-constraint method, and a branch-and-bound algorithm. The set of all non-dominated vectors
in criteria space (or efficient solutions in decision variable space) is determined by solving an e-constraint
problem with branch-and-bound techniques. The paper also presents a method for finding the set of non-
dominated supported vectors based on parametric programming techniques.

The contents of the paper are as follows. In Section 2, the necessary mathematical background is
reviewed and the e-constraint method is presented. Section 3 contains a short presentation of the network
simplex method. A branch-and-bound algorithm is given in Section 4. In Section 5 the proposed method is
presented and is illustrated in Section 6. Finally, in Section 7, some concluding remarks are outlined.

2. STATEMENT OF THE PROBLEM: NOTATIONS AND DEFINITIONS

To better understand the proposed approach, definitions and notations regarding network flows optimization,
graph theory and linear programming must be introduced in this section (for more details about network
optimization, see also Ahuja et al., 1993).

Let G = (8, A) be a directed and connected graph, where S is a finite set of nodes or vertices with
cardinality S| = n, and A is a collection of ordered pairs of elements of .§ called arcs, with cardinality
|4] = m.

A graph G' = (', ') is called a subgraph of G = (S, 4) if $' C Sand 2' C 4. Ttisa spanning subgraph
of GifS'=5. ApathPisa sequence of vertices and arcs, iy — a1 —ip —ay — ... —i_y — as—1 — is, without
repetition of vertices and where 1 < k < s— 1 for which either a; = (fksiks1) € A, or a = (igy1,i) € 4. A
directed path is a path without backwards arcs. A cycle C is a closed path where the only repeated vertex
is the starting and the end point that coincide. A directed cycle is a closed directed path. When in a given



graph G there is always a path linking any two different vertices of G, the graph is called connected. A
tree T = (V,E) is a subgraph without cycles where ¥/ C S and E C 4. A tree T is called a spanning tree
when it spans the set of vertices S of G, that is %/ = 5. A spanning tree is denoted by T = (5, E). Consider
(k,1) a given arc belonging to the set 4 but not in ‘. Then, there is a unique cycle C when the arc (k,1) is
added to E. The orientation of C is the same as (&, I). Inacycle C a partition of its vertices can be made by
separating the arcs having the same orientation as ¢ from the arcs in the opposite direction. The collection
of all possible cycles of this type is called fundamental cycie basis. All these definitions are essential for a
better understanding of the network simplex method, presented in Section 3.

A directed graph with numerical values assigned to its vertices and/or arcs is called nerwork. Let
G =(5,4) be a network with two "costs” ¢, (i, 7) and c2(3, j), a lower bound I(i, j) and an upper bound
or capacity u(i, j) associated with every arc (i, j) € 4. The numerical values I(i, ) and u(i, j) respectively
denote the minimum and the maximum amount that must flow on the arc (i,J). Finally, let x(i, j) be the
amount of flow on the arc (7, j). A numerical value (i) is also associated with each vertex i € .S denoting
its supply (if b(i) > 0) or its demand (if b(i) < 0). A vertex with b(i) = 01is called a transshipment vertex.
The bi-criteria “minimum cost” network flow problem can be stated as follows:

minf1 (JC) = Z Cl(i:j)x(i7j)
(ij)ea
i#]

min f>(x) = Z ea(t, 1)x(i, J)
(i.j)ea
i#]

)

subject to :
Yo ) - Y x(ii)=b(), Vies
4 | (i)ea) {1 (i)eay
i#j i#]
IG,7) <x(,j) <u(i,)), VGj)eAa

In what follows, the assumptions below must be taken into account:
1. The graph is directed and connected.

2. All the numerical values for the costs, lower and upper bounds on the arcs and supplies/demands on
the vertices are integral and finite.

3. The condition Y’ 5(i) = 0 must be fulfilled.
€S
4. The integer bi-criteria ”minimum cost” network flow problem has at least two feasible solutions and
the minimum values for the individual objective functions are different.

Problem (1) can be presented in a more dense form as follows:

"min”  F(x) = (A(x),A()
subject to : (2)
X€X ¢ {xeR"|Ax=b,l <x<u},

where: x € R™, x = (x1,...,%,)7, is the vector of decision variables; X is the set of feasible solutions of
(1); A is the n X m node-arc incidence matrix; I is the vector of lower bounds; u is the vector of upper
bounds; b is the vector of supplies/demands on vertices; F(x) = (fi(x), f2(x)) " is the vector of objectives
to be "minimized”; ¥ = F(X) is the set of all feasible vectors y in R?, where y = (y; y2)T with y, = f(x)
forg=1,2.

Dominance is a key concept in multiple criteria decision analysis. Let us define this concept for the
general multiple criteria case with 7 criteria.



