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tThis report is fo
used on the study of methods for image retrieval in 
olle
tion of heterogeneous
ontents. The spatial relationships between entities in an image allow to 
reate the global des
riptionof the image that we 
all the image 
ontext. Taking into a

ount the 
ontextual spatial relationshipsin the similarity sear
h of images 
an allow improving the retrieval quality by limiting false alarms.We de�ned the 
ontext of image as the presen
e of entity 
ategories and their spatial relationshipsin the image.By studying statisti
ally the relationships between di�erent entity 
ategories on LabelMe, asymboli
 images databases of heterogeneous 
ontent, we 
reate a 
artography of their spatial re-lationships that 
an be integrated in a graph-based model of the 
ontextual relationships, theprin
ipal 
ontribution of this report. This graph des
ribes the general knowledge of every entity
ategories. Spatial reasoning on this knowledge graph 
an help improving tasks of image pro
es-sing su
h as dete
tion and lo
alization of an entity 
ategory by using the presen
e of another one.Further, this model 
an be applied to represent the 
ontext of an image. The similarity sear
h ba-sed on 
ontext 
an be a
hieved by 
omparing the graphs, then, 
ontextual similarity between twoimages is evaluated by the similarity between their graphs. This work was evaluated on the symbo-li
 image database of LabelMe. The experiments showed its relevan
e for image retrieval by 
ontext.Keywords : Image, similarity sear
h, spatial relationships, image 
ontext.1 Introdu
tionThe interpretation of images by a ma
hine requires to have a representation of images prepro
essedmanually or automati
ally. This representation 
an be built from visual features (su
h as 
olor, shapeof elements in images) or higher level information (su
h as spatial relationships between elements ormodels of these elements). To date, it is still di�
ult to build a robust model for automati
 image1



interpretation. On the 
ontrary, humans prove their e�e
tiveness in image pro
essing tasks. We 
ansay that what makes su
h humans' possible aptitudes is their ability to interpret visual features ofimages by using prior knowledge. Prior knowledge is very often related to the presen
e of multipleentities in an image and to the spatial information linking them, that 
an be 
alled the 
ontext of theimage. Humans 
an in
orporate this knowledge to analyse the image and to 
reate personal semanti

on
epts. A

ording to [8℄, image interpretation 
an be 
lassi�ed into three levels of 
omplexity :� Level 1 : interpretation is based mainly on primary features su
h as 
olor, texture, shape, seg-mented regions, interest points and/or the spatial lo
ation of image elements. These features arerather obje
tive and their estimation is performed dire
tly, it does not require any knowledgebase. Many approa
hes of image retrieval or of image 
ategorization 
an be 
lassi�ed into thislevel (e.g. Bag of Features and all its derived approa
hes).� Level 2 : interpretation involves some degree of logi
al inferen
e 
on
erning the image 
ontent.At this level, queries are performed in order to retrieve entities of a given type or to retrieve aspe
i�
 entity from another. The need of a pro
essed knowledge base is obvious. This knowledgebase 
an 
ontain low-level information of entity 
ategories (e.g 
olor, shape), relationships bet-ween 
ategories (e.g. 
orrelations, 
onditional probabilities, spatial relationships), and more.� Level 3 : interpretation is based on symboli
 features. At this level, a signi�
ant amount ofhigh-level reasoning about the meaning and purpose on the entities or on ba
kground of images
an be involved. The result of this pro
essing is that an image 
an be linked to a 
on
ept by asubje
tive judgement. To date, humans are only ones who 
an propose an e�e
tive interpretationof an image at this level.Most of the approa
hes proposed lie between levels 1 and 2. It is still di�
ult to lie between levels2 and 3 that refer to high-level semanti
 image retrieval [12℄. The main e�ort is to 
onne
t low-levelfeatures to high-level semanti
s of images. The e�e
tive approa
hes to date are :1. using ma
hine learning methods in order to asso
iate high-level 
on
epts to low-level features,2. taking into a

ount user feedba
k in order to improve subje
tive 
on
epts,3. inferring visual 
ontent based on textual information extra
ted from image 
ontext,4. using entity ontology in order to de�ne high-level 
on
epts.Most 
ontent based image retrieval systems exploit a 
ombination of two or more of these methodsin order to perform high-level semanti
 image retrieval (see [24, 8, 18, 27, 6℄). Although the resultsobtained are promising, designing systems that really understand image 
ontent at semanti
 level isstill a open problem.In this paper, we propose a model to represent a general knowledge about relationships su
h asspatial ones between entity 
ategories existing in an image database. Furthermore, this model 
an beused to des
ribe the 
ontext of a given image. The de�nition of image 
ontext is dis
ussed in these
tion 2.2. Finally, we observe that an image may be linked to multiple subje
tive intera
tions, then,we hope to attribute a semanti
 meaning to ea
h 
ontext image that 
an fa
ilitate image retrieval orre
ognition tasks. Our work falls in the third and fourth 
ategories of approa
hes listed above. In the2



limit of our framework, we do not investigate the learning of 
on
epts using ma
hine learning methodsand 
onsider that these 
on
epts are known.In the se
tion 2, we present the de�nition of image 
ontext and several spatial relationships between
ategories. The se
tion 3 presents the 
on
epts and de�nitions of our graph model. In the next, wedis
uss the evolution 
apa
ity of the graph to the new knowledge and spatial reasoning in the se
tion4 and 5. Finally, in the se
tion 6, we present several experiments to evaluate our graph model.2 Initial de�nitionsIn this se
tion, we present several de�nitions like spatial relationships and image 
ontext beforepresenting our prin
ipal work.2.1 Spatial relationshipIn our framework, we are �rstly interested in the representation of spatial relationships betweensymboli
 obje
ts in images, 
alled entities. In CBIR, embedding su
h information into image 
ontentdes
ription provides a better representation of the 
ontent as well as new s
enarios of interrogation.The spatial relationships 
an be the unary, binary, and ternary relationships.We 
all unary relationship, the relationship between an entity and its lo
alization in an image,where lo
alization is de�ned as a region or an area of the image. Areas of an image 
an be represen-ted in di�erent ways like quad-tree or quin-tree, see for example [20, 28℄. Sin
e we do not have anyknowledge a priori of the lo
ation of the 
ategories in the images, we propose to split images in a �xednumber of regular areas (i.e. equal size areas). First, we divide ea
h image in a �xed sized grid. Ea
h
ell of this grid, 
alled atomi
 area, is represented by a 
ode. Fig.1 and 2 depi
t a splitting in 9 or in
16 di�erent basi
 areas and theirs 
odes, respe
tively. We then 
ombine these 
odes to present more
omplex areas, by example for 9-area splitting, 
ode 009 represents area ( ) grouping together areas
001( ) and 008( ). 001 008 064002 016 128004 032 256Figure 1 � Codes in unary relationship by splitting an image in nine areas.00001 00016 00256 0409600002 00032 00512 0819200004 00064 01024 1638400008 00128 02048 32768Figure 2 � Codes in unary relationship by splitting an image in 16 areas.A binary relationship links two entities of distin
t 
ategories together in an image. In last years,3



there have been many approa
hes proposed for representing binary spatial relationships. They 
an be
lassi�ed as topologi
al, dire
tional or distan
e-based approa
hes (see [11℄ for more details), and 
anbe applied on symboli
 obje
ts or low level features. Here, we have fo
ussed on relationships betweenthe entities of the database des
ribed in terms of dire
tional relationships with approa
h 9DSpa [17℄,of topologi
al relationships [9, 10℄ and of a 
ombination of them with 2D proje
tions [19℄. We do notuse orthogonal [3℄ and 9DLT relationship [2℄ be
ause of its in
onvenien
es mentioned in [17℄.A ternary relationship des
ribes a relationship of a triplet of 
ategories. To our knowledge, a fewapproa
hes were proposed to des
ribe 
risp triangular relationships of three symboli
 entities. We 
anmention TSR approa
h [13℄ and our approa
h ∆-TSR (see [16℄). By applying to a set of heterogeneoussymboli
 entities that do not have �xed shape and size, these approa
hes 
annot des
ribed fully tri-angular spatial relationships between symboli
 entities sin
e they take into a

ount only the 
enter ofea
h entity as representation of it.2.2 Image 
ontextIn an image, the re
ognition or dete
tion of entity 
ategory requires di�erent information from theraw image data. A

ording to [26℄, in the real world, there exists a strong relationship between theenvironments and entities found within it or between the entities. Entities are never in isolation. They
an tend to 
o-vary with others entities and parti
ular environments for providing a ri
h 
olle
tionof 
ontextual asso
iations. The re
ognition or dete
tion will be a

urate and qui
k if entities usuallyappear in a familiar ba
kground. Then, initially, we 
an de�ne that the 
ontext of an image des
ribesall possible types of relationship between the entities in this image, or between the entities and ba
k-ground of this image. The use of image 
ontext 
an bring a strong interest not only for re
ognizingor dete
ting the entity 
ategory but also for image retrieval. For the re
ognition or dete
tion of anentity 
ategory, it is evident to examine the general 
ontext of image if the lo
al features are insu�-
ient (e.g. entity is small, or appears partially). For image retrieval, the 
omparison of image 
ontexts
an help to �lter out the false alarms before enter in the step of 
omparison of visual 
ontents of images.By using the visual features in image, the 
ontext 
an be des
ribed by relationships between lo
alinformations and global information of the image. This 
ontext de�nition 
an drive to a hard workof image pro
essing. Another natural way of representing the 
ontext of an image is using the 
o-o

urren
e relationships of its entities. In the real world, the 
o-o

urren
e might happen at a globallevel, for example a bed room will predi
t a bed, or at a lo
al level, for example a table will predi
tthe presen
e of a 
hair. A probabilisti
 problem 
an be also asso
iated in this 
ase. More 
omplex, thespatial relationships between entity 
ategories in images 
an be taken into a

ount. In general, that isdi�
ult to have an exa
t de�nition of 
ontext ; ea
h 
ase of use 
an depend on a parti
ular 
ontextde�nition.Here, we try to study di�erent relationship that 
ould be present in images. A

ording to [14℄,entities in an image 
an be things (e.g. 
ar, people) or stuff (e.g. road, buildings, more pre
ise thatare the regions in images). In general, we 
an have �ve types of relationship :4



