
 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
Laboratoire d'Analyse et Modélisation de Systèmes pour 

l'Aide à la Décision 
CNRS UMR 7243 

 

 

 

 

 
 

CAHIER DU LAMSADE 
315 

 

 

Décembre 2011 

 

 
 

          Ranking Sets of Possibly Interacting Objects 
    Using Sharpley Extensions 

 

 

 

                  Stefano Moretti and Alexis Tsoukiàs 
 

 

 

 

 

 



Ranking Sets of Possibly Interacting Objects
Using Shapley Extensions

Stefano Moretti, Alexis Tsoukiàs
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Abstract: We deal with the problem of how to extend a preference relation
over a setX of “objects” to the set of all subsets ofX. This problem has been
carried out in the tradition of the literature on extending an order on a set to
its power set with the objective to analyze the axiomatic structure of families
of rankings over subsets. In particular, most of these approaches make use
of axioms aimed to prevent any kind of interaction among the objects in X.

In this paper, we apply coalitional games to study the problem of extend-
ing preferences over a finite set X to its power set 2X . A coalitional game can
be seen as a numerical representation of a preference extension on 2X . We
focus on a particular class of extensions on 2X such that the ranking induced
by the Shapley value of each coalitional game representing an extension in
this class, coincides with the original preference on X.

Some properties of Shapley extensions are discussed, with the objective to
justify and contextualize the application of Shapley extensions to the prob-
lem of ranking sets of possibly interacting objects.

Key-words: preference extension, ranking sets, coalitional games, Shapley
value.

1 Introduction

A lot of problems in individual and collective decision making involve the
comparison of sets of objects, where objects may have very different meanings
(e.g., alternatives, opportunities, candidates, etc.). Consider, for instance,
the comparison of the stability of groups in coalition formation theory, or
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the ranking of likely sets of events in the axiomatic analysis of subjective
probability, or the evaluation of equity of sets of rights inside a society, or
the comparison of assets in portfolio analysis, etc. In all of those situa-
tions, a ranking of the single elements of a (finite) universal set X is not
sufficient to compare the subsets of X. On the other hand, for many prac-
tical problems, only the information about preferences among single objects
is available. Consequently, a central question is: how to derive a ranking
over the set of all subsets of X in a way that is “compatible” with the
primitive ranking over the single elements of X? This question has been
carried out in the tradition of the literature on extending an order on a set
to its power set with the objective to axiomatically characterize families of
ordinal preferences over subsets [Barberà et al., 1984, Barberà et al., 2004,
Bossert, 1995, Bossert et al., 1994, Fishburn, 1992, Geist and Endriss, 2011,
Kannai and Peleg, 1984, Kreps, 1979]. In this context, an order ⊒ on the
power set 2X is an extension of a primitive order < on X if and only if the
relative ranking of any two singleton sets according to ⊒ is the same as the
relative ranking of the corresponding alternatives according to <.

The interpretation of the properties used to characterize extensions is
deeply interconnected to the meaning that is attributed to sets. Accord-
ing to the survey of [Barberà et al., 2004], the main contributions from the
literature on ranking sets of objects may be grouped in three main classes
of problems: 1) complete uncertainty, where a decision maker is asked to
rank sets which are considered as formed by mutually exclusive objects (i.e.,
only one object from a set will materialize), and taking into account that he
cannot influence the selection of an object from a set [Barberà et al., 1984,
Kannai and Peleg, 1984, Nitzan and Pattanaik, 1984]; 2) opportunity sets,
where sets contain again mutually exclusive objects but, in this case, a de-
cision maker compares sets taking into account that he can select a sin-
gle element (and only one) from a set [Bossert et al., 1994, Kreps, 1979,
Puppe, 1996]; 3) sets as final outcomes, where each set contains objects that
are assumed to materialize simultaneously, if that set is selected [Bossert, 1995,
Fishburn, 1992, Roth, 1985].

This paper is devoted to the analysis of extensions for problems of the
third class, where sets are formed by objects that are assumed to materialize
at the same time. This situation can be observed in many different contexts
like, for example, the college admission problem [Gale and Shapley, 1962,
Roth, 1985], where different colleges need to rank sets of students based on
their ranking of individual applicants. For these kind of problems, most of
the axiomatic approaches from the literature focused on properties suggesting
that the interaction among single objects should not play a relevant role
in establishing the ranking among subsets [Bossert, 1995, Roth, 1985]. For
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instance, the property of responsiveness, introduced by [Roth, 1985], says
that a set S ⊆ X is preferred to a set T ⊆ X whenever S is obtained
from T by replacing some object t ∈ T with another n ∈ X not in T which is
preferred to t (according to the primitive ranking on the universal set X). As
a consequence, the responsiveness property prevents complementarity effects
among objects within sets of the same cardinality.

Another property that excludes a certain kind of interaction among ob-
jects of the universal set X is the property of monotonicity (with respect to
set inclusion) [Barberà et al., 2004, Kreps, 1979, Puppe, 1996]. This prop-
erty states that a set T ⊆ X is preferred to a set S ⊆ X whenever S is a
subset of T . Therefore, monotonicity excludes the possibility that the eval-
uation of a set could be deteriorated by the addition of a new object that is
incompatible or redundant with objects already contained in the set.

On the other hand, in many practical problems, the attitude to inter-
act among elements of X cannot be excluded a priori. To be more specific,
consider a well known problem in computational biology, where statistical
testing procedures are used to select genes which are “strongly” differen-
tially expressed between two conditions (e.g., case-control studies). Follow-
ing this approach, genes are usually ranked according to their (individual)
p-values, being genes with the smallest p-values the most differentially ex-
pressed [Moretti et al., 2008]. But genes in a set can interact in ways that
increase (via complementarity), or decrease (via incompatibility or redun-
dancy), the overall valuation of a set of genes in characterizing a certain
condition. Therefore, a procedure aimed to consider the effects of interac-
tion among genes in each possible subset, with respect to the analysis of
individual behaviors, is demanded.

In this paper, we introduce a new class of extensions for the problem
of ranking sets of objects, and we call the elements of this class Shapley
extensions, for their attitude to preserve the ranking provided by the Shap-
ley value [Shapley, 1953, Shapley and Shubik, 1954] of associated coalitional
games [Owen, 1995]. We show that Shapley extensions are able to keep into
account possible interaction effects of different nature (Section 3). Moreover,
we analyze the behavior of Shapley extensions with respect to properties
which are aimed to prevent the interaction among objects and we axiomat-
ically characterize a subclass of monotonic Shapley extensions (Section 4).
Finally, in Section 5, we provide some sufficient conditions for extensions to
be Shapley extensions in presence of complementarity effects among objects,
and we compare Shapley extensions with other extensions based on regular
semivalues [Carreras and Freixas, 1999, Carreras and Freixas, 2000]. From
the game theoretic perspective, as a side-product of Sections 4 and 5 we also
provide some results concerning the ordinal equivalence of regular semivalues
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[Tomiyama, 1987, Carreras and Freixas, 2008, Freixas, 2010].
We start in the next section with some notations for binary relations and

some basic definitions from cooperative game theory.