Definition of dominance. Consider y' and y? two feasible solutions. Then, y! dominates y? iff y' < y? and
y £ y2 thatis, ! <y? forallg=1,...,r with at least one strict inequality.

Definition of non-dominated vector. A vector y'* € Y is called non-dominated iff there does not exist
another vectory € Y such thaty <y and y # y™.

A distinction between efficient solutions in decision variable space and non-dominated vectors in criteria
space can be made. Efficient solutions are crucial for the usefulness of multiple criteria methods. This
concept was first introduced by Pareto (1896). Thus, these solutions are called Pareto optimal, and also
non-inferior or functional efficient solutions.

Definition of efficient solution. A solution x° € X is said to be efficient iff it is impossible to find another
solution x € X with a better evaluation of a given criterion without deteriorating the evaluations of at least
another criterion,

Inmultiple criteria linear integer programming, two types of non-dominated vectors can be distinguished:
1. The non-dominated supported vectors, that is, those vectors of ¥ that can be obtained by solving the
following parametric mathematical programming problem:
r r
min y Ay, for Ao=1, A;>0 for g=1,...,r.
yer G% qYq q% q q q yreen?

2. The non-dominated unsupported vectors, that is, the non-dominated vectors of ¥ belonging to the
interior of the convex hull of ¥, Conv(Y).

Let:

o ¥"@ be the set of all the non-dominated vectors of ¥ :

Y745 be the set of all the supported non-dominated vectors of ¥';

=]

=]

Y744 be the set of all the unsupported non-dominated vectors of Y, that is, Y = ynd _ ynds,

X* be the set of all the efficient solutions of X;

L]

X be the set of all the efficient solutions related to the set of all the supported non-dominated vectors,
Ynds; )

X*® be the set of all efficient solutions related to the set of all the unsupported non-dominated vectors,
that is, X = X¢ — X,

Among the supported non-dominated vectors we may also distinguish the set of non-dominated supported
extreme points of Conv(Y), denoted by Y%, and the set of non-dominated supported intermediate vectors
that can be obtained by a linear convex combination of non-dominated supported extreme points, denoted
by ¥"', The same kind of distinction between the set of supported extreme efficient solutions X and the
set of supported intermediate efficient solutions X°* can be made in the decision variable space.

In multiple criteria linear programming several techniques (scalar optimization problems) can be used
in order to characterize efficient solutions (non-dominated vectors) like, for example, weighted-sum ap-
proaches, Tchebycheff metrics based methods, e-constraint methods, and so on (see Stewer, 1985). Among
the existing methods, the €-constraint approach can be easily used in multiple criteria integer problems
without any additional restrictions. Efficient solutions can be characterized as optimal solutions for the
g£-constraint problem. ;

The e-constraint problem associated with the bi-criteria (1) can be stated as follows:

=]

[}

min fi(x)
subject to : e 3)
f2 (JC) <g



where € is a scalar.

In the e-constraint method, € varies among all the values for which (3) remains feasible. So, in or-
der to identify a set of efficient solutions, a sequence of problems (3) is solved for each different value
of & (Chankong and Haimes, 1983). For integer bi-criteria linear programming problems the entire non-
dominated set Y™ can be easily determined by solving a sequence of problems (3).

Theorem of equivalence [Haimes et al., 1971]. Consider € > min f5(x). If the solution x* solves problem

(3) and when x* is not unique it leads to a minimal value for criterion f>(x), then x* solves (1), that is, x* is
an efficient solution for (1).

Proof.

Suppose now that x* does not solve the problem. Another solution £ can then be considered so that only one of the

following two cases can occur:

o fi(£) < fi(x*) and f2(2) < fa(x*) which contradicts the fact that x* solves (3), or

o f2(£) < fo(x*) and f1(£) < fi(x*), which contradicts the hypothesis that x* is optimal for (3) with the smallest

value for f(x).

The theorem is proved by the two cases above.

Problem (3) will be used in the algorithm outlined in Section 5 to determine all the non-dominated vectors
for problem (1).

3. NETWORK SIMPLEX ALGORITHM

Let us now succinctly recall the network simplex method on minimum cost network flow problems (see
Figure 1). The basic idea for any variant of the network simplex method is a Spanning Tree Structure
(STS), (T,L,U). Such a structure (or solution) is obtained when, for any arc not belonging to this tree,
the flow value is fixed at its lower bound level or at its upper bound level. All the arcs fixed at their lower
bound level bejong to the set L, while all the arcs fixed at their upper bound level belong to the set U. The
remaining arcs are those belonging to the spanning tree 7. A minimum cost network flow problem has
always at least one STS optimal solution (see Ahuja et al.,, 1993). It is possible to find an optimal STS
by shifting from one STS to another, successively. At each iteration, we exchange a pair of arcs (one arc
entering STS and one arc coming out of STS). Any STS corresponds to one feasible basic solution in linear
programming, and each shift from one STS to another coincides with one pivoting operation in the standard

simplex method. The initialization of the algorithm consists of finding one feasible STS (or equivalently,

a feasible basic solution in the standard simplex method). Two vectors are associated with this STS, the

flow x (primal solution) and the potential 7 (dual solution). Each iteration of the method consists of: (1)

identifying one eligible arc (k,l) with (k,I) ¢ 7; (2) adding the arc (k,I) to 7 and finding an arc (p,q)
coming out of 7’; and, updating STS and the primal and dual solution (x,7).