� Thing-Thing : 
o-
on
urrent relationships, spatial relationships, et
.� Stu�-Thing : texture regions that allows to predi
t the present of an entity 
ategory.� Stu�-Stu� : relationships between regions of images.� S
ene-Thing : s
ene information su
h as s
ale, global dire
tion that allows to determine thelo
ation of an entity 
ategory.� S
ene-Stu� : s
ene information su
h as s
ale, global dire
tion that allows to determine the lo
ationof a region.In our framework, we do not di�erentiate the entities present in image as "Thing" or as "Stu�"be
ause we are interested in symboli
 obje
ts that are represented by polygons. These entities are
lassi�ed simply by 
ategory. We de�ne the image 
ontext by the presen
e of entity 
ategories in imageand by the spatial relationships between these entity 
ategories. The presen
e of at least an instan
eof an entity 
ategory will 
on�rm the presen
e of this one. The spatial relationships between 
ategoriesin image will be represented in a general way (e.g. probabilities). There are two prin
ipal ways of usingthe 
ontext in a vision system :� A priori : in this way, the 
ontext serves to lo
ate the entities, to limit the sear
hing region, andto de
rease the retrieval time (for example the approa
hes proposed by [26, 14, 25℄).� A posteriori : the 
ontext serves to obje
t re
ognition if the lo
al information is not su�
ient, it
an help to redu
e the ambiguities of the presents of obje
ts in the same s
ene (for example theapproa
hes proposed by [23, 22, 5℄).There has been a growing interest in exploiting 
ontextual information for image retrieval, 
las-si�
ation or obje
t dete
tion, re
ognition. Di�erent te
hniques have been exploited to des
ribe the
ontext of image for this purpose. Intuitively, the spatial lo
ations of obje
ts and ba
kground s
enefrom global view 
an be used as inside-image 
ontext. Further, the 
ombination of obje
t dete
tionand 
lassi�
ation tasks together 
an provide natural 
omprehensive 
ontext for ea
h other without anyexternal assistan
e. Moreover, a knowledge database, 
onsidered as a external element, based on ma-
hine learning SVM or probabilisti
 te
hnique, allows to enhan
e other tasks as lo
alization, dete
tion,et
. Our approa
h proposed in the next se
tions is a priori one.3 A Graph-based Knowledge RepresentationIn this se
tion, we present how to represent a knowledge between entity 
ategories in images byusing a graph. The 
on
epts and de�nitions of this graph are presented in se
tion 3.1. To avoid buildingan unreadable graph, the attributes of node and the graph 
onstraints are dis
ussed in se
tion 3.2 and3.3 respe
tively. Finally, se
tion 3.4 presents a brief example of the use of the graph.3.1 Con
ept and de�nitionsIn reality, events 
an be expressed by two notions : entity and relationship. For example, if wehave an event "our laboratory invited a professor last month", then this event 
an be represented bytwo entities : "our laboratory" and "a professor" that have a relationship "invite" of attribute "lastmonth". We know that a general knowledge presents a general event based on 
on
rete events whi
hhappened. For example, based on the previous event, a general event 
ould be formed : "Laboratories5



invite professors sometimes". "Laboratory" and "Professor" may be 
onsidered as entity 
ategories thatmay be linked by a relationship of type "invite". Based on this argument, we would like to representthe learnt knowledge by using a graph 
on
ept developed only on two notions of "
ategory" and of"relationship". In this graph, the instan
e of 
ategory (an entity) is not meaningful to guarantee ageneral representation of a knowledge. However, entities are always examined before building a graph.The reason was explained previously : a general event is based on parti
ulars events.Normally, in a 
lassi
 graph, a vertex (or a node) represents a 
ategory and an edge represents arelationship. We observed that a "relationship" may be unary, binary, ternary or n-nary relationship,then a "relationship" 
an 
on
ern one or many 
ategories. A 
lassi
 graph 
an represent only thebinary relationships between two verti
es. By using a hypergraph, a generalization of a graph [4℄, anedge 
an 
onne
t any number of verti
es (see Fig.3(a)). However, this 
onne
tion of a set of verti
esis represented by only an edge. We know that, between two or more "
ategories", there are many"relationships". It means that di�erent edges 
an have the same end nodes, then a multigraph [1℄ 
anbe another alternative graph. However, a multigraph allows to des
ribe multiple relations between twoand only two verti
es (see Fig.4(a)). For our 
on
ept, we would like to use the advantages of these twograph models, and we know that a bipartite graph [29℄ 
an model the more general multigraph andhypergraph (see examples of representation of hypergraph in Fig.3(b) and of multigraph in Fig.4(b)).
(a) Hypergraph (b) Bipartite graphFigure 3 � An example of hypergraph and its bipartite representation.

(a) Multigraph (b) Bipartite graphFigure 4 � An example of multigraph and its bipartite representation.We would like to present multiple relations between multiple verti
es, that is why we de
ided torepresent a relationship by a node. Our graph, denoted G, is a bipartite graph and 
ontains two types6



of nodes : a 
ategory node, denoted C and a relationship node, denoted R. We give a de�nition to ea
htype of node in our graph G :� A 
ategory node C represents the existen
e of a set of 
ategories in a same environment, i.e. inthe same database. For a set of 
ategories K = {cati}, its representation node is C{cati} or CK .
CK 
an own di�erent attributes des
ribing some information of K su
h as visual features or adedi
ated obje
t dete
tion algorithm.� Similarly, a relationship node R represents a type of relationship between 
ategories in a set
J = {catj}, we denote this node Rtype

J . From a Rtype
J , we 
an learn all possible 
on�gurationsof relationship type involved from J . In our framework, we are espe
ially interested in spatialrelationships, for example, relationship type 
an be the topologi
al spatial relationship [10℄ thatdes
ribes di�erent 
on�gurations : disjoint, joint, overlaps, insides , et
.Now, graph G is de�ned as :

G = (V,E) (1)Knowing that V is the set of nodes in the graph :
V = {CK} ∪ {RJ} (2)This graph is an undire
ted graph. Then, E is the set of edges :

E = {e(CK ,RJ)|∀CK , RJ ∈ V ∧K ⊆ J}

∀CK, RJ ∈ V ; e(CK ,RJ ) ⇒ e(RJ ,CK)

∀CK, CJ ∈ V ;∄e(CK ,CJ)

∀RK, RJ ∈ V ;∄e(RK ,RJ)

(3)Figure 5 gives an example of graph (at 3 levels).3.2 Attributes of a nodeOn the other hand, our requirement is that graph-based representation must be simple to 
ompute,
lear to understand, and extendible to represent a new 
omplex general knowledge. From this question,we de�ne spe
i�
 attributes asso
iated to ea
h node, 
ategory or relationship, in se
tions 3.2.1 and3.2.2.3.2.1 Level attributeTo avoid building an unreadable graph, based on the idea that say that a 
omplex knowledge isdeveloped from a set of basi
 ones, we split our graph into many di�erent levels. A graph level indi
atesthe number of 
ategories 
on
erned :|{cati}| meaning 
ardinality of set {cati}. Thus, ea
h level of graph7



Figure 5 � An example of a 3-level graph. The green, violet, and orange 
olors illustrate nodes atlevel 0, 1, and 2 respe
tively.is 
omposed of a set of C and R nodes that have the same |cati|. Thus, we 
an 
onsider the level asan attribute of the node, denoted lev, that is de�ned as : lev = |cati| − 1. Our idea is that a higherlevel node 
an be built from lower level nodes. A low level node 
an 
onne
t only to one higher levelby edges between C nodes of lower level and R nodes of higher level.In 
onsequen
e, we rede�ne set E :
E = {e(CK ,RJ )|∀CK , RJ ∈ V ∧K ⊆ J ∧ (C.lev = R.lev ∨C.lev + 1 = R.lev)} (4)Note that we 
an expand the number of levels in the graph as we need. If we study N 
ategories,then at the level l, we 
an have in maximum N !

(N−l)! nodes C. A high number of levels 
an in
rease
onsiderably the number of nodes in the graph, however, in reality, we 
an �nd many 
ategories thatnever o

ur together. For example, in [15℄, by studying 86 di�erent entity 
ategories in a dataset ofheterogeneous 
ontent, we found 879 
ouples of 
ategories that never o

ur together among a set 7310of possible 
ouple and only 38031 present triplets in total among 102340 possible triplets.In Fig.5, we show the 
on
ept for a 3-level graph. Con
retely, we 
an model unary, binary, andternary relationships with this graph.
8



3.2.2 Status attributeWe know that a knowledge 
an be either true, or false, or un
ertain. In fa
t, for example, we arenot 
ertain to 
on�rm the existen
e of aliens be
ause of the limit of our s
ienti�
 knowledge. "Theearth is a square" is a false de�nition. In addition, a true 
on�rmation 
ould be
ome a false one ; forexample, nowadays the 
on�rmation "the earth is a 
enter of universe" is not true. To 
omplete thegraph 
on
eption, we propose to add an attribute on su
h status for ea
h node of graph, denoted stat.A node in graph 
an be either true, or false, or un
ertain. These statuses 
an be modi�ed todeal with a new situation if ne
essary. Figs. 5, 8, and 9 show examples of true nodes. To representa un
ertain node, we use a dis
ontinuous line node as shown in Fig.6(a). Finally a false node isrepresented by a strike-through node as shown in Fig.6(b). Note that false and true statuses are
onsidered as 
on�rmations, though, un
ertain status will be used as indu
tion that is not veri�ed yet.
(a) Un
ertain node representation (b) False node representationFigure 6 � Two additional statuses of a node.A C node must own only one status at one time in the graph. In fa
t, for example, it is impossiblethat two 
on�rmations : True and false about one 
ategory are present in parallel in the samegraph. However, we know that a C node 
an be 
onne
ted to many R nodes. A R is assigned to a setof 
ategories J and has type, ea
h R node determines a set of 
on�gurations Φ that are learnt from

J . When adding stat attribute to R node, one remark is that three R nodes 
an own three di�erentstatuses but the same J and type 
an present in parallel to 
omplete a knowledge of a type relationshipstudied from J but for di�erent 
on�gurations. We denote the set of 
on�gurations in Rtype
J : Rtype

J .Φ.Let type.Φ be the set of all possible 
on�gurations of the relationship type. In 
onsequen
e :
Rtype

J |stat=true
.Φ ∪Rtype

J |stat=uncertain
.Φ ∪Rtype

J |stat=false
.Φ ⊆ type.Φ (5)And :

Rtype
J |stat=true

.Φ ∩Rtype
J |stat=uncertain

.Φ ∩Rtype
J |stat=false

.Φ = ∅ (6)Note that a 
on�guration of relationship type belongs to only one R node among three di�erentstatus R nodes of J and type (see Fig.7 for an example).By adding a status to a node, there are two possible s
enarios to represent a knowledge base :� We begin our knowledge representation with a graph 
ontaining all possible 
ombinations on
ategories and on relationships of universe (i.e. there is no limitation on the number of entity
ategories and of types of relationship). It is evident that these nodes are un
ertain initially.Initially, the graph is very huge. The studying of several 
ontent databases will 
on�rm or deny9



Figure 7 � Three di�erent statuses of R nodes owning the same type and set J .these nodes. But this s
enario is 
omplex and will not be taken into a

ount in our framework.� A knowledge graph is built dire
tly from a given database. An initial graph 
ontains only thetrue or false nodes. The number of 
ategories and the types of relationship are limited. Thisgraph evolute by adding new knowledge. Our work in the following will respe
t this s
enario.3.3 Graph 
onstraintsHere another 
hallenge is that the 
omparison of two graphs may not involve a 
ostly 
omputation.To avoid to 
ompli
ate the graph that 
an impa
t on graph 
omputation su
h as 
omparison, some
onstraints must be asso
iated to it, on nodes (se
tion 3.3.1), on statuses (se
tion 3.3.2) and on edges(se
tion 3.3.3).3.3.1 Node 
onstraintsThe presen
e of a set of entity 
ategories is represented by one C node only. Thus, a C node mustbe unique. It 
an be identi�ed with a unique identi�
ation, denoted id and 
omputed by fun
tion ofequation 7 : CK .id = F ID
C (K). Note that a cati 
an be identi�ed by a unique id (that is an integer)and that NCateg is the total number of 
ategories examined in system. The id attribute of the C nodeis an integer 
omputed from the id of cati|cati ∈ K. It will allow to lo
ate qui
kly a C node in thegraph by using a hash fun
tion.

