

Laboratoire d'Analyse et Modélisation de Systèmes pour
l'Aide à la Décision

CNRS UMR 7243

CAHIER DU LAMSADE

311

Juin 2011

Reoptimization of maximum weight induced
hereditary subgraph problems

Nicolas Boria, Jérôme Monnot, Vangelis Th. Paschos

Reoptimization of maximum weight induced hereditary

subgraph problems∗

Nicolas Boria Jérôme Monnot Vangelis Th. Paschos§

LAMSADE, CNRS UMR 7243 and Université Paris-Dauphine

{boria,monnot,paschos}@lamsade.dauphine.fr
§Institut Universitaire de France

June 15, 2011

Abstract

The reoptimization issue studied in this paper can be described as follows: given an

instance I of some problem Π, an optimal solution OPT for Π in I and an instance I ′ resulting

from a local perturbation of I that consists of insertions or removals of a small number of

data, we wish to use OPT in order to solve Π in I ′, either optimally or by guaranteeing

an approximation ratio better than that guaranteed by an ex nihilo computation and with

running time better that that needed for such a computation. We use this setting in order to

study weighted versions of several representatives of a broad class of problems known in the

literature as maximum induced hereditary subgraph problems. The main problems studied

are max independent set, max k-colorable subgraph, max Pk-free subgraph, max

split subgraph and max planar subgraph. We also show, how the techniques presented

allow us to handle also bin packing.

1 Introduction

Hereditary problems in graphs, also known as maximal subgraph problems, include a wide range
of classical combinatorial optimization problems, such as max independent set or max H-

free subgraph. Most of these problems are known to be NP-hard, and even inapproximable
within any constant approximation ratio unless P = NP [24, 31]. However, some of them,
and in particular max independent set, have been intensively studied in the polynomial
approximation framework both in the general case [13, 20], as well as in particulars classes of
graphs where some constant approximation ratios can be achieved in polynomial time [5, 6, 17,
21, 23, 25].

Also, some of these problems have been studied in dynamic settings, where instances are
allowed to evolve over time, and solutions must be provided after each instance modification. In
particular, a whole class of hereditary problems has been studied in the online setting [16], and
max independent set has been analyzed in both the online [19, 22], and a priori optimization
frameworks [26].

In what follows, we present simple approximation algorithms and inapproximability bounds
for various hereditary problems in the reoptimization setting, which can be described as follows:
considering an instance I of a given problem Π with a known optimum OPT, and an instance I ′

which results from a local perturbation of I, can the information provided by OPT be used to

∗Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-
010

1

solve I ′ in a more efficient way (i.e., with a lower complexity and/or with a better approximation
ratio) than if this information wasn’t available?

The reoptimization setting was introduced in [1] for metric tsp. Since then, many other
optimization problems were discussed in this setting, including Steiner tree [7, 10, 11, 18],
minimum spanning tree [14], as well as various versions of tsp [4, 9, 12]. In all cases, the goal
is to propose reoptimization algorithm that outperform their deterministic counterparts in terms
of complexity and/or approximation ratio. In [8], the max independent set problem, as well
as min vertex cover and min set cover problems, are discussed in a similar setting up to
the fact that perturbations there concerned the edge-set of the initial graph. The authors of [8]
manage to provide optimal approximation results under the basic assumption that the initial
solution is not necessarily optimal but ρ-approximate.

When one deals with hereditary problems, and I ′ results from a perturbation of the vertex
set (insertion or deletion), solutions of I remain feasible in I ′. This property is very interesting
when reoptimizing hereditary problems, and makes most of them APX in the reoptimization
setting. For exemple, a very simple algorithm provides a (1/2)-approximation for a whole class
of hereditary problems when a single vertex is inserted [3]. In what follows, we improve on this
result by presenting algorithms designed for four specific hereditary problems, and also provide
inapproximability bounds. We also discuss the reoptimization setting where vertices are deleted,
which, as we will see, is much harder to approximate.

The paper is organized as follows: general properties regarding hereditary problems are
presented in Section 2, while Sections 3 and 4 present approximation and inapproximability
results regarding respectively vertex insertion and deletion. Finally, in Section 5 the bin packing

problem is studied.

2 Preliminaries

Before presenting properties and results regarding reoptimization problems, we will first give for-
mal definitions of what are reoptimization problems, reoptimization instances, and approximate
reoptimization algorithms:

Definition 1. An optimization problem Π is given by a quadruple (IΠ, SolΠ,mΠ, goal(Π))
where:

• IΠ is the set of instances of Π;

• given I ∈ IΠ, SolΠ(I) is the set of feasible solutions of I;

• given I ∈ IΠ, and S ∈ SolΠ(I), mΠ(I, S) denotes the value of the solution S of the instance
I, mΠ is called the objective function;

• goal(Π) ∈ {min,max}.

A reoptimization problem RΠ is given by a pair (Π, RRΠ) where:

• Π is an optimization problem as defined in Definition 1;

• RRΠ is a rule of modification on instances of Π, such as addition, deletion or alteration of a
given amount of data; given I ∈ IΠ and RRΠ, modifRΠ(I,RRΠ) denotes the set of instances
resulting from applying modification RRΠ to I; notice that modifRΠ(I,RRΠ) ⊂ IΠ.

For a given reoptimization problem RΠ(Π, RRΠ), a reoptimization instance IRΠ of RΠ is given
by a triplet (I, S, I ′), where:

2

• I denotes an instance of Π, referred to as the initial instance;

• S denotes a feasible solution for Π on the initial instance I;

• I ′ denotes an instance of Π in modifRΠ(I,RRΠ); I
′ is referred to as the perturbed instance.

For a given instance IRΠ(I, S, I
′) of RΠ, the set of feasible solutions is SolΠ(I

′).

Definition 2. For a given optimization problem RΠ(Π, RRΠ), a reoptimization algorithm A is
said to be a ρ-approximation reoptimization algorithm for RΠ if and only if:

• A returns a feasible solution on all instances IRΠ(I, S, I
′);

• A returns a ρ-approximate solution on all reoptimization instances IRΠ(I, S, I
′) where S is

an optimal solution for I.

Note that Definition 2 is the most classical definition found in the literature, as well as the
one used in this paper. However, an alternate (and more restrictive) definition exists (used for
example in [7, 10, 11]), where a ρ1-approximation reoptimization algorithm for RΠ is supposed
to ensure a ρ1ρ2 approximation on any reoptimization instance IRΠ(I, S, I

′) where S is a ρ2
approximate solution in the initial instance I.

A property P on a graph is hereditary if the following holds: if the graph satisfies P, then
P is also satisfied by all its induced subgraphs. Following this definition, independence, pla-
narity, bipartiteness are three examples of hereditary properties: in a given graph, any subset
of an independent set is an independent set itself, and the same holds for planar and bipartite
subgraphs. On the opposite hand, connectivity is no hereditary property since there might exist
some subsets of G whose removal disconnect the graph. It is also well known that any hereditary
property in graphs can be characterized by a set of forbidden subgraphs or minors [29].

In other words a property P is hereditary if and only if, there is a set of graphs H such that
every graph that verifies P does not admit any graph in H as a minor or as an induced subgraph.
To revisit the three examples of hereditary properties presented before:

• an independent set is characterized by one forbidden subgraph: a K2 (a clique on 2 vertices,
i.e., an edge).

• a planar graph is characterized by two forbidden minors: K5 (a clique on 5 vertices), and
K3,3 (a complete bipartite subgraph with both its color-classes of size 3). This result is
known as Wagner’s Theorem [30].

• a bipartite graph is characterized by a infinite set of forbidden subgraphs: all odd cycles
H = {C2n+1, n > 1}.

Definition 3. Let G(V,E,w) be a vertex-weighted graph with w(v) > 0, for any v ∈ V . The
max induced subgraph with property P problem (or, for short, maximum subgraph problem)
is the problem consisting, given a graph G(V,E), of finding a subset of vertices S such that
G[S] satisfies a given property P and that maximizes w(S) =

∑

v∈S w(v). We call hereditary
problems all such problems where P is a hereditary property.

For instance, max weighted independent set, max weighted induced bipartite sub-

graph, max weighted induced planar subgraph are three classical hereditary problems
that correspond to the three hereditary properties as defined in Definition 3.

As it is proved in [24] (see Theorem 1 just below) most hereditary problems are highly
inapproximable unless P = NP.

3

Theorem 1. ([24]) There exists an ε ∈ (0, 1) such that the maximum subgraph problem cannot
be approximated with ratio n−ε in polynomial time for any nontrivial hereditary property that is
false for some clique or independent set, or more generally is false for some complete multipartite
graph, unless P = NP.

Throughout the paper, all inapproximability results will be obtained by the same technique,
which we sketch out here.

Considering an unweighted graph H(V,E) on which one wants to solve a given hereditary
problem Π, known to be inapproximable within any constant ratio, we build a reoptimization
instance Ip, where p denotes a vector of fixed size (i.e., independent of the size n of G; so, |p| is a
fixed constant) that contains integer parameters between 1 and n. This instance is characterized
by an initial graph Gp (that contains H), with a known solution, and a perturbed instance G′

p.
Then, we prove that, for some specific (yet unknown) value p′ of the parameter vector p, an

optimal solution can be easily determined in the initial graph Gp′ , and a ρ-approximate solution
Sp′ in G′

p′ necessarily induces a solution Sp′[V] in H, that is a constant approximation for the
initial problem.

Considering that the vector p can take at most n|p| possible values, it is possible in polynomial
time to build all instances Ip, to run the polynomial ρ-approximation algorithm on all of them,
and to return the best set Sp∗[V] as solution for Π in H. The whole procedure is polynomial
and ensures a constant-approximation for Π, which is impossible unless P = NP, so that a
ρ-approximation algorithm cannot exist for the considered reoptimization version of Π, unless
P = NP.

In the sequel, Gp and G′
p will denote initial and perturbed instances, while OPTp and OPT′

p

will denote optimal solutions in Gp and G′
p, respectively. For simplicity and when no confusion

arises, we will omit subscript p. The function w refers to the weight function, taking a vertex,
a vertex set, or a graph as input (the weight of a graph is defined as the sum of weights of
its vertices). Finally, note that throughout the whole paper, the term “subgraph” will always
implicitly refer to “induced subgraph”.

3 Vertex insertion

Under vertex insertion, the inapproximability bounds of Theorems 1 and are easily broken.
In [3], a very simple strategy, denoted by R1 in what follows, provides a (1/2)-approximation
for any hereditary problem. This strategy consists of outputting the best solution among the
newly inserted vertex and the initial optimum. Moreover, this strategy can also be applied when
a constant number h of vertices is inserted: it suffices to output the best solution between an
optimum in the h newly inserted vertices (that can be found in O(2h) through exhaustive search)
and the initial optimum. The 1/2 approximation ratio is also ensured in this case [3].

Note that an algorithm similar to R1 was proposed for knapsack in [2]. Indeed, this prob-
lem, although not being a graph problem, it is hereditary in the sense defined above, so that
returning the best solution between a newly inserted item and the initial optimum ensures a
(1/2)-approximation ratio. The authors also show that any reoptimization algorithm that does
not consider objects discarded by the initial optimal solution cannot have ratio better than 1/2.

In the following, we start by proving that this approximation ratio is the best constant
approximation ratio one can achieve for the max independent set problem (Section 3.1), unless
P = NP. Then, we present other simple polynomial constant-approximation strategies, as well
as inapproximability bounds for various hereditary problems: max k-colorable subgraph

(Section 3.2), max Pk-free subgraph (Section 3.3), max split subgraph (Section 3.4), and
max planar subgraph (Section 3.5).

4

3.1 max independent set

Since max independent set is a hereditary problem, strategy R1 provides a simple and fast
(1/2)-approximation in the reoptimization setting under insertion of one vertex. We will now
prove that this ratio is the best one can hope, unless P = NP.

Proposition 1. In the reoptimization setting, under one vertex insertion, max independent

set is inapproximable within ratio 1/2 + ε in polynomial time, unless P = NP.

Proof. By contradiction, assume that there exists a reoptimization approximation algorithm A

for max independent set, which, in polynomial time, computes a solution with approximation
ratio bounded by 1/2 + ε. Now, consider a graph H(V,E). All n vertices in V have weight 1,
and no assumption is made on V . Note that in such a graph (which is actually unweighted),
max independent set is inapproximable within any constant ratio, unless P = NP.

We will now make use of A to build an ε-approximation for max independent set in H,
and thus prove that such an algorithm cannot exist. Denote by α the independence number
associated with H, that is, the - unknown - cardinality of an optimal independent set in H, and
consider the following instance Iα of max independent set in the reoptimization setting (here
the vector p is an 1-vector, so it is an integer between 1 and n):

• The initial graph denoted Gα(Vα, Eα) is obtained by adding a single vertex x to V , with
weight α, and connecting this new vertex to every vertex in V . Thus, Vα = V ∪ {x}, and
Eα = E ∪

⋃

vi∈V
(x, vi). In this graph, a trivial optimum independent set is {x}. This

trivial solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph G′
α(V

′
α, E

′
α) is obtained by adding a single vertex y to Gα, also with

weight α, and connecting this new vertex to vertex x only.