2 Preliminaries and notations

Let X be a finite set of objects. We denote by 2X the power set (the set of all
subsets) of X and by |X| the cardinality (the number of elements) of X. To
denote a subset S of X we indifferently use the notation S ⊆ X or S ∈ 2X ;
S ⊂ X means S ⊆ X and S ̸= X. A binary relation on X is denoted by
<⊆ X × X. For each x, y ∈ X, the notation x < y will frequently be used
instead of (x, y) ∈< in order to simplify the exposition.

The following are some standard properties for a binary relation <⊆ X×
X: (reflexivity :) for each x ∈ X, x < x; (transitivity :) for each x, y, z ∈ X,
x < y and y < z ⇒ x < z; (completeness :) for each x, y ∈ X, x ̸= y ⇒ x < y
or y < x; (antysymmetry :) for each x, y ∈ X, x < y and y < x ⇒ x = y.
A total preorder on X is a reflexive, transitive and complete binary relation
<⊆ X×X. A reflexive, transitive, complete and antisymetric binary relation
is called total order or linear order.

We interpret a total preorder < on X as a preference relation on X (that
is, for each x, y ∈ X, x < y stands for ‘x is considered at least as good
as y according to <’). The strict preference relation ≻ and the indifference
relation ∼ are defined by letting, for all x, y ∈ X, x ≻ y if and only if x < y
and not y < x; x ∼ y if and only if x < y and y < x.

A map u : X → IR is a numerical representation of the preference relation
< on X if for every i, j ∈ X we have that

u(i) ≥ u(j) ⇔ i < j.

In order to rank the elements of 2X , we use a total preorder ⊒ on 2X , with
strict preference relation denoted by = and indifference relation denoted by
w. Given a total preorder < on X, we say that a total preorder ⊒ on 2X

is an extension of < if and only if the relative ranking of any two singleton
sets according to ⊒ is the same as the relative ranking of the corresponding
alternatives according to < (i.e., for each x, y ∈ X, {x} ⊒ {y} ⇔ x < y).

Let S ∈ 2X \ {∅}. The set of best elements in S according to a binary
relation < on X is given by B(S,<) = {x ∈ S|x < y ∀y ∈ S}, and the set
of worst elements in S according to < is given by W(S,<) = {x ∈ S|y <
x ∀y ∈ S}.

Perhaps the simplest extension rule is themaxi-max criterion on <, which
is defined as a binary relation ⊒max on 2X such that (S ⊒max T ) ⇔ (bS < bT ),
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where bS ∈ B(S,<) and bT ∈ B(T,<) for each S, T ∈ 2X \ {∅}. Similarly,
the maxi-min criterion, is defined as a binary relation ⊒min on 2X such that
(S ⊒min T ) ⇔ (wS < wT ), where wS ∈ W(S,<) and wT ∈ W(T,<) for each
S, T ∈ 2X \ {∅}.

Now, let us introduce some basic game theoretical notations. A coalitional
game or characteristic-form game is a pair (N, v), where N denotes a finite
set of players and v : 2N → IR is the characteristic function, with v(∅) = 0.
If the set N of players is fixed, we identify a coalitional game (N, v) with the
corresponding characteristic function v. A group of players T ⊆ N is called
a coalition and v(T ) is called the value of this coalition.We will denote by
G the class of all coalitional games. Let C ⊆ G be a subclass of coalitional
games. Given a set of players N , we denote by CN ⊆ G the class of coalitional
games in C with N as the set of players.

A payoff vector or allocation (x1, . . . , xn) of a coalitional game (N, v) is
an |N |-dimensional vector describing the payoffs of the players, such that
each player i ∈ N receives xi. A one-point solution (or simply a solution) for
a class CN of coalitional games is a function ψ that assigns a payoff vector
ψ(v) to every coalitional game in the class, that is ψ : CN → IRN .

The most famous solution in the theory of coalitional games is the Shapley
value, introduced by [Shapley, 1953, Shapley and Shubik, 1954]. The Shap-
ley value of a coalitional game is an effective tool to convert information about
the worth that subsets of the player set can achieve into a personal attribution
(of payoff) to each of the players (see also [Moretti and Patrone, 2008] for an
overview on different axiomatic characterizations of the Shapley value), so
that players can evaluate ex-ante the convenience to participate to the game.
The Shapley value may be computed according to the following formula
[Shapley, 1953, Shapley and Shubik, 1954]

ϕi(v) =
∑

S⊂N :i/∈S

|S|!(|N | − |S| − 1)!

|N |!
mS

i (v) (1)

for each i ∈ N , where the quantity mS
i (v) = v(S∪{i})−v(S) is the marginal

contribution of player i to coalition S, for each S ⊂ N with i /∈ S.

3 Shapley extensions

In this section, we introduce a new family of extensions, with the purpose to
take account of possible effects of interaction among objects of the universal
set. To clarify what we mean for effects of interaction, consider the following
simple example. Let X = {x, y, z} be a set of three objects (e.g., goods) and
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suppose that an agent’s preference is such that x < y, x < z and y < z.
Trying to extend < to 2X , one could guess that set {x, y} is better than
{y, z}, because the agent will receive both y and x instead of y and z (and
x is preferred to z). However, due to possible effects of complementarity
between x and z (or because of incompatibility between x and y) the relative
preference between the two sets could be reversed. As a “practical” instance
of this issue, you may consider the problem of what to take on a backpacking
trip on the mountains: a ‘bottle of water’ can be more essential (thus ranked
higher) than a ‘bottle of orange juice’ or than a ‘sandwich’, and a ‘bottle of
orange juice’ could be preferred (e.g., for dietary reasons) to a ‘sandwich’.
But if the problem is now which pair of the three to put in the backpack, a
‘bottle of water’ and a ‘bottle of orange juice’ together may be less preferred
(because of the backpack weight) than a ‘bottle of water’ and a ‘sandwich’
together.

Moreover, an effect of incompatibility between two or more objects, for
instance, between x and y, could produce a ranking where the single object
{y} is preferred to {x, y}, even if the latter includes the most preferred object
x, other than y. For instance, this could be the case where x and y represent
two distinct therapies for a disease: the combination of two treatments does
not always improve the chances of success, and may provoke more serious
side effects, with respect to each single treatment.

As we already said, the attitude to interact among elements of X can-
not be excluded a priori. Nevertheless, the only information available in the
model is the primitive ranking < on X, and the effects of interaction that can
be considered should be compatible with this information. Therefore, our ob-
jective is to characterize those extensions which are able to take into account
possible interaction effects without distorting the information provided by
the primitive ranking on X.