An arc not belonging to 7 is said to be eligible if:

i) Its reduced cost is strictly negative and its flow is at its lower bound, that is, &(, j) < 0 and (i, j) € L.

if) Its reduced cost is strictly positive and its flow is at its upper bound, that is, &7, j) > 0 and (i, j) € U.
The reduced cost of a given arc (7, j) is defined as follows:
E(I:J) = C(Is.]) = TC(I) -}-ﬂ(j),

where, (i) and 7(j) are the dual variables associated with the vertices i and j, respectively. It should be
noted that for all the arcs (7, j) € 7 the reduced cost &(i, j) = 0.

3.1, DAUPHINE



Simplex method.

{ Computing a minimum cost flow. }

(1) begin

(2> let(7, L, U) be a starting feasible STS;

(3) let x be the flow and 7 the dual variable associated with (7, £, U);
(4) while (not optimal solution) do

(5) begin

(6) select an entering arc (k, ) not in T;

¢p) add (k,!) to 7" and remove (p,q) from T
(8) update the STS and the solutions x and T;
(9) end

(10)end

Figure 1: Network simplex algorithm.

At each iteration, the network simplex method shown in Figure 1 always gives an integer solution for
the minimum cost network flow problem. But it is possible to obtain non-integer solutions between two
adjacent STSs. Let us recall that when moving from one STS to an adjacent one, an amount of flow, A,
must be sent along the orientation of cycle C. This quantity A is integer. But, what happens if a non-integer
amount o flow is sent along C? It is obvious that a non-integer solution will be obtained. This solution has
exactly | C] non-integer variables, but it does not define a spanning tree structure. This idea is very important
if we wish to obtain non-integer solutions for the LP-relaxation of problem (3).

4. ABRANCH-AND-BOUND APPROACH

This section deals with branch-and-bound techniques. The problem to be solved is problem (3) presented in
Section 2. The branch-and-bound algorithm can be decomposed into three main steps: branching, bounding
and fathoming (Hillier and Lieberman, 1995). Branching deals with the partition of a given subproblem
into several (here we consider only the partition into two subproblems). Bounding consists of computing
the optimal value of LP-relaxations. Finally, fathoming is concerned with a set of tests meant to discarding
subproblems from further analysis. In what follows it will be supposed that problem (3) has at least one
integer feasible solution.

Let W be a list of subproblems to be analyzed or of subproblems that remain unfathomed. The three
main steps of the algorithm can be described as follows:

1. Branching: Select the last subproblem in W, identify the non-integer variable x(k,{). Let us remark
that variable x(%, 1) is associated with the incoming arc (k,{) that forms a cycle ¢ allowing to move
from one STS to an adjacent one. This variable is called branching variable. Let x*(k,l) be the
optimal value of x(k,!) for the LP-relaxation of problem (3). Create two subproblems by changing
the bounds on the arc (k,{) as follows:

o build P! such that [x*(k,7)] + 1 < x(k,l) < u(k,!), and
o build P? such that I(k,1) < x(k,1) < |x*(k,1)],
where |x*(k,) | means the nearest integer value lower than x* (k, I). It is easy to see that when forming

subproblems P' and P? in this way, one of the STS will remain feasible for P!, while the adjacent
one will be feasible for P2,

2. Bounding: Compute the costs for the LP-relaxation of both subproblems, P! and P2, by applying
the network simplex algorithm of Figure 1. As it was explained before, this algorithm can be easily
adapted to compute non-integer solutions.



3. Fathoming: Three tests are introduced in order to discard subproblems from further study. Let us
consider the incumbent problem as the problem having an integer solution with the best value for the
objective function to the current iteration. The tests to be implemented are the following:

a) A subproblem P is discarded when it has no feasible solution, or
b) when its cost is greater than the cost of the incumbent problem.

¢) If P! has an integer solution with a cost lower than the cost of the incumbent problem, then
remove from W all the subproblems with a cost greater than the cost of P'. This means that P’
is now the incumbent problem.

Figure 2 shows the branch-and-bound algorithm described above.

Branch-and-bound.