Denote by OPT′ an optimal independent set in G′
α. Notice that y (whose weight is α) can be

added to an optimal independent set in H (whose weight is also α) to produce a feasible solution
in G′

α, so that: w(OPT′) > 2α.
Now, suppose that one runs the approximation algorithm A on the so-obtained reoptimization

instance Iα. By hypothesis on A, it holds that w(Sα) > (1/2 + ε)w(OPT′) > (1 + ε)α.
Considering the lower bound on its weight, we can assert that the solution returned by A, does

not contain x (the only independent set containing x is x itself, and thus it cannot have weight
more than α). Moreover, it must contain y, otherwise it would be restricted to an independent
set in G, so it couldn’t have weight more than α. So, it holds that w(Sα[V]) = w(Sα)−w(y) >
(1 + ε)α− α = εα, where w(Sα[V]) denotes the restriction of Sα to the initial graph H.

Now, consider the following approximation algorithm A1 for max independent set:

build n reoptimization instances Ii in the same way as Iα (only the weights of vertices
x and y will be different from one instance to the other), for i = 1, . . . , n, and run
the reoptimization A on each of them. Denoting by Si the solution returned by A on
instance Ii, and Si[V] its restriction to the initial graph H, output the set Smax[V]
with maximal weight among Si[V]’s.

Obviously, considering that 1 6 α 6 n, it holds that Smax[V] > Sα[V] > εα. Thus, the algorithm
A1, using n times the algorithm A as subroutine, produces in polynomial time an ε-approximation
for Unweighted max independent set, which is impossible unless P = NP.

Note that the results also hold when a constant number h of vertices are inserted. Indeed, it
is easy to see that all the arguments of the proof remain valid when the set of inserted vertices
is {y1, . . . , yh} each with weight α/h and connected only to vertex x.

5

Proposition 2. Under insertion of one vertex and unless P = NP, max independent set

is not approximable within ratio (1/2 + (1/(n − 1)ǫ), for any ǫ > 0, where n is the order of the
perturbed graph.

Let us note that inapproximability bounds stated in Propositions 4, 6, 9, 11 and 14, that are of
the form ρ+ε, ε ∈ (0, 1), can be strengthened to ρ+n−ε. Indeed, the proofs of these propositions
are based upon the argument that the existence of a (ρ+ ε)-approximation algorithm for a given
reoptimization problem RΠ induce the existence of a O(ε)-approximation algorithm for the
“static” support Π of RΠ. However, the “static” problems dealt in these propositions are not
only inapproximable within O(ε), unless P = NP, but within O(n−ε). Hence, revisiting their
proofs, one can replace ε by n−ε getting so inapproximability bounds ρ+ n−ε instead.

3.2 max k-colorable subgraph

Given a graph G(V,E,w) and a constant k 6 n, the max k-colorable subgraph problem
consists of determining the maximum-weight subset V ′ ⊆ V that induces a subgraph of G that
is k-colorable.

The result of Section 3.1 can be generalized to the max k-colorable subgraph problem
as shows the following proposition.

Proposition 3. In the reoptimization setting, under insertion of one vertex, max k-colorable

subgraph is inapproximable within ratio k
k+1 + ε in polynomial time, unless P = NP.

Proof. As before, we will start by considering a reoptimization approximation algorithm A for
max k-colorable subgraph, which, in polynomial time, computes a solution with approxi-
mation ratio bounded by k

k+1 + ε. Once more, we consider a graph H(V,E), where all vertices
have weight 1. Denoting by OPT an optimal k-colorable subgraph in H, and taking into account
that a k-colorable subgraph can be divided in k independent sets, it holds that w(OPT) 6 kα.

We now build a reoptimization instance Iα of max k-colorable subgraph as follows:

• The initial graph Gα is obtained by adding to H a clique X of k vertices X = (x1, . . . , xk),
each with weight α, and connecting all these vertices to all vertices of the initial graph H.
In this graph, an optimal k-colorable subgraph is given by the k-clique X, and this solution
will be the initial optimum used in the reoptimization instance.

• The perturbed graph G′
α is obtained by adding a single vertex y to Gα, also with weight

α, and connecting this new vertex to all vertices in X.

Denote by OPT′ an optimal k-colorable subgraph in G′
α. Notice that y, and k− 1 vertices of X

(with weight, in all kα) can be added to an optimal independent set in H (with weight α) to
produce a feasible solution in G′

α, so that: w(OPT′) > (k + 1)α.
Let Sα be the solution returned by A on the reoptimization instance Iα we just described. It

holds that:

w(Sα) >

(

k

k + 1
+ ε

)

w(OPT′) > (1 + ε)kα (1)

As before, noticing that this weight is strictly superior to the weight of the initial optimum, we
can assert that the new vertex y belongs to the solution Sα. Now, denote by j the number of
vertices of X that belong in Sα, 0 6 j 6 k − 1. The restriction of Sα to H, that is Sα[V] forms
a (k − j)-colorable subgraph, and its weight verifies:

w(Sα[V]) = w(Sα)− w(Sα ∩X)− w(y) = w(Sα)− (j + 1)α

Combination of the expression above with (1), leads to w(Sα[V]) > (k − j − 1 + kε)α.

6

Now, recall that an optimal solution for max k-colorable subgraph cannot have more
than kα vertices. Then, approximation ratio between the set w(Sα[V]) (which is a feasible
solution for the max k-colorable subgraph problem in G) and the unknown optimum OPT
on the graph H(V,E) is bounded as follows:

w(Sα[V])

w(OPT)
>

(k − j − 1 + kε)α

kα
(2)

Finally, taking into account that j 6 k − 1, (2) can be simplified, and leads to w(Sα[V])
w(OPT) > ε.

As before, a polynomial approximation algorithm ensuring an approximation ratio bounded
by ε for max k-colorable subgraph consists of building n reoptimization instances Ii (1 6

i 6 n), running the algorithm A on each of them, and outputting the biggest set Smax[V]).
However, max k-colorable subgraph has been proved to be inapproximable within any

ratio n−ε for some ε ∈ (0, 1) [24, 27], which forbids the existence of any constant-approximation
algorithm for this problem, unless P = NP.

Once more, the result can be generalized to the case where h vertices are inserted. However,
the inapproximability bound gets lower for bigger values of h. To be even more precise, it holds
that:

Proposition 4. In the reoptimization setting, under the insertion of h vertices, max k-colorable

subgraph is inapproximable within ratio max
{

k
k+h ,

1
2

}

+ε in polynomial time, unless P = NP.

Proof. Consider a graph H, instance of max independent set, and denote by α the indepen-
dence number associated with this instance. We build in polynomial time a graph Hk, instance
of max k-colorable subgraph, by duplicating k times the instance of max independent

set, and connecting all pairs of vertices from different copies. The graph associated with this
instance is denoted Hk(V,E). In Hk, an optimal k-colorable subgraph has weight exactly kα.
Indeed, given the structure of instance Hk, it holds that its independence number is the same
as H (namely α), so that no k-colorable subgraph can weight more than kα. On the other
hand, taking an optimal independent set in each copy produces a k-colorable subgraph with
weight exactly kα. We build a reoptimization instance Iα,k,h of max k-colorable subgraph

as follows:

• The initial graph Gα,k,h is obtained by adding to the graph Hk a clique X of k vertices
X = (x1, . . . , xk), each with weight α, and connecting all these vertices to all vertices of
V . In this graph, an optimal k-colorable subgraph is given by the k-clique X, and this
solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph G′
α,k,h is obtained by adding a clique Y of h vertices y1, . . . , yh to

Gα,k,h, also with weight α, and connecting all these vertices to all vertices in X.

Denote by OPT′ an optimal k-colorable subgraph in G′
α,k,h. An optimal k-colorable subgraph in

Y has weight at most min{h, k}α, and, considering that Y is disconnected from V , the union of
a k-colorable subgraph in Y and one in V is also k-colorable. Recall that an optimal k-colorable
subgraph in V has weight kα, then it holds that w(OPT′) > (k +min{h, k})α.

Denote by A a max
{

k
k+h ,

1
2

}

+ ε approximation algorithm for the reoptimization of max

k-colorable subgraph under the insertion of h vertices. Let Sα,k,h be the solution returned
by A on the reoptimization instance Iα,k,h we just described. It holds that:

w(Sα,k,h) >

(

k

k +min{h, k}
+ ε

)

OPT′
> (1 + ε)kα

7

However, considering that X ∪ Y is a clique on k + h vertices, each with weight α , then
the restriction of Sα,k,h to X ∪ Y cannot have weight more than kα. Hence, w(Sα,k,h[V]) =
w(Sα,k,h)− w(Sα,k,h[X ∪ Y] > εkα.

Now, notice that Sα,k,h[V] is a partitioned in at most k independent sets, the biggest of which
has weight at least εα, and is constrained to be included in a single copy of the original instance
of max independent set. Thus, building n reoptimization instances Ii,k,h (1 6 i 6 n), and
applying algorithm A on each of them, one can find in polynomial time an independent set of
size at least εα in the original instance of max independent set, which is impossible unless
P = NP.

This inapproximability bound is tight for the max independent set problem (which can
also be defined as the Max 1-colorable subgraph), where an easy reoptimization algorithm
produces solutions with approximation ratio bounded by 1/2. We now show that this tightness
holds also for max k-colorable subgraph for any k > 1.

Proposition 5. Under the insertion of h vertices, max k-colorable subgraph problem is
(

max
{

k
k+h ,

1
2

})

-approximable.

Proof. Consider a reoptimization instance I of the max k-colorable subgraph problem.
The initial graph is denoted by G(V,E), and the perturbed one by G′(V ′, E′) where V ′ = V ∪{Y },
Y = y1, . . . , yh. Let OPT and OPT′ denote optimal k-colorable graphs on G, and G′ respectively.
The initial optimum OPT is given by a set of k independent sets: (S1, . . . , Sk), and w.l.o.g.,
suppose w(S1) > w(S2) > . . . ,> w(Sk). Now, consider the following algorithm:

• if h > k, then apply the algorithm R1, described in [3] (ensuring a 1/2-approximate solution
for any hereditary problem);

• else (h < k), let SOL1 =
(

⋃k−h
i=1 Si

)

∪ {Y }, and SOL2 = OPT;

• return the best solution SOL between SOL1 and SOL2.

First, considering that the restriction of OPT′ to V cannot define a better solution than OPT,
it holds that:

w(SOL2) = w(OPT) > w(OPT′)− w(Y) (3)

Note that SOL1 is a feasible solution. Indeed,
⋃k−h

i=1 Si induces a (k − h)-colorable subgraph,
thus, adding h vertices to it (here, the set Y) induces a k-colorable subgraph.

Moreover, w
(

⋃k−h
i=1 Si

)

>
k−h
k w(OPT) > k−h

k (w(OPT′)− w(Y)), which leads to:

w(SOL1) >
k − h

k

(

w(OPT′)− w(Y)
)

+ w(Y) >
k − h

k
w(OPT′) +

h

k
w(Y) (4)

Finally, summing (3) and (4) with coefficients 1 and k/h, one gets:

w(SOL2) +
k

h
w(SOL1) >

k

h
w(OPT′)

and taking into account that k+h
h w(SOL) > w(SOL2) +

k
hw(SOL1), it holds that w(SOL) >

k
k+hw(OPT′), and the proof is completed.

8

3.3 max Pk-free subgraph

A graph is said to be Pk-free if it does not contain a path on k edges. Here, Pk-free means that
the graph does not admit a Pk as minor (and not as induced subgraph). For example, a Ck+1

admits a Pk as minor, so, although it does not admit a Pk as induced subgraph, we consider
that a Ck+1 is not Pk-free. Hence, the max Pk-free subgraph problem discussed in this
subsection refers to max partial Pk-free subgraph (with Pk as forbidden minor), and not
to max induced Pk-free subgraph (with Pk as forbidden induced subgraph). Formally, the
max Pk-free subgraph problem handled in this section consists, given a graph G(V,E,w) and
a constant k 6 n, of finding a maximum-total weight set of vertices that induces a subgraph of G
that is Pk-free. Before proceeding to the approximability analysis of max Pk-free subgraph,
we need to prove the following lemma.

Lemma 1. A Pk-free graph can be colored with k colors in polynomial time.

Proof. Let G be a Pk-free graph, and consider the following algorithm (if G is not connected,
run the procedure on each of its connected components):

• Starting from an arbitrary vertex of the graph, label all vertices from v1 to vn following
their order of appearance in a DFS on G.

• Starting from v1, which receices color S1, assign to each vertex the color labelled with their
depth in the tree T induced by the DFS (vertices of depth 2 will be assigned to color S2,
etc).

(a) A P7-free graph

1

2

3

4

5

6

7

8

9

10

11

(b) the DFS labelling

2

1

3

4

5 6

7

8

9

10 11

(c) Tree T induced by the
DFS

Figure 1: A k-coloring of a Pk-free graph

An example is provided in Figure 1 on a P7-free graph. We show that following this procedure
always produces a feasible k-coloring.