Note that, given a total preorder ⊒ on 2X , any numerical representation
v : 2X → IR of⊒ (with the convention that v(∅) = 0) is a coalitional game v ∈
GX (we denote by GX

⊒ the class of coalitional games that numerically represent
⊒). Consequently, by relation (1), the Shapley value ϕ(v), for each game v ∈
GX
⊒ , can be interpreted as a personal attribution of the importance of elements

of X accounting for their (weighted) average marginal contributions over all
possible coalitions [Shapley, 1953, Shapley and Shubik, 1954]. Clearly, such
an attribution of importance depends on the relative worths of coalitions
in the game v, and different numerical representations of the same total
preorder on 2X may induce completely different Shapley values. In order to
preserve the original information concerning the preference relation < over
the elements of X, we focus our attention to those extensions where the
Shapley value of the corresponding numerical representations provides the
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same ranking of < on X (independently from the numerical representation
selected in GX

⊒ ).
The following definition formally introduces the notion of Shapley exten-

sion. Note that every total preorder ⊒ on 2X can be seen as an extension of
a total preorder < on X such that

i < j ⇔ {i} ⊒ {j} (2)

for each i, j ∈ X. Therefore, in the remaining of the paper we will implicitly
refer to a total preorder ⊒ on 2X as an extension of the preference relation
< on X induced by ⊒ according to relation (2).

Definition 1 A total prorder ⊒ on 2X is a Shapley extension iff for each
numerical representation v ∈ GX

⊒ of ⊒ we have that

{i} ⊒ {j} ⇔ ϕi(v) ≥ ϕj(v)

for all i, j ∈ X.

The next example, providing a Shapley extension on a set X = {x, y, z},
shows that some effects of interaction may be represented by a Shapley ex-
tension.

Example 1 Let X = {1, 2, 3} and let ⊒a by a linear order on 2X such that
{1, 2, 3} =a {3} =a {2} =a {1, 3} =a {2, 3} =a {1} =a {1, 2} =a ∅ (note
that, according to relation (2), ⊒a is an extension of 3 ≻ 2 ≻ 1). Note
also the complementarity effect between elements 3 and 1, that together are
preferred to set {2, 3}. In addition, there are many incompatibility effects
(for instance, {1} =a {1, 2}).

Using relation (5), it easy to check that for every numerical representation
v of ⊒a in GX

⊒a we have that

ϕ2(v)− ϕ1(v) =
1

2

(
v(2)− v(1)

)
+

1

2

(
v(2, 3)− v(1, 3)

)
> 0

where the inequality follows from the fact that v(2)− v(1) > v(1, 3)− v(2, 3)
for every v ∈ GX

⊒a.
On the other hand, by relation (5) we also have that for every v ∈ GX

⊒a

ϕ3(v)− ϕ2(v) =
1

2

(
v(3)− v(2)

)
+

1

2

(
v(1, 3)− v(1, 2)

)
> 0,

where the inequality follows from the fact that v(3) > v(2) and v(1, 3) >
v(1, 2) for each v ∈ GX

⊒a.
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Of course, extensions are not necessarily Shapley extensions, as it is shown
by the following example.

Example 2 Consider again the set X = {1, 2, 3} and take the linear order
⊒a′ such that {1, 2, 3} =a′ {2} =a′ {3} =a′ {1, 3} =a′ {2, 3} =a′ {1} =a′

{1, 2} =a′ ∅. Note that only the relative ranking between {2} and {3} is
changed with respect to ⊒a. So, according to relation (2), ⊒a′ is an extension
of 2 ≻′ 3 ≻′ 1, but it is not a Shapley extension. In fact, a game that
represents ⊒a′ is v({1, 2, 3}) = 16, v({2}) = 9, v({3}) = 8, v({1, 3}) = 7,
v({2, 3}) = 6, v({1}) = 5, v({1, 2}) = 4, v(∅) = 0 and, by relation (1), the
corresponding Shapley value is ϕ1(v) = 4, ϕ2(v) = 5.5, ϕ3(v) = 6.5.

The following remark is essential for the analysis of Shapley extensions that
will be provided in Section 4 and 5.

Remark 1 Let (X, v) be a coalitional game. For each i, j ∈ X and each
S ∈ 2X with i, j /∈ S, let dSij(v) = v(S ∪ {i})− v(S ∪ {j}). We have that

v(S ∪ {i})− v(S)− (v(S ∪ {j})− v(S)) = dSij(v) (3)

and

v(S ∪ {i, j})− v(S ∪ {j})− (v(S ∪ {i, j})− v(S ∪ {i})) = dSij(v), (4)

for each S ∈ 2X with i, j /∈ S. By relations (1),(3) and (4) it immediately
follows that the difference of Shapley value between two players i, j ∈ X is

ϕi(v)− ϕj(v) =
∑

S⊂N :i,j /∈S

|S|!(|N | − |S| − 2)!

(|N | − 1)!
dSij(v). (5)

As a consequence, if v(S ∪ {i}) ≥ v(S ∪ {j}) for each S ∈ 2X with i, j /∈ S,
then we have that ϕi(v) ≥ ϕj(v).

An immediate consequence of Remark 1 is that an extension ⊒ on 2X such
that

{i} ⊒ {j} ⇒ (S ∪ {i}) ⊒ (S ∪ {j})

for each i, j ∈ X and each S ∈ 2X , with i, j /∈ S, is a Shapley exten-
sion. Consequently, the maxi-min extension and the maxi-max extension
are Shapley extensions, since according to those procedures, adding an el-
ement i to S with {i} ⊒ {j}, always improves the relative ranking of the
best (worst) elements of S ∪ {i} with respect to the best (worst) elements of
S ∪ {j}. Same considerations apply to the lexi-min and the lexi-max exten-
sions [Barberà et al., 2004, Bossert, 1995, Pattanaik and Peleg, 1984], which
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are obtained, respectively, as the lexicographical generalizations of the maxi-
min and the maxi-max extensions. Other examples of Shapley extensions are
provided by certain median-based extensions [Nitzan and Pattanaik, 1984],
where the relative ranking of the median alternatives is used as the criterion
for comparing two sets.

4 Shapley extensions without interaction

A standard application of the problem of deriving a ranking ⊒ on 2X from a
preference relation over the single elements ofX is the college admission prob-
lem (see, for instance, [Roth, 1985, Gale and Shapley, 1962]), where colleges
need to rank sets of students based on their ranking of individual applicants.

For the analysis of the college admission problem, [Roth, 1985] introduced
the property of responsiveness, which requires that if one element x in a
set A is replaced by another element y, then the ranking between the new
set A \ {x} ∪ {y} and the original set A according to ⊒ is determined by
the ranking between x and y according to the preference over singletons.
Formally, this axiom can be formulated as follows.