10



F ID
C (K) =

∑|K|
i=1 cati.id ∗ (N

Categ)(i−1)

∀cati, catj ∈ K; i < j ⇒ cati.id < catj.id
(7)In 
onsequen
e, we obtain : ∀CK ∈ V : ∄CJ ∈ V |CK .id = CJ .id.Similarly, a RJ node must be unique also. Its uniqueness is represented by a unique id. Di�erentlyto the id of the C node, this id is de�ned by three elements : set J of 
ategories, type of relationship,and status stat of a node. It is 
omputed by the fun
tion in equation 8 :

F ID
R (K) = type+ toString(stat) + toString(F ID

C (K)) (8)where toString(s) allows to transform a data type (boolean, number, et
.) to a string. Then the
id of a R node is a string that is unique. Thus, we obtain :

∀RJ , RK ∈ V : (J 6= K) ∨ (J = K ∧RJ .type 6= RK .type)

∨(J = K ∧RJ .type = RK .type ∧RK .stat 6= RJ .stat)
(9)It is evident that, for a type of relationship, there may be many di�erent R nodes. It means thereare many instan
es of Rtype for a given type. Nowadays, a 
omputer 
an have a large memory, storageoptimization is not the main subje
t. It is not ne
essary to look for a way to asso
iate many C nodesto a R of given type e�
iently. We address the 
omputation optimization problem in the graph (e.g.
omparison, node mat
hing, et
.). In a large graph, it is always easy and qui
k to �nd a node by its id.In our graph, one lower level is 
onne
ted to only one next higher level. There is another important
onstraint on the link between R nodes and C nodes. Given a R node at level l, R is always 
onne
tedto l + 1 nodes C that are at level l − 1, and is linked to only one C node at level l (see Fig.5).3.3.2 Status 
onstraintsTo be able to 
ompare the three statuses, we impose that true>un
ertain>false. Finally, toavoid absurd representations in the graph, we propose three 
onstraints 
on
erning stat de�nition :� The �rst 
onstraint 
on
erns the C and R nodes that are 
onne
ted and at a same level :

∀CK, RJ ∈ V : (I = J ⇒ CK .stat >= RJ .stat) (10)Note that : I = J 
an be repla
ed by (∃e(CK ,RJ ) ∈ E ∧ CK .lev = RJ .lev).� The se
ond 
onstraint 
on
erns the lower level C node and the higher level R node that are
onne
ted :
∀CK , RJ ∈ V : I ⊂ J ⇒ CK .stat >= RJ .stat (11)11



Here note that : I ⊂ J 
an be repla
ed by (∃e(CK ,RJ ) ∈ E ∧ CK .lev = Rj .lev − 1).� The third 
onstraint 
on
erns two C nodes of two di�erent levels :
∀CK , CJ ∈ V : I ⊂ J ⇒ CK .stat >= CJ .stat (12)We 
an observe that the status of a 
ategory node plays an important role. It is 
ertain that thestatus of a R node depends on the status of a C node. We 
annot deny that the non-existen
e of a Cnode will reje
t all R nodes linked with it. For example, we 
an say that there are many resear
hes
on
erning relationship between alien 
ategory and earth 
ategory ; and one day, if we 
on�rm thatthis alien 
ategory do not exist (this 
ategory has a false status), then all asso
iated relationshipsbe
ome false. Furthermore, it is also evident that the status of a higher level node depends on thestatus of a lower level node. For example, if we 
on�rm that in an environment, there is no A 
ategory(C{A}.stat is false), then it is impossible for a 
ouple of 
ategories (A,B) to be present in thisenvironment (thus, C{A,B}.stat be
omes false too).3.3.3 Edge 
onstraintsWe impose two 
onstraints for the edges between C nodes and R nodes :� The �rst 
onstraint is for two nodes of same level. Node CK 
an be linked to node RJ at thesame level if and only if they are assigned to the same set of 
ategories, it means too K = J :

∀RJ ∈ V : ∃CK ∈ V |CK .lev = RJ .lev ∧K = J ∧ ∃e(CK ,RJ ) ∈ E (13)� The se
ond 
onstraint is for two nodes of di�erent levels. A node CK of a lower level 
an belinked to a node RJ of a next higher level if and only if K ⊂ J :
∀RJ , CK ∈ V |(RJ .lev = CK .lev + 1) ∧ (K ⊂ J) : ∃e(CK ,RJ ) ∈ E (14)This last 
onstraint 
on�rms the fa
t that one lower level is 
onne
ted to only one next higher level.3.4 ExamplesTo make 
lear the model of our graph, we propose two examples in Fig. 8 and 9. In the �rst example,we des
ribe spatial binary relationship, represented with the topologi
al approa
h [9, 10℄ (see se
tion2.1), between two di�erent 
ategories : 
ar and person. We show the possibility of asso
iation ofmany R nodes to one C node. In the se
ond example, the presen
e of triplet (
ar,person,building)is 
on�rmed by a presen
e of three 
ouples of 
ategories in a lower level that have a spatial ternaryrelationship, represented with the approa
h ∆-TSR [16℄(see se
tion 2.1), between them. In general, ifthe number of 
ategories is small, the graph is simple. However, the graph 
an evolve dynami
ally,supplement nodes 
an be added any time when a new knowledge is learnt.

12



Figure 8 � Example of knowledge representation of relationships of two 
ategories in two �rst levelsby using di�erent relationships : 9-area or 16-area relationships for unary relationships on lo
ation inthe image, topologi
al relationships or 
orrelation for binary relationships.

Figure 9 � Example of knowledge representation of three 
ategories at level 2 by using ∆-TSRrelationships that represent ternary relationships between entities.4 Management of the graphIn this se
tion, we present several possible manipulations on our graph-based model. The evolution
apa
ity of the graph to the new knowledge is represented in se
tion 4.1. Our graph-based model 
anbe used also to des
ribe the 
ontext of an image. This appli
ation will be presented in se
tion 4.2. Theadvantage of this representation is to allow to a

elerate the similarity 
omputation of two images by
omparing their graphs.
13



4.1 Evolution of the graphSe
tion 4.1.1 dis
uss the operation to update the node status. Se
tion 4.1.2 present how to inferthe new knowledge from an existing one.4.1.1 Update of node statusIt is evident that a knew knowledge may 
hange the status of a node. This modi�
ation 
anhave some 
onsequen
es. Here, we say that a node degrades its status while the value of its status isde
reased ; on the 
ontrary, a node upgrades its status. For example, a CK node degrades its status fromtrue downto false and then upgrades its status false upto un
ertain. Here, we denote DG and
UG the operations of status degradation/upgradation of a node respe
tively. There are two s
enariosof status modi�
ation, one for C nodes and one for R nodes :� While a C node 
hanges its status, other nodes may 
hange their statuses too in order to respe
tthe three 
onstraints of equations 10, 11, 12 p.11, 11, 12. These nodes 
an be R or C nodes.There are two 
ases :1. The �rst 
ase is when a node CK realises a DG. Then, every R node 
onne
ted with it andhaving a status higher than the new status of CK must undergo a DG. Every C node at thenext level must undergo a DG too. Algorithm DG is de�ned as in Algo.1 p.15. Note thatwhile a R node degrades/upgrades its status, it is probable to have two R nodes owning thesame id, then it is ne
essary to merge these two R nodes into one.2. The se
ond 
ase is when a node CK realises a UG. Here, we 
an have a paradox while ahigher level C node upgrades its status to a status higher than lower level C node's one.To respe
t the imposed 
onstraints, should the lower level C nodes upgrade their statusestoo ? We examine an example below. Let suppose that in an given environment, an obje
tdete
tor 
annot identify the existen
e of 
ategory A but 
on�rms that B exists. Then, weobtain false nodes A and (A,B) in the graph. Then, we see with our own eyes in this envi-ronment the existen
e of 
ouple (A,B) together. Consequently, A must exists in examinedenvironment. Thus, a new 
on�rmation 
an reje
t an old 
on�rmation. However, if we say

(A,B) maybe exist together, that is not a 
on�rmation, then this un
ertain opinion 
annot
hange the non-existen
e of A. From this example, we impose that a C node 
an upgradeits status only to true status or to the lowest status of lower level C nodes 
on
erning it.This UG operation is de�ned in Algo.2 p.15.� On the 
ontrary, we think that status modi�
ation of R node does not 
hange the presen
e of Cnode. Therefore, a R node 
an undergo a UG/DG of its status su
h as its new status respe
tsthe three 
onstraints of se
tion 3.2.2. It means a R node 
annot upgrade its status to a newstatus that is higher than one of any C node 
onne
ted with it. Furthermore, these operationswill not impa
t the status of any C nodes in the graph.In summary, only the status modi�
ation of a C node 
an impa
t the status of every R or C nodesof lower/higher levels having a link with it. We 
an develop a re
ursive status modi�
ation of some14



Data: CK , newStatusResult: downgrade CK .stat downto newStatus
CK .stat←− newStatusfor (RJ |(RJ .lev = CK .lev ∨RJ .lev = CK .lev + 1) ∧ ∃e(CK , RJ)) doif (RJ .stat > CK .stat) then

RJ .stat←− newStatusif (∃RK |K = J ∧RK .type = RJ .type ∧RK .stat = RJ .stat) then
RJ ←− merge(RJ , RK)endendendfor (CZ |(Z ⊃ I) doif (CZ .stat > CK .stat) then

DG(CZ , newStatus)endend Algorithm 1: DG degradation algorithm of CK node.Data: CK , newStatusResult: upgrade CK .stat upto newStatus
lowestStatus←−false.valfor (CJ |(J ⊂ I) doif (CJ .stat < lowestStatus) then

lowestStatus←− CJ .statendendif (newStatus 6=true.val ∧ newStatus > lowestStatus) thenreturn ;end
CK .stat←− newStatusif (newStatus > lowestStatus) then // newStatus =true.valfor (CZ |(Z ⊂ I) ∧ (CZ .stat 6= newStatus)) do

UG(CZ , newStatus)endend Algorithm 2: UG upgradation algorithm of CK node.nodes from a C node status 
hange.Let us study the 
omplexity of ea
h operation. Let NR be the average number of R nodes 
onne
tedwith one C node. Let NC be the average number of C node 
onne
ted with one C node by a R node.Let NL be the total number of level in the graph. An upgradation operation of a C node at level limpa
ts only the C nodes of lower levels, thus, the 
omplexity of upgradation is O((NC)(l−1)). On the
ontrary, an degradation operation of a C node at a level l impa
ts the C and R nodes of higher levels.Its 
omplexity 
an rea
h O((NR)(N
L−l) + (NC)(N

L−l−1)).15



Let us examine the example of Figure 7 p.10. Suppose that the Ccar node degrades its status (seeFig.10 p.16) :1. Ccar node degrades its status to un
ertain.2. Consequently, respe
ting 
onstraints on the status 
ondu
ts that every true R/C nodes 
on
er-ned by 
ar must 
hange their statuses to un
ertain.3. A true R node downgrades its status, it will merge to existing un
ertain ones.

Figure 10 � The initial graph is presented in Fig.7. C node assigned to 
ar 
ategory degrades itsstatus downto un
ertain.In fa
t, if we are un
ertain about the presen
e of 
ar, we 
annot be sure about the presen
e of
ouple 
ar-person. Further, every relationships 
on
erning 
ar are not 
ertain too or do not exist.On the 
ontrary, a higher level C node 
annot impa
t the lower level C node when it degrades itsstatus as we 
an see with the example of Fig.11 p.17.We present another example on impa
t of UG operation of a C node. From the initial situation inFig.12(a), a status upgradation of higher level C node 
an modify the status of lower level C node asshown in Fig.12(b). Note that, a

ording to the above 
onstraints, a higher level C 
annot upgrade toun
ertain if it exists at least one false lower level C node 
on
erned to this higher one. The UGoperation of C node will not impa
t R nodes and higher level C nodes.16



Figure 11 � The initial graph is presented in Fig.7. C node assigned to (
ar-person) degrades itsstatus downto false.4.1.2 Inferen
e knowledgeThe �rst utility of our graph is to represent a set of knowledges on entity 
ategories and on theirrelationships. From an image database, after the analysis of its visual 
ontent, we 
an 
onstru
t su
hknowledge graph. This graph 
an help us to save, to organize, and to infer all statisti
al informationson the trends of spatial relationships involving entity 
ategories e�e
tively en
ountered in the data-base, with the aim of exploiting them in future CBIR appli
ations, for improving tasks su
h as obje
tre
ognition or retrieval.To infer new knowledge from an existing one, several rules 
an be de�ned :� A true higher level C node 
an impli
ate true lower level C nodes assigned to a subset of itsset of 
ategories. For relationship type between these C nodes, we 
an add an un
ertain R node
ontaining all 
on�gurations of type that are not yet represented. Fig.13 illustrates this rule. Let
K be the set of 
ategories represented by C. Let l the level of C. The 
omplexity of this inferen
eis ∏l

i=0
(|K|)!