{ Computing an integer optimal solution for problem (3). }

(1) begin

(2) CurrentIncumbent < anything;

(3) CurrentCost 4 oo}

(4) let PR be the LP-relaxation of the initial integer problem;
(68) W« {PR};

(6) while (W # {}) do

(7 begin

(8) let P be the last element of W and remove it from W;

(9) create two new subproblems P! and P? { Branching step };
(10) for i=1)to(i=2)do

(11) begin

(12) compute the cost for P’ using the simplex algorithm { Bounding step };
(13) if (P! has no feasible solution) then { Fathoming steps }
(14) discard P!

(15) else

(16) if (cost of P > CurrentCost) then

un discard P;

(18) else

(19) if (P! has an integer solution) then

(20) begin

(21) CurrentIncumbent + P';

(22) CurrentCost « cost of P!;

(23) remove from W all the problems with a cost greater than CurrentCost:
(24) end

(25) else

(26) W+ Wu{r'}

(27) end

(28) end

(29) end

Figure 2: A branch-and-bound algorithm.

5. OUTLINE OF THE METHOD

This section outlines an approach for the search of all the non-dominated vectors, ¥, The method solves
a sequence of problems (3) and uses the branch-and-bound algorithm shown in Figure 2 to determine its
integer optimal solutions. We also describe how to obtain sets Y"¢¢ and Y4 using parametric programming
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techniques. Sometimes supported non-dominated vectors represent a rough approximation of the entire set
of non-dominated vectors and allow us to define zones of potential interest for decision makers where a
more detailed search must be done.

Let us starting by presenting how to determine sets Y% and Y%, and then we shall present the general
algorithm that can be applied to obtain the entire set ¥"¢;

1. Identify the set of all supported extreme non-dominated vectors, Y4, The algorithm is based on
parametric programming techniques (see Steuer, 1985) and it proceeds as follows:

a) Compute the optimal solution for the first criterion, f7, and the corresponding minimal value
for the second criterion, /3.

b) Compute the optimal solution for the second criterion, f5, and the corresponding minimal value
for the first criterion, fj.

¢) Compute all the remaining non-dominated extreme points by decreasing order of the costs for
the second criterion and by increasing order of the costs for the first criterion until the solution
_ found in 1) is reached, as follows:

— Consider a given STS corresponding to a non-dominated extreme point (suppose that no
degeneracy phenomenon occurs) and compute the dual variables associated with the first
and the second criteria, that is, 71 (¢) and 7, (i) for all i € .

— Determine both reduced costs ¢ (i, j) and &(%, j), for all arcs (i, ) in L and U.

— For the arcs in U, identify ¢2(3, j) > 0 and & (i, /) < 0. Then, compute the ratio between
these two values, r(1, j) = & (i, j)/¢1(i, j).

- For the arcs in L, identify &(i, j) < 0 and & (i,j) > 0. Then, compute the ratio between
these two values, r(i, j) = &(i, j) /e1(, j).

— Finally, choose the lowest (negative) ratio, identify the corresponding arc and proceed to a
“pivoting operation” in order to obtain the adjacent STS. The ratios give the slopes of the
lines connecting two adjacent STSs and the lowest one leads to an adjacent extreme point
of Conv(Y).

.~ 2. Determine all the supported intermediate non-dominated vectors, ¥"?%, A very simple technique can
be used, selecting two adjacent STSs related to two adjacent non-dominated extreme vectors, and
identifying the cycle allowing to move from the first STS to the second one, and then increasing the
amount of flow along the cycle unit by unit. In this way all the intermediate solutions are obtained.
These solutions are not STSs.

3. Find the entire set of all non-dominated vectors, ¥"?. In this case, a more sophisticated technique is
needed. The approach is based on the e-constraint problem (3) and on branch-and-bound algorithm
presented in Figure 2. Non-dominated vectors are determined by decreasing order of the values
for the second objective function. The potential zones for the search of non-dominated vectors are
identified by a set of triangles built from the adjacent non-dominated extreme points of the convex
hull of the feasible region in the criteria space. This procedure can be described as follows:

a) Identify two extreme supported non-dominated vectors and the associated STSs as in 1¢) and
build the region (triangle) of potential non-dominated vectors.

b) For each triangle, search all the non-dominated vectors using a sequence of problems (3).

¢) Proceed in the same way until no more triangles exist.

The method given in 3a) is also based on parametric techniques in order to identify the adjacent
movements from one STS to another. The main drawback of this procedure is related to the fact that several
STSs may correspond to the same extreme vector in criteria space. Some additional difficulties can appear
due to degeneracy phenomena that unfortunately tend to occur very often in problems of this type (Bradley
et al., 1977). Degeneracy phenomena give rise to cycling and stalling (see Bazaraa et al., 1990).



The main advantage of the algorithm s related to the way in which non-integer solutions are determined,
exploiting only network structures and thus avoiding the need to solve these problems with LP-codes.
Despite the drawbacks pointed out above (alternate solutions and degeneracy), network simplex codes are
still very fast in practice and solutions can be computed in a few seconds.

