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Abstract

This report is focused on the study of methods for image retrieval in collection of heterogeneous
contents. The spatial relationships between entities in an image allow to create the global description
of the image that we call the image context. Taking into account the contextual spatial relationships
in the similarity search of images can allow improving the retrieval quality by limiting false alarms.
We defined the context of image as the presence of entity categories and their spatial relationships
in the image.

By studying statistically the relationships between different entity categories on LabelMe, a
symbolic images databases of heterogeneous content, we create a cartography of their spatial re-
lationships that can be integrated in a graph-based model of the contextual relationships, the
principal contribution of this report. This graph describes the general knowledge of every entity
categories. Spatial reasoning on this knowledge graph can help improving tasks of image proces-
sing such as detection and localization of an entity category by using the presence of another one.
Further, this model can be applied to represent the context of an image. The similarity search ba-
sed on context can be achieved by comparing the graphs, then, contextual similarity between two
images is evaluated by the similarity between their graphs. This work was evaluated on the symbo-
lic image database of LabelMe. The experiments showed its relevance for image retrieval by context.

Keywords : Image, similarity search, spatial relationships, image context.

1 Introduction

The interpretation of images by a machine requires to have a representation of images preprocessed
manually or automatically. This representation can be built from visual features (such as color, shape
of elements in images) or higher level information (such as spatial relationships between elements or
models of these elements). To date, it is still difficult to build a robust model for automatic image



interpretation. On the contrary, humans prove their effectiveness in image processing tasks. We can
say that what makes such humans’ possible aptitudes is their ability to interpret visual features of
images by using prior knowledge. Prior knowledge is very often related to the presence of multiple
entities in an image and to the spatial information linking them, that can be called the context of the
image. Humans can incorporate this knowledge to analyse the image and to create personal semantic
concepts. According to [8], image interpretation can be classified into three levels of complexity :

— Level 1 : interpretation is based mainly on primary features such as color, texture, shape, seg-
mented regions, interest points and/or the spatial location of image elements. These features are
rather objective and their estimation is performed directly, it does not require any knowledge
base. Many approaches of image retrieval or of image categorization can be classified into this
level (e.g. Bag of Features and all its derived approaches).

— Level 2 : interpretation involves some degree of logical inference concerning the image content.
At this level, queries are performed in order to retrieve entities of a given type or to retrieve a
specific entity from another. The need of a processed knowledge base is obvious. This knowledge
base can contain low-level information of entity categories (e.g color, shape), relationships bet-
ween categories (e.g. correlations, conditional probabilities, spatial relationships), and more.

— Level 3 : interpretation is based on symbolic features. At this level, a significant amount of
high-level reasoning about the meaning and purpose on the entities or on background of images
can be involved. The result of this processing is that an image can be linked to a concept by a
subjective judgement. To date, humans are only ones who can propose an effective interpretation
of an image at this level.

Most of the approaches proposed lie between levels 1 and 2. It is still difficult to lie between levels
2 and 3 that refer to high-level semantic image retrieval [12|. The main effort is to connect low-level
features to high-level semantics of images. The effective approaches to date are :

1. using machine learning methods in order to associate high-level concepts to low-level features,
2. taking into account user feedback in order to improve subjective concepts,

3. inferring visual content based on textual information extracted from image context,
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. using entity ontology in order to define high-level concepts.

Most content based image retrieval systems exploit a combination of two or more of these methods
in order to perform high-level semantic image retrieval (see [24, 8, 18, 27, 6]). Although the results
obtained are promising, designing systems that really understand image content at semantic level is
still a open problem.

In this paper, we propose a model to represent a general knowledge about relationships such as
spatial ones between entity categories existing in an image database. Furthermore, this model can be
used to describe the context of a given image. The definition of image context is discussed in the
section 2.2. Finally, we observe that an image may be linked to multiple subjective interactions, then,
we hope to attribute a semantic meaning to each context image that can facilitate image retrieval or
recognition tasks. Our work falls in the third and fourth categories of approaches listed above. In the



limit of our framework, we do not investigate the learning of concepts using machine learning methods
and consider that these concepts are known.

In the section 2, we present the definition of image context and several spatial relationships between
categories. The section 3 presents the concepts and definitions of our graph model. In the next, we
discuss the evolution capacity of the graph to the new knowledge and spatial reasoning in the section
4 and 5. Finally, in the section 6, we present several experiments to evaluate our graph model.