Consider the rooted tree T induced by the DFS on G (T ⊆ G). Of course, in T , some edges
are missing with respect to G. However, this tree shows some interesting properties. First, notice
that T has a depth bounded by k (otherwise, a path on k+1 vertices would exist in T and thus in
G). Moreover, no pair of vertices on the same level in T can be neighbors in G. Indeed, consider
two vertices labelled vi and vj in T (w.l.o.g. i < j), that are neighbors in G. It is easy to see
that the subtree rooted at vi contains all vertices that are reachable from vi in the subgraph
induced by vertices vi+1, . . . , vn. Thus, if i and j are neighbors in G, then j is bound to be part

9

of this subtree, and to be labelled with color at least Si+1. Thus, the subset of vertices of a given
depth i in T is always an independent set in G, and assigning a distinct color to each of these
sets results in a feasible k-coloring.

Note that such a coloring is the best one can get in the general case, since the worst case is
a Kk (a clique of k vertices), which is a Pk-free graph, and whose chromatic number is k.

Proposition 6. Under one vertex insertion, max Pk-free subgraph is inapproximable within
ratio 2k

3k+1 + ε in polynomial time if k is odd, and inapproximable within ratio 2k
3k+2 + ε if k is

even, unless P = NP.

Proof. Consider a graph H that has independence number α, on which one wishes to solve (or
approximate) max independent set problem. Transform this graph H into a graph Hk(V,E)
in the following way:

• each vertex vi of H is turned into a clique Vi of k vertices in Hk

• if (vi, vj) belongs to H, then all edges between vertices of cliques Vi and Vj are in E.

Considering that the biggest independent set in H has size α, then the same holds in Hk: an
independent set in G can only take one vertex in each clique Vi, and it cannot take two vertices
from cliques that corresponds to neighbors in H.

Following Proposition 1, it holds that any Pk-free subgraph in Hk can be partitioned in k
independent sets, so that, denoting by OPT an optimal Pk-free subgraph in Hk, |OPT| 6 kα.

Moreover, denoting by IS an optimal independent set in H (that has exactly α vertices),
then, in Hk, the union of all cliques corresponding to vertices of IS defines a Pk-free subgraph
with value exactly kα, so that |OPT| = kα.

Remark 1. Following the same arguments, it holds that for any i 6 k a Pi-free subgraph in Hk

cannot weight more than iα (and an optimal one has weight exactly iα).

First, suppose that k is odd. We build a weighted reoptimization instance Iα,k of max Pk-free

subgraph as follows:

• The initial graph Gα,k is obtained by adding to the graph Hk a set of vertices X which
consists of two cliques X1, and X2 to G. Both these cliques have k vertices, each with
weight kα. X1, is divided into two subcliques X1C and X1NC . X1C has (k + 1)/2 vertices
that are all connected to all vertices in V , while the other(k − 1)/2 vertices of X1NC are
not connected to any vertex in V . X2 is divided in the same fashion. Finally, each vertex
in V receives weight k + 1, hence, for any 1 6 i 6 k an optimal Pi-free subgraph inside V
has weight exactly i(k + 1)α.

• The perturbed graph G′
α,k is obtained by adding a single vertex y to Gα, with weight

k(k + 1)α, that is connected to all vertices of X.

Figure 2 provides a representation of the general structure.
In the initial graph, it holds that any Pk-free subgraph S has weight no more than 2k2α. We

distinguish the following two cases.
Case 1: S ∩V = ∅. In this case, S ⊆ X so that w(S) 6 w(X) = 2k2α
Case 2: S ∩V 6= ∅. Denote by i the length of the longest path in S ∩ V (in terms of

vertices). Then S ∩ V defines a Pi-free subgraph in G, which following Remark 1 has weight
at most i(k + 1)α. Denote by i1 and i2 the number of vertices taken by S in X1C and X2C

10

X1CX1NC

X2CX2NC

k−1

2

k+1

2

k−1

2

k+1

2

y Hk

Figure 2: Reoptimization instance Iα,k

respectively. Then it holds that S can take at most k − i − i1 vertices in X1NC and k − i − i2
vertices in X2NC (taking more vertices induces a Pk in S). Thus:

w(S) 6 i(k + 1)α + (i1 + i2)kα+ (2k − 2i− i1 − i2)kα

6 i(k + 1)α + 2(k − i)kα =
(

2k2 − i(k − 1)
)

α 6 2k2α

that concludes Case 2.
Hence, any solution that has weight 2k2α is optimal and we will thus consider X (which is

feasible and has weight exactly 2k2α) as the initial optimum of the reoptimization instance Iα.
Now, notice that, denoting by F ∗ an optimal Pk-free subgraph in Hk, {y}∪X1NC∪X2NC∪F

∗

is a feasible solution in G′
α,k. Indeed, {y} ∪ X1NC ∪ X2NC has exactly k vertices (thus, it

defines a Pk-free subgraph), and it is disconnected from Hk, so that adding an optimal Pk-free
subgraph in Hk to it produces a Pk-free subgraph that has two connected components. Thus,
w ({y} ∪X1NC ∪X2NC ∪ F ∗) = k(3k + 1)α, and w(OPT′) > k(3k + 1)α.

Consider a (2k
3k+1 + ε)-approximation algorithm A for the reoptimization version of max Pk-

free subgraph, and denote by Sα,k a solution returned by A on the reoptimization instance
Iα,k we just described. Then:

w(Sα,k) >

(

2k

3k + 1
+ ε

)

w(OPT′) > (1 + ε)2k2α (5)

As before, this solution has to take y since its weight is strictly better than the initial optimum.
However, if it takes y, then it cannot take more than k − 1 vertices in X1 ∪X2 so that:

w (Sα,k[X ∪ {y}]) 6 k(k + 1)α+ (k − 1)kα = 2k2α (6)

It immediately results from (5) and (6) that w(Sα,k[V]) > 2k2εα, where Sα,k[V] denotes the
restriction of Sα,k to V . This set defines a Pk-free subgraph in G, that can be partitioned in k
independent sets, the biggest of which has weight at least 2kεα, and thus at least 2 k

k+1εα > εα
vertices (recall that each vertex in V has weight k + 1).

Considering that Hk has n cliques, each corresponding to a vertex of the original graph H,
any independent set in Hk must have its vertices in different cliques that do not correspond to
neighbors in H. Thus, an independent set of size εα in Gα,h defines an independent set of the
same size in H.

Hence, when confronted to a graph H where one wants to approximate max independent

set, one could build all instances Ii,k (1 6 i 6 n), run the algorithm A on each of them, and find

11

an independent set of size at least εα in Hk (and thus in H) when running it on the instance
Iα,k. The whole procedure is polynomial, and provides a constant approximation ratio for max

independent set, which is impossible unless P = NP. Thus, the first part of the Proposition 6
is true.

Now, suppose that k is even. Let opt = kα, fix an integer t with arbitrarily large value, and
consider the following reoptimization instance Iopt,k:

• The initial graph Gopt,k is obtained by adding t cliques X1, . . . ,Xt to Hk. The set X is
defined as X =

⋃t
i=1 Xi. All these cliques have k vertices, each with weight opt

kt−1 . All the
vertices in X are connected to all vertices in V . All vertices in V have weight 1.

• The perturbed graph G′
opt,k is obtained by adding a single vertex y to Gα,k, with weight

(k/2+1)t−1
kt−1 opt, that is connected to all vertices of the t cliques X1, . . . ,Xt.

We prove that a Pk free subgraph S in the initial graph Gopt,k has weight at most kt
kt−1opt. For

this, we still distinguish two cases.
Case 1: S ∩V = ∅. In this case, w(S) 6 w(X) = kt

kt−1opt.
Case 2: S ∩V 6= ∅. Denote by i the length of the longest path in S[V] in terms of vertices

(1 6 i 6 k). Put differently, S[V] is Pi-free but not Pi−1-free. Thus, following Remark 1:

w(S[V]) 6 i× α =
i

k
opt =

i× t

k × t
opt <

i× t

k × t− 1
opt (7)

On the other hand, no set S[Xj] can contain more than k − i vertices, otherwise, there would
exist a path on k + 1 vertices in S[Xj ∪ V]. Moreover, denoting the size of the biggest clique in
S[X] by cmax , (0 6 cmax 6 k − 1), and the size of the second biggest clique in S[X] by cmax 2,
one verifies that cmax 2 cannot exceed k − i− cmax. Indeed, consider the path going through the
biggest clique in X then through the i vertices of longest path in S[V] , and finally through the
second biggest clique in X. By hypothesis, this path cannot go through more than k vertices, so
that: cmax + i+ cmax 2 6 k. Thus, regarding the values of cmax and cmax 2 it holds that:

cmax 6 k − i− cmax2 (8)

and taking into account that cmax > cmax 2, it also holds that:

cmax2 6

⌊

k − i

2

⌋

(9)

Indeed, suppose that cmax2 > ⌊k−i
2 ⌋+ 1, then cmax + i+ cmax 2 > k + 1, which is impossible.

Notice that S[X] consists of t cliques, one with cmax vertices, and t − 1 with at most cmax2

vertices, the total number of vertices in S[X] is bounded as follows:

|S[X]| 6 cmax + (t− 1)cmax 2

6 k − i− cmax2 + (t− 1)cmax 2

6 k − i+ (t− 2)

⌊

k − i

2

⌋

(10)

where the second line follows from (8), and the third from (9).

12

Recall that each vertex in X has weight exactly opt
kt−1 , then one can finally bound the weight

of S[X]:

w(S[X]) 6
opt

kt− 1

(

k − i+ (t− 2)⌊
k − i

2
⌋

)

6
topt

kt− 1

(

⌊
k − i

2
⌋+

k − i− 2⌊k−i
2 ⌋

t

)

6
topt

kt+ 1
+

(

k − i+
k − i− 2⌊k−i

2 ⌋ − t⌈k−i
2 ⌉

t

)

(11)

6
(k − i)t

kt+ 1
opt (12)

where (12) follows from noticing that for a big enough value of t, the rightmost fraction in (11)
is negative.

Finally, taking into account that V and X define a partition of the graph Gopt,k, and com-
bining (7) and (12), one proves that for any value of i, w(S) = w(S[V]) + w(S[X]) 6

kt
kt−1opt

that concludes Case 2.
Hence, any feasible solution that has weight exactly kt

kt−1opt on the initial graph Gopt,k is
optimal, and we can consider X as the initial optimum.

Now, notice that y ∪ F ∗ (where F ∗ denotes an optimal Pk-free subgraph in Hk) is a feasible
solution in the modified graph G′

opt,k. Thus, denoting by OPT′ an optimal solution in G′
opt,k, it

holds that w(OPT′) > w(y ∪ F ∗) =
(k

2
+1)t−1

kt−1 opt + opt =
3k+2

2
t−2

kt−1 opt.
Now, suppose that there exists an reoptimization algorithm A that ensures an approximation

ratio bounded by 2k
3k+2 + ε for the reoptimization version of max Pk-free subgraph. Then,

denoting by Sopt,k a solution returned by this algorithm on the reoptimization instance Iopt,k:

w(Sopt,k) >

(

2k

3k + 2
+ ε

) 3k+2
2 t− 2

kt− 1
opt

>
kt

kt− 1
opt

(

1 + ε+
ε(t(k + 2)/2 − 2)− 1

kt

)

(13)

> (1 + ε)
kt

kt− 1
opt (14)

where (14) follows from noticing that the rightmost fraction in (13) is positive for a big enough
value of t.

Considering that this solution is strictly better than the initial optimum (which has weight
exactly kt

kt−1opt), then it has to take y. For arguments similar to those explained in Case 2 of

the present analysis (with i = 1), Sopt,k[X] contains at most k − 1 + (t − 2)⌊k−1
2 ⌋ vertices (the

result is derived from (10)). Recall that k is supposed to be even, and that each vertex in X has
weight opt

kt+1 , then w(Sopt,k[X]) 6 k − 1 + (t− 2)
(

k
2 − 1

) opt
kt−1

6
((

k
2 − 1

)

t+ 1
) opt

kt−1 , from which one immediately derives w(Sopt,k[X ∪{y}]) = w(Sopt,k[X])+

w(y) 6 kt
kt−1opt.

Thus, the weight of the restriction of Sopt,k to vertices of V , denoted by Sopt,k[V], is bounded
by w(Sopt,k[V]) > ε kt

kt−1opt > εopt = εkα.
Hence, for reasons similar to those explained in the proofs of all inapproximability bounds,

the existence of a reoptimization polynomial algorithm for max Pk-free subgraph providing
ratio 2k

3k+1 + ε (for odd values of k) or 2k
3k+2 + ε (for even values of k) induces the existence of an

13

ε polynomial approximation algorithm for max independent set (in the original graph H),
which is impossible unless P = NP.

We now prove that this ratio is tight for small values of k, namely when k 6 6. Consider the
following hypothesis:

Hypothesis 1. In polynomial time, a Pk-free subgraph S can be partitioned in 3 sets S1,
S2 and S3, such that both S1 and S2 are P⌈k/2⌉−1-free, and w(S3) 6 w(S)/k if k is odd and
w(S3) 6 2w(S)/k if k is even.

For values of k where Hypothesis 1 is true, the following proposition holds.

Proposition 7. Under Hypothesis 1, max Pk-free subgraph problem is approximable within
ratio 2k

3k+1 for odd values of k, and 2k
3k+2 for even values of k in the reoptimization setting, under

one vertex insertion.