The example presented in Section 6 shows, step by step, how the method works.

6. AN ILLUSTRATIVE EXAMPLE

Consider the following example of a bi-criteria “minimum cost” network flow problem:

O—i®

Figure 3: A bi-criteria example.

This example has 93 feasible solutions that are presented in Tables 2 and 3 in Appendix A. Among the
93 solutions only 10 are efficient. Figure 5 presents all the vectors in criteria space.

First, we shall show how the set Y% can be determined by parametric programming. In the example,
ynde = {y*8 34 y1 35} as can be seen in Figure 5. These vectors are obtained by decreasing order of the
cost for the second criterion and by increasing order of the cost for the first criterion. In order to obtain all
the vectors, we first identify y*¢, then y* and so on. Let us show how to determine the first two vectors of
Yna'e’ y48 and yd_.

o First, fi(x) is minimized. Its optimal value can be obtained at two different points y*8 and ¥, where
ff =96, but only y*8 gives the minimal value for f; (x), f2 = 144. Vector y° is thus discarded and
y* is saved. The STS corresponding to the vector y* is presented in Figure 4. The arcs represented

by the lines in bold are those belonging to the spanning tree, 7.

o Second, from y* an adjacent STS leading to the next extreme non-dominated point of Conv(Y) must
be identified. STSs corresponding to the vectors y*, y*7 and y** can be reached from y*8 by identifying
the fundamental cycle basis (see Figure 23 on Appendix L), but only vector y* is interesting. How
can this vector be obtained? As we can see in Figure 5, the slope of the line connecting y*® and
y* is the lowest. In order to identify this slope we may use the information given by the reduced
costs on the arcs not belonging to 7. Let us recall that the slope of the line connecting y*€ to y*7 is
m = %‘_IT? = :glg = —1.5, while the slope of the line connecting y*® to y* is my = ‘1";)53“_];64 = -772 =
—1.286. Both slopes can be obtained by the ratios 7(2,4) =6/ —4 = —1.5 and (4,5) =9/ -7 =
—1.286, respectively. The lowest is the ratio r(2,4). So, the arc (2,4) forms a cycle allowing to move
from y*3 to y*. Figure 4 presents the complete information concerning point y*® while Appendix M

gives the remaining STSs until the last extreme non-dominated point of Conv(Y), y°, is reached.

Second, we must show how to determine all the intermediate points, Y*#. In our example ¥*¥ =
{*7,53,y*}. Vector y¥' is obtained by sending one unit along the cycle C = {(1,2),(2,4),(3,4),(1,3)}
which allows to move from y* to y*® (see Figure 6). Vectors y* and y? are identified in the same way using
the STSs associated with the extreme vectors of Conv(Y), y! and y*.
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Figure 5: Points in criteria space.

Finally, to complete the illustration of the methods we need to show how the optimal integer solution
for (3) can be determined by using the branch-and-bound technique of Figure 2 and the simplex algorithm

of Figure 1.

This approach can be used to find all non-dominated solutions for problem (1) as well as a set of non-
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a) y* = (104,132) ' b) y*% = (96,144)
Figure 6: Adjacent spanning tree solutions 4 and 48.

dominated solutions in a zone of interest. In practice it is frequent for decision makers to define certain
zones of interest for a local search. The proposed method is appropriate to situations of this kind.

Let us suppose that we need to determine all the non-dominated vectors inside the triangle formed by the
points (96, 144), (104,144) and (104, 132). Figure 5 presents this triangle. The same triangle is represented
in detail on the upper right corner of Figure 5. Imagine we have already computed vectors y*8 and y27. Next
step is to identify vector y*7 which is the optimal integer solution of (3), where &€ = 137.5. Before reaching
vector y*7, several steps were executed:

1. First, after obtaining point y*’ = (100, 138), the constraint f2(x) <137.5 must be introduced in prob-
lem (3). In our example this problem is denoted by A, and our list W is updated so that W = {4}.
The feasible region is given by the dark area in the triangle placed on the upper right of Figure 5.

2. Second, the optimal non-integer solution of A must be determined while A is removed from W. In

order to compute the optimal value of A, a simple technique can be used. We only need to identify the |

two nearest extreme points of the non-integer solution for A. These two extreme points correspond to
the STSs 48 and 4 (see Figure 5). This means that the non-integer solution for A is between STSs 48
and 4. STS 48 is on the left of the optimal non-integer solution while STS 4 is on the right. The cycle
allowing to move from 4 to 48 is C = {(1,2),(2,4),(3,4),(1,3)}, where the arc (, 1) is the arc (1, 3).
Figure 6 presents these two adjacent STSs. The amount sent along C is A = 2. This means that when
we send 2 units from STS 4 along C, STS 48 is reached and the cost for the second criterion increases
in the quantity 144 — 132 = 12, that is, an increase of 6 for each unit sent along C. So, if we want an
increase of 137.5 — 132 = 5.5 in the second criterion, we must send A = 5.5 /6 =0.9167 along C.
In this case we obtain a non-integer solution with exactly |C| = 4 non-integer variables (see Table 1).
The branch-and-bound tree is given in Figure 7.