2 Initial definitions

In this section, we present several definitions like spatial relationships and image context before
presenting our principal work.

2.1 Spatial relationship

In our framework, we are firstly interested in the representation of spatial relationships between
symbolic objects in images, called entities. In CBIR, embedding such information into image content
description provides a better representation of the content as well as new scenarios of interrogation.
The spatial relationships can be the unary, binary, and ternary relationships.

We call unary relationship, the relationship between an entity and its localization in an image,
where localization is defined as a region or an area of the image. Areas of an image can be represen-
ted in different ways like quad-tree or quin-tree, see for example [20, 28]. Since we do not have any
knowledge a priori of the location of the categories in the images, we propose to split images in a fixed
number of regular areas (i.e. equal size areas). First, we divide each image in a fixed sized grid. Each
cell of this grid, called atomic area, is represented by a code. Fig.1 and 2 depict a splitting in 9 or in
16 different basic areas and theirs codes, respectively. We then combine these codes to present more
complex areas, by example for 9-area splitting, code 009 represents area () grouping together areas
001(F#) and 008(HH).

001 | 008 | 064
002 | 016 | 128
004 | 032 | 256

FIGURE 1 — Codes in unary relationship by splitting an image in nine areas.

00001 | 00016 | 00256 | 04096
00002 | 00032 | 00512 | 08192
00004 | 00064 | 01024 | 16384
00008 | 00128 | 02048 | 32768

FIGURE 2 — Codes in unary relationship by splitting an image in 16 areas.

A binary relationship links two entities of distinct categories together in an image. In last years,



there have been many approaches proposed for representing binary spatial relationships. They can be
classified as topological, directional or distance-based approaches (see [11] for more details), and can
be applied on symbolic objects or low level features. Here, we have focussed on relationships between
the entities of the database described in terms of directional relationships with approach 9DSpa [17],
of topological relationships [9, 10] and of a combination of them with 2D projections [19]. We do not
use orthogonal [3] and 9DLT relationship [2] because of its inconveniences mentioned in [17].

A ternary relationship describes a relationship of a triplet of categories. To our knowledge, a few
approaches were proposed to describe crisp triangular relationships of three symbolic entities. We can
mention TSR approach [13] and our approach A-TSR (see [16]). By applying to a set of heterogeneous
symbolic entities that do not have fixed shape and size, these approaches cannot described fully tri-
angular spatial relationships between symbolic entities since they take into account only the center of
each entity as representation of it.

2.2 TImage context

In an image, the recognition or detection of entity category requires different information from the
raw image data. According to [26], in the real world, there exists a strong relationship between the
environments and entities found within it or between the entities. Entities are never in isolation. They
can tend to co-vary with others entities and particular environments for providing a rich collection
of contextual associations. The recognition or detection will be accurate and quick if entities usually
appear in a familiar background. Then, initially, we can define that the context of an image describes
all possible types of relationship between the entities in this image, or between the entities and back-
ground of this image. The use of image context can bring a strong interest not only for recognizing
or detecting the entity category but also for image retrieval. For the recognition or detection of an
entity category, it is evident to examine the general context of image if the local features are insuffi-
cient (e.g. entity is small, or appears partially). For image retrieval, the comparison of image contexts
can help to filter out the false alarms before enter in the step of comparison of visual contents of images.

By using the visual features in image, the context can be described by relationships between local
informations and global information of the image. This context definition can drive to a hard work
of image processing. Another natural way of representing the context of an image is using the co-
occurrence relationships of its entities. In the real world, the co-occurrence might happen at a global
level, for example a bed room will predict a bed, or at a local level, for example a table will predict
the presence of a chair. A probabilistic problem can be also associated in this case. More complex, the
spatial relationships between entity categories in images can be taken into account. In general, that is
difficult to have an exact definition of context; each case of use can depend on a particular context
definition.

Here, we try to study different relationship that could be present in images. According to [14],
entities in an image can be THINGS (e.g. car, people) or STUFF (e.g. road, buildings, more precise that
are the regions in images). In general, we can have five types of relationship :



— Thing-Thing : co-concurrent relationships, spatial relationships, etc.

Stuff-Thing : texture regions that allows to predict the present of an entity category.