Proof. Consider a reoptimization instance I of max Pk-free subgraph, given by two graphs
G (initial) and G′ (perturbed) and an optimal solution OPT on the initial graph G. G and G′

differ only by vertex y (and its incident edges) which belongs to G′ but not to G. Classically,
denoting by OPT′ an optimal solution on G′, it holds that w(OPT) > w(OPT′)−w(y). Suppose
that Hypothesis 1 is verified, and consider the following algorithm:

• partition OPT in 3 sets S1, S2 and S3 as defined in Hypothesis 1, and without loss of
generality, suppose w(S1) > w(S2); set SOL1 = S1 ∪ {y} and SOL2 = OPT;

• return the best solution SOL between SOL1 and SOL2.

First, let us prove that this algorithm returns a feasible solution: SOL2 is trivially feasible in G′,
and consider a path P in SOL1. If this path does not go through y then it cannot go through
more than ⌈k/2⌉ − 1 vertices (by hypothesis, S1 is P⌈k/2⌉−1-free). If it does go through y, then
denote by P1 the set of vertices visited before y in P and P2 the set of vertices visited after.
Considering that both P1 and P2 are included in S1, which is supposed to be P⌈k/2⌉−1-free, then
|P1|, |P2| 6 ⌈k/2⌉ − 1, so that |P | = |P1|+ |P2|+ 1 6 k, and thus SOL1 is also Pk-free.

We define rk as an integer that is equal to 1 if k is odd, and to 2 if k is even. Regarding
the partitioning induced by Hypothesis 1, it holds that w(S3) 6

rkw(OPT)
k , and thus w(S1) >

(w(OPT)− w(S3))/2 >
k−rk
2k w(OPT), thus:

w(SOL2) >
k − rk
2k

w(OPT) +w(y) =
k − rk
2k

w(OPT′) +
k + rk
2k

w(y) (15)

On the other hand:
w(SOL1) > w(OPT′)− w(y) (16)

Summing (15) and (16) with coefficients 1 and k+rk
2k respectively, one finally proves that:

3k + rk
2k

w(SOL) > w(SOL2) +
k + rk
2k

w(SOL1) > w(OPT′)

that concludes the proof.
Now let us prove that Hypothesis 1 is true for k 6 6 (note that it is an open question whether

it remains true for bigger values of k, or not). In what follows, we suppose that the Pk-free graph
S to be partitioned is connected (if it is not so, then proving that the hypothesis is true for each
of its connected components amounts to proving it for the whole graph).

k = 1,2. Simply set S3 = S and S1, S2 = ∅.

14

k = 3. Split the graph in three independent sets S′
1, S′

2,and S′
3 in polynomial time (that

is possible according to Lemma 1), and w.l.o.g., suppose w(S′
1) > w(S′

2) > w(S′
3). Finally, set

S1 = S′
1, S2 = S′

2, and S3 = S′
3.

k = 4. Split the graph in four independent sets from S′
1 to S′

4 in polynomial time, and w.l.o.g.,
suppose w(S′

1) > w(S′
2) > w(S′

3) > w(S′
4). Finally, set S1 = S′

1, S2 = S′
2, and S3 = S′

3 ∪ S′
4.

k = 5. Here, we wish to prove that S can be partitioned in three sets S1, S2 and S3 such
that both S1 and S2 are P2-free and w(S3) 6 w(S)/5. We distinguish the following five cases.

Case 1. S contains a C5 (a cycle on 5 vertices). In this case, S contains exactly 5 vertices.
Let vmin denote the vertex with minimum weight among the 5 vertices of S, and set S3 = {vmin}.
Finally assign two remaining vertices to each of S1 and S2 arbitrarily.

Case 2. S contains no C5 but it contains a C4 with two diagonals (a clique on 4 vertices).
In this case let S′ denote the set of vertices of S that do not belong to this K4. Then it holds
that:

• S′ forms an independent set. Indeed, suppose that there exist an edge vi, vj in S′, then
there must exist a path through at least 6 vertices in S, that would go through vi, vj , and
the K4 (recall that S is connected).

• All vertices of S′ are connected to the same vertex in the K4, say vc. Indeed, in a K4,
any pair of vertices can be the two extremities of a P4. Suppose that vertices of S′ are
connected to two different vertices in the K4, say vc1 and vc2. First, notice that a single
vertex cannot be connected to both vc1 and vc2, since it would form a C5 which contradicts
the hypothesis of Case 2. Then, if at least two different vertices of S′ are connected to two
different vertices vc1 and vc2, then there exists a path through 6 vertices in G, impossible.

vc

S′

(a) A P5, C5-free graph containing a
K4

S′
1

S′
2 S′

3

S′
4

S′
5

(b) A partition in 5 final independent
sets

Figure 3: Case 2

Thus, the structure of Case 2 can be only be as described in Figure 3(a). In this case, one
can partition the graph in 5 independent sets from S′

1 to S′
5 (as shown in Figure 3(b)), such that

S \ S′
min (where S′

min denotes the lightest of the 5 independent sets) can be partitioned in two
P2-graphs: it suffices to ensure that S′

3 and S′
4 are not in the same partition.

Case 3. S contains no C5 but it contains a C4 with at most one diagonal. Again, let
S′ denote the set of vertices of S that do not belong to this C4. For reasons similar to those
explained in Case 2 it holds that:

• S′ is an independent set.

15

• Two different vertices of S′ cannot be connected to two vertices that are neighbors in the
C4 (because inside the C4, there always exists a path going through 4 vertices, and having
two neighbors in the C4 as extremal vertices).

• Two different vertices of S′ cannot be connected to two vertices of the gadget that are
opposite in the C4, but not connected by the diagonal, if any (for similar reasons).

Hence, vertices of S′ can be either all connected to the same vertex in the C4 (and can be
partitioned in the same fashion as in Case 2), or connected to two opposite vertices in it (and only
to the two opposites that are connected by the diagonal, if any). The structure is represented
in Figure 4(a), and once more, it can be partitioned in five independent sets from S′

1 to S′
5

(Figure 4(b)). Here, a partitionning in three sets S1, S2 and S3 that fit Hypothesis 1 is very easy
to obtain: set S1 = S′

1 ∪ S′
3 ∪ S′

5, S2 = S′
2 ∪ S′

4, and S3 = ∅.

(a) The overall structure . . .

S′
1

S′
2

S′
3

S′
4

S′
5

(b) . . . and its partition in 5 final independent
sets

Figure 4: A K3 and a C4 with three vertices in common

Case 4. S contains no C4, and no C5, but it contains a C3. Let v1, v2 and v3 denote the
three vertices of the C3, and let S′ = S \ {v1, v2, v3}. Then it holds that there is no path from
vi to vj (1 6 i < j 6 3) using at least one vertex of S′, otherwise there would exist a C4 in
S, which contradicts the hyposthesis of Case 4. Thus, S′ can be partitioned in 3 disconnected
subgraphs H1, H2 and H3, that are respectively reachable by v1 in S′ ∪ v1, by v2 in S′ ∪ v2 and
by v3 in S′ ∪ v3 (Figure 5).

H1

H2 H3

v1

v2 v3

Figure 5: General structure of S in Case 4

16

Case 4-a. Suppose that there exists at least one edge (h1, h2) in one set Hi, say in H1.
Then it holds that either h1 or h2 is connected to v1, otherwise there would exist a path going
through 6 vertices in S: (v3, v2, v1, P, h1, h2) or (v3, v2, v1, P, h2, h1) (where P contains at least
one vertex). So, w.l.o.g, suppose that v1 is connected to h1. Then there exists at least 2 path
through exactly 5 vertices in S: (v3, v2, v1, h1, h2), and (v2, v3, v1, h1, h2), so that any vertex in
H2 or H3 immediately results in a path through 6 vertices, impossible. Hence, H2 = ∅ and
H3 = ∅.

Considering the symmetry of the structure, one can assert that if there exist edges in S′, then
they are all included in one Hi while the other two are empty. Continue to suppose that these
edges are within H1. These edge (hi, hj) can be of two types:

• Type 1: both hi and hj are connected to v1. These edges necessarily form a matching.
Indeed, suppose that two of these edges have one vertex in common, say (hi, hj) and (hi, hk)
then there exists a path through 6 vertices in S: (v2, v3, v1, hj , hi, hk).

• Type 2: only hi is connected to v1. For similar reasons, these edges form disconnected
stars rooted at neighbors of v1.

Note also that edges of Type 1 and 2 cannot have a vertex in common.
In this case, a partitionning of the vertices of S in 5 independent sets from S′

1 to S′
5 can be

obtained in the following way:

• the first independent set S′
1 contains only v1,

• S′
2∪S′

3 forms a perfect matching between all pairs of vertices forming a triangle along with
v1 (including v2 and v3). Put differently, the cut between and S′

2 and S′
3 contains all edges

of Type 2 as well as (v2, v3),

• S′
4 contains all remaining neighbors of v1,

• S′
5 contains all neighbors of vertices in S′

4.

The partition is presented in Figure 6, and one can verify that for any S′
min ∈ (S1, . . . , S5),

S \S′
min can be partitioned in two P2-free subgraphs, each using two remaining independent sets

of the partition. For example, if the lightest independent set is S′
4, the partition is (S′

2, S
′
3) (that

is a perfect matching), and (S′
1, S

′
5) (that is an independent set), or if the lightest independent

set is S′
5, the partition is (S′

2, S
′
3, S

′
4) (that is a perfect matching and an independent set), and

(S′
1) (that is a single vertex).

S′
1

S′
2

S′
3

S′
4 S′

5

v1

v2

v3

Figure 6: Partition in Case 4-b

17

Case 4-b. S′ is an independent set. This case is much easier in the sense that the graph
S can immediately be partitioned into two P2-free subgraphs: S1 = H1 ∪ {v2} ∪ {v3} and
S2 = H2 ∪H3 ∪ v1 (and S3 = ∅).

Case 5. S contains no C5, no C4, and no C3. Hence, S is a tree, so that it is trivially
2-colorable, thus defining S1 as the first color, S2 as the second color, and S3 as an empty set,
one gets a partitioning of S that fits Hypothesis 1.

In any case, Hypothesis 1 is verified when k = 5.
k = 6. In this case, Hypothesis 1 is verified if S can be partitioned in 3 P2-free subgraphs

(the lightest of which will be S3, and the other two S1 and S2). Here, we distinguish the following
four cases.

Case 1. S contains a C6. It is clear that S contains exactly 6 vertices, which can easily be
partitioned in three P2-free subgraphs (2 vertices in each set of the partition).

Case 2. S contains a C5 and no C6. Let S′ denote the set of vertices that are not in C5. It
holds that S′ is an independent set, and that a pair of vertices that are neighbors in the C5 cannot
both have neighbors in S′ (if one of these two properties is not verified, then there exists a P6 in
S. Thus, without making assumption on the number of chords in the C5, the general structure
of S is as described in Figure 7, with a partitioning in three P2-free subgraphs (represented in
the figure as white, grey, and black vertices).

Figure 7: Partition of P6-free graph in 3 P2-free subgraphs in Case 2

Case 3. S contains a C4. We distinguish here the following two subcases.
Case 3-a. S contains a C4 but no C5 and no C6, and denoting by S′ the set of vertices that

are not in the C4, S
′ contains at least an edge (v1, v2). Obviously, these two vertices v1 and v2

cannot be connected to two different vertices of the C4, otherwise, S would contain a C5 or a C6.
Moreover, at least one of these two vertices must be connected to a vertex of the C4. Indeed,

taking into account that S is supposed to be connected, if none of these vertices is connected to
a vertex of the C4, then there exists a P6 in S.

Finally, supposing w.l.o.g that v1 is the vertex connected to a vertex x in the C4, then no
neighbor of x in the C4 can be connected to any vertex of S′ (otherwise there would exist a P6

in S).
Hence, denoting vertices of the C4 by x, y, z and t as in Figure 8, only vertices x and z

might have neighbors in S′. Moreover, denoting by N({x} ∪ {z}) the neighborhood of these two
vertices, it holds that this set is P2 free, otherwise a path on 7 vertices would exist in S (the 3
vertices of the P2 in N({x} ∪ {z}), and the 4 vertices of the C4). Thus, coloring in white the
vertices of N({x} ∪ {z}) as well as y and t, and in black all the other vertices of S, one gets a
partition of S into two P2 free colors.

Case 3-b. S contains a C4 but no C5 and no C6, and let S′ denote the set of vertices that are
not in the C4, S

′ contains no edge. This case is much simpler than the previous one, considering
that S′ forms an independent set. To get a partition of S into three P2-free subgraphs, it suffices

18

x

y

z

t

Figure 8: Partition of P6-free graph in 2 P2-free subgraphs in Case 3-a

to consider S′ itself as the first subset of the partition, {x} ∪ {z} as the second, and {y}∪ {t} as
the third.

Case 4. S contains no C4, no C5 and no C6. In this case, it holds that the neighborhood
N(x) of any vertex x is P2 free, since a P2 (on 2 edges, and 3 vertices) in N(x) amounts to a C4

in x∪N(x). Moreover, denoting by N(N(x))) = N2(x)) the set of neighbors of vertices in N(x),
it holds that N(N(x)) is also P2-free, since the neighborhood of each vertex in N(x) is P2-free
(considering what we stated above), and disjoint from one another (otherwise there would exist
C4 in S). Naturally, the same holds for any N i(x).