(|K|−i)! .� We 
an infer the relationship between two true C nodes based on 
on�rmed relationshipsbetween these two C nodes and the third intermediate true C node. Note that for un
ertain
R node, we 
an asso
iate ea
h 
on�guration to some probabilities or to a expe
ted values. Fig.14illustrates this rule. Here, to avoid 
ompli
ate stru
ture graph and useless knowledge, we wouldnot like to introdu
e an impli
ation based on existing un
ertain nodes. It means that we 
annot17



(a) Initial graph

(b) Impa
t of status modi�
ation of a higher level C node on lower level C node.Figure 12 � An example on relationships between two 
ategories 
ar-person, and the impa
t of astatus modi�
ation. Relationships are spatial binary relationships des
ribed with a topologi
al model.do a re
ursive impli
ation, thus, the 
omplexity of this inferen
e is O(1).4.2 Graph-based representation of image 
ontextIn se
tion 2.1, we have de�ned the 
ontext of an image as the representation of every 
ategoriesin this image and of their spatial relationships. Thus, the graph 
on
ept de�ned in previous se
tions
an be applied to des
ribe the 
ontext of an image. For example, the 
ontext of the image in Fig.15(a)
an be represented by the graph shown in Fig.16. In this image, four entity 
ategories : sky, sun,sea, mountain are dete
ted. Suppose that we study only topologi
al relationships. Note that theexisten
e of the 
ategory nodes in level 1 allows to extend this graph to a higher level by studyingternary relationships. In this se
tion, we explain how to 
ompare the 
ontext of two images based ongraph representation.Se
tion 4.2.1 de�nes the similarity between 2 
ategory nodes, se
tion 4.2.2 de�nes the one between2 relationship nodes while se
tion 4.2.3 de�nes the one between 2 graphs.
18



(a) Initial graph

(b) Inferen
es at step 1 : inferen
es of the C nodes

(
) Inferen
es at step 2 : inferen
es of the R nodesFigure 13 � Example of automati
 inferen
es in the graph. The dis
ontinuous line re
tangles representthe sets of new nodes inferred from existing nodes.4.2.1 Similarity between two 
ategory nodesWe 
an say that two similar 
ontexts ne
essarily 
ontain 
ommon entity 
ategories. Therefore,�rstly, to evaluate the similarity of 
ontext of images Ii and Ij , we evaluate the similarity of theirentity 
ategories. 19



(a) Initial graph

(b) Inferen
e of new un
ertain nodes.Figure 14 � Example of automati
 inferen
es in the graph.

(a) (b)Figure 15 � Example of two images that may have similar 
ontexts in terms of entity 
ategories andof topologi
al relationships.
Gi, Gj are the graphs of Ii, Ij respe
tively. We denote SC(Gi, Gj) the set of mat
hed 
ategory
ouples that are in 
ommon between Ii and Ij : SC(Gi, Gj) = {(C

Gi

K , C
Gj

K )}. We split this set in twosubset : a set of (True, false) 
on�rmed 
ouples (SCTF )and a set of un
ertain 
ouples (SCU ). Ouridea is that the 
omputation of the similarity between two graphs is based on the weighted evaluationof these two sets. Let :
SCU(Gi, Gj) = {(C

Gi

K , C
Gj

K )|CGi

K .stat =un
ertain∨CGj

K .stat =un
ertain}
SCTF (Gi, Gj) = {(C

Gi

K , C
Gj

K )|CGi

K .stat 6=un
ertain∧CGj

K .stat 6=un
ertain}20



Figure 16 � Image 
ontext representation by a graph for images of Fig.15.
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Thus, SC(Gi, Gj) = SCU(Gi, Gj) ∪ SCTF (Gi, Gj). Let u = |SCU (Gi, Gj)|, tf = |SCTF (Gi, Gj).Then, u + tf = |SC(Gi, Gj)|, it is also the number of nodes C in ea
h graph that parti
ipate to themat
hing. We 
all simSC(Gi, Gj) the 
ategory similarity fun
tion of two graphs, that 
an be de�nedas :
simSC(Gi, Gj) =

2× (u+ tf)

(|Gi.{CK}|+ |Gj .{CJ}|)
× eCN (15)Knowing that : eCN = pU ×

∑u
k=1

simCN (SCU
k
(Gi,Gj))

u
+ (1− pU )×

∑tf
k=1

simCN (SCTF
k

(Gi,Gj))
tfwhere :� SCX

k (Gi, Gj)|X ∈ {U, TF} is the kth 
ouple of entity 
ategories of SCX(Gi, Gj),� Gi.{CK} the set of the C nodes in Gi,� pU is weight parameter on evaluation of un
ertain part.
simCN (SCX

k (Gi, Gj) varies in [0..1], it evaluates the similarity of 
ouples SCk, then simSC(Gi, Gj)also varies in [0..1]. simSC(Gi, Gj) = 1 when two images 
ontains the same set of entity 
ategories. If
∑|SC(Gi,Gj)|

k=1 simCN (SCk(Gi, Gj)) = |Gj .{CJ}|, then Ii 
ontains all of 
ategories of Ij . Here, we 
ande�ne the similarity of two C nodes in two graph as :
simCN (CGi

K , C
Gj

J ) =

{

0 if K 6= J , otherwise
sim(CK .stat, CJ .stat)

(16)
sim(CK .stat, CJ .stat) evaluates the similarity of status of CK and CJ .For example, sim(CK .stat, CJ .stat) = 1 when CK .stat = CJ .stat or sim(CK .stat, CJ .stat) = 0when CK .stat = true ∧ CJ .stat = false.However, if we take into a

ount other attributes for 
ategory node in ea
h graph, in this 
ase, wehave to 
onsider the 
omparison of image visual 
ontents also. We 
an rede�ne the simCN as :

simCN (CGi

K , C
Gj

J ) =

{

0 if K 6= J , otherwise
∑|SetOfAttributes|

k
sim(CK .attributek ,CJ .attributek)

|SetOfAttributes|

(17)where CK .attributek is the kth attribute of CK and sim(CK .attributek, CJ .attributek) the simila-rity of the kth attribute between CK and CJ . These attributes are status, furthermore, they 
an bethe size, shape, or 
olor histogram of I (in this 
ase, the similarity is 
omputed from the interse
tionof two histograms of two nodes or any usual des
ription of graph).The mat
hing of 
ategory nodes in two graphs is not 
omplex, it 
an be realized based on their id andby using a hash table. This operation has a 
omplexity of O(N) with N = min(|Gi.{CK}|, |Gj .{CJ}|).
22



4.2.2 Similarity between two relationship nodesThe 
omparison of 
ontext of two images 
an be studied deeper by taking into a

ount R nodesin the two graphs of these images. Then, similarly to the 
omparison of C nodes in the two graphs,we de�ne the similarity fun
tion to 
ompare R nodes. We denote SR(Gi, Gj) the set of mat
hedrelationship node 
ouples from Ii and Ij : SR(Gi, Gj) = {(RGi

K , R
Gj

K )|RK .type = RK .type}. Here,be
ause of the existen
e of di�erent statuses of the R node, we impose a 
onstraint of mat
hing :� a true Rtype
K node in Gi 
an be mat
hed with a true Rtype

K node in Gj ,� a false Rtype
K node in Gi 
an be mat
hed with a false Rtype

K node in Gj ,� a un
ertain Rtype
K node in Gi 
an be mat
hed with any Rtype

K node in Gj .In the same way, we 
an split SR(Gi, Gj) in two subsets SRU (Gi, Gj) and SRTF (Gi, Gj). Let
NRGi the number of R nodes in Gi and NRGj the number of R nodes in Gj that parti
ipate to themat
hing. Consequently, we 
all simSR(Gi, Gj) the relationship similarity fun
tion of two graphs that
an be de�ned as :

simSR(Gi, Gj) =
NRGi +NRGj

|Gi.{RK}|+ |Gj .{RJ}|
× eRN (18)Knowing that : eRN = pU ×

∑u
k=1

simRN (SRU
k
(Gi,Gj))

u
+ (1− pU )×

∑tf
k=1

simRN (SRTF
k

(Gi,Gj))
tf

simRN (SRk(Gi, Gj) is the fun
tion that allows to evaluate the similarity of two R nodes. Then,we 
an take into a

ount any information from these nodes su
h as frequen
y of ea
h conf ∈ Φ.4.2.3 Similarity between two image graphsFinally, we 
an evaluate the similarity of two image graph based on the similarity of 
ategory nodesand relationship nodes. We 
all SIM(Gi, Gj) the fun
tion evaluating similarity between two graphs.Then :
SIM(Gi, Gj) = p× simSC(Gi, Gj) + (1− p)× simSR(Gi, Gj) (19)Knowing that p is a weight parameter and SIM varies in [0..1].For example, we 
ompare the 
ontexts of the two images from Fig.15. Suppose that we study onlythe topologi
al spatial relationships and 
hoose p = 0.5 (equation 19) to give equal importan
e to
ategories and relationships. The 
ontext representation of these two images 
an be seen in Fig.16. Weobtain simSC(Gi, Gj) = 1 and simSR(Gi, Gj) = 1. Finally, SIM(Gi, Gj) = 1, we 
an say these twoimages have the same 
ontext.We 
an add other attributes for 
ategory nodes in ea
h graph, for example information on sizeto ea
h 
ategory node (sky, sun, sea, mountain). In the �rst image, sky and sea o

upy around

39.2% and 58.3% of image respe
tively. In the se
ond image, they o

upy around 45.6% and 54.2%respe
tively. Suppose that we de�ne simA(CI .size, CJ .size) as :
sim(CI .size, CJ .size) = 1−

2× |CI .size− CJ .size|

CI .size+ CJ .size
(20)23



Symbol Meaning
C 
ategory node
R relationship node

lev level of node
stat status of node
type type of relationship

Φ set of 
on�gurations
F ID
C (K) fun
tion 
omputing the id of the C node from aset of entity 
ategories

F ID
R (K) fun
tion 
omputing the id of the R node from aset of entity 
ategories

UG/DG upgrade/downgrade the status of a node
SC(Gi, Gj) set of mat
hed 
ategory 
ouples from graphs Giand Gj

SC(Gi, Gj) set of mat
hed relationship 
ouples from graphs
Gi and Gj

simCN (Gi, Gj) similarity between two C nodes from graphs Giand Gj (se
tion 4.2.1)
simSR(Gi, Gj) similarity between two R nodes from graphs Giand Gj (se
tion 4.2.2)
SIM(Gi, Gj) similarity between two image graphs (se
tion4.2.3)