— Stuff-Stuff : relationships between regions of images.

— Scene-Thing : scene information such as scale, global direction that allows to determine the
location of an entity category.

— Scene-Stuff : scene information such as scale, global direction that allows to determine the location

of a region.

In our framework, we do not differentiate the entities present in image as "Thing" or as "Stuff"
because we are interested in symbolic objects that are represented by polygons. These entities are
classified simply by category. We define the image context by the presence of entity categories in image
and by the spatial relationships between these entity categories. The presence of at least an instance
of an entity category will confirm the presence of this one. The spatial relationships between categories
in image will be represented in a general way (e.g. probabilities). There are two principal ways of using
the context in a vision system :

— A priori : in this way, the context serves to locate the entities, to limit the searching region, and

to decrease the retrieval time (for example the approaches proposed by [26, 14, 25]).

— A posteriori : the context serves to object recognition if the local information is not sufficient, it
can help to reduce the ambiguities of the presents of objects in the same scene (for example the
approaches proposed by [23, 22, 5|).

There has been a growing interest in exploiting contextual information for image retrieval, clas-
sification or object detection, recognition. Different techniques have been exploited to describe the
context of image for this purpose. Intuitively, the spatial locations of objects and background scene
from global view can be used as inside-image context. Further, the combination of object detection
and classification tasks together can provide natural comprehensive context for each other without any
external assistance. Moreover, a knowledge database, considered as a external element, based on ma-
chine learning SVM or probabilistic technique, allows to enhance other tasks as localization, detection,
etc. Our approach proposed in the next sections is a priori one.

3 A Graph-based Knowledge Representation

In this section, we present how to represent a knowledge between entity categories in images by
using a graph. The concepts and definitions of this graph are presented in section 3.1. To avoid building
an unreadable graph, the attributes of node and the graph constraints are discussed in section 3.2 and
3.3 respectively. Finally, section 3.4 presents a brief example of the use of the graph.

3.1 Concept and definitions

In reality, events can be expressed by two notions : entity and relationship. For example, if we
have an event "our laboratory invited a professor last month", then this event can be represented by
two entities : "our laboratory" and "a professor" that have a relationship "invite" of attribute "last
month". We know that a general knowledge presents a general event based on concrete events which
happened. For example, based on the previous event, a general event could be formed : "Laboratories



invite professors sometimes". "Laboratory" and "Professor" may be considered as entity categories that
may be linked by a relationship of type "invite". Based on this argument, we would like to represent
the learnt knowledge by using a graph concept developed only on two notions of "category" and of
"relationship". In this graph, the instance of category (an entity) is not meaningful to guarantee a
general representation of a knowledge. However, entities are always examined before building a graph.
The reason was explained previously : a general event is based on particulars events.

Normally, in a classic graph, a vertex (or a node) represents a category and an edge represents a
relationship. We observed that a "relationship" may be unary, binary, ternary or n-nary relationship,
then a "relationship" can concern one or many categories. A classic graph can represent only the
binary relationships between two vertices. By using a hypergraph, a generalization of a graph [4], an
edge can connect any number of vertices (see Fig.3(a)). However, this connection of a set of vertices
is represented by only an edge. We know that, between two or more "categories", there are many
"relationships". It means that different edges can have the same end nodes, then a multigraph [1] can
be another alternative graph. However, a multigraph allows to describe multiple relations between two
and only two vertices (see Fig.4(a)). For our concept, we would like to use the advantages of these two
graph models, and we know that a bipartite graph [29] can model the more general multigraph and
hypergraph (see examples of representation of hypergraph in Fig.3(b) and of multigraph in Fig.4(b)).
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FIGURE 3 — An example of hypergraph and its bipartite representation.
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FIGURE 4 — An example of multigraph and its bipartite representation.

We would like to present multiple relations between multiple vertices, that is why we decided to
represent a relationship by a node. Our graph, denoted G, is a bipartite graph and contains two types



of nodes : a category node, denoted C and a relationship node, denoted R. We give a definition to each
type of node in our graph G :

— A category node C represents the existence of a set of categories in a same environment, i.e. in
the same database. For a set of categories K = {cat;}, its representation node is C{cq¢, or C.
Ck can own different attributes describing some information of K such as visual features or a
dedicated object detection algorithm.