Hence, in this case, the graph can be easily partitioned in 2 P2-free subgraphs: starting from
a arbitrary vertex that is colored black, one colors its neighborhood white, then the neighborhood
of its neighborhood black, etc. Considering what we proved earlier, each color defines a P2-free
subgraph.

Finally, Hypothesis 1 is also verified when k = 6.

3.4 max split subgraph

Given a graph G(V,E,w), the max split subgraph problem consists of determining a maximum-
weight subset V ′ ⊆ V that induces a split subgraph of G. A split graph is a graph whose vertices
can be partitioned into two sets C and S, C being a clique, and S being an independent set. Any
subset of a clique remains a clique, and any subset of independent set remains an independent
set, hence, being a split graph is a hereditary property. Moreover, considering that the property
is false for a complete bipartite graph with at least two vertices in each independent set, the
result of Theorem 1 applies to the max split subgraph problem. So max split subgraph

is inapproximable within any constant ratio, unless P = NP.
We prove that this strong inapproximability result does not hold in the reoptimization setting,

but we first need to prove the following lemma.

Lemma 2. Let G be a graph with h 6 3 vertices. It holds that w(GS) + w(GC) >
h+1
h w(G) if

h 6 2 and w(GS) + w(GC) >
5
4w(G) if h = 3, where GS and GC respectively denote an optimal

independent set and an optimal clique in G.

Proof. If G is a clique, then w(GC) = w(G) and w(GS) >
w(G)
h , and symmetrically, if G is

an independent set, then w(GS) = w(G) and w(GC) >
w(G)
h . In both cases, the proposition is

verified.
If G is neither a clique nor an independent set (which might occur when h = 3), then there

are only two possible configurations, both represented in Figure 9.

19

v1

v2 v3
(a) Case 1

v1

v2 v3
(b) Case 2

Figure 9: Graphs G that are neither cliques nor independent sets

In Case 1, there are two maximal cliques: {v1, v2} and {v1, v3}, sow(GC) >
2w(v1)+w(v2)+w(v3)

2 .
On the other hand there are two maximal independent sets: {v1} and {v2, v3}, so w(GS) >

1
4w(v1) +

3
4(w(v2) +w(v3)). In all: w(GC) + w(GS) >

5w(v1)+5w(v2)+5w(v3)
4 = 5

4w(G).
Taking into account the symmetry between Cases 1 and 2, the same bound holds for Case 2,

which concludes the proof.

Proposition 8. Under insertion of h vertices, max split subgraph problem is h+1
2h+1 -approximable

for h 6 2, and 5
9 -approximable for h = 3.

Proof. Consider a reoptimization instance I of the max split subgraph problem. The initial
graph is denoted by G(V,E), and the perturbed one G′(V ′, E′), where V ′ = V ∪ Y where
|Y | = h 6 3. Let OPT and OPT′ denote optimal split-graphs on G, and G′ respectively. The
initial optimum OPT is given by a clique C and an independent set S. Let YS and YC denote
optimal independent sets and cliques in Y . Consider the following algorithm:

• Let SOL1 = S ∪ YC , SOL2 = C ∪ YS , and sol3 = OPT

• return the best solution SOL among SOL1, SOL2, and SOL3.

First, noticing that S∪YC and C∪YS both define split graphs, it holds that the algorithm returns
a feasible solution. Then summing w(SOL1), and w(SOL2), we get the following equality:

w(SOL1) + w(SOL2) = w(C) + w(S) + w(YC) + w(YS) >

{

w(OPT) + h+1
h w(Y) if h 6 2,

w(OPT) + 5
4w(Y) if h = 3.

The second line follows noticing that w(C) + w(S) = w(OPT), and taking into account that,
according to Lemma 2, w(YS) + w(YC) >

h+1
h w(Y) if h 6 2, and w(YS) + w(YC) >

5
4w(Y) if

h = 3.
Notice that w(OPT) > w(OPT′)− w(Y), one verifies that:

w(SOL1) + w(SOL2) >

{

w(OPT′) + 1
hw(Y) if h 6 2

w(OPT′) + 1
4w(Y) if h = 3

(17)

w(SOL3) > w(OPT′)− w(Y) (18)

Finally, summing (17) and (18) with coefficients h and 1, if h 6 2, and 4 and 1 if h = 3:

{

(2h + 1)w(SOL) > h(w(SOL1) + w(SOL2)) + w(SOL3) > (h+ 1)w(OPT′) if h 6 2

9w(SOL) > 4(w(SOL1) + w(SOL2)) + w(SOL3) > 5w(OPT′) if h = 3

and the proof is completed.

20

Recall that for any h (and a fortiori for h > 4) the problem is 1/2-approximable by the
algorithm R1 presented in [3]. We prove that these simple approximation algorithms achieve the
best constant ratios possible.

Proposition 9. Under vertex insertion, max split subgraph is inapproximable within ratios
h+1
2h+1 + ε when h 6 2, 5

9 + ε when h = 3, and 1
2 + ε when h > 4 in polynomial time, unless

P = NP.

Proof. Consider an unweighted graph H where one wishes to solve max split subgraph.
Denote by α its independence number, β its clique number. Now, suppose that one builds a
graph Hα,β by adding to H two graphs H1 and H2, that are complementary graphs of H, and
connecting all vertices in H to vertices in H2, while H1 is disconnected from H. Between H1

and H2, vertices are connected in the following way:

• if α < β, then all vertices in H1 are connected to all vertices in H2,

• if α > β, H1 and H2 are completely disconnected.

In Hα,β, both the clique and independence numbers are α+ β. Indeed, Notice that each clique
in H becomes an independent set in both H1 and H2, and vice versa.

If a clique C takes at least one vertex in H1, then, either α > β and this clique must be
included in H1 (|C| 6 α), or α < β, and this clique can have vertices in H1 and H2 but not in
H, so that |C| 6 2α < α + β. On the other hand, if C takes no vertex in H1, then it must be
composed of a clique in H (of size at most β) and a clique in H2 (of size at most α), so that the
clique number of Hα,β is exactly α+ β.

By symmetry, the same holds for the independence number.

H

H

HH

H

H1

H1

H1H1

H1

H2

H2

H2H2

H2

Figure 10: The graph Hα,β,3,3 (α > β)

In what follows, we note γ = α+ β. Consider the graph Hα,β,h1,h2
(h1, h2 > 1) that consists

of h1 + h2 − 1 copies of the graph Hα,β. Among them, h1 copies are disjoint from one another,
and h2 copies are connected by all possible pairs of vertices from different copies (an example is
provided in Figure 10). It holds that:

• Hα,β,h1,h2
has independence number h1γ,

• Hα,β,h1,h2
has clique number h2γ,

• An ε-approximate solution for max split subgraph in Hα,β,h1,h2
can be easily derived

into a (2ε/3)-approximate solution for max split subgraph in H. Indeed, any solution
SG on Hα,β,h1,h2

can be partitioned into 3(h1+h2−1) feasible solutions on H, the biggest of

21

which has weight at least (2ε/3)γ when SG is an ε-approximate solution. Thus, max split

subgraph is inapproximable within any constant ratio in Hα,β,h1,h2
, unless P = NP.

In what follows, we will build three different reoptimization instances, for cases h 6 2, h = 3
and h > 4. In the three cases, the initial graphs will have the same generic structure, defined as
Gα,β,h1,h2

(h1 and h2 will take different values in the three specific cases).
This graph is obtained by adding to Hα,β,h1,h2

a set X of vertices, which consists of a clique
XC of size h2γ+1 and an independent set XS of size h1γ+1. Each vertex in the graph receives
weight 1. XC is disconnected from V , and each vertex of XS is connected to all other vertices of
the graph, namely vertices of both V and XC . In this initial graph, it holds that a split-graph
SG has weight at most (h1 + h2)γ + 2. We distinguish the three following cases.

Case 1. SG ∩ V = ∅, then w(S) 6 w(X) 6 (h1 + h2)γ + 2.
Case 2. |SG ∩ V | = 1, and denote by v the single vertex of SG ∩ V . In this case, SG

cannot take more than max{h1, h2}γ +1 vertices in X. Indeed, if it takes more vertices, then it
means that SG contains at least two vertices of each set XS and XC , which necessarily forms a
forbidden subgraph along with v. It means that w(SG) 6 max{h1, h2}γ + 2 6 (h1 + h2)γ + 2.

Case 3. |SG ∩ V | > 2. Denote by SGC the clique in SG and by SGS the independent set
in SG.

If SG[V] is a clique, then the clique in SG, SGC , can contain at most h2γ vertices in V and
one vertex in XS , so that w(SGC) 6 h2γ + 1. On the other hand, the biggest independent set
in X is XS , so that w(SGS) 6 w(SX) 6 h1γ + 1. In all:

w(SG) = w(SGS) +w(SGC) 6 (h1 + h2)γ + 2

A symmetrical arguments holds when SG[V] is an independent set.
Suppose now that SG[V] is neither a clique nor an independent set. Then w(SG[V]) 6

(h1 + h2)γ, and both SGS and SGC contain at least one vertex in V . Thus, SGC cannot
contain any vertex of XC , and at most one of vertex of XS . Symmetrically, SGS cannot contain
any vertex of XS , and at most one of vertex of XC . In all, w(SG[X]) 6 2, and once more,
w(SG) 6 (h1 + h2)γ + 2, concluding so Case 3.

Thus, any solution that has weight exactly (h1 + h2)γ + 2 is optimal in Gα,β,h1,h2
, so in all

reoptimization instances we will build, we can consider X as the initial optimum.
Assume h 6 2. We build a reoptimization instance, Iα,β,h in the following way:

• The initial graph is the graph Gα,β,h,1. We proved earlier that X is an optimum on this
graph. Here, its weight is (h+ 1)γ + 2.

• The perturbed graph G′
α,β,h,1 is obtained by adding a set of vertices Y to Gα,β,h,1, which

consists of an independent set of h vertices, each with weight γ. All vertices in Y are
connected to all vertices in XS only.

The overall structure is represented in Figure 11, as well as the weight of optimal independent
sets and cliques (denoted by S∗ and C∗ in the Figure) in all sets V , XC , XS and Y .

Notice that, in the perturbed graph Y ∪XC ∪ IS∗ (where IS∗ is an optimal independent set
in V) defines an split graph of weight (2h+1)γ+1. Indeed, Y ∪ IS∗ defines an independent set,
while XC defines an clique. Thus, denoting by OPT′ an optimal split graph in G′

α,β,h,1, it holds

that w(OPT′) > (2h+ 1)γ + 1.
Suppose that, for a given h 6 2, there exists an approximation algorithm A for the reop-

timization version of max split subgraph, which provides an approximation ratio bounded
by h+1

2h+1 + ε, under the insertion of h vertices. Denoting by Sα,β,h a solution returned by this

22

Y

S∗=hγ

C∗= γ

V

S∗=hγ

C∗= γ

XC

S∗=1

C∗=γ+1

XS

S∗=hγ+1

C∗=1

Figure 11: The reoptimization instance Iα,β,h, h 6 2

algorithm on the reoptimization instance Iα,β,h we just described, it holds that:

w(Sα,β,h) >

(

h+ 1

2h+ 1
+ ε

)

OPT′
> (1 + ε)(h+ 1)γ

However, a split graph SG in X ∪ Y (and a fortiori the restriction of Sα,β,h to X ∪ Y , denoted
by Sα,β,h[X ∪ Y]) cannot have weight more than (h+1)γ +2. We distinguish here the following
two cases.

Case 1. SG takes at most one vertex in XS , then w(SG[XS]) 6 1, and thus:

w(SG) = w(SG[XS]) + w(XC) +w(Y) 6 1 + γ + 1 + hγ = (h+ 1)γ + 2

Case 2. SG takes at least two vertices in XS , then the independent set in SG can contain only
vertices of XS . In other words, the vertices of Y ∪XC can only be part of the clique in SG. It is
quite obvious that the biggest clique in Y ∪XC is XC itself so that in this case w(SG) 6 w(X) =
(h+1)γ+2. One immediately derives from this result that w(Sα,β,h[X ∪Y]) 6 (h+1)γ+2 and
Case 2 is concluded.

So, in both cases it is verified that w(Sα,β,h[V]) = w(Sα,β,h) − w(Sα,β,h[X ∪ Y]) > εγ −
2. Considering that γ is not a constant, if an algorithm A exists, one can get in polynomial
time a constant-approximate solution for max split subgraph in the graph Hα,β,h,1, which is
impossible unless P = NP.

Suppose now that h = 3. In this case, the reoptimization instance Iα,β,h is built as follows:

• The initial graph is the graph Gα,β,2,3. X is an optimum on this graph. Here, its weight is
5γ + 2.

• The perturbed graph G′
α,β,2,3 is obtained by adding a path Y to Gα,β,2,3, which has 3

vertices, y1, y2 and y3. y1 is the central vertex of the path, and has weight 2γ, while y2 and
y3 are end vertices of the path, and have both weight γ. All vertices in Y are connected to
all vertices in XS , but not to any vertex in XC . y1 is connected to all vertices in V , while
vertices y2 and y3 are not connected to any vertex in V .