GK knowledge graphTable 1 � Meaning of symbols used.Consequently, we obtain simSC(Gi, Gj) ≃ 0.93. We 
an �nd too a di�erent s
ore if we add other spatialrelationships like 9DSpa whi
h des
ribe dire
tional relationships [17℄.5 Spatial reasoningIn this se
tion, we present two ways for automati
ally building an image 
ontext graph by using theknowledge graph : graph building based only on the knowledge graph in se
tion 5.1 and graph buildingbased on the knowledge graph and the annotation of image in se
tion 5.2. An overview of these mainalgorithms proposed is presented in se
tion 5.3. From this strategy, several s
enarios of query based onthe image 
ontext graph 
an be applied, we present them in se
tion 5.4.5.1 Image 
ontext graph building based only on knowledge graphWe present how to build the 
ontext graph of an image I, denoted GI , based only on visual 
ontentof I and on a knowledge graph GK . We suppose that we have built GK from a training image databaseand that GK 
ontains several 
ategories of entities and useful knowledge on unary, binary relationshipson them as well as on their visual features (e.g. 
olor histograms, interest points, et
.) or a dedi
atedalgorithm of 
ategory dete
tion (the visual attributes of a 
ategory in GK 
an be for example learnt24



from the set of visual attributes of N instan
es of this one). Note that, every nodes in GK have atrue or false status be
ause we suppose that the training database GK represents the universe andthat all knowledge 
olle
ted from this database is veri�ed. The presen
e of an entity 
ategory, a 
oupleor a triplet of 
ategories together at least in an image 
an be represented by a True C node. Therelationships between them 
an be represented by a True R node. However, for multiple 
ategoriesand a given 
on�guration of a relationship type, if we 
annot �nd at least one example in the trainingdatabase, this 
on�guration is presented in a false R node.The building of GI is based on the knowledge of GK by exploiting the visual features of I, forthe 
on�rmation of the existen
e of an entity 
ategory in I. Di�erently to GK , a �nal GI will 
ontainonly true or un
ertain nodes. Certainly, if the presen
e of an entity 
ategory in I is not 
on�rmedwith a high probability by a dete
tion tool for example, we represent this one by a un
ertain Cnode. On the other hand, every 
ategories from the training database that are not present in I 
an berepresented by False C nodes in GI . However, this last representation is useless and 
ompli
ate therepresentation of GI be
ause of a great number of absent 
ategories and then we do not put su
h nodesin GI . Consequently, the absen
e of C node in GI expresses the absen
e of entity 
ategory asso
iatedwith it in I.Algo.3 des
ribes the main steps of this 
onstru
tion. Before starting Algo.3, we have to de�ne the�ve following parameters :1. Type of unary relationship typeu to be studied in I, for example, typeu ∈ {9-area, 16-area} (seese
tion 2.1) ;2. Type of binary relationship typeb to be studied in I, for example, typeb ∈ {9Dspa, topologi
al}(see se
tion 2.1) ;3. Probability threshold ϕp/0 < ϕp ≤ 1 : this parameter allows to �lter all 
on�gurations of a giventype of relationship with a low frequen
y or a low presen
e probability in GK . For example, byusing unary relationship, in I, we 
an begin by verifying the presen
e of a 
ategory on areaswhere its presen
e probability learnt from GK is higher than ϕp ;4. Probability threshold ϕt/0 < ϕt ≤ 1 for de
iding of the true status of a 
ategory or a relation-ship node in GI : when the dete
tion probability of an entity of given 
ategory cati rea
hes ϕt byusing the visual features of an area in I in 
omparison with the visual features asso
iated with
ategory node in GK , a true 
ategory node assigned to cati 
an be 
reated in GI . It means that
ategory cati is present in I ;5. Probability threshold ϕu/0 < ϕu < ϕt for de
iding of the un
ertain status of a 
ategory ora relationship node in GI : similarly to ϕt, when the dete
tion probability of an entity of cativaries in [ϕu..ϕt], a un
ertain 
ategory node assigned to cati 
an be 
reated in GI . It meansthat 
ategory cati may be present in I.These parameters will be used in the following algorithms. The main idea of Algo.3 is that, in GK ,ea
h true 
ategory node at level 0, that is assigned to an entity 
ategory, will be examined if it 
an25



be present in GI . A supplementary fun
tion, named "
he
kCN", used by this algorithm is presented inAlgo.4. This fun
tion allows to verify the presen
e in GI of a given 
ategory node of GK by 
omparingthe visual features of I to the visual features 
ontained in this 
ategory node. Algo.4 
an be used asthe algorithm to dete
t the presen
e of a given entity 
ategory in image I. Sin
e its presen
e is 
on�r-med with a probability, a true or un
ertain 
ategory node will be added into GI . To redu
e the
omplexity of Algo.3, while a true C node is added to GI , all other C nodes that 
annot o

ur withthis node will be deleted from the tail of nodes to be 
he
ked. When the level-0 of GI is 
ompletelystudied by using GK , the next level of GI 
an be studied, i.e. the binary, ternary relationships in I. Toillustrate the 
on
ept, we only study here binary relationships of typeb, whi
h are studied in fun
tion"buildBinaryRelation" of Algo.3 (and fully des
ribed in Algo.5). Note that, to be able to study thebinary relationships between two 
ategories, during the building of level 0 in GI , all possible lo
ationsdete
ted for these 
ategories 
an be sto
ked as meta-data of GI .Complexity of Algo.3, Algo.4, Algo.5 : The three algorithms are presented with the paradigmof Obje
t-oriented programming (OOP), they are entirely implementable and appli
able. Let studythe 
omplexities of these algorithms :� NCat denotes the number of entity 
ategories presented in GK ,� NCat
Avg the average number of 
ategories present in an image,� NConf
Avg the average number of 
on�gurations assigned to a R node,� NEntity
Avg the average number of instan
es of a 
ategory in an image,� O(D) the 
omplexity of the dete
tion pro
essing for a 
ategory.In general, the 
omplexity of Algo.4 is O2 = O(NConf

Avg × O(D)), the one of Algo.5 is O3 =

O(
(NCat

Avg
)2

2 × (NEntity
Avg )2). Then, Algo.3 has a maximum 
omplexity of O1 = O(NCat × O2 + O3).For example, from the stati
al studies on the symboli
 database studied in [15℄, we have : NCat = 86,

NCat
Avg = 5 NEntity

Avg = 33, NConf
Avg < 138 with 9-area splitting.
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Fun
tion : buildGraph_01Input: Image I, knowledge graph GK , type of unary relationship typeu, type of binaryrelationship typeb, threshold parameters : ϕp, ϕt, ϕuOutput: Graph GI representing the 
ontext of I
GI ←− ∅ ; # Initialize the 
ontext graph of I
LCN ←− GK .get_ListOf_TrueCNode_AtLevel(0) ;# Get the set of true 
ategory nodes at level 0 from GKwhile LCN 6= ∅ do

cncheck ←− getRandom_CNode_From(LCN ) ;# cncheck is a C node of Gk to be lo
ated in I

rntypeu

check ←− cncheck.getRNode_ByTypeAndStatus(typeu,true) ;# Get a true R node of type typeu that is 
onne
ted to cncheckif ∃rntypeu

check then
listConf ←− rntypeu.φ ; # Get the list of 
on�gurations asso
iated with rntypeu

foundTrueCN ←− checkCN(I,GI , GK , cncheck, type
u, listConf, ϕp, ϕt, ϕu) ;# Verify if cncheck 
an be present in GI . The status of GI .cncheck depends on ϕt, ϕu. checkCNode is de�ned inAlgo.4if foundTrueCN = true thenRemove from LCN other C nodes that 
annot o

ur with cncheck ;# If cncheck is present as a True node in GI , we remove all C nodes in GK that are 
onne
ted to cncheckby only false R nodes. 1endend

LCN .remove(cncheck) ; # Sin
e cncheck is 
he
ked, we 
an delete it from LCNend
buildBinaryRelation(GI , type

b) ;# Study other spatial relationships from GI su
h as binary relationships, see this fun
tion in Algo.5Return GI ;Algorithm 3: Algorithm of 
ontext graph GI building for an image I from a knowledge graph
GK . See Tab.2 on page 39 for the de�nition of the main used variables/methods.
1. We study the non-o

urren
e in the same image of two level-0 
ategory nodes in GK . The determination of thissituation is qui
kly done by examining the status of the C node at level 1 that is 
onne
ted to these level-0 ones. If thestatus of this node is False, this pair of nodes 
annot o

ur together. It means that every binary relationship nodesbetween these two level-0 C nodes are False. 27



Fun
tion : 
he
kCNInput: Image I, 
ontext graph GI , knowledge graph GK , 
ategory node cn of GK to be lo
atedin I, type of unary relationship typeu, list of 
on�gurations listConf to be veri�ed on
cn, threshold parameters : ϕp, ϕt,ϕuOutput: foundTrueCN indi
ates if we �nd a true C node

foundTrueCN ←− false ;# In unary relationship, conf indi
ates the area and the presen
e probability at this area of entity 
ategory represented by
cnfor (conf ∈ listConf ∧ conf.probab >= ϕp) do

res←− I.detectObject(conf, cn) ; # This fun
tion returns dete
tion probability res.probab and possiblelo
ation of entity res.location in conf . Note that, in the worst 
ase, the dete
tion tool does not provide the lo
ation ofthe dete
ted obje
t, and then res.location is conf

nodeStatus←− true ;if (res.probab > ϕt) then
foundTrueCN ←− true ; # If it exists at least one entity of 
ategory presented by cn in I, the status ofthe C node assigned to this 
ategory in GI must be Trueendelse if (res.probab > ϕu) then
nodeStatus←− un
ertain ;end

cnGI
←− GI .getCNode_ById(cn.id) ;# cnGI

an be null or a C node having the un
ertain or true statusif (∄cnGI

) then
cnGI

←− GI .newCNode_AssignedTo(cn.getCategory(0), nodeStatus) ;# cnGI
is assigned to the same 
ategory as cn and has status value of nodeStatusendif (foundTrueCN = true) then

cnGI
.setStatus(true) ;# In all 
ases, cnGI

must 
hange his status to the true statusend
rnGI

←− cnGI
.getRNode_ByTypeAndStatus(typeu, nodeStatus) ;# rnGI

is a R node 
onne
ted to cnGIif (∄rnGI
) then

rnGI
←− GI .newRNode_AssignedTo(cnGI

.getCategory(0), typeu, nodeStatus) ;# rnGI
is assigned to the same 
ategory of cnGI

and has type of unary relationship typeu and status value of
nodeStatus

GI .setLink(cnGI
, rnGI

) ;end
rnGI

.addConf(conf) ;
GI .addMetaData(cnGI

, res.location, nodeStatus) ;# We add the meta data 
on
erning lo
ation and status of cnGI
to GI , this information 
an be used to study binaryor ternary relationships between 
ategories in IendReturn foundTrueCN ;Algorithm 4: Algorithm of the fun
tion 
he
kCN(). See Tab.2 on page 39 for the de�nition ofthe main used variables/methods. 28



Fun
tion : buildBinaryRelationInput: Context graph GI , type of binary relationship typebOutput: Context graph GI that is 
ompleted with binary relationships
LCN ←− GI .get_ListOf_CNode_AtLevel(0) ;# Get the set of 
ategory nodes at level 0 from GIfor (i ∈ [0..size(LCN )− 2]) do

cni ←− LCN .get(i) ;for (j ∈ (i..size(LCN )− 1]) do
cnj ←− LCN .get(j) ;
setCat←− {cni.getCategory(0), cnj .getCategory(0)} ;# cni and cnj are at level 0 then they 
ontain only one entity 
ategory.
cnij ←− GI .getCNode_BySetCat(setCat) ;# cnij is a 
ategory node at level 1 in GI and represents the presen
e of setCat in Iif (∄cnij) then

cnij ←− GI .newCNode_AssignedTo(setCat,min(cni.stat, cnj .stat)) ;# A

ording to status 
onstraints, a higher level C node 
annot have a status superior to the status of loweronesend
listMetaDatai ←− GI .getMetaData(cni) ;
listMetaDataj ←− GI .getMetaData(cnj) ;# Get all possible meta-data of cni and cnj from GI . This meta data is 
reated in Algo.4for (datai ∈ listMetaDatai) dofor (dataj ∈ listMetaDataj) do

minStat←− min(datai.getCNode().stat, dataj .getCNode().stat) ;
rnij ←− cnij .getRNode_ByTypeAndStatus(typeb,minStat) ;if (∄rnij) then

rnij ←− GI .newRNode_AssignedTo(setCat, typeb,minStat) ;# rnij is a R node at level 1 and is assigned to the same 
ategory of cnij