— Similarly, a relationship node R represents a type of relationship between categories in a set
J = {cat;}, we denote this node Rf,yp . From a Rf}’p “, we can learn all possible configurations
of relationship type involved from J. In our framework, we are especially interested in spatial
relationships, for example, relationship type can be the topological spatial relationship [10] that
describes different configurations : disjoint, joint, overlaps, insides , etc.

Now, graph G is defined as :

G = (VE) (1)

Knowing that V' is the set of nodes in the graph :

V. = {Ck}U{Rs} (2)

This graph is an undirected graph. Then, F is the set of edges :

FE = {G(CK7RJ)‘VCK,RJ€V/\KQJ}
VCK,RJ evV; €(Ck,Ry) = €(R;,Cx)
VCk,Cy eV, ﬂe(chcJ)

VR, Ry € Vider r))

Figure 5 gives an example of graph (at 3 levels).

3.2 Attributes of a node

On the other hand, our requirement is that graph-based representation must be simple to compute,
clear to understand, and extendible to represent a new complex general knowledge. From this question,
we define specific attributes associated to each node, category or relationship, in sections 3.2.1 and
3.2.2.

3.2.1 Level attribute

To avoid building an unreadable graph, based on the idea that say that a complex knowledge is
developed from a set of basic ones, we split our graph into many different levels. A graph level indicates
the number of categories concerned :|{cat; }| meaning cardinality of set {cat;}. Thus, each level of graph
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FIGURE 5 — An example of a 3-level graph. The green, violet, and orange colors illustrate nodes at
level 0, 1, and 2 respectively.

is composed of a set of C' and R nodes that have the same |cat;|. Thus, we can consider the level as
an attribute of the node, denoted lev, that is defined as : lev = |cat;] — 1. Our idea is that a higher
level node can be built from lower level nodes. A low level node can connect only to one higher level
by edges between C' nodes of lower level and R nodes of higher level.

In consequence, we redefine set E :

E = {ecg,r)|VCk, R; €VAK CJA(Clev = RlevV Clev+1= Rlev)} (4)

Note that we can expand the number of levels in the graph as we need. If we study N categories,
then at the level [, we can have in maximum (NL_'I), nodes C. A high number of levels can increase
considerably the number of nodes in the graph, however, in reality, we can find many categories that
never occur together. For example, in [15], by studying 86 different entity categories in a dataset of
heterogeneous content, we found 879 couples of categories that never occur together among a set 7310

of possible couple and only 38031 present triplets in total among 102340 possible triplets.

In Fig.5, we show the concept for a 3-level graph. Concretely, we can model unary, binary, and
ternary relationships with this graph.



3.2.2 Status attribute

We know that a knowledge can be either true, or false, or uncertain. In fact, for example, we are
not certain to confirm the existence of aliens because of the limit of our scientific knowledge. "The
earth is a square" is a false definition. In addition, a true confirmation could become a false one; for
example, nowadays the confirmation "the earth is a center of universe" is not true. To complete the
graph conception, we propose to add an attribute on such status for each node of graph, denoted stat.
A node in graph can be either TRUE, or FALSE, or UNCERTAIN. These statuses can be modified to
deal with a new situation if necessary. Figs. 5, 8, and 9 show examples of TRUE nodes. To represent
a UNCERTAIN node, we use a discontinuous line node as shown in Fig.6(a). Finally a FALSE node is
represented by a strike-through node as shown in Fig.6(b). Note that FALSE and TRUE statuses are
considered as confirmations, though, UNCERTAIN status will be used as induction that is not verified yet.
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(a) Uncertain node representation (b) False node representation

FIGURE 6 — Two additional statuses of a node.

A C node must own only one status at one time in the graph. In fact, for example, it is impossible
that two confirmations : TRUE and FALSE about one category are present in parallel in the same
graph. However, we know that a C' node can be connected to many R nodes. A R is assigned to a set
of categories J and has type, each R node determines a set of configurations ® that are learnt from
J. When adding stat attribute to R node, one remark is that three R nodes can own three different
statuses but the same J and type can present in parallel to complete a knowledge of a type relationship
studied from J but for different configurations. We denote the set of configurations in R/ : R'¥**.®.
Let type.® be the set of all possible configurations of the relationship type. In consequence :

type type type
RJ|stat:true'(I) U RJ|stat:uncertain'(I) U RJ|stat:false'(I) C type.® (5)
And :
type type lype —
RJ|stat:true'<I> N fiJ\stat:uncertain'(I> N RJ\stat:false'(I) =0 (6)

Note that a configuration of relationship type belongs to only one R node among three different
status R nodes of J and type (see Fig.7 for an example).