Property 1 (Responsiveness, RESP) A total preorder ⊒ on 2X satisfies
the responsiveness property on 2X iff for all A ∈ 2X \ {X, ∅}, for all x ∈ A
and for all y ∈ X \ A the following two conditions hold

A ⊒ (A \ {x}) ∪ {y} ⇔ {x} ⊒ {y} (6)

and
(A \ {x}) ∪ {y} ⊒ A⇔ {y} ⊒ {x}. (7)

Clearly, the RESP property is aimed at preventing complementarity ef-
fects. Restricted to sets A of fixed cardinality q ∈ N, representing the maxi-
mal number of students the college can admit, the RESP property was used
by [Bossert, 1995] to characterize1 the family of lexicographic rank-ordered
extensions, which generalize the idea of lexi-min and lexi-max orderings. An
equivalent way to formulate the RESP property is given in the following
proposition.

Proposition 1 A total preorder ⊒ on 2X satisfies the RESP property on 2X

iff for all i, j ∈ X and all S ∈ 2X , i, j /∈ S we have that

S ∪ {i} ⊒ S ∪ {j} ⇔ {i} ⊒ {j}. (8)

1Together with another property called fixed-Cardinality neutrality, saying that the
labelling of the alternatives is irrelevant in establishing the ranking among sets of fixed
cardinality q.
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Proof The proof is straightforward. In order to have (6), take A = S ∪ {i},
x = i and y = j, so [S ∪ {i} ⊒ S ∪ {j} ⇔ {i} ⊒ {j}]. In order to have
condition (7), take A = S ∪ {j}, x = j and y = i.

An immediate consequence of Proposition 1 is the following.

Proposition 2 Let ⊒ be a total preorder on 2X . If ⊒ satisfies the RESP
property, then ⊒ is a Shapley extension.

Proof We want to prove that if ⊒ satisfies RESP, then {i} ⊒ {j} ⇔ ϕi(v) ≥
ϕj(v) for every v ∈ GX

⊒ .
proof of RESP ⇒ [{i} ⊒ {j} ⇒ ϕi(v) ≥ ϕj(v)]:

First note that if {i} ⊒ {j} then by RESP S∪{i} ⊒ S∪{j} for each S ∈ 2X ,
with i, j /∈ S, and by Remark 1 we have that ϕi(v) ≥ ϕj(v) for each v ∈ GX

⊒
numerical representation of ⊒.

proof of RESP ⇒ [{i} ⊒ {j} ⇐ ϕi(v) ≥ ϕj(v)]:
Now, take i, j ∈ X such that ϕi(v) ≥ ϕj(v) for each v numerical representa-
tion of ⊒. We want to prove that if ⊒ is an extension which satisfies RESP,
then {i} ⊒ {j}. Suppose {j} = {i}. Then by the RESP property of ⊒ we
have that v(S ∪ {j}) > v(S ∪ {i}) for each S ∈ 2X , with i, j /∈ S, but by
Remark 1 this implies that ϕj(v) > ϕi(v), which yields a contradiction.

Shapley extensions do not need to satisfy the RESP property. For example,
the linear order⊒a introduced in Example 1 does not satisfies the RESP prop-
erty, but it is a Shapley extension. We now introduce another property for
extensions, namely, the monotonicity property [Kreps, 1979, Puppe, 1996].

Property 2 (Monotoncity, MON) A total preorder ⊒ on 2X satisfies the
monotonicity property iff for each S, T ∈ 2X we have that

S ⊆ T ⇒ T ⊒ S.

The MON property states that each set of objects is weakly preferred to
each of its subsets. In other words, the MON property excludes the possibility
that some objects in a set S ∈ 2X may be incompatible with some others not
in S. The extension ⊒a introduced in Example 1 does not satisfy neither the
MON property nor the RESP property. An example of extension that does
not satisfy the MON property, but that satisfies the RESP property, is the
maxi-min criterion =min (for instance, if X = {1, 2} and 2 ≻ 1, we have that
{2} =min {1} and {2} =min {1, 2}).

Let ⊒ be a total preorder on 2X . For each S ∈ 2X \ {∅}, a sub-extension
⊒S is a relation on 2S such that for each U, V ∈ 2S,

U ⊒ V ⇔ U ⊒S V.
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We may now introduce the last property of this section, namely the sub-
extendibility property for Shapley extensions.

Property 3 (Sub-Extendibility, SE) A Shapley extension ⊒ on 2X sat-
isfies the sub-extendibility property iff for each S ∈ 2X \ {∅} we have that
⊒S is a Shapley extension on 2S.

The SE property states that the effects of interaction among objects must be
“compatible” not only with the information provided by the original prefer-
ence on single elements of X, but also with the information provided by all
restrictions of such a preference to each non-empty subset S ofX. This means
that the personal attribution of importance assigned to objects, and taking
into account the effects of interaction, must be consistent with the primitive
ranking, independently from the size of the universal set considered.

Example 3 Let X = {1, 2, 3, 4} and let ⊒b be a total preorder such that
{1, 2, 3, 4} =b {2, 3, 4} =b {1, 3, 4} =b {1, 2, 4} =b {3, 4} =b {1, 2, 3} =b

{1, 3} wb {2, 4} =b {2, 3} wb {1, 4} =b {4} =b {3} =b {1, 2} =b {2} =b

{1} =b ∅. By relation (5), it is easy to check that for every v numerical
representation of ⊒b in GX

⊒b, the following relations hold.

ϕ2(v)− ϕ1(v) =
1
3

(
v(2)− v(1)

)
+ 1

3

(
v(2, 3, 4)− v(1, 3, 4)

)
+

1
6

(
v(2, 3)− v(1, 4)

)
+ 1

6

(
v(2, 4)− v(1, 3)

)
> 0

(9)

ϕ3(v)− ϕ2(v) =
1
3

(
v(3)− v(2)

)
+ 1

3

(
v(1, 3, 4)− v(1, 2, 4)

)
+

1
6

(
v(1, 3)− v(2, 4)

)
+ 1

6

(
v(3, 4)− v(1, 2)

)
> 0

(10)

ϕ4(v)− ϕ3(v) =
1
3

(
v(4)− v(3)

)
+ 1

3

(
v(1, 2, 4)− v(1, 2, 3)

)
+

1
6

(
v(1, 4)− v(2, 3)

)
+ 1

6

(
v(2, 4)− v(1, 3)

)
> 0

(11)

So, ⊒b is a Shapley extension. Note that ⊒b satisfies the MON property but
it does not satisfies the RESP property. In fact, we have that {2} ⊒ {1}, but
{1, 3} =b ({1, 3} \ {1} ∪ {2}) = {2, 3}.

Moreover, relation ⊒b does not satisfies the SE property too. In fact
consider the sub-extension ⊒b

{1,2,3}. Note that

{1, 2, 3} =b
{1,2,3} {1, 3} =b

{1,2,3} {2, 3} =b {3} =b
{1,2,3}

{1, 2} =b
{1,2,3} {2} =b

{1,2,3} {1} =b
{1,2,3} ∅.