Notice that, in the perturbed graph Y ∪F ∗ (where F ∗ is an induced optimal split subgraph in V)
defines a split graph of weight at least 9γ − 1 (in V the maximum clique F ∗

C and the maximum
independent set F ∗

S might have one vertex in common). Indeed, y1 ∪ F ∗
C defines a clique, while

y2 ∪ y3 ∪ F ∗
S defines an independent set. Thus, denoting by OPT′ an optimal split graph in

G′
α,β,h, it holds that w(OPT′) > 9γ − 1.

23

Assume that there exists an approximation algorithm A for the reoptimization version of max

split subgraph, which provides an approximation ratio bounded by 5
9 + ε, under the insertion

of h = 3 vertices. Denoting by Sα,β,h a solution returned by this algorithm on the reoptimization
instance Iα,β,h we just described, it holds that:

w(Sα,β,h) >

(

5

9
+ ε

)

OPT′
> (1 + 9ε)5γ −

5

9
− ε > (1 + ε)5γ (19)

where the last inequality follows from noticing that 5/9+ε < 8εγ, otherwise a single vertex defines
a 8ε-approximate solution in V , which is supposed to be impossible to provide in polynomial
time, unless P = NP.

However, it holds that a split graph SG in X ∪ Y has weight at most 5γ + 3 and we study
the following four cases.

Case 1. SG[Y] = ∅. Then w(SG) 6 w(X) = 5γ + 2,
Case 2. |SG[Y] = 1|. If the single vertex is part of the clique in SG, then this clique can

take at most one additional vertex in XS . Symmetrically, if this vertex is part of the independent
set in SG, then this independent set can take at most one additional vertex in XC :

w(SG) 6 w(y1) + 1 + max{w(XC), w(XS)} 6 5γ + 3

Case 3. |SG[Y] = 2|. If SG[Y] has two connected vertices, then:

• w(SG[Y]) = 3γ;

• the clique in SG can take at most one vertex in XS , and none in XC ;

• the independent set in SG cannot weight more than w(XS) = 2γ + 1.

If, on the other hand, SG[Y] has two disconnected vertices, then:

• w(SG[Y]) = 2γ;

• the independent set in SG can take at most one vertex in XC , and none in XS ;

• the clique in SG cannot weight more than w(XC) = 3γ + 1.

Hence, in both cases, one verifies that w(SG) 6 5γ + 3.
Case 4. |SG[Y] = 3|. In this case, w(SG[Y]) = 4γ, and SG can take at most two vertices

of X, one of XS that can be part of the clique in SG, of XC that can be part of the independent
set in SG. In all, w(SG) 6 4γ + 2, that concludes Case 4.

Taking into account that any split graph in X ∪ Y cannot have weight more than 5γ + 3,
the same holds a fortiori for Sα,β,h[X ∪ Y]. Combining this bound with (19), one immediately
derives that:

w(Sα,β,h[V]) > (1 + ε)5γ − 5γ − 3 = εγ − 3 (20)

For reasons already explained, (20) makes impossible the existence of a polynomial algorithm A

that ensures a 5
9 + ε approximation ratio under the insertion of h = 3 vertices, unless P = NP.

Finally, suppose that h > 4. We build the following reoptimization instance Iα,β,h:

• The initial graph is the graph Gα,β,1,1. In it, X defines an optimal split graph of weight
2γ + 2.

• The perturbed graph G′
α,β,h(Vα,β,h, Eα,β,h) is obtained by adding a set Y of h vertices, in

which 4 vertices have weight γ/2, and are as represented in Figure 12: all these vertices
are connected to all vertices in XS , while only y1 and y2 are connected to all vertices in V .
The other h− 4 vertices in Y have null weight, and will be ignored in what follows.

24

V

S∗= γ

C∗= γ

XC

S∗=1

C∗=γ+1

XS

S∗=γ+1

C∗=1

y1

y2

y3

y4

Figure 12: The reoptimization instance Iα,β,h, h > 4

Notice that in V , an optimal split graph F ∗ has weight at least 2γ − 1 (since a clique and
independent set can have at most one vertex in common), notice also that Y ∪ F ∗ defines a
feasible solution: the clique in F ∗ forms a clique along with y1 and y2, and the independent
set in F ∗ forms an independent set along with y3 and y4. Thus, denoting by OPT′ an optimal
solution in the perturbed graph G′

α,β,h, it holds that w(OPT′) > 4γ − 1.
Suppose that, for a given h > 4, there exists an approximation algorithm A for the reopti-

mization version of max split subgraph, which provides an approximation ratio bounded by
1
2 + ε, under the insertion of h vertices. Denoting by Sα,β,h a solution returned by this algorithm
on the reoptimization instance Iα,β,h we just described, its weight can be bounded as follows:

w(Sα,β,h) >

(

1

2
+ ε

)

w(OPT′) > (1 + 2ε)2γ −
1

2
− ε > (1 + ε)2γ (21)

where the last inequality follows from noticing that 1/2 + ε < 2εγ. If not, then a single vertex
defines a ε-approximate solution in V .

We prove now that a split graph SG in X ∪ Y (and a fortiori the restriction of Sα,β,h to this
set) cannot have weight bigger than 2γ + 2. For this, we study the following three cases.

Case 1. |SG ∩ Y | = 0. Obviously w(SG) 6 w(X) = 2γ + 2,
Case 2. |SG ∩ Y | = 1, 2. SG can take at most γ + 2 vertices in X, otherwise, it takes at

least 2 vertices in both XC and XS , which form a forbidden subset along with one vertex in Y .
Thus, w(SG) 6 γ + 4 6 2γ + 2

Case 3. |SG ∩ Y | > 3, 4. Given the structure of Y , then 3 (and a fortiori 4) vertices cannot
form an independent set, nor a clique. Thus, SG can take at most one vertex in each set XC

and XS , and w(SG) 6 2γ + 2 and Case 3 is concluded.
Hence, the restriction of Sα,β,h to X ∪ Y has weight bounded as follows:

w(Sα,β,h[X ∪ Y]) 6
2

γ
+ 2 (22)

Combining (21) and (22), one easily derives:

w(Sα,β,h[V]) > (1 + ε)2γ − 2γ − 2 = εγ − 2 (23)

So, Sα,β,h[V] is a constant-approximate solution for max split subgraph in the graph Hα,β,1,1,
which is impossible to provide in polynomial time unless P = NP.

25

3.5 max planar subgraph

Given a graph G(V,E,w), the max planar subgraph problem consists of determining a
maximum-weight subset V ′ ⊆ V that induces a planar subgraph of G. A planar graph is defined
as a graph that can be embedded in the plane in a way that no edges cross each other. It is proved
in [29] that the class of planar graph is characterized by two forbidden minors: K5 and K3,3.
On the other hand, an outerplanar graph is a planar graph that can be embedded in the plane
such that all its vertices belong to the outer-face of the embedding (see Figure 13(b)). Similarly,
the class of outerplanar graphs is characterized by two forbidden minors: K4 and K2,3. Given a
planar graph G(V,E), the level of a vertex is defined inductively as follows: the set L1 of vertices
at level 1 is constituted by vertices on the exterior face of G; then, the set Li of vertices at level i
is the set of vertices on the exterior face of the subgraph of G induced by V (L1, . . . , Li−1). A
planar graph is said to be k-outerplanar if every vertex is at level at most k (for at least one
planar embedding, see Figure 13(a)). Every planar graph is k-outerplanar for some k and can
be embedded in polynomial time. An interesting property regarding outerplanarity is that the
addition of a single vertex to an outerplanar graph results in a planar graph. We prove the
following lemma.

(a) A 4-outerplanar graph (b) An outerplanar graph

Figure 13: Outerplanarity and k-outerplanarity

Lemma 3. Let G(V,E) be a planar graph. The vertex set V of G can be partitioned in two
subsets S1 and S2 such that both induced subgraphs G[S1] and G[S2] are outerplanar. Such a
partition can be computed in polynomial time.

Proof. Recall that a planar embedding of a planar graph can be obtained in polynomial time
by the algorithm presented in [15]. Given an embedding of G, there is a simple way to partition
G into two induced outerplanar subgraphs: recall that any planar embedding can be partitioned
in layers L1 . . . , Ll, where L1 denotes the outerface of the embedding, L2 denotes the outerface
of the embedding without L1, L3 the outerface of the embedding without L1 and L2, etc.

Notice that each layer induces an outerplanar graph, and that each layer Li is a separating set
that cuts the graph into two connected components, one that contains all layers L1, L2, . . . , Li−1,
and the other that contains all layers Li+1, . . . , Ll.

Hence, the union of all layers with odd labels consists of disjoint layers, and is thus outerpla-
nar, and so is the union of all layers with even labels (see also Figure 13(a)).

Proposition 10. Under vertex insertion, the max planar subgraph problem is approximable
within ratio 2/3.

Proof. Consider a reoptimization instance I of the max planar subgraph problem. The
initial graph is denoted by G(V,E), and the perturbed one G′(V ′, E′) where V ′ = V ∪ {y}. Let

26

OPT and OPT′ denote optimal planar graphs on G, and G′ respectively. Using the method
proposed in Lemma 3, OPT can be partitioned into 2 sets S1, and S2 such that both these
sets induce outerplanar graphs. Suppose that S1 is the heavier of theses two sets. Consider the
following algorithm:

• Let SOL1 = S1 ∪ {y}, and SOL2 = OPT;

• return the best solution SOL among SOL1, and SOL2.

First, notice that SOL1 is planar, since it consists of the union of an outerplanar graph and a single
vertex, so that the algorithm always returns a feasible solution for max planar subgraph.

Then, classically, it holds that w(OPT) > w(OPT′) − w(y), so that w(SOL1) and w(SOL2)
are bounded as follows:

w(SOL1) >
w(OPT′)− w(y)

2
+w(y) =

w(OPT′)

2
+

w(y)

2
(24)

w(SOL2) > w(OPT′)− w(y) (25)

Summing (24) and (25) with coefficients 2 and 1, respectively, we get:

3w(SOL) > 2w(SOL1) + w(SOL2) > 2w(OPT′)

that concludes the proof.
The four colors Theorem proved in [28], claims that every planar graph is 4-colorable. We

use this theorem to prove the following proposition.

Proposition 11. Under vertex insertion, the max planar subgraph problem is inapprox-
imable within ratio 4/5 + ε in polynomial time, unless P = NP.

Proof. Consider a graph H that has independence number α, where one wishes to solve max

independent set problem. It is possible to turn this instance into an instance of max planar

subgraph by turning the graph H into a graph H ′ as follows:

• each vertex vi of H is turned into a clique Vi of 4 vertices in H ′;

• if (vi, vj) belongs to H, then all edges between vertices of cliques Vi and Vj are in E.

For reasons similar to those explained in the proof of Proposition 6, it holds that:

• H ′ is also α-independent;

• denoting by OPT an optimal planar subgraph in G, then w(OPT) = 4α.

We build a weighted reoptimization instance Iα of max planar subgraph as follows:

• The initial graph Gα is obtained by adding a clique X of 4 vertices to H ′, each with weight
α. Eα contains all edges between X and V .

• The perturbed graph G′
α is obtained by adding a single vertex y to Gα, with weight α that

is connected to all vertices of X.

Any planar subgraph S in Gα has weight at most 4α. Indeed, let i denote the number of vertices
of X in S, then S ∩ [V] is (4 − i)-colorable, so that it has weight at most (4 − i)α. Thus,
w(S) 6 iα+ (4− i)α = 4α.

Hence, any planar subgraph that has weight exactly 4α is optimal in Gα, so we assume that
X (which has weight 4α) is the initial optimum of the reoptimization instance Iα.

27

In G′
α, {y}∪OPT is a feasible solution, so that w(OPT′) > 5α. Consider an algorithm A that

provides a 4/5 + ε for the reoptimization version max planar subgraph. Denote by SOLα a
solution returned by A on the reoptimization instance Iα we just described. Then:

w(Sα) >

(

4

5
+ ε

)

OPT′
> (1 + ε)4α

However, a planar subgraph in {y} ∪X can take at most four vertices (taking 5 vertices induces
a K5), so that w (Sα ∩ ({y} ∪X)) 6 4α. Thus, it holds that w(Sα[V]) > 4εα.

Notice that, Sα[V] being planar, it can be partitioned in four independent sets in polynomial
time. The biggest of these 4 four independent sets has weight at least εα, and by construction,
one can easily determine an independent set of the same size in the original max independent

set instance, which is impossible unless P = NP.

4 Vertex deletion

Let us consider now the opposite kind of perturbations: vertex-deletion. When dealing with
hereditary optimization problems, some properties discussed just above still remain valid, while
some others do not. As before, let us consider a given instance of a hereditary problem, for which
we know an optimal solution OPT. Consider now that one vertex of the graph is deleted, along
with its incident edges. Two cases might occur:

• the deleted vertex y was not part of the initial optimum, so it remains the same in the new
graph.

• y was part of the initial optimum, and might even have been one of its most important
elements. Though having a priori no information on the quality of the initial optimum
OPT \ {y} in the new graph G′ (or rather what is left of it), we can still assert that
OPT \ {y} remains a feasible solution in the new graph.