By adding a status to a node, there are two possible scenarios to represent a knowledge base :

— We begin our knowledge representation with a graph containing all possible combinations on
categories and on relationships of universe (i.e. there is no limitation on the number of entity
categories and of types of relationship). It is evident that these nodes are uncertain initially.
Initially, the graph is very huge. The studying of several content databases will confirm or deny
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these nodes. But this scenario is complex and will not be taken into account in our framework.

— A knowledge graph is built directly from a given database. An initial graph contains only the
true or false nodes. The number of categories and the types of relationship are limited. This
graph evolute by adding new knowledge. Our work in the following will respect this scenario.

3.3 Graph constraints

Here another challenge is that the comparison of two graphs may not involve a costly computation.
To avoid to complicate the graph that can impact on graph computation such as comparison, some
constraints must be associated to it, on nodes (section 3.3.1), on statuses (section 3.3.2) and on edges
(section 3.3.3).

3.3.1 Node constraints

The presence of a set of entity categories is represented by one C' node only. Thus, a C' node must
be unique. It can be identified with a unique identification, denoted id and computed by function of
equation 7 : C.id = FLP(K). Note that a cat; can be identified by a unique id (that is an integer)
and that N9 is the total number of categories examined in system. The id attribute of the C' node
is an integer computed from the id of cat;|cat; € K. It will allow to locate quickly a C' node in the
graph by using a hash function.

10



FCI‘D(K) = Zlfjl cat;.id * (Ncateg)(ifl)
Veat;, cat; € K;i < j = cat;.id < catj.id

In consequence, we obtain : YO € V : 3C; € V|Cxg.id = Cj.id.

Similarly, a Ry node must be unique also. Its uniqueness is represented by a unique id. Differently
to the id of the C node, this id is defined by three elements : set J of categories, type of relationship,
and status stat of a node. It is computed by the function in equation 8 :

FIP(K) = type + toString(stat) + toString(FLP (K)) (8)

where toString(s) allows to transform a data type (boolean, number, etc.) to a string. Then the
id of a R node is a string that is unique. Thus, we obtain :

VRj,Rx €V :(J # K)V (J = K A Rj.type # R .type) ()
V(J = K A Rjy.type = R .type N Ry .stat # Rj.stat)

It is evident that, for a type of relationship, there may be many different R nodes. It means there
are many instances of R™P¢ for a given type. Nowadays, a computer can have a large memory, storage
optimization is not the main subject. It is not necessary to look for a way to associate many C nodes
to a R of given type efficiently. We address the computation optimization problem in the graph (e.g.
comparison, node matching, etc.). In a large graph, it is always easy and quick to find a node by its id.

In our graph, one lower level is connected to only one next higher level. There is another important
constraint on the link between R nodes and C nodes. Given a R node at level [, R is always connected
to I + 1 nodes C that are at level [ — 1, and is linked to only one C node at level [ (see Fig.5).

3.3.2 Status constraints

To be able to compare the three statuses, we impose that TRUE>UNCERTAIN>FALSE. Finally, to
avoid absurd representations in the graph, we propose three constraints concerning stat definition :

— The first constraint concerns the C' and R nodes that are connected and at a same level :
VCk,R; €V : (I =J = Ck.stat >= Ryj.stat) (10)

Note that : I = J can be replaced by (Je(cy r,) € £ A Ck.lev = Ry.lev).
— The second constraint concerns the lower level C' node and the higher level R node that are
connected :

VCk,R; €V :ICJ= Cg.stat >= R.stat (11)

11



Here note that : I C J can be replaced by (Ele(CK,RJ) € ENCg.lev = Rj.lev—1).
— The third constraint concerns two C nodes of two different levels :

VCk,CyjeV :1ICJ= Cg.stat >= Cj.stat (12)

We can observe that the status of a category node plays an important role. It is certain that the
status of a R node depends on the status of a C' node. We cannot deny that the non-existence of a C'
node will reject all R nodes linked with it. For example, we can say that there are many researches
concerning relationship between ALIEN category and EARTH category ; and one day, if we confirm that
this ALIEN category do not exist (this category has a FALSE status), then all associated relationships
become false. Furthermore, it is also evident that the status of a higher level node depends on the
status of a lower level node. For example, if we confirm that in an environment, there is no A category
(Cray-stat is FALSE), then it is impossible for a couple of categories (A, B) to be present in this
environment (thus, C4 py.stat becomes FALSE t00).