A game that represents =b
{1,2,3} is

v({1, 2, 3}) = 10, v({1, 3}) = 9, v({2, 3}) = 5, v({3}) = 4,
v({1, 2}) = 3, v({2}) = 2, v({1}) = 1, v(∅) = 0

11



and the corresponding Shapley value is ϕ1(v) = 3, ϕ2(v) = 1.5, ϕ3(v) = 5.5.
Therefore, =b

{1,2,3} is not a Shapley extension on 2{1,2,3}.

The following proposition is important in establishing the connection between
MON, SE and RESP properties.

Proposition 3 Let ⊒ be a Shapley extension on 2X . If ⊒ satisfies both MON
and SE properties, then it also satisfies the RESP property.

Proof Let i, j ∈ X. Since ⊒ is a Shapley extension, we have immediately
that for all S ∈ 2X with i, j /∈ S,

S ∪ {i} ⊒ S ∪ {j} ⇒ {i} ⊒ {j}.

It remains to prove that {i} ⊒ {j} ⇒ S ∪ {i} ⊒ S ∪ {j} for all S ∈ 2X with
i, j /∈ S.

Let i, j ∈ X be such that {i} ⊒ {j}. Suppose there exists S ∈ 2X , with
i, j /∈ S and such that S ∪ {j} = S ∪ {i}.

Consider the sub-extension ⊒S∗ , where S∗ = S ∪ {i, j}. Let vS∗ ∈ GX
⊒S∗

be a numerical representation of ⊒S∗ and define δvS∗ = ϕi(vS∗)−ϕj(vS∗). By
the SE property, ⊒S∗ is a Shapley extension on 2S

∗
. Then δvS∗ ≥ 0.

Now, let ∆vS∗ > δvS∗ and consider another game v̂S∗ with player set S∗,
such that v̂S∗(U) = vS∗(U) + |S∗|∆vS∗ for each U ∈ 2S

∗
with U ⊒S∗ S ∪ {j},

and v̂S∗(T ) = vS∗(T ) for all remaining coalitions T 2. Note that v̂S∗ is still a
numerical representation of ⊒S∗ , so ϕi(v̂S∗) ≥ ϕj(v̂S∗).

By the MON property, for each U ∈ 2S
∗
such that U ⊒S∗ S ∪ {j} =S∗

S ∪ {i} we have that {i, j} ⊆ U . Then, by equation (1), the Shapley value
of i in v̂S∗ is

ϕi(v̂S∗) =∑
U⊂S∪{j}:

S∪{j}=S∗U∪{i}

w(U)mU
i (vS∗)+

∑
U⊂S∪{j}:

U∪{i}⊒S∗S∪{j}

w(U)
(
mU

i (vS∗) + |S∗|∆vS∗
)
+

1
|S∗|m

S∪{j}
i (vS∗),

(12)

2Note that v̂S∗(U) = vS∗(U) + ∆vS∗

w(S∗) , where the map w is such that w(U) =
(|U |)!(|S∗|−|U |−1)!

(|S∗|)! for each U ∈ 2S
∗
.
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where w(U) = (|U |)!(|S∗|−|U |−1)!
(|S∗|)! for each U ∈ 2S

∗
and the last term of the sum

follows from the fact that

w(S ∪ {j})mS∪{j}
i (v̂S∗) =

(|S∪{j}|)!(|S∗|−|S∪{j}|−1)!
(|S∗|)!

(
v̂S∗(S∗)− v̂S∗(S ∪ {j})

)
=

1
|S∗| [vS∗(S∗) + |S∗|∆vS∗ − vS∗(S ∪ {j})− |S∗|∆vS∗ ] =

1
|S∗|m

S∪{j}
i (vS∗).

(13)

In a similar way, it is possible to calculate the Shapley value of player j in
v̂S∗ :

ϕj(v̂S∗) =∑
U⊂S∪{i}:

S∪{j}=S∗U∪{j}

w(U)mU
j (vS∗)+

∑
U⊂S∪{i}:

U∪{j}⊒S∗S∪{j}

w(U)
(
mU

j (vS∗) + |S∗|∆vS∗
)
+

1
|S∗|

(
m

S∪{i}
j (vS∗) + |S∗|∆vS∗

)
,

(14)

Finally, if we compute the difference between terms of relations (12) and (15)
we obtain:

ϕi(v̂S∗)− ϕj(v̂S∗) =

ϕi(vS∗)− ϕj(vS∗)− |S∗|
|S∗|∆

vS∗ =

δvS∗ −∆vS∗ < 0,

(15)

which yields a contradiction.

Note that if a total preorder ⊒ on 2X satisfies the RESP property, then
every sub-extension ⊒S, for each S ∈ 2X , S ̸= ∅, satisfies the RESP property,
and then by Proposition 2, ⊒S is a Shapley extension. The following theorem
is then an immediate consequence of Propositions 2 and 3.

Theorem 1 Let ⊒ be a total preorder on 2X which satisfies the MON prop-
erty. The following two statements are equivalent:

• (i) ⊒ satisfies the RESP property.

• (ii) ⊒ is a Shapley extension and satisfies the SE property.
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5 Shapley extensions with interaction

In the last section, we have characterized a class of Shapley extensions aimed
to rank subsets of objects in absence of complementarity effects. The ob-
jective of this section is to analyze properties of Shapley extensions that,
due to the effects of interaction among objects, may “invert” (with respect
to the conditions imposed by the RESP property) the relative ranking of
a limited number of subsets. First, we need some extra notations. Let
2X

k
= {S ∈ 2X : |S| = k} be the set of all subsets of X of cardinal-

ity k, k = 0, 1, . . . , |X| (with the convention that |∅| = 0). Moreover,
for each i, j ∈ X and each k = 0, 1, . . . , |X| − 2, we denote by Sk

ij the
set of all subsets of X of cardinality k which do not contain i and j, i.e.
Sk
ij = {S ∈ 2X

k
: i, j /∈ S}.

Property 4 (Permutational Responsiveness, PR) A total preorder ⊒
on 2X satisfies the permutational responsiveness property iff for all i, j ∈ X
and all S ∈ 2X , with i, j /∈ S, there exists a bijection F k

ij : Sk
ij → Sk

ij such
that

S ∪ {i} ⊒ F k
ij(S) ∪ {j} ⇔ {i} ⊒ {j} (16)

for each k = 0, 1, . . . , |X| − 2

Remark 2 Note that if a total preorder ⊒ on 2X satisfies the RESP property
then it also satisfies the PR property (simply, take F k

ij(S) = S for each
i, j ∈ X, each k = 0, 1, . . . , |X| − 2, and each S ∈ Sk

ij).

Remark 3 For all i, j ∈ X, if k = 0, then Sk
ij = {∅} and F k

ij(∅) = ∅; so,
condition (16) is always satisfied for k = 0.