3. Third, we proceed to a partition of A into two subproblems, B and C. The branching variable is
x(1,3) = 4.08333. Subproblem B is defined by introducing constraint x(1,3) = 5, while subproblem
C is defined with the help of constraint 0 < x(1,3) < 4. Defining these two subproblems in this way,
we can guarantee that STSs 48 and 4 are always feasible for B and C, respectively.

4. Fourth, we need to determine the bounds for both subproblems, B and C. Subproblem B has an integer
solution. Now, B is the incumbent problem with cost equal to 104 (see Appendix B and Table 1).

5. Fifth, let us study now subproblem C. Appendix C contains the feasible region for C in criteria space.
Let us recall that STS 48 remains feasible for subproblem C. So, we can start by using this solution
and then move to 27 which is now a STS, but it s still on the left (or above the line for f(x) = 137.5)
of the non-integer optimal solution for C. Therefore, we need to continue in order to obtain a STS
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on the right of the non-integer optimal solution for C. When moving to the adjacent solution on the
boundary of Conv(Y), STS 25 is attained (see Figures 9 and 10 on Appendix C). Now, we proceed as
in 2 and C is added to the list W for further analysis (see also Figure 7 and Table 1).

. We proceed in the same manner until the optimal solution is obtained. The tree shown in Figure
7 gives us all the iterations needed to solve (3) where € = 137.5. The corresponding solutions are
presented in Table 1. Appendices B to K provide a set of Figures which represent the criteria space
for each subproblem of the tree presented in Figure 7.

A(48~4)
IS - Integer Solution fi =10033

INF - Infeasible Solution

0< x(l.3w) =5

c(25-27) B(4)
hH =100.39 fi=104
IS
0<x3,9)<1 Wﬁ )
E(26-48) D(42-27)
fi=100.77 fi=100.92
ogxa.aV wh 4 Osx(3,5W(3.5)56
G(47-48) F(26) K(27) J(30)
Jf1=101.06 fi=107 Ai=100 A=111
s IS s
INF INF INF
3(3,4W) -
1(47) H{61~48)
fi=103 fi=107.92
IS INF
Optimal

Figure 7: Branch-and-bound iterations.
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(i, ) , 3 ’ 3 5 3 2 10 I
loey [s [v [5 [5 [7 [7 T[4 ] |
{I Solution [ x(1,2) [ «{1,3) | x(2,3) x(2,4) x(3,4) | x(3.5) x(4,5) filx) 0]
A (4-48) 591667 | 4.08333 [ O 5.91667 1.08333 | 2 & 100.33331 137.5
B(4) 5 5 0 5 3 2 8 104 132
C (25-27) 6 4 0 6 1.94444 | 2.05556 | 7.94444 100.38892 137.5
D (42-27) 6 4 0.08333 | 591667 | 2 2.08333 | 7.91667 100.91663 137.5
E (26-48) 6.56667 3.43333 0 6.56667 I 243333 | 7.56667 100.76663 137.5
F (26) 6 4 0 6 1 3 7 107 129
G (47-48) 7 3 0 7 0.27778 | 2.72222 7.27778 101.05554 137.5
H (61-48) 7 3 1.08333 | 5.91667 1 3.08333 | 6.91667 107.91663 137.5
1(47) 7 3 0 7 0 3 7 103 135
J(30) 6 4 1 5 2 3 7 111 132
K (27) 6 4 0 6 2 2 8 100 138

Table 1: Solutions A to K.

7. CONCLUSIONS

‘h

Studies of the characterization of the efficient set and design of new approaches for multiple criteria com-
binatorial problems are scarce. There are, of course, many questions which remain open in this field, In
this paper a method for identifying the efficient solution set for the bi-criteria minimum cost” network
flow problem was presented. The method is based on e-constraint and branch-and-bound techniques. This
method is also valid for more general linear integer bi-criteria problems, but in such cases LP-relaxation
must be solved by linear programming algorithms that may not be very efficient. The present paper shows
how the LP-relaxation can be easily computed exploiting the particular structure of networks. This method
has not yet been implemented and tested, but we have good reasons to suspect that it can be very efficient
in practice. The next step of our research is to implement the algorithm.

The proposed method can also be of great interest in the area of interactive methods when a database
with all the non-dominated solutions must be built before starting the interactive protocol between a user
and a software. We also claim to build an interactive Decision Support System for bi-criteria *minimum
cost” network flow problems using ideas developed in this paper.