3.3.3 Edge constraints

We impose two constraints for the edges between C' nodes and R nodes :
— The first constraint is for two nodes of same level. Node C'ix can be linked to node R; at the
same level if and only if they are assigned to the same set of categories, it means too K = J :

VR; €V :3Ck € VICk.lev=Rylev NK =J A3ecy r,) €E (13)

— The second constraint is for two nodes of different levels. A node Cg of a lower level can be
linked to a node Rj of a next higher level if and only if K C J :

VR;,Ck € VI(Ry.lev=Cg.lev+ 1) AN (K CJ):3ecyr,) €E (14)

This last constraint confirms the fact that one lower level is connected to only one next higher level.

3.4 Examples

To make clear the model of our graph, we propose two examples in Fig. 8 and 9. In the first example,
we describe spatial binary relationship, represented with the topological approach [9, 10] (see section
2.1), between two different categories : CAR and PERSON. We show the possibility of association of
many R nodes to one C node. In the second example, the presence of triplet (CAR,PERSON,BUILDING)
is confirmed by a presence of three couples of categories in a lower level that have a spatial ternary
relationship, represented with the approach A-TSR [16](see section 2.1), between them. In general, if
the number of categories is small, the graph is simple. However, the graph can evolve dynamically,
supplement nodes can be added any time when a new knowledge is learnt.

12
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FIGURE 8 — Example of knowledge representation of relationships of two categories in two first levels
by using different relationships : 9-area or 16-area relationships for unary relationships on location in
the image, topological relationships or correlation for binary relationships.
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FIGURE 9 — Example of knowledge representation of three categories at level 2 by using A-TSR
relationships that represent ternary relationships between entities.

4 Management of the graph

In this section, we present several possible manipulations on our graph-based model. The evolution
capacity of the graph to the new knowledge is represented in section 4.1. Our graph-based model can
be used also to describe the context of an image. This application will be presented in section 4.2. The
advantage of this representation is to allow to accelerate the similarity computation of two images by

comparing their graphs.
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4.1 Evolution of the graph

Section 4.1.1 discuss the operation to update the node status. Section 4.1.2 present how to infer
the new knowledge from an existing one.

4.1.1 Update of node status

It is evident that a knew knowledge may change the status of a node. This modification can
have some consequences. Here, we say that a node degrades its status while the value of its status is
decreased ; on the contrary, a node upgrades its status. For example, a Cg node degrades its status from
TRUE downto FALSE and then upgrades its status FALSE upto UNCERTAIN. Here, we denote DG and
UG the operations of status degradation/upgradation of a node respectively. There are two scenarios
of status modification, one for C' nodes and one for R nodes :

— While a C node changes its status, other nodes may change their statuses too in order to respect
the three constraints of equations 10, 11, 12 p.11, 11, 12. These nodes can be R or C nodes.
There are two cases :

1. The first case is when a node C realises a DG. Then, every R node connected with it and
having a status higher than the new status of Cx must undergo a DG. Every C node at the
next level must undergo a DG too. Algorithm DG is defined as in Algo.1 p.15. Note that
while a R node degrades/upgrades its status, it is probable to have two R nodes owning the
same ¢d, then it is necessary to merge these two R nodes into one.

2. The second case is when a node C realises a UG. Here, we can have a paradox while a
higher level C' node upgrades its status to a status higher than lower level C node’s one.
To respect the imposed constraints, should the lower level C' nodes upgrade their statuses
too? We examine an example below. Let suppose that in an given environment, an object
detector cannot identify the existence of category A but confirms that B exists. Then, we
obtain FALSE nodes A and (A, B) in the graph. Then, we see with our own eyes in this envi-
ronment the existence of couple (A, B) together. Consequently, A must exists in examined
environment. Thus, a new confirmation can reject an old confirmation. However, if we say
(A, B) maybe exist together, that is not a confirmation, then this uncertain opinion cannot
change the non-existence of A. From this example, we impose that a C node can upgrade
its status only to TRUE status or to the lowest status of lower level C' nodes concerning it.
This UG operation is defined in Algo.2 p.15.