The PR property moderates the interaction effects of those relative rankings
which violate the RESP property. Let i, j ∈ X be such that {i} ⊒ {j}.
Saying that each set S ∈ 2X , with i, j /∈ S, can be matched with a set T ∈ 2X ,
with i, j /∈ T and with the same cardinality of S, such that T ∪{i} ⊒ S∪{j},
the PR property implies that the effects of the interaction with i (over the
distribution of subsets with a fixed cardinality) should (“globally”) dominate
the effects of the interaction with j.

From a slightly different perspective, note that the PR property for a
total preorder ⊒ on 2X can be introduced by comparing the elements of the
sets Σk

ij = {S ∪ {i} : S ∈ Sk
ij} and Σk

ji = {S ∪ {j} : S ∈ Sk
ij} when they

are arranged in descending order of preference, from the most preferred to
the least preferred according to ⊒, for each k = 0, 1, . . . , |X| − 2. Precisely,
define two bijections σk

ij, σ
k
ji : {1, . . . , |Sk

ij|} → Sk
ij such that

σk
ij(l) ∪ {i} ⊒ σk

ij(m) ∪ {i}
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and
σk
ji(l) ∪ {j} ⊒ σk

ji(m) ∪ {j},

for each l,m ∈ {1, . . . , |Sk
ij|} with l < m. Then a total preorder ⊒ on 2X

such that
σk
ij(l) ∪ {i} ⊒ σk

ji(l) ∪ {j},

for each i, j ∈ X such that {i} ⊒ {j}, each k = 0, 1, . . . , |X| − 2 and each
l ∈ {1, . . . , |Sk

ij|}, satisfies the PR property. In other terms, for each i, j ∈ X
such that {i} ⊒ {j} and for each k = 0, 1, . . . , |X|−2, the PR property admits
the possibility of relative rankings which violate the conditions imposed by
the RESP property (i.e., S ∪ {j} is preferred to S ∪ {i}) due to the effect of
interaction with the objects in S. Nevertheless, such an interaction should be
compatible with the requirement that, between sets of the same cardinality,
the original relative ranking between {i} and {j} should be preserved with
respect to the position of subsets in Σk

ij and Σk
ji when they are arranged in

descending order of preference (i.e., the most preferred subsets in Σk
ij should

be preferred to the most preferred subsets in Σk
ji; the second most preferred

subsets in Σk
ij should be preferred to the second most preferred subsets in

Σk
ji, etc.).
The following proposition establishes the connection between the PR

property and Shapley extensions.

Proposition 4 Let ⊒ be a total preorder on 2X . If ⊒ satisfies the PR prop-
erty, then ⊒ is a Shapley extension.

Proof We want to prove that if ⊒ satisfies the PR property, then {i} ⊒
{j} ⇔ ϕi(v) ≥ ϕj(v) for every v ∈ GX

⊒ .
By PR, for each k = 0, 1, . . . , |X|−2 and each i, j ∈ X such that {i} ⊒ {j}

and Sk
ij ̸= ∅ there exists a bijection F k

ij : Sk
ij → Sk

ij satisfying conditions (16);
it immediately follows that∑

S∈Sk
ij
p(S) dSij(v) =∑

S∈Sk
ij
p(S)

(
v(S ∪ {i})− (v(S ∪ {j})

)
=∑

S∈Sk
ij
p(S)

(
v(S ∪ {i})− (v(F k

ij(S) ∪ {j})
)
≥ 0,

(17)

where p(S) = |S|!(|N |−|S|−2)!
(|N |−1)!

, for each S ∈ 2X .

proof of PR ⇒ [{i} ⊒ {j} ⇒ ϕi(v) ≥ ϕj(v)]:

By relation (5) and (17), for each i, j ∈ X such that {i} ⊒ {j}, we have
that

ϕi(v)− ϕj(v) =
∑|X|−2

k=0

∑
S∈Sk

ij
p(S) dSij(v) ≥ 0, (18)
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where the inequality directly follows from relations (17).
proof of PR ⇒ [{i} ⊒ {j} ⇐ ϕi(v) ≥ ϕj(v)]:

Now, take i, j ∈ X such that ϕi(v) ≥ ϕj(v) for each v ∈ GX
⊒ numerical

representation of ⊒. Suppose {j} = {i}. By relations (5) and (17) we then
obtain the following contradiction

ϕj(v)− ϕi(v) =
∑|X|−2

k=0

∑
S∈Sk

ij
p(S) dSji(v) > 0. (19)

The following examples show that a Shapley extension which does not satisfy
the RESP property, does not need to satisfy the PR property. In particular,
the total preorder presented in Example 5 will be also useful, at the end of
this section, to stress the difference between Shapley extensions and other
extensions based on alternative game theoretic indices.

Example 4 Let X = {1, 2, 3}. Consider the Shapley extension ⊒a of Exam-
ple (1). Note that {2} = {1}, but {1, 3} = {2, 3}. Consequently, a bijection
F 1
12 which satisfies condition (16) does not exists.

Example 5 Let X = {1, 2, 3, 4, 5} and let G = {{1}, {1, 2}, {2, 3}, {2, 4},
{2, 5}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}}. Consider a total
preorder ⊒d on 2X such that G and B = 2X \G form two indifference classes
with respect to ⊒d, and where S =d T for each S ∈ G and each T ∈ B.

Note that for every numerical representation v of ⊒d, v ∈ GX
⊒d, elements

3, 4, 5 are symmetric players (i.e., for each S ∈ 2X , with i, j /∈ S, v(S∪{i}) =
v(S ∪ {j})), and therefore ϕ3(v) = ϕ4(v) = ϕ5(v).

Let Kv = v(S) − v(T ) > 0 for each S ∈ G and T ∈ B. Using relation
(5), we have that

ϕ1(v)− ϕ2(v) =
1
4

[
v(1)− v(2)

]
+

1
12

[
v(1, 3)− v(2, 3) + v(1, 4)− v(2, 4) + v(1, 5)− v(2, 5)

]
+

1
12

[
v(1, 3, 4)− v(2, 3, 4) + v(1, 4, 5)− v(2, 4, 5) + v(1, 4, 5)− v(2, 4, 5)

]
+

1
4

[
v(1, 3, 4, 5)− v(2, 3, 4, 5)

]
=

1
4
Kv +

1
12
(−3Kv) +

1
12
(Kv − 2Kv) +

1
4
Kv =

1
6
Kv > 0,

(20)
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and

ϕ2(v)− ϕ3(v) =
1
4

[
v(2)− v(3)

]
+

1
12

[
v(1, 2)− v(1, 3) + v(2, 4)− v(3, 4) + v(2, 5)− v(3, 5)

]
+

1
12

[
v(1, 2, 4)− v(1, 3, 4) + v(2, 4, 5)− v(3, 4, 5) + v(1, 2, 5)− v(1, 3, 5)

]
+

1
4

[
v(1, 2, 4, 5)− v(1, 3, 4, 5)

]
=

1
4
0 + 1

12
(3Kv) +

1
12
(−Kv +Kv) +

1
4
(−Kv) = 0.