REFERENCES

AHUJIA, RK.,, MAGNANTI, TM. and ORLIN, I.B. (1993): Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Inc., Englewood Cliffs, New J ersey.

BAZARAA, M., JARVIS, J. and SHERALI, H. (1990): Linear Programing and Network Flows, 2nd ed, John
Wiley and Sons, New York

BRADLEY, G., BROWN, G. and GRAVES, G. (1977): *Design and implementation of large scale primal
transshipment algorithms”, Management Science, 24, 1-34.

CALVETE, H. and MATEO, M. (1996): “A sequential network-based approach for the multiobjective net-
work flow problem with preemptive priorities”, In M. Tamiz, ed. Multi-objective Programming and Goal
Programming: Theory and Applications, LNEMS, Vol. 432, Springer-Verlag, Berlin, 74-86.

CHANKONG, V. and HAIMES, V.V. (1983): Multiobjective Decision Making: Theory and Methodology,
Elsevier, North-Holland, New York.

FRUHWIRTH, B., BURKARD, R., and ROTE, G. (1989): ”Approximation of convex curves with application
to the bicriterial minimum cost flow problem”, European Journal of Operational Research, 42, 326-338.

12



HAIMES, Y.Y.,, LASDON, L.S. and WISMER, D.A. (1971): “On a bricriterion formulation of the problems
of integrated system identification and system optimization”, IEEE Transactions on Systems, Man, and
Cybernetics, July, 296-297.

HILLIER, F. and LIEBERMAN, G. (1995): Introduction to Operations Research, 6th ed, McGraw-Hill
International Editions, New York.

LEE, H. and PULAT, P. (1991): »Bicriteria network flow problems: Continuos case”, European Journal of
Operational Research, 51, 119-126.

LEE, H. and PULAT, P. (1993): ”Bicriteria network flow problems: Integer case”, European Journal of
Operational Research, 66, 148-157.

MALHOTRA, R. and PURI, M. (1984): "Bicriteria network problem”, Cahiers du Centre d’Etudes de
Recherche Opérationnelle, 26(1-2), 95-102.

PARETO, V. (1896): Cours d'Economie Politique, Rouge, Lausanne.

PULAT, S., HUARNG, E and LEE, H. ( 1992): "Efficient solutions for bicriteria network flow problem”,
Computers and Operations Research, 19(7), 649-655.

RUHE, G. (1988): "Complexity results for multicriteria and parametric network flows using a pathological
graph of Zadeh”, Zeitschrift fiir Operations Research, 32, 9-27.

STEUER, R.E. (1985): Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley
and Sons, New York.

13



APPENDIX A: SET OF ALL FEASIBLE SOLUTIONS

This appendix contains all the solutions concerning the example presented in Section 6. Efficient solutions
(non-dominated vectors) are in bold.

[ Sol T x(1,2) T x(1.3) [ x(2,3) [ x(z4) [ =(3,9) [ =(3,5) [ x(%3) [ A | £

1 5 5 0 5 0 5 5 125 105
2 5 5 0 5 1 4 6 118 114
3 5 5 0 5 2 3 7 111 123
4 - 5 5 0 5 3 2 8 104 132
5 5 5 1 4 0 6 4 136 99
6 5 5 1 4 1 5 5 129 108
7 5 S 1 4 2 4 6 122 117
8 5 5 1 4 3 3 7 115 126
9 5 5 1 4 4 2 8 108 135
10 5 5 2 3 1 6 4 140 102
11 5 5 2 3 2 5 5 133 11t
12 5 5 2 3 3 4 6 126 120
13 5 5 2 3 4 3 7 119 129
14 5 5 2 3 5 2 8 112 138
15 S 5 3 2 2 6 4 144 105
16 5 5 3 2 3 5 5 137 114
17 5 5 3 2 4 4 6 130 123
18 5 5 3 2 5 3 7 123 132
19 5 5 3 2 6 2 8 116 141
20 5 5 4 1 3 6 4 148 108
S 21 5 5 4 1 4 5 5 141 117
22 5 5 4 1 5 4 6 134 126
23 5 5 4 1 6 3 7 127 135
24 5 5 4 1 7 2 8 120 144
25 6 4 0 6 0 4 6 114 120
26 6 4 0 6 1 3 7 107 129
27 6 4 0 6 2 2 8 100 138
28 6 4 1 5 0 3 5 125 114
29 6 4 1 5 1 4 6 118 123
30 6 4 1 5 2 3 7 111 132
31 6 4 1 5 3 2 8 104 141
32 6 4 2 4 0 6 4 136 108
33 6 4 2 4 1 5 5 129 117
34 6 4 2 4 2 4 6 122 126
35 6 4 2 4 3 3 7 115 135
36 6 4 2 4 4 2 8 108 144
37 6 4 3 3 1 6 4 140 111
38 6 4 3 3 2 5 5 133 120
39 6 4 3 3 3 4 6 126 129
40 6 4 3 3 4 3 7 119 138
41 6 4 3 3 5 2 8 112 147
42 6 4 4 2 2 6 4 144 114
43 6 4 4 2 3 5 5 137 123
44 6 4 4 2 4 4 6 130 132
45 6 4 4 2 5 3 7 123 141

Table 2: Solutions 1 to 45.