GI .setLink(cnij , rnij) ;
GI .setLink(cni, rnij) ;
GI .setLink(cnj , rnij) ;end

conf ←− getBinaryConf(typeb, loci, locj) ;
rnij.addConf(conf) ;endendendendAlgorithm 5: Algorithm of the fun
tion buildBinaryRelation(). See Tab.2 on page 39 for thede�nition of the main used variables/methods.
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5.2 Image 
ontext graph building based on in
omplete image annotation andknowledge graphIn this se
tion, we present how to build an image 
ontext graph from its annotations and theknowledge graph GK . The annotations are the lo
ation of some given 
ategories, they 
an be manualannotations or the result of an obje
t dete
tion task. The annotations are supposed in
omplete, several
ategories of GK whi
h 
an be present in I are not annotated. These annotations will not be put ba
kinto question even if they do not 
oin
ide with GK . From these annotations, GI 
an be initialized :initially GI 
ontains only true nodes that represent the presen
e of some entity 
ategories and someunary and binary spatial relationships dedu
ed from the lo
ation of the entities annotated in I.We 
an easily adapt Algo.3 to these new initial 
onditions, see this adaptation in Algo.6. One maindi�eren
e between these two algorithms is the input variable GI : in Algo.6, GI is non empty. Be
ause
GI 
ontains initially some 
ategory nodes, we 
an 
he
k only the 
ategory nodes in GK that 
an o

urwith these ones. Consequently, the 
omplexity of Algo.6 is redu
ed 
onsiderably 
ompared to Algo.3.Complexity of Algo.6 : Let study the 
omplexity of this algorithm. NCat denotes the number ofentity 
ategories presented in GK , NCat

F ilter the number of 
ategories that are 
onsistent with 
ategoriespresent in initial graph GI . Then the 
omplexity of Algo.6 is O(NCat
F ilter ×O2 +O3) (see the de�nitionsof O2 and O3 in se
tion 5.1) in knowing that NCat

F ilter << NCat.
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Fun
tion : buildGraph_02Input: Image I, initial 
ontext graph GI , knowledge graph GK , type of unary relationship
typeu, type of binary relationship typeb, threshold parameters : ϕp, ϕt, ϕuOutput: Graph GI representing the 
ontext of I

LCN ←− GK .get_ListOf_TrueCNode_AtLevel(0) ;# Get the set of true 
ategory nodes at level 0 from GKfor cn ∈ GI .get_ListOf_TrueCNode_AtLevel(0) doRemove from LCN other C nodes that 
annot o

ur with cn ;# If cn is present as a True node in GI , we remove all C nodes in GK that are 
onne
ted to cn by only false R nodesend# The following is the same as in Algo.3while LCN 6= ∅ do
cncheck ←− getRandom_CNode_From(LCN ) ;# cncheck is a C node of Gk to be lo
ated in I

rntypeu

check ←− cncheck.getRNode_ByTypeAndStatus(typeu,true) ;# Get a true R node of type typeu that is 
onne
ted to cncheckif ∃rntypeu

check then
listConf ←− rntypeu.φ ; # Get the list of 
on�gurations asso
iated with rntypeu

foundTrueCN ←− checkCN(I,GI , GK , cncheck, type
u, listConf, ϕp, ϕt, ϕu) ;# Verify if cncheck 
an be present in GI . The status of GI .cncheck depends on ϕt, ϕu. checkCNode is de�ned inAlgo.4if foundTrueCN = true thenRemove from LCN other C nodes that 
annot o

ur with cncheck ;# If cncheck is present as a True node in GI , we remove all C nodes in GK that are 
onne
ted to cncheckby only false R nodes.endend

LCN .remove(cncheck) ; # Sin
e cncheck is 
he
ked, we 
an delete it from LCNend
buildBinaryRelation(GI , type

b) ;# Study other spatial relationships from GI su
h as binary relationships, see this fun
tion in Algo.5Return GI ;Algorithm 6: Algorithm of 
ontext graph GI building from initial in
omplete 
ontext graphand a knowledge graph GK . See Tab.2 on page 39 for the de�nition of the main used va-riables/methods.
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Now let us 
onsider the 
ase of binary relationships. We 
an improve Algo. 6 by using the binaryrelationships from knowledge graph GK for better �ltering the possible lo
ations of 
ategory in 
he
k.We de�ne the two following fun
tions ; the output of the �rst fun
tion is used as one of the input ofthe se
ond one :1. findLocFromBR() : de�ned in Algo.7, it allows to determinate the set of possible lo
ations in
I of a 
ategory (presented by C node cncheck) from GK by using the binary relationships learntfrom GK and the existing C nodes in GI . The presen
e of this 
ategory is 
on�rmed by a trueor un
ertain C node added in GI . The output of this fun
tion is the list of possible lo
ationsand probabilities of cncheck.2. filterLocWithUR() : allows to �lter all lo
ations predi
ted in the previous fun
tion that do notagree to the unary relationships of GK . This fun
tion is presented in Algo.8. In this algorithm,we use a probability fusion method to 
ompute the �nal probability for ea
h possible lo
ation.We will detail this point in the following.

Algo.9 
ombines these two fun
tions to improve Algo.6. Filtering on the entity lo
ation, by usingbinary relationships, 
an 
onsiderably redu
e the number of �nal possible lo
ations. Consequently,
NConf

Avg is notably redu
ed, then also O2 = O(NConf
Avg ×O(D)) (see se
tion 5.1).In fun
tion filterLocWithUR() (Algo.8), we 
an en
ounter the following problem : how to 
ombinethe di�erent knowledge to determinate the 
on�den
e of the results ? Fig.17 illustrates this problem.

I 
ontains entities of 
ategory A and C, we would like to verify if entities of 
ategory B 
ould be in
I, knowing that A,B,C and binary spatial relationships between A and B, B and C are known in
GK . From GK , based on A and binary relationships between A and B, we 
an dedu
e three areas 1,
2 and 3 where B may be present with probabilities 0.40, 0.10, and 0.50 respe
tively. Based on C andbinary relationships between C and B, there are two areas 1 and 2 with probabilities 0.50 and 0.50respe
tively. Furthermore, from GK with the unary relationship of B, we know that B 
an be presentin four areas, as in Fig.17(b). We denote P (catB |setCat,Ai) the presen
e probability of 
ategory Bat area Ai in I when set of 
ategories setCat is present. A

ording to literature on data fusion [7, 30℄there are several strategies to merge these informations and to 
on
lude about B :1. Conjun
tive strategy : for ea
h area in I, keep the lowest probabilities and re
al
ulate them bynormalizing with the sum of the kept probabilities. For example, Fig.18(a) presents the results ofthis strategy by applying it on the example of Fig.17. When the probability is absent, we 
onsiderthe value 0.2. Disjun
tive strategy : for ea
h area in I, keep the highest probability and re
al
ulate them bynormalizing with the sum of kept probabilities. For example, Fig.18(b) presents the results ofthis strategy by applying it on the example of Fig.17.3. Compromise strategy : It is based on the idea of the 
orrelated probabilities fusion model of [21℄ :

f(g, h, c) =
g × h× em×c

g × h× em×c + (1− g)× (1− h)× e−m×c
(21)32



(a) Using binary relationship knowledge topredi
t the lo
ation of a given entity 
ate-gory B in I from existing entity 
ategories
A and C. (b) Con�den
e on possible lo
ations(unary relationships) of B learnt from GK .Figure 17 � An example of predi
tion of 
ategory B lo
ation in I by using learnt spatial knowledge.where g and h are the probabilities 
onsidered, c the 
orrelation, e is the exponential fun
tion,and m ∈ [0, 1] is the weight applied on c.We extend this de�nition to a set of probabilities and de�ne P (catB |setCat,Ai) as a fusionfun
tion :

FFusion({pi}, c) =

∏|{pi}|
j=1 pj × em×c

∏|{pi}|
j=1 pj × em×c +

∏|{pi}|
j=1 (1− pj)× e−m×c

(22)where setCat is the set of 
ategories present in image, pj = P (catB |catj , Ai) the presen
e probabi-lity of catB at area Ai when catj is present, c = max(correlation(cati,catj))/cati, catj ∈ setCat.This strategy 
ontains more information in 
omparison to the two previous strategies. The useof the 
orrelation between a 
ouple of existing 
ategories (for example, the 
orrelation obtainedin [15℄) 
an reinfor
e or redu
e the predi
tion 
on�den
e about the presen
e of a 
ategory 
onsi-dered based on this 
ouple. For example, if 
ouple (A,C) has a high 
orrelation, it means thatthe 
on�den
e of the predi
tion of B based on A and based on C is reinfor
ed ; on the 
ontrary,a low 
orrelation of (A,C) 
an redu
e this 
on�den
e. We have the global form of FFusion is
a

a+b
and the more 
orrelation c in
reases, the more a in
reases and b de
reases, 
onsequently, themore FFusion in
reases.Be
ause we think that the 
orrelation between 
ategories is a relevant information to integrate inthe analysis, we 
hoose the 
ompromise strategy to 
ompute the presen
e probability of one 
ategorybased on the existing ones (see Algo.8).
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(a) By using the 
onjun
tive strategy,probabilities 0.35, 0.10, 0.0, 0.0 are keptfor areas 1, 2, 3, 4 respe
tively. By nor-malizing with their sum 0.45, we obtainthe results above. (b) By using the disjun
tive strategy,probabilities 0.50, 0.50, 0.50, 0.05 arekept for areas 1, 2, 3, 4 respe
tively. Bynormalizing with their sum 1.55, we ob-tain the results above.

(
) By using the 
ompromise strategy,with m = 0.5 and c = 0.7, merged pro-babilities for areas 1, 2, 3, 4 are 0.419,
0.182, 0.0, 0.0 respe
tively. By norma-lizing with their sum 0.601, we obtainthe results above.

(d) By using the 
ompromise strategy,with m = 0.5 and c = 0.1, merged pro-babilities for areas 1, 2, 3, 4 are 0.28,
0.11, 0.0, 0.0 respe
tively. By normali-zing with their sum 0.39, we obtain theresults above.Figure 18 � Results of the appli
ation of three data fusion strategies to the example of Fig.17.
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Fun
tion : �ndLo
FromBRInput: Context graph GI , knowledge graph GK , 
ategory node cncheck of GK to lo
ate in I,type of unary relationship typeu, type of binary relationship typeb, threshold parameter
ϕpOutput: List of possible unary 
on�gurations LConf

LConf ←− ∅ ;for (cnGI
∈ GI .get_ListOf_TrueCNode_AtLevel(0)) do

setCat←− {cnGI
.getCategory(0), cncheck.getCategory(0)} ;# cnGK

and cncheck are at level 0 then they 
ontain only one entity 
ategory. In 
onsequen
e, setCat has 2 items.
cnGK

←− GK .getCNode_BySetCat(setCat) ;# cnGK
is a 
ategory node at level 1 in GK

rnGK
←− cnGK

.getRNode_ByTypeAndStatus(typeb,true) ;for (conf typeb ∈ rnGK
.φ) doif (conf typeb .probab > ϕp) then

conf typeu ←− getUnaryConfFrom(conf typeb, cnGI
) ;# Determinates conf typeu the area in I of cncheck from confbinary and cnGI

conf typeu

other ←− getByConf(LConf, conf typeu) ;# In set LConf , looking for a conf
typeu

other
having the same 
on�guration as conf typeuif (∃conf typeu

other ) then# Store the dete
tion probability and the 
ategory that allows to dedu
e this one before 
omputing thefusion of probabilities in Algo.8
conf typeu

other .addCategory(cnGK
.getCategory(0)) ;

conf typeu

other .addToListOfProbab(conf typeu.probab) ;endelse
LConf.add(conf typeu) ;endendendendAlgorithm 7: Algorithm of fun
tion �ndLo
FromBR(). See Tab.2 on page 39 for the de�nitionof the main used variables/methods.
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Fun
tion : �lterLo
WithURInput: Relationship node rntypeu taken from GK , list of possible unary relationship
on�gurations LConf , probability threshold ϕpOutput: List of possible unary 
on�gurations LConf after �lteringfor (conf ∈ LConf) do
conf rn ←− getByConf(rntypeu.φ, conf ) ;# In set rntypeu .φ, looking for the confrn having the same 
on�guration as confif (∄conf rn ∨ conf rn.probab < ϕp) then