(21)
However, ⊒d does not satisfy the PR property. In fact, {1} ⊒d {2} but
S ∪ {2} ⊒d S ∪ {1} for each S ∈ S1

12 = {{3}, {4}, {5}}. Consequently, a
bijection F 1

12 which satisfies condition (16) does not exist.

The PR property can be useful to find classes of Shapley extensions which do
not satisfy the RESP property. This is the case, for example, of a family of
trichotomous total preorders [Brams and Fishburn, 1994, Ju, 2005] on 2X

k
,

for each k = 2, . . . , |X|, where (non-singleton) subsets of X of cardinality k
are partitioned into three indifference classes. This kind of preferences are
particularly realistic in voting situations [Brams and Fishburn, 2002], where
voters face the problem to choose from a set of candidates a non-empty subset
of committee members and they not have much information about the quality
of possible committees, but they still are able to distinguish “best”, “worst”
and sometimes “medium” committees.

Precisely, we say that a total preorder on 2X is trichotomous (per car-
dinality k) if, for each k = 2, . . . , |X|, the elements of 2X

k
can be parti-

tioned into three indifference classes, which are called the set of good sub-
sets Gk = {G ∈ 2X

k |G ⊒ S for each S ∈ 2X
k}, the set of bad subsets

Bk = {B ∈ 2X
k |S ⊒ B for each S ∈ 2X

k} and the set of null subsets
Nk = {N ∈ 2X

k |G = N = B for each G ∈ Gk and each B ∈ Bk}.

Proposition 5 Let ⊒ be a trichotomous (per cardinality k) total preorder on
2X . For each i ∈ X and each k = 2, . . . , |X|−1, let Gk

i = {S ∈ Gk : i ∈ S} be
the set of good subsets of cardinality k containing i, and let Bk

i = {S ∈ Bk :
i ∈ S} be the set of bad subsets of cardinality k containing i. If |Gk

i | ≥ |Gk
j |

and |Bk
i | ≤ |Bk

j | for each k = 2, . . . , |X|−1 and each i, j ∈ X with {i} ⊒ {j},
then ⊒ is a Shapley extension.

Proof By Proposition 4, it is sufficient to prove that ⊒ satisfies the PR
property. First, for each i, j ∈ X and each k = 1, . . . , |X|−2, define the set of
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good subsets of cardinality k containing i but not j as the set Gk
ij = {S ∈ Sk

ij :(
S∪{i}

)
∈ Gk+1

i }; in a similar way, define the set of bad subsets of cardinality

k containing i but not j as the set Bk
ij = {S ∈ Sk

ij :
(
S ∪ {i}

)
∈ Bk+1

i }.
Note that, for each i, j ∈ X and each k = 1, . . . , |X| − 2,

|Gk+1
i | ≥ |Gk+1

j | ⇔ |Gk
ij| ≥ |Gk

ji|, (22)

and
|Bk+1

i | ≥ |Bk+1
j | ⇔ |Bk

ij| ≥ |Bk
ji| (23)

Now, let i, j ∈ X be such that {i} ⊒ {j}. Define a bijection F k
ij : Sk

ij → Sk
ij

such that, for each k = 1, . . . , |X|−2, Gk
ji ⊆ F k

ij[G
k
ij] and F

k
ij[B

k
ij] ⊆ Bk

ji, where
F k
ij[G

k
ij] and F

k
ij[B

k
ij] are, respectively, the images of Gk

ij and B
k
ij under F

k
ij (by

relations (22) and (23) such a bijection F k
ij exists, for each k = 1, . . . , |X|−2).

So, for each S ∈ Gk
ij ∪ Bk

ij and for each k = 1, . . . , |X| − 2, condition (16)

is satisfied. On the other hand, for each S ∈ Sk
ij \

(
Gk

ij ∪ Bk
ij

)
and for each

k = 1, . . . , |X|−2, we have that
(
S∪{i}

)
∈ Nk

i , whereas
(
F k
ij(S)∪{j}

)
∈ Nk

j

or
(
F k
ij(S)∪{j}

)
∈ Bk

j , and, consequently, S∪{i} ⊒ F k
ij(S)∪{j}. It remains

proved that ⊒ satisfies the PR property.

Remark 4 A total preorder ⊒ on 2X such that each (non-singleton) subset
of X of cardinality k, for each k = 2, . . . , |X|−1, is classified either as “good”
(i.e., it belongs to the indifference class Gk) or as “bad” (i.e., it belongs to
the indifference class Bk), is said dichotomous (per cardinality k). As a
direct consequence of Proposition 5, a dichotomous (per cardinality k) total
preorder ⊒ on 2X such that |Gk

i | ≥ |Gk
j | for each k = 2, . . . , |X| − 1 and each

i, j ∈ X with {i} ⊒ {j}, is a Shapley extension.

Example 6 Let X = {1, 2, 3, 4} and let ⊒e be a total preorder such that
{1, 2, 3} we {1, 3, 4} ≃e {1, 2, 4} =e {1, 2, 3, 4} =e {2, 3, 4} =e {1, 2} we

{1, 3} we {2, 3} =e {1} =e {2} =e {3} =b {4} =e {1, 4} we {2, 4} we

{3, 4} =e ∅. Note that ⊒e is a dichotomous total preorder on 2X . Moreover,
we have that

G2
1 = {{1, 2}, {1, 3}}, G2

2 = {{1, 2}, {2, 3}},
G2

3 = {{2, 3}, {1, 3}}, G2
4 = ∅;

G3
1 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}},

G3
2 = {{1, 2, 3}, {1, 2, 4}}, G3

3 = {{1, 2, 3}, {1, 3, 4}},
G3

4 = {{1, 2, 4}, {1, 3, 4}}.

By Remark 4, it follows that ⊒e is a Shapley extension.
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We conclude this section with some remarks about the comparison of Shap-
ley extensions with extensions corresponding to other probabilistic values
[Dubey et al., 1981, Weber, 1988, Monderer and Samet, 2002], that are a nat-
ural generalization of the Shapley value where players possess their own prob-
abilistic distribution over all coalitions that can be formed. Let X be a finite
set and let p = ((pSi )S⊂X,i/∈S)i∈X be a collection of probability distributions
(so, for all i ∈ X, pSi ≥ 0 for each S ∈ 2X with i /∈ S and

∑
S⊂X,i/∈S p

S
i = 1).