In what follows, we discuss to what extent the techniques used in the case of insertion can be
applied to the case of deletion. As in Section 3, we will start by an inapproximability result on
the most elementary hereditary problem, max independent set (Section 4.1), and then extend
the result to all inapproximable hereditary problems (Section 4.2). Then, we provide some tight
positive results for max k-colorable subgraph (Section 4.3), and finally we present general
techniques for reoptimizing hereditary problems in graphs of bounded degree (Section 4.4).

4.1 max independent set

Recall that under vertex insertion, any hereditary problem is easily 1/2-approximable. The
results does not extend to the case of vertex deletion, where max independent set is as hard
to approximate as its deterministic version:

Proposition 12. Under vertex deletion, max independent set is inapproximable within any
ratio n−ε in polynomial time, for any ε ∈ (0, 1), unless P = NP.

Proof. Consider an instance H(V,E) of (unweighted) max independent set, and build the
following reoptimization instance I:

• The initial instance G is obtained by adding to H a single vertex y with weight n. y is
connected to all the vertices in H. Obviously, the single vertex y is an optimal solution in
G.

28

• The perturbed instance is the graph H.

Suppose that there exists an approximation algorithm A that ensures an approximation n−ε for
max independent set under vertex deletion, then this algorithm can be used to obtain an n−ε

on any instance H by running A on the reoptimization instance I we just described. Hence, such
an algorithm cannot exist unless P = NP [31].

It is thus clear that, unlike in the insertion case, there is no polynomial algorithm providing
a constant approximation ratio for any hereditary problem in the deletion case. However, the
max independent set problem is probably the hardest to approximate in the vertex deletion
setting, in the sense an optimal solution might contain a single vertex, so that the deletion of
this vertex discards the whole information provided by the initial optimum.

But regarding other hereditary properties, this phenomenon will not occur systematically, and
in fact, the strong inapproximability bound on the reoptimization version of max independent

set under vertex deletion cannot be transferred directly to all hereditary problems.

4.2 General negative result

When dealing with max independent set, the whole initial optimum can disappear when
deleting a single vertex, since the minimal size of a maximal solution is 1, put differently, a single
vertex can be a maximal solution. However, this fact does not hold for any hereditary property.
Consider for example the max bipartite subgraph problem. Regarding this problem, a single
vertex cannot define a maximal solution, and it takes at least two deleted vertices to delete the
whole initial optimum. We derive from this idea the following general inapproximability result:

Proposition 13. Let M(Π) denote the minimal size of a maximal solution for a given hereditary
problem Π. Under the deletion of h > M(Π) vertices, Π is inapproximable within any ratio n−ε

in polynomial time, unless P = NP.

Proof. Consider an instance of a given unweighted non trivial hereditary problem Π, that
consists of a graph H(V,E). We build the following reoptimization instance I:

• The initial graph G is obtained by adding to H a set of vertices Y of size h > M(Π). This
set contains a gadget of size M(Π) that constitutes a maximal solution in G, where each
vertex has weight n, and h−M(Π) vertices with weight 0 (which will be ignored in what
follows).

• The perturbed graph is the graph H

It is clear that the M(Π) vertices of weight n in Y define an optimal solution in the initial graph
G: This gagdet is feasible and maximal, so that in G an optimal solution has weight at least
M(Π)n. On the other hand, any solution that does not take the whole gadget has weight at
most (M(Π)− 1)n+OPT 6 M(Π)n, where OPT denotes the cardinality of an optimal solution
in H. Thus, Y can be considered as the initial optimum of the reoptimization instance I.

Consider a reoptimization algorithm A, which, for a given h > M(Π), does provide an approx-
imation ratio n−ε under the deletion of h vertices. When using it on the reoptimization instance
I we just described, this algorithm produces a n−ε-approximate solution in H in polynomial
time, which is impossible unless P = NP.

Regarding the four specific problems discussed in Section 3, the four following corollaries
hold.

Corollary 1. Under deletion of h > k vertices, max k-colorable subgraph is inapprox-
imable within ratio n−ε unless P = NP.

29

Corollary 2. Under deletion of h > k vertices, max Pk-free subgraph is inapproximable
within ratio n−ε unless P = NP.

Corollary 3. Under deletion of h > 3 vertices, max split subgraph is inapproximable within
ratio n−ε unless P = NP.

Corollary 4. Under deletion of h > 4 vertices, max planar subgraph is inapproximable
within ratio n−ε unless P = NP.

For Corollaries 1 and 2, it suffices to notices that Kk’s can define maximal solution for both these
problems.

For Corollary 3, notice that 3 vertices can define a maximal solution for max split sub-

graph: revisiting the proof of Proposition 13, build the gadget in Y as follows: two vertices
y1, y2 that are connected only one to the other, and a vertex y3 connected to all vertices in H.
Clearly, {y1, y2, y3} defines a maximal (and optimal) solution in G.

Finally Corollary 4 derives from the fact that a planar graph is 4-colorable, so that a K4 can
define a maximal solution.

4.3 max k-colorable subgraph

Following Corollary 1, it holds that no constant approximation ratio can be expected in polyno-
mial when more than k vertices are deleted, However if the number of deleted vertices is smaller
than k, the non deleted part of the initial optimum is non-empty. Following this idea we provide
the following positive result for max k-colorable subgraph:

Proposition 14. Under deletion of h < k vertices, max k-colorable subgraph is approx-
imable within ratio k−h

k .

Proof. Consider a reoptimization instance I of the max k-colorable subgraph problem,
under deletion of h < k vertices. The initial graph is denoted by G(V,E), and the perturbed
one G′(V ′, E′) where G′ = G[V \ Y]. Let OPT and OPT′ denote optimal k-colorable subgraphs
on G, and G′ respectively. Considering that Y has h vertices, and denoting by h′ the number of
independent sets in OPT that contain at least one vertex of Y , it holds that h′ 6 h.

Let S1 denote the (k − h′)-colorable subgraph in OPT which does not contain any vertex of
Y , and S2 the h′-colorable subgraph in OPT such that each independent set in it has at least
one vertex in Y . Consider the simple reoptimization algorithm that consists of returning the set
SOL = OPT \ Y (that is, the remaining part of the optimum after the deletion of Y). It holds
that:

w(SOL) = w(S1) +w(S2 \ Y) (26)

w(OPT′) 6 w(OPT′ \ S2) + w(S2 \ Y) (27)

It also holds that S1 is an optimal (k−h′)-colorable subgraph in the induced subgraph G[V \S2]
(otherwise OPT wouldn’t be an optimal solution). It also holds that OPT′ \ S2 defines a k-
colorable subgraph in G[V \ S2]. Thus, the k − h′ biggest independent sets in OPT′ \ S2 have
weight at most w(S1), and at least k−h

k w(OPT′ \ S2). Hence, one verifies that:

w(S1) >
k − h′

k
w(OPT′ \ S2) (28)

Combining (26), (27) and (28), one finally proves that:

SOL

OPT′ >

k−h′

k w(OPT′ \ S2) + w(S2 \ Y)

w(OPT′ \ S2) + w(S2 \ Y)
>

k − h

k

30

that concludes the proof.
Moreover, a simple proof based on the same construction as in Proposition 3 shows that

this constant approximation ratio is the best one can obtain by a polynomial algorithm (unless
P = NP).

Proposition 15. Under deletion of h < k vertices, max k-colorable subgraph is inapprox-
imable within ratio k−h

k + ε in polynomial time, unless P = NP.

Proof. Revisit the proof of Proposition 3: out of an instance H of max independent set, with
independence number α, we can build an instance Hα(V,E) of max k-colorable subgraph,
such that for any i 6 k, an optimal i-colorable subgraph in Hα has weight exactly iα, and any
constant approximation for max k-colorable subgraph is impossible in Hα, unless P = NP.
We build the following reoptimization instance of max k-colorable subgraph, Iα,h (h < k):

• The initial graph Gα,h is obtained by adding to Hα a clique Y of k vertices, each connected
to all vertices of Hα, and each with weight α.

• The perturbed graph G′
α,h is obtained by deleting h of the k vertices of Y . Denote by Y ′

the set of remaining vertices of Y after the deletion (|Y ′| = k − h).

For reasons already explained in the proof of Proposition 3, it holds that Y can be considered as
the initial optimum of the reoptimization instance.

Suppose that, for a given h, there exists an algorithm A that computes a k−h
k +ε approximation

for max k-colorable subgraph under deletion of h vertices. And let Sα,h denote the solution
returned by A on the instance Iα,h, it holds that w(Sα,h) > (1+ ε)(k−h)α, and considering that
w(Y ′) = (k − h)α, it holds that w(Sα,h[V]) > ε(k − h)α.

Thus, an algorithm A cannot exist for any h, otherwise it would provide a constant approxi-
mation for max k-colorable subgraph in the graph Hα(V,E), which is impossible to provide
in polynomial time unless P = NP.

4.4 Restriction to graphs of bounded degree

We will start with the example of max independent set where the underlying technique of
algorithm R1 can be adapted in graphs of bounded degree. We will then try to explain to what
extent we can generalize this result.

Proposition 16. Under-vertex deletion, max independent set is approximable within ratio
1/2 in graphs of bounded degree.

Proof. Let G(V,E) denote an instance of max independent set, with one known optimal
solution OPT, and let G′(V ′, E′) = G[V −{y}]. On this perturbed instance, an optimal solution
is denoted by OPT′.

Let us first note that if the deleted vertex y was not in the initial optimum OPT, then this
solution remains optimal in the modified graph. Thus, let us suppose that y ∈ OPT.

In this case, what remains of the optimum is still optimal, but only in the induced subgraph
G′[V ′\N(y)], where G′ is the modified graph, and N(y) is the set of neighbors of y in G. let SOL1

denote the set OPT \ {y}, we can directly derive w(SOL1) > w(OPT′[V ′ \N(y)]). Considering
that |N(y)| is bounded by a constant, say ∆, it is possible in O(2∆) to check all possible subsets
of |N(y)|, and output the maximum weight independent set among them, say SOL2. Obviously,
w(SOL2) > w(OPT′[N(y)]). Returning the best solution among SOL1 and SOL2, and taking
into account that w(OPT′) = w(OPT′[V ′ \N(y)]) + w(OPT′[N(y)]), the result follows.

Note that, provided ∆ > 5, the result beats the classical static approximation ratio of 3/(∆+
2) [23] for max independent set in graphs of bounded degree.

31

However, the technique cannot be applied to any hereditary problem. Namely, it can be
extended to problems which can be characterized in terms of forbidden subgraphs (and not in
terms of forbidden minors), and where the diameter of these forbidden subgraphs is bounded by
a constant. Also, all the forbidden subgraphs must be connected components. We denote such
problems by max H-free subgraph.

Actually, under these conditions, the deletion setting becomes somehow equivalent to the
insertion setting:

Proposition 17. In graphs of degree bounded by ∆, reoptimization of max H-free subgraph

(where each forbidden subgraph has diameter bounded by d) under deletion of a constant number
h of vertices is equivalent to reoptimization of the same problem under the insertion of hd∆
vertices.

Proof. Consider a reoptimization instance I of max H-free subgraph given by an initial
graph G(V,E) with degree bounded by ∆, and with a known optimal solution OPT, and a
perturbed graph G′(V ′, E′) = G[V \ Y], |Y | = h.

Recall that all forbidden subgraphs have diameter bounded by a constant d. Let FS (for
forbidden subgraph) denote the set of vertices that are reachable from a deleted vertex by a path
of order at most d. Obviously |FS| 6 hd∆. It holds that OPT \ Y is an optimal solution on
G′[V ′ \ (FS \OPT)].

Indeed, consider a feasible solution S on the graph G′[V ′ \ (FS \ OPT)] each vertex of this
graph is:

• either not reachable from any deleted vertex by a path of length d, thus it cannot be part
of a forbidden subgraph in G along with vertices of OPT ∩ Y ;

• or in OPT, and considering that OPT is a feasible solution in G, these vertices cannot
form a forbidden subgraph in G along with OPT ∩ Y .

In all, no vertex in S can form a forbidden subgraph along with OPT∩Y , so that S∪ (OPT∩Y)
is necessarily a feasible solution in G. Now, suppose that w(S) > w(OPT\Y). This induces that
w(S ∪ (OPT∩Y)) > w(OPT), which is impossible considering that S ∪ (OPT∩Y) is feasible in
G. We proved that OPT \ Y is an optimal solution on G′[V ′ \ (FS \OPT)].

Hence, any reoptimization instance I of max H-free subgraph under deletion of h vertices
can be characterized by:

• a graph G′′(V ′′, E′′) = G′[V ′ \ (FS \OPT)] with a known optimal solution OPT \ Y ;

• a graph G′(V ′, E′) where one wants to optimize the problem. G′ contains G′′ as a subgraph,
and has at most hd∆ additional vertices with respect to G′′.

We just showed that an instance of max H-free subgraph, under deletion of h vertices is
equivalent to an instance of the problem under insertion of hd∆ vertices, which concludes the
proof.

Recall that, for the case of insertion, another generic algorithm was proposed in [3]. This
algorithm, denoted by R2 uses a polynomial ρ-approximation algorithm for the deterministic
problem as subroutine to improve the approximation ratio for the reoptimization version from 1

2
to 1

2−ρ . However, considering that most hereditary problems are not constant-approximable in
polynomial time (unless P = NP), R2 cannot be implemented in general graphs.