LConf.remove(conf ) ;endelse
conf .addToListOfProbab(conf rn.probab) ;endend# Compute �nal dete
tion probability for ea
h conf ∈ LConf a

ording to strategy of fusion 3 and equation 22for (conf ∈ LConf) do

maxCorr←− computeMaxCorrFrom(conf.getCategories())) ;# Get the highest 
orrelation of a 
ouple of 
ategories among the list of 
ategories stored for conf in Algo.7
p←− FFusion(conf.listOfProbab,maxCorr) ;# Compute the fusion probability in a

ording to equation 22 conf.setF inalProbab(p) ;endSort LConf by probability ;Algorithm 8: Algorithm of fun
tion �lterLo
WithUR(). See Tab.2 on page 39 for the de�ni-tion of the main used variables/methods.
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Fun
tion : buildGraph_03Input: Image I, initial 
ontext graph GI , knowledge graph GK , type of unary relationship
typeu, type of binary relationship typeb, threshold parameters : ϕf , ϕt, ϕuOutput: Graph GI representing the 
ontext of I

LCN ←− GK .get_ListOf_TrueCNode_AtLevel(0) ;# Get the set of true 
ategory nodes at level 0 from GKfor cn ∈ GI .get_ListOf_TrueCNode_AtLevel(0) doRemove from LCN other C nodes that 
annot o

ur with cn ;# If cncheck is present as a True node in GI , we �lter all C nodes in GK that are 
onne
ted to cncheck by only false
R nodes LCN .remove(cn) ;endwhile LCN 6= ∅ do
cncheck ←− getRandom_CNode_From(LCN ) ;
LConf ←− findLocFromBR(GI , GK , cncheck, type

u, typeb, ϕp) ;
rntypeu

check ←− cncheck.getRNode_ByTypeAndStatus(typeu,true) ;
filterLocWithUR(LConf, rntypeu

check, ϕp) ;
foundTrueCN ←− checkCN(I,GI , GK , cncheck, type

u, LConf, ϕt, ϕu, ϕp) ;# Verify if cncheck 
an be present in GI . The status of GI .cncheck depends on ϕt, ϕu. checkCNode() is de�ned inAlgo.4if foundTrueCN = true thenRemove from LCN other C nodes that 
annot o

ur with cncheck ;# If cncheck is present as a True node in GI , we �lter all C nodes in GK that are 
onne
ted to cncheck by onlyfalse R nodes.end
LCN .remove(cncheck) ;end

buildBinaryRelation(GI , type
b) ;# Study other spatial relationships from GI su
h as binary relationships, see this fun
tion in Algo.5Return GI ;Algorithm 9: Improved algorithm of 
ontext graph GI building from initial in
omplete 
ontextgraph and a knowledge graph GK by using binary relationship knowledge. See Tab.2 on page 39for the de�nition of the main used variables/methods.
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5.3 Overview of graph buildingIn Fig.19, we present an overview of the three main algorithms (Algo.3, Algo.6, and Algo.9). Algo.6improves Algo.3 by �ltering the list of 
ategories 
onsidered before verifying their presen
e in I. Algo.9improves Algo.6 by using the binary relationships learnt from GK to �lter possible lo
ations of a
ategory 
onsidered. We report the main obje
t variables and fun
tions used in these three algorithmsin Tab.2.

Figure 19 � An overview of the three graph building algorithms for a given image.
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Name of variable/method Meaning
G Knowledge/image 
ontext graph
cn Obje
t variable of type C node
rn Obje
t variable of type R node
conf Obje
t variable of type 
on�guration
L List of obje
t variables, for example LCNis a list of C nodes
L.remove(o) Remove obje
t variable o from L
L.add(o) Add obje
t variable o to L
getRandom_CNode_From(LCN ) Get a C node from list LCN randomly
cn.getRNode_ByTypeAndStatus(type, stat) Get a R node that has type and stat asattributes and is 
onne
ted to cn
G.getCNode_ById(id) Get a C node from G in fun
tion of a givenidenti�
ator id
G.getCNode_BySetCat(setCat) Get a C node from G in fun
tion of a givenset of 
ategories setCat
G.newCNode_AssignedTo(setCat, stat) Create a new C node in G that is assignedto a set of 
ategories setCat and that hasa status stat
G.newRNode_AssignedTo(setCat, stat) Create a new R node in G that is assignedto a set of 
ategories setCat and that hasa status stat
G.setLink(cn, rn) In G, add an ar
 between cn and rnTable 2 � Table of some used variables/fun
tions and their meaning in Algo.3, 4, 5, 6, 7, 8, 9.
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From these strategies, several s
enarios of query based on the image 
ontext graph 
an be applied,we present them in the next se
tion 5.4.5.4 S
enarios of interrogationSuppose that we have a knowledge graph GK from a training image database where ea
h image is
ompletely annotated, and that we have a test database DBtest where ea
h image is not 
ompletelyannotated. By building the initial graph for ea
h image in DBtest, by referen
ing the knowledge on
GK , from the previous algorithms, we 
an imagine forming some s
enarios of query as following :1. Is 
ategory A present in the given image I, knowing that A is present in GK ?2. What are the images in DBtest 
ontaining 
ategory A ? Where is the sear
hing area of A in theseimages ? Where is exa
tly A, knowing that A is present in GK .3. Given two 
ategories A and B, what are the 
on�gurations conf of the relationship type betweenthem in DBtest ? Whi
h 
on�guration is the most frequent ?4. What are the images where A and B have a conf of relationship type ?5. Given 
ategory A, and 
on�guration conf of relationship type (e.g. type 
ould be 9DSpa, topo-logi
al), whi
h 
ategory B have relation conf with A ?6. In image I where A is present, is B present ?7. Given two 
ategories A, B, and lo
ation LA of A in an image, whi
h 
on�guration conf ofrelationship type 
an we found between A and B ? Where is the sear
hing area for B ? Where is

B ?8. Given a query image, what are the images in DBtest that are similar to this query one ?9. Given a prototype 
ontext (i.e a 
ontext des
ription by a graph), what are the images from
DBtest that have the similar 
ontext ?In the next se
tion, we integrate some of these s
enarios into our experiments. The experimentsin se
tion 6.1 
orrespond to queries 1,2 while the ones in se
tion 6.2 
orrespond to queries 5,6,7. Theother queries are studied in se
tion 6.3.
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6 ExperimentsThis se
tion is dedi
ated to the evaluation of our 
ontext graph-based model for obje
t dete
tionand image retrieval by example in a 
olle
tion of images.In the following experiments, the knowledge graph, GK , is built from statisti
al results obtainedin [15℄ on LabelMe 2 with annotated image database DB. This graph presents a general knowledge on
86 di�erent entity 
ategories, on their frequent lo
ations in images (with 9-area/16-area splitting), andtheir binary/ternary relationships (spatial relationships, 
o-o

urren
e relationships).To des
ribe visual 
ontent of ea
h entity 
ategory, we use the ∆-TSR des
ription that allows todes
ribe the triangular relationships between interest points (see se
tion 2.1 or [16℄). They are storedas des
ription attributes of 
ategory nodes in GK . In fa
t, for ea
h entity present in images of DB ,we extra
t all interest points within its boundary (annotated by a polygon). Points are extra
ted and
hara
terized with SIFT. The size of the visual vo
abulary is NL = 8000. In 
onsequen
e, ea
h entity
ategory 
an own many ∆-TSR des
riptions. The dete
tion of an entity in the query image is done by
omparing its ∆-TSR des
ription to ea
h ∆-TSR one of the entity 
ategory (this step is en
apulated infun
tion I.detectObject(conf, cn) of Algo.4 p.28). The 
omparison 
an be stopped immediately whenthe similarity measure rea
hes a given threshold.The test database DBtest 
ontains a set of 10000 images randomly 
hosen from LabelMe in daily
ontents. The 
ontent of these images is very heterogeneous and already annotated. In order to gua-rantee the quality of the database we veri�ed 
arefully ea
h annotated image for 
onsisten
y :� Firstly, we manually 
onsolidated synonymous labels by 
orre
ting orthographi
 mistakes andmerging labels having the same meaning.� Se
ondly, we added missing annotations to entities of the 
onsidered 
ategories, ex
ept for toosmall size entities or entities belonging to a 
ategory having a high frequen
y of already annotatedentities in the image, su
h as "leaf", "window", "�ower", et
. In this way, the statisti
al resultsshould not be biased by these missing annotations.In all experiments 
on
erning algorithms presented in se
tion 5 p.24, we 
hoose threshold ϕp = 0.1(the frequen
y of lo
ation), ϕt = 0.3 (the threshold of true positive), ϕu = 0.15 (the threshold ofun
ertainty). These thresholds were determined from di�erent experiments : we vary thresholds ϕp,
ϕu and ϕt in the interval [0.05,0.2℄, [0.1,0.3℄ and [0.2,0.5℄ respe
tively, and then we 
hoose the valuesof thresholds that give the best results in general.In se
tions 6.1 and 6.2, we evaluate the ability of des
ribing the image 
ontext of the proposedalgorithms of se
tion 5. Then, in se
tion 6.3, we evaluate the approa
h for the image retrieval basedon 
ontext in using our 
ontext graph-base model. This evaluation shows the interest of using thisgraph-based model in image retrieval in 
omparison to ∆-TSR approa
h only.2. LabelMe: http://labelme.
sail.mit.edu.

41



Figure 20 � Distribution of similarity measures between automati
ally built graphs and ground-truthgraphs.6.1 Evaluation of image 
ontext graph building by using unary relationshipsIn this se
tion, we evaluate the ability of automati
 image 
ontext graph building with algorithm
buildGraph_01 (Algo.3 p.27) by only using the unary relationships from GK . In se
tion 6.1.1, wepresent the 
omparison between the graphs built by this algorithm and ground-truth graphs. Then inse
tion 6.1.2, we evaluate the ability for obje
t de
te
tion and lo
alization of buildGraph_01. Finally,in se
tion 6.1.3, we present its ability of obje
t dete
tion 
ompared to ∆-TSR.6.1.1 Global 
omparison with ground-truth graphsIn this se
tion, we evaluate the similarity between 
ontext graphs built with algorithm buildGraph_01and 
ontext graphs built from image annotations (what we 
all a ground-truth graph). The similaritymeasure is 
omputed based on the fun
tion of equation 19 p.23. Fig.20 displays the distribution of thesimilarity measures of 10000 
ouples of graphs.The average of similarity measure is 0.531. The highest and lowest measures are 0.79 and 0.27respe
tively. The low s
ore is 
aused by false positives (entity is not present but is dete
ted). Clearly,the absen
e of an entity 
ategory leads to the absen
e of its relationships that penalizes more thesimilarity between graphs. However, in average, buildGraph_01 gives an initial a

eptable result.
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Figure 21 � Average pre
ision of dete
tion and lo
alization step with buildGraph_01 ( Algo.3) forea
h entity 
ategory when this last one is present.6.1.2 Ability of obje
t dete
tion and lo
alization vs. ground-truthBy using buildGraph_01, �rstly, we observed that in average for ea
h image, around 42 
ategoriesare 
he
ked for around 5 di�erent 
ategories dete
ted. Se
ondly, there are about 14 and 21 lo
ation
on�gurations among 138 and 649 di�erent 
on�gurations to verify for ea
h 
ategory with 9-area and16-area splitting models respe
tively. To go deeper, we 
ompare the information 
ontained in the
ontext graph for ea
h image to the one of the annotation. We evaluate the average of pre
ision forea
h entity 
ategory in two 
ases :� the 
ategory is present in a given lo
ation in image,� the 
ategory is absent in a given lo
ation in image.Fig.21 shows the distribution of the mean pre
ision (by number of instan
es of 
ategory) obtainedwith buildGraph_01 (Algo.3) for ea
h entity 
ategory from GK . Fig.21( - ) indi
ates the per
entage oftrue positives (a

ording to threshold ϕt) while Fig.21( - ) indi
ates the per
entage of false negatives(i.e. entity is present in a given lo
ation but it is not dete
ted in this lo
ation). The un
ertainty of thedete
tion is presented in Fig.21( - ). In general, the mean pre
ision of buildGraph_01 rea
hes 0.526for true positives, 0.163 for un
ertainty and 0.311 for false negatives.Similarly, we evaluate the pre
ision of buildGraph_01 on the absen
e of ea
h 
ategory. The means
ore of false positive is 0.134 (see the distribution in Fig.22), while the mean one of un
ertainty is0.153. Nevertheless, the mean s
ore more than 0.71 of true negatives 
an 
on�rm a robustness forobje
t dete
tion and lo
alization of our model. 43