The probabilistic value πp : CX → IRX is then defined as the vector of
expected payoffs of each player with respect to p, that is

πp
i (v) =

∑
S⊂X:i/∈S

pSi m
S
i (v), (24)

for each v ∈ CX and each i ∈ X. Note that the Shapley value ϕ(v) equals
the probabilistic value πp̂(v), where, for each i ∈ X, p̂Si = 1

|X|(|X|−1
|S| )

=

|S|!(|X|−|S|−1)!
|X|! for each S ⊂ X such that i /∈ S (i.e., coalitions of the same

cardinality k, for each k = 0, 1, . . . , |X| − 1, have equal probability, and each
cardinality is selected with the same probability). Another very well studied
probabilistic value is the Banzhaf value [Banzhaf III, 1964], which is defined
according to relation (24) as the function πp̃

i (v), where, for each i ∈ X,
p̃Si = 1

2|X|−1 for each S ⊂ X such that i ∈ S (i.e., each coalition has an equal
probability to be chosen).

Consequently, other “probabilistic extensions” can be defined according
to Definition 1, with πp, for some collection of probability distributions p, in
the role of ϕ. Formally, given a probabilistic value πp, where p is a collection
of probability distributions as defined above, a πp-based extension is defined
as a total preorder ⊒ on 2X such that

{i} ⊒ {j} ⇔ πp
i (v) ≥ πp

j (v)

for each numerical representation v ∈ GX
⊒ of ⊒ and all i, j ∈ X. For instance,

adopting the collection p̃ defined above, a Banzhaf extension is defined.
Now, a probabilistic value πp corresponding to a collection of probability

distributions p such that coalitions of the same size have equal probability,
i.e. p satisfies the condition pSi = pk for each k = 0, 1, . . . , |X| − 1 and each
S ⊂ X such that i /∈ S and |S| = k, is a semivalue [Dubey et al., 1981,
Weber, 1988]. In addition, a semivalue with all positive probabilities is
a regular semivalue [Carreras and Freixas, 1999, Carreras and Freixas, 2000,
Lucchetti et al., 2010] as, for instance, the Shapley value or the Banzhaf
value.
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According to Remark 2, for every regular semivalue πp we have that

πp
i (v)− πp

j (v) =
∑

S⊂X:i,j /∈S

(p|S| + p|S+1|) dSij(v). (25)

Following the same arguments used in the proof of Proposition 2 for
Shapley extensions, with πp in the role of ϕ, it can be easily verified that an
extension which satisfies the RESP property is also a πp-based extension, for
every regular semivalue πp. Moreover, it is also possible to reformulate the
SE property for every regular semivalue πp in the following way.

Property 5 (Sub-Extendibility⋆, SE⋆) Let πp be a regular semivalue. A
πp-based extension ⊒ on 2X satisfies the sub-extendibility⋆ property iff for
each S ∈ 2X \ {∅} we have that ⊒S is a πp-based extension on 2S.

Then, it is straightforward to adapt the arguments of Proposition 3, with a
regular semivalue πp in the role of ϕ and probabilities p|S| in the role of w(S),
for each S ∈ 2X with i /∈ S. Consequently, we can state the following result,
which extends Theorem 1.

Theorem 2 Let πp be a regular semivalue. Let ⊒ be a total preorder on 2X

which satisfies the MON property. The following two statements are equiva-
lent:

• (i) ⊒ satisfies the RESP property.

• (ii) ⊒ is a πp-based extension and satisfies the SE⋆ property.

As a side-product of Theorem 2 we have that for a large family of coali-
tional games (precisely, those coalitional games who are a numerical repre-
sentation of a total preorder that satisfies the RESP property) regular semi-
values are ordinal equivalent [Tomiyama, 1987, Carreras and Freixas, 2008,
Freixas, 2010], i.e. the rankings on the set of players induced by regular
semivalues coincide.

An example of games that falls in the family of coalitional games that
satisfy the RESP property, are airport games [Littlechild and Owen, 1973,
Littlechild and Thompson, 1977]. In airport games, the objective is to di-
vide the costs of a landing strip of an airport among the landings that occur
during the lifetime of the airport. Since not all planes will need a landing
strip of the same length, the cost imputed to a coalition of landings S is
the cost associated with a landing strip long enough to accommodate all of
the landings in S. Assuming that the cost of the landing strip increase with
its length, it follows that the marginal contribution of a landing that need a
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longer strip is always higher than the marginal contribution of a landing that
need a shorter one. In other words, an airport game is a numerical represen-
tation of a total preorder that satisfies the RESP property and, consequently,
all regular semivalues applied to an airport games are ordinal equivalent.

However, in general, an extension based on a certain regular semivalue
does not need to coincide with another extension based on a different regular
semivalue. For example, a Shapley extension is not, in general, a Banzhaf
extension, as it is shown by the following example.

Example 7 Let X = {1, 2, 3, 4, 5}. Consider the total preorder ⊒d on 2X of
Example 5. First, note that

p̃|S| + p̃|S+1| =
1

2|X|−1
+

1

2|X|−1
=

1

8

for each S ⊂ X such that i, j /∈ S. Then, by relation (25), we have that

πp̃
1 (v)− πp̃

2 (v) =

1
8
Kv +

1
8
(−3Kv) +

1
8
(Kv − 2Kv) +

1
8
Kv = −1

4
Kv < 0,

(26)

for every numerical representation v of ⊒d, v ∈ GX
⊒d, and where Kv = v(S)−

v(T ) > 0 for each S ∈ G and T ∈ B. On the other hand, {1} =d {2}.
Therefore, ⊒d is not aπp̃-based extension, i.e. it is not a Banzhaf extension.

Note that the extension ⊒d used in Examples 5 and 7 does not satisfy the
PR property. In fact, by the proof of Proposition 4, with πp in the role of ϕ
and (p|S| + p|S+1|) in the role of p(S) for each S ⊂ X such that i, j /∈ S, it
can be also verified that an extension which satisfies the PR property is also
a πp-based extension, for every regular semivalue πp.

6 Conclusions

In this paper we introduced the class of Shapley extensions for the problem
of ranking sets of objects of a universal set X when only a primitive ranking
on X is given. We showed that this family of extensions is flexible enough
to represent possible effects of interaction among objects. We also discussed
some properties for extensions with the purpose of studying under which
conditions Shapley extensions may be applied to represent preferences over
sets of objects excluding or including interaction effects among the objects.

We want to remark that the the family of lexicographic rank-ordered ex-
tensions introduced by [Bossert, 1995], and which generalize rankings like
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lexi-min and lexi-max, satisfy the RESP property [Bossert, 1995], and indeed
are Shapley extensions. More precisely, since lexicographic rank-ordered ex-
tensions have been originally defined for ranking sets of objects with a fixed
cardinality [Bossert, 1995], we may conclude that each ranking on the power
set of a universal set X that ranks subsets of a fixed cardinality q, for each
q = 2, . . . , |X|, according to a lexicographic rank-ordered extension, is a
Shapley extension.

The direction of our future research is the analysis of sub-families of Shap-
ley extensions, driven by properties which are aimed at represent interme-
diate levels of interactions, possibly specified together with the information
concerning the primitive ranking on X.
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