Regarding the result of Proposition 17, and considering that max independent set is
3/(∆ + 2) -approximable in graphs of degree bounded by ∆, this generic algorithm can be
implemented in the vertex-deletion setting. Indeed, we prove the following result that improves
the result of Proposition 16.

32

Proposition 18. In graphs of degree bounded by ∆, under deletion of h vertices, max inde-

pendent set is approximable within ratio ∆+2
2∆+1 in polynomial time.

Proof. Let G(V,E) be an instance of max independent set, with one known optimal solution
OPT, and let G′(V ′, E′) = G[V \Y], (|Y | = h). On this perturbed instance, an optimal solution
is denoted by OPT′. In what follows, N(S) is the set of neighbors of all the vertices in S. Denote
by Aρ a ρ-approximation algorithm for max independent set in graphs of bounded degree,
and Aρ(G) a solution returned by Aρ on a given graph G. Consider now the following algorithm:

• let SOL1 = OPT \ Y ;

• for each maximal independent set Si in N(OPT ∩ Y) (they can all be enumerated in
O(2h∆)), set SOL2,i = Si ∪ Aρ(G

′[V ′ \ (Si ∪N(Si))]), and SOL2 = maxi(SOL2,i).

For reasons already explained in the proof of Proposition 16, it holds that:

w(SOL1) > w(OPT′[V ′ \N(OPT ∩ Y)]) > w(OPT′)− w(OPT′ ∩N(OPT ∩ Y)) (29)

On the other hand, notice that OPT′ can be divided in two parts, OPT′ ∩ N(OPT ∩ Y), and
OPT′ \ N(OPT ∩ Y). Among all sets Si’s computed in the second part of the algorithm, one
must have computed the set Si∗ = OPT′ ∩ N(OPT ∩ Y). Moreover, the second part of the
solution, Aρ(G′[V ′ \ (Si∗ ∪ N(Si∗)]) is a ρ approximation on a subgraph where the optimum is
OPT′ \N(OPT ∩ Y). In all:

w(SOL2) > SOL2,i∗ > w(OPT′ ∩N(OPT ∩ Y)) + ρw(OPT′ \N(OPT ∩ Y)

> ρw(OPT′) + (1 − ρ)w(OPT′ ∩N(OPT ∩ Y)) (30)

Combining (29) and (30), with coefficients (1− ρ) and 1, one finally proves that:

w(SOL)

w(OPT′)
>

1

2− ρ
(31)

Replacing ρ with 3/(∆ + 2) in (31) leads to the claimed result.

5 Reoptimization and bin packing

Given a constant B, a list L of n items L = (1, 2, . . . , n, such that, for any i = 1, . . . , n, its size
ai 6 B, and n bins each of capacity B, the bin packing problem consists of arranging the items
of L in the bins without exceeding their capacity (i.e., the sum of the sizes of the items placed
in every bin must not exceed B) and in such a way that a minimum number of bins is used.

We show in this section that the basic technique used before in order to get inapproximability
results van be also applied on hereditary problems not necessarily defined on graphs. This is,
for instance the case of bin packing. We will prove that this problem is inapproximable within
approximation ratio 3/2 − ε, for any ε > 0, in the reoptimization setting studied in this paper.
For simplicity we consider a non-normalized instance of bin packing where item i, i 6 n has
integer size ai and bins have capacity B. We assume also that, for every i, ai < B.

Suppose, ad contrario, that bin packing is approximable within approximation ratio 3/2
under items insertion and consider an instance I of the partition problem, where n+ 1 items
0, 1, . . . , n with sizes a0, a1, . . . , an are given such that, for 0 = 1, . . . , n, ai < B and

∑n
i=0 ai = 2B,

and the objective is to find a partition of the items (if any) into two subsets such that the sum
of the sizes of their items is equal to B. partition is known to be NP-complete.

Assume now that items are ordered in decreasing size order (i.e., a0 > a1 > . . . > an) and
consider the list of items L = (a1, . . . , an) as instance of bin packing. Obviously, since a0 < B

33

and
∑n

i=0 ai = 2B, it holds that
∑n

i=1 ai > B. Thus, an optimal bin packing-solution for L
has value greater than 1. We claim that L has a solution using 2 bins. Indeed, such a solution
places the first k items in one bin, where k is the largest index such that

∑k
i=1 6 B, and the

rest of the items from k + 1 to n in a second bin. Let us prove that such a solution is feasible,
or equivalently, that

∑n
i=k+1 6 B. Assume, ad contrario, that

∑n
i=k+1 > B, recall that, by the

definition of k,
∑k+1

i=1 ai > B and observe that
∑k

i=0 ai >
∑k+1

i=1 ai > B. In other words, on the

hypothesis that
∑n

i=k+1 > B, we derive that
∑n

i=0 ai =
∑k

i=0 ai +
∑n

i=k+1 > B + B = 2B, a
contradiction. So, the bin packing-instance L has a solution of 2 bins. In all, we can assume
that the initial bin packing-instance is L and the optimal solution provided with is as just
described.

Assume now that item 0 with size a0 > a1 arrives. On the hypothesis of the existence of
a polynomial reoptimization algorithm achieving approximation ratio 3/2 − ε for bin packing,
if the instance I of partition is a “yes”-instance, then this algorithm would provide a solution
with 2 bins, while if I is a “no”-instance, the algorithm would provide a solution with at least 3
bins, deciding so in polynomial time partition.

On the other hand, bin packing is immediately approximable within 3/2 in the reoptimiza-
tion setting under consideration. Given an instance L and a solution with k bins, when an
element arrives, one can open a new bin in order to place it (after, eventually, a quick check
that all the items cannot be placed in the same bin) guaranteeing so an approximation ratio
(k + 1)/k 6 3/2, for k > 2, while the case k = 1 is trivially polynomial (just check whether
∑n

i=1 ai 6 B, or not).

Hereditary problems Approximation ratios
Inapproximability
bounds

max k-colorable subgraph

(insertion of h vertices)
max

{

k
k+h ,

1
2

}

max
{

k
k+h ,

1
2

}

+ ε

max k-colorable subgraph

(deletion of h < k vertices)
k−h
k

k−h
k + ε

max k-colorable subgraph

(deletion of h > k vertices)
∅ n−ε

max Pk-free subgraph

(single vertex insertion)
2k

3k+1 or 2k
3k+2 (k 6 6) 2k

3k+1 + ε or 2k
3k+2 + ε

max split subgraph

(insertion of h 6 2 vertices)
h+1
2h+1

h+1
2h+1 + ε

max split subgraph

(insertion of h = 3 vertices)
5
9

5
9 + ε

max split subgraph

(insertion of h > 4 vertices)
1
2

1
2 + ε

max planar subgraph

(single vertex insertion)
2
3

4
5 + ε

Table 1: Summary of the results

6 Conclusion

We have discussed the approximability of various hereditary problems in the reoptimization
setting where the vertex set is modified. It appears that the initial optimum provides a very useful
information when approximating the modified instances, and for most problems discussed, we

34

presented reoptimization algorithms which take advantage of this information in the best possible
way, since most approximation ratios that were presented are the best constant ratio achievable
in polynomial time (unless P = NP). Indeed, as Table 1 shows, max planar subgraph

is the only among the problems studied where a gap occurs between the approximation ratio
and the inapproximability bound (in the general case). Reducing this gap, as well as proving
Hypothesis 1 for any k are both subjects of ongoing research.

References

[1] C. Archetti, L. Bertazzi, and M.G. Speranza. Reoptimizing the traveling salesman problem.
Networks, 42(3):154–159, 2003.

[2] C. Archetti, L. Bertazzi, and M.G. Speranza. Reoptimizing the 0-1 knapsack problem.
Discrete Applied Mathematics, 158(17):1879–1887, 2010.

[3] G. Ausiello, V. Bonifaci, and B. Escoffier. Complexity and approximation in reoptimization.
CiE 2007: Logic and Computation and Logic in the Real World, 2007.

[4] G. Ausiello, B. Escoffier, J. Monnot, and V.Th. Paschos. Reoptimization of minimum and
maximum traveling salesman’s tours. In Lars Arge and Rusins Freivalds, editors, SWAT,
volume 4059 of Lecture Notes in Computer Science, pages 196–207. Springer, 2006.

[5] P. Berman. A d/2 approximation for maximum weight independent set in d-claw free graphs.
Algorithm Theory-SWAT 2000, pages 31–40, 2000.

[6] P. Berman and T. Fujito. On approximation properties of the independent set problem for
degree 3 graphs. Algorithms and Data Structures, pages 449–460, 1995.

[7] D. Bilò, H.-J. Böckenhauer, J. Hromkovic, R. Královic, T. Mömke, P. Widmayer, and
A. Zych. Reoptimization of steiner trees. In Joachim Gudmundsson, editor, SWAT, volume
5124 of Lecture Notes in Computer Science, pages 258–269. Springer, 2008.

[8] D. Bilò, P. Widmayer, and A. Zych. Reoptimization of weighted graph and covering prob-
lems. In Evripidis Bampis and Martin Skutella, editors, WAOA, volume 5426 of Lecture
Notes in Computer Science, pages 201–213. Springer, 2008.

[9] H.-J. Böckenhauer, L. Forlizzi, J. Hromkovic, J. Kneis, J. Kupke, G. Proietti, and P. Wid-
mayer. On the approximability of tsp on local modifications of optimally solved instances.
Algorithmic Operations Research, 2(2):83–93, 2007.

[10] H.-J. Böckenhauer, J. Hromkovic, R. Královic, T. Mömke, and P. Rossmanith. Reoptimiza-
tion of steiner trees: Changing the terminal set. Theor. Comput. Sci., 410(36):3428–3435,
2009.

[11] H.-J. Böckenhauer, J. Hromkovic, T. Mömke, and P. Widmayer. On the hardness of re-
optimization. In Viliam Geffert, Juhani Karhumäki, Alberto Bertoni, Bart Preneel, Pavol
Návrat, and Mária Bieliková, editors, SOFSEM, volume 4910 of Lecture Notes in Computer
Science, pages 50–65. Springer, 2008.

[12] H.-J. Böckenhauer and D. Komm. Reoptimization of the metric deadline tsp. J. Discrete
Algorithms, 8(1):87–100, 2010.

[13] R. Boppana and M.M. Halldórsson. Approximating maximum independent sets by excluding
subgraphs. BIT Numerical Mathematics, 32(2):180–196, 1992.

35

[14] N. Boria and V.Th. Paschos. Fast reoptimization for the minimum spanning tree problem.
Journal of Discrete Algorithms, 8(3):296–310, 2010.

[15] J.M. Boyer and W.J. Myrvold. On the cutting edge: Simplified o(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.

[16] M. Demange, X. Paradon, and V.Th. Paschos. On-line maximum-order induced hereditary
subgraph problems. International Transactions in Operational Research, 12(2):185–201,
2005.

[17] M. Demange and V.Th. Paschos. Improved approximations for maximum independent set
via approximation chains. Applied Mathematics Letters, 10(3):105–110, 1997.

[18] B. Escoffier, M. Milanic, and V.Th. Paschos. Simple and fast reoptimizations for the steiner
tree problem. Algorithmic Operations Research, 4(2):86–94, 2009.

[19] B. Escoffier and V.Th. Paschos. On-line models and algorithms for max independent set.
RAIRO Operations Research, 40(2):129–142, 2006.

[20] U. Feige. Approximating maximum clique by removing subgraphs. SIAM Journal on Dis-
crete Mathematics, 18:219, 2004.

[21] M.M. Halldórsson. Approximations of weighted independent set and hereditary subset prob-
lems. Journal of Graph Algorithms and Applications, 4(1):1–16, 2000.

[22] M.M. Halldórsson, K. Iwama, S. Miyazaki, and S. Taketomi. Online independent sets.
Computing and Combinatorics, pages 202–209, 2000.

[23] M.M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent sets
in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, 1997.

[24] C. Lund and M. Yannakakis. The approximation of maximum subgraph problems. Au-
tomata, Languages and Programming, pages 40–51, 1993.

[25] T. Matsui. Approximation algorithms for maximum independent set problems and fractional
coloring problems on unit disk graphs. In Jin Akiyama, Mikio Kano, and Masatsugu Urabe,
editors, Discrete and Computational Geometry, volume 1763 of Lecture Notes in Computer
Science, pages 194–200. Springer Berlin / Heidelberg, 2000. 10.1007/978-3-540-46515-7-16.

[26] C. Murat and V.Th. Paschos. A priori optimization for the probabilistic maximum inde-
pendent set problem. Theor. Comput. Sci., 270(1-2):561–590, 2002.

[27] A. Panconesi and Desh Ranjan. Quantifiers and approximation. Theoretical Computer
Science, 107(1):145 – 163, 1993.

[28] N. Robertson, D.P. Sanders, P. Seymour, and R. Thomas. A new proof of the four-colour
theorem. Electron. Res. Announc. Amer. Math. Soc, 2(1):17–25, 1996.

[29] N. Robertson and P.D. Seymour. Graph minors. xx. wagner’s conjecture. J. Comb. Theory,
Ser. B, 92(2):325–357, 2004.

[30] A. Wagner. On finite affine line transitive planes. Mathematische Zeitschrift, 87(1):1–11,
1965.

[31] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. In Proc. STOC’06, pages 681–690, 2006.

36