Figure 22 � Average pre
ision of dete
tion step with buildGraph_01 (Algo.3) for ea
h entity 
ategorywhen it is absent.We illustrate 
ategory dete
tion with our approa
h in Fig.26 of appendix. In this query image,the algorithm dete
ted "
ar", "tree", "fen
e" and other 
ategories. The yellow re
tangles indi
ate a
on�rmation of the dete
tion while the blue ones show an un
ertainty.6.1.3 Ability of obje
t dete
tion and lo
alization vs. ∆-TSRIn this se
tion, we evaluate the impa
t of using 
ontext knowledge for obje
t dete
tion and lo-
alization. Firstly, we 
ompare the ability of dete
tion with buildGraph_01 with the one of ∆-TSR.Note that ∆-TSR 
annot allow to lo
alize the entity, this method dete
t only the presen
e/absen
eof a 
ategory in an image by giving a similarity s
ore. Then, to 
ompare to ∆-TSR, we evaluate
buildGraph_01 also on the 
riterion of presen
e/absen
e of a 
ategory in a whole image not takinginto a

ount its lo
ation. The 
omparison is shown in Tab.3 for ∆-TSR and strategy buildGraph_01(with and without 
onsidering lo
ation to be 
omparable with ∆-TSR).We observe that dete
tion with ∆-TSR is slightly improved of 1%. This improvement results fromthe mat
hing of 
ategory des
riptions on the whole image des
riptions. Certainly, buildGraph_01 li-mits the number of lo
alization to verify, then it 
olle
ts fewer des
riptions from images to 
omparewith 
ategory des
riptions. Similarly, un
ertainty with ∆-TSR are slightly improved of 0.8%, in 
onse-quen
e, the false positive are de
reased of 2%. However, this advantage 
an be
ome an importantin
onvenient when 
ategory Ci is absent. True negative of ∆-TSR de
rease of 5%, that means thes
ore of false negative and un
ertainty are worse. It results from a false mat
hing between des
riptions44



Category is builGraph_01 builGraph_01 ∆-TSRtake into a

ount do not take intolo
ation a

ount lo
ationpresent True positive 0.526 0.534 0.543Un
ertainty 0.163 0.158 0.166False positive 0.311 0.308 0.291absent False negative 0.134 0.127 0.167Un
ertainty 0.153 0.159 0.169True negative 0.713 0.714 0.664Table 3 � Comparison of average pre
isions with the two algorithms.of Ci with other des
riptions in the image.On the other hand, we show that the use of 
ontext knowledge 
an redu
e the 
omputation 
ostsnotably. We 
ompare the average 
ost of dete
tion for ea
h 
ategory in two models. Note that noindexing stru
ture is used for the two models. The 
omparison is presented in Tab.4. Logi
ally, by ex-ploiting 
ontext knowledge, the obje
t dete
tion of buildGraph_01 redu
es 
onsiderably the numberof 
omparison while remaining a 
ompetitive quality.
builGraph_01 ∆-TSRAverage number of 
ategories to 
he
k (averagedon the set of images) 42 86Average number of ∆-TSR signatures used perimage (averaged on the set of images) 1571 4315Average number of ∆-TSR signatures of ea
h 
a-tegory in GK

442 442Average number of signatures of ea
h ∆-TSR si-gnatures in GK

73 73Table 4 � Computation 
ost 
omparison between builGraph_01 and ∆-TSR approa
hes, in terms ofvolume of ∆-TSR des
riptors and of volumes of 
ategories to manipulate.6.2 Evaluation of image 
ontext graph building adding binary relationshipsIn this se
tion, we study the improvement brought by strategies buildGraph_02 (Algo.6 p.31),
buildGraph_03 (Algo.9 p.37) in 
omparison to building_01 (Algo.3 p.27). Be
ause buildGraph_02and buildGraph_03 need an initial image 
ontext graph, for ea
h image, we 
hoose randomly an an-notated entity 
ategory from image annotation as the initial information to build its initial 
ontextgraph. The 
omparison of these three algorithms is reported in Tab.5.We observed that : 45



builGraph_01 builGraph_02 builGraph_03Average number of 
ategories to 
he
k(averaged on the set of images) 42 21 21Average number of lo
ation 
on�gurationswith 9-area and 16-area splittings 14/21 14/21 7/12True positive 0.526 0.526 0.532False positive 0.311 0.311 0.257False negative 0.134 0.134 0.116True negative 0.713 0.713 0.741Table 5 � Comparison between builGraph_01, builGraph_02, and builGraph_03.� buildGraph_02 and buildGraph_03 redu
e 
onsiderably the number of 
ategory to verify. Inaverage, there are only 21 
ategories to 
he
k for ea
h image.� buildGraph_01 and buildGraph_02 approximately inspe
ts, in average, 14 and 21 di�erentlo
ation 
on�gurations with 9-area and 16-area splitting respe
tively for ea
h entity 
ategory.Meanwhile, in using 9DSpa relationships as binary relationship, buildGraph_03 inspe
ts only 7and 12 di�erent lo
ation 
on�gurations for ea
h type of unary relationship.� buildGraph_02 does not improve the s
ore of buildGraph_01 in terms of dete
tion pre
isionbe
ause buildGraph_02 only uses 
o-o

urren
e relationships to redu
e the number of 
ategoriesto 
he
k.� buildGraph_03 improves slightly the s
ore of true positive when a 
ategory is present, redu
esthe one of false positive (the average s
ore is 0.116). When a 
ategory is absent, the s
ore of truenegative is in
reased about 3%. The ones of false positive and un
ertainty are lowered 2% (seethe s
ore of buildGraph_01 in Tab.3).We illustrate 
ategory dete
tion with buildGraph_03 in Fig.27 in appendix. By giving the informa-tion of "building" 
ategory, the algorithm shows di�erent lo
ations dete
ted for other entity 
ategoriesthan 
an have a relationship with "building". We illustrate the algorithm with "
ar", "fen
e", "tree".By using binary relationship, buildGraph_03 
an be used to respond to queries 5, 6 or 7 presented inse
tion 5.4. In 
omparison with buildGraph_01, buildGraph_03 redu
ed the un
ertainty in dete
tionfor remaining true positive.6.3 Evaluation for image retrievalIn this se
tion, we evaluate our 
ontext graph-based model for the s
enario of image retrieval. Allthe te
hniques are evaluated under the paradigm of image retrieval by example, in terms of quality ofthe responses by 
omputing Pre
ision and Re
all (P/R) 
urves (or at least mAP, i.e. mean AveragePre
ision, for se
ondary results). These measures are averaged over all the images of the tested datasetstaken as queries. We propose the evaluation with a database built by giving priority to the annotations.46



Figure 23 � Pre
ision/Re
all 
urves of ∆-TSR and 
ontext graph-based model for image retrieval.In this experiment, we 
lassify DBtest in di�erent 
lasses de�ned by the set of annotated 
ategoriespresent in ea
h image (see example of Table 7 in appendix). For example, every images 
ontaining"
ar", "person", "building", "road" belong to the same 
lass. In our framework, we de�ned randomlymany 
lasses by group of 
ategories and 
hose 20 ones that 
ontain the most images (see Tab.6 inappendix). The number of 
ategories in ea
h 
lass varies between 1 and 5. The 
omparison of the P/R
urves for the two approa
hes (∆-TSR and the 
ontext graph-based model) gives the Fig.23.We observe that the graph-based model is superior. Its mAP is 0.79 while mAP of ∆-TSR5D is
0.61. The result of ∆-TSR5D is worse be
ause of the important variability of the visual 
ontent inea
h 
lass of this test database. The similarity measure in the graph-based model is always based onthe presen
e of entity 
ategories and spatial relationships between them, then the better pre
ision islogi
al.6.3.1 Example of retrievalTo 
on
lude these experiments, we give an example of image retrieval by example with ∆-TSR inFig.24 and with the 
ontext graph-based model in Fig.25.7 Con
lusionIn this paper, we have presented and evaluated a graph-based model to represent the spatial know-ledge existing between entity 
ategories in an image. This graph is totally extendible for adding a new47



(a) Query image (b) Results with ∆-TSR5DFigure 24 � The ten �rst images similar to the query image in terms of visual 
ontent (∆-TSR.

(a) Query image (b) Results with 
ontext graph-based modelFigure 25 � The ten �rst images similar to query image in terms of 
ontext.
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knowledge. The uni�
ation of knowledge is guaranteed robustly by using three notions of node situa-tion : true, un
ertain, false. Moreover, this knowledge graph helps to lo
alize and dete
t obje
tsin an image if we 
an 
olle
t some initial information from other 
ategories. And more generally, in theother 
ases, the lo
ation knowledge of an entity 
ategory allows to restri
t the number of lo
ations forits dete
tion if we do not have any a priori information in the image.We apply this graph model to represent the spatial 
ontext of an image. This representation allowsa qui
k 
omparison between images based on the 
ontext similarity. Ea
h node in the graph has anunique identi�
ation, then the mat
hing between two nodes of two graphs 
an be done qui
kly witha hashing stru
ture. The 
ontext similarity of two images is evaluated on the presen
e of 
ategoriesand the similarity of their spatial relationships. So, our graph-based model 
an be 
lassi�ed with thoseusing the image 
ontext a priori for image pro
essing. In that way, for image retrieval for example,the model 
an strengthen the obtained images �ltering , then, the exe
ution time. We have also pro-posed three algorithms to represent automati
ally the 
ontext of image by using a knowledge graphas external assistan
e for obje
t dete
tion and lo
alization. We demonstrated also the robustness ofthese three algorithms for the building of 
ontext of image. We have also experimented its relevan
efor image retrieval by 
ontext by 
omparing our graph-based model to ∆-TSR that allows a similaritysear
h based on visual 
ontent.
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APPENDIX

(a) Image and 9-area splitting (b) Dete
tion of "
ar"

(
) Dete
tion of "fen
e" (d) Dete
tion of "tree"Figure 26 � Entity 
ategories dete
ted with buildGraph_01 and their lo
ations with 9-area splitting :blue re
tangle for un
ertain lo
ation and yellow re
tangle for a sure one.
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(a) Image and provided areas of "building" (b) Dete
tion of "
ar"

(
) Dete
tion of "fen
e" (d) Dete
tion of "tree"Figure 27 � Entity 
ategories dete
ted with buildGraph_03 from the given 
ategory "building" andtheir lo
ations : blue re
tangle for un
ertain lo
ation and yellow re
tangle for sure one.ID Class CategoriesC01 bi
y
le, 
ar, roadC02 bird, grass, lake, tree, pathC03 bird, plantC04 boat, building, lake, skyC05 building, 
arC06 building, fen
eC07 
ar, road, treeC08 
hair, windowC09 
himney, roof, building, treeC10 door, fen
e, wallC11 �ag, roadC12 grass, �owerC13 lake, tree, skyC14 lamp, treeC15 moutain, roadC16 motobike, table, tra�
-lightC17 personC18 sea, sky, mountainC19 side-walk, treeC20 table, umbrellaTable 6 � 20 image 
lasses in experiment of se
tion 6.3.53



person building, 
ar boat, lake, sky,building

lake, tree, sky by
i
le, 
ar, road side-walk, tree

Table 7 � Di�erent 
lasses of test database for evaluation in se
tion 6.3.54
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