14



R

([ Sol. T x12) T X{13) [x(2,3) [ *(24) | x(3,4) | *3.5) | ®&5) ][ 70 [ Z@ 1)

46 6 4 4 2 6 2 8 116 150
47 7 3 0 7 0 3 7 103 135
48 7 3 0 7 1 2 8 96 144
49 7 3 1 6 0 4 6 114 129
50 7 3 1 6 1 3 7 107 138
51 7 3 1 6 2 2 8 100 147
52 7 3 2 5 0 5 5 125 123
53 7 3 2 5 1 4 6 118 132
54 7 3 2 5 2 3 7 111 141
55 7 3 2 5 3 2 8 104 150
56 7 3 3 4 0 6 4 136 117
57 7 3 3 4 1 5 5 129 126
58 7 3 3 4 2 4 6 122 135
59 7 3 3 4 3 3 7 115 144
60 7 3 3 4 4 2 8 108 153
61 7 3 4 3 1 6 4 140 120
62 7 3 4 3 2 5 5 133 129
63 7 3 4 3 3 4 6 126 138
64 7 3 4 3 4 3 7 119 147
65 7 3 4 3 5 2 8 112 156
66 8 2 1 7 0 3 7 103 144
67 8 2 1 7 1 2 8 96 153
63 8 2 2 6 ] 4 6 114 138
69 8 2 2 6 1 3 7 107. 147
70 8 2 2 6 2 2 8 100 156
71 8 2 3 5 0 5 5 125 132
72 8 2 3 5 1 4 6 118 141
73 8 2 3 5 2 3 7 111 150
74 8 2 3 5 3 2 8 104 159
75 8 2 4 4 0 6 4 136 126
76 8 2 4 4 1 5 5 129 135
77 ] 2 4 4 2 4 6 122 144
78 8 2 4 4 3 3 7 115 153
79 8 2 4 4 4 2 8 108 162
80 9 w 1 2 7 0 3 7 103 153
81 9 1 2 7 1 2 8 96 162
82 9 1 3 6 0 4 6 114 147
83 9 1 3 6 1 3 7 107 156
84 L 1 3 6 2 2 8 100 165
85 9 1 4 5 0 5 5 125 141
86 9 1 4 5 1 4 6 118 150
87 9 1 4 5 2 3 7 111 159
88 g 1 4 5 3 2 8 104 168
89 10 0 3 7 0 3 7 103 162
90 10 0 3 7 1 2 8 96 171
91 10 0 4 6 0 4 6 114 156
92 10 (] 4 6 1 3 7 107 165
93 10 0 4 6 2 2 8 100 174

Table 3: Solutions 46 to 93.
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APPENDIX B: CRITERIA SPACE FOR SURBPROBLEM B
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Figure 8: Points in criteria space concerning solution B.
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APPENDIX C: CRITERIA SPACE FOR SUBPROBLEM C
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Figure 9: Points in criteria space concerning solution C.
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Figure 10: Adjacent spanning tree solutions 25 and 27.
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APPENDIX D: CRITERIA SPACE FOR SUBPROBLEM D
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Figure 12: Adjacent spanning tree solutions 42 and 27.
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Figure 13: Points in criteria space concerning solution E.
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APPENDIX F: CRITERIA SPACE FOR SUBPROBLEM F
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Figure 15: Points in criteria space concerning solution F.
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Figure 16: Points in criteria space conceming solution G.
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Figure 17: Adjacent spanning tree solutions 47 and 48.
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Figure 18: Points in criteria space concerning solution H.
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APPENDIX I: CRITERIA SPACE FOR SUBPROBLEM I
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Figure 20: Points in criteria space concerning solution I.
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APPENDIX J: CRITERIA SPACE FOR SUBPROBLEM J

Figure 21: Points in criteria space concerning solution J.
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APPENDIX K: CRITERIA SPACE FOR SUBPROBLEM K
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Figure 22: Points in criteria space concerning solution K.
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APPENDIX L: ADJACENT STSs
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Figure 23: Adjacent STS.
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APPENDIX M: PRIMAL AND DUAL SOLUTIONS
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Figure 24: Primal and dual solutions for y* = (104, 132).

11:2(2) =~5 ﬂz(4) =-14
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Figure 25: Primal and dual solutions for y! = (125,105).
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Figure 26: Primal and dual solutions for y* = (136,99).
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