— On the contrary, we think that status modification of R node does not change the presence of C
node. Therefore, a R node can undergo a UG/DG of its status such as its new status respects
the three constraints of section 3.2.2. It means a R node cannot upgrade its status to a new
status that is higher than one of any C node connected with it. Furthermore, these operations
will not impact the status of any C nodes in the graph.

In summary, only the status modification of a C' node can impact the status of every R or C nodes
of lower /higher levels having a link with it. We can develop a recursive status modification of some
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Data: Cg, newStatus
Result: downgrade Ck.stat downto newStatus
Ck.stat +— newStatus
for (R;/(Rj.lev = Ck.levV Rj.lev = Ck.lev + 1) A Je(Ck, Ry)) do
if (Rj.stat > Ck.stat) then
Rj.stat <— newStatus

if ARk|K = J A Ry .type = Rj.type \ Ry .stat = Rj.stat) then
| Ry <+— merge(Ry, Rg)
end
end

nd

or (Cz/(Z > 1I)do

if (Cy.stat > Ck.stat) then

| DG(Cz,newStatus)
end

= O

end

Algorithm 1: DG degradation algorithm of C'x node.

Data: Cx, newStatus
Result: upgrade Ck.stat upto newStatus
lowestStatus +—FALSE.val
for (C;/(J CI)do

if (Cj.stat < lowestStatus) then

| lowestStatus «+— Cj.stat

end

end

if (newStatus #TRUE.val A newStatus > lowestStatus) then
| return;

end
Ck.stat +— newStatus
if (newStatus > lowestStatus) then // newStatus =TRUE.val
for (Cz/(Z C I) A (Cyz.stat # newStatus)) do
| UG(Cgz,newStatus)
end

end

Algorithm 2: UG upgradation algorithm of C'x node.

nodes from a C node status change.

Let us study the complexity of each operation. Let N be the average number of R nodes connected

with one C node. Let N¢ be the average number of C' node connected with one C' node by a R node.

Let N be the total number of level in the graph. An upgradation operation of a C' node at level [

impacts only the C' nodes of lower levels, thus, the complexity of upgradation is O((NC)(lfl)). On the

contrary, an degradation operation of a C' node at a level [ impacts the C and R nodes of higher levels.
Its complexity can reach O((N®)NV* =D 4 (NC)(NE=1-1))
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Let us examine the example of Figure 7 p.10. Suppose that the C.,, node degrades its status (see
Fig.10 p.16) :

1. Ceqr node degrades its status to UNCERTAIN.

2. Consequently, respecting constraints on the status conducts that every TRUE R/C nodes concer-
ned by CAR must change their statuses to UNCERTAIN.

3. A TRUE R node downgrades its status, it will merge to existing UNCERTAIN ones.
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FIGURE 10 — The initial graph is presented in Fig.7. C node assigned to CAR category degrades its
status downto UNCERTAIN.

In fact, if we are uncertain about the presence of CAR, we cannot be sure about the presence of
couple CAR-PERSON. Further, every relationships concerning CAR are not certain too or do not exist.
On the contrary, a higher level C' node cannot impact the lower level C' node when it degrades its
status as we can see with the example of Fig.11 p.17.

We present another example on impact of UG operation of a C node. From the initial situation in
Fig.12(a), a status upgradation of higher level C' node can modify the status of lower level C' node as
shown in Fig.12(b). Note that, according to the above constraints, a higher level C' cannot upgrade to
UNCERTAIN if it exists at least one FALSE lower level C node concerned to this higher one. The UG
operation of C' node will not impact R nodes and higher level C' nodes.
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FIGURE 11 — The initial graph is presented in Fig.7. C' node assigned to (CAR-PERSON) degrades its
status downto FALSE.

4.1.2 Inference knowledge

The first utility of our graph is to represent a set of knowledges on entity categories and on their
relationships. From an image database, after the analysis of its visual content, we can construct such
knowledge graph. This graph can help us to save, to organize, and to infer all statistical informations
on the trends of spatial relationships involving entity categories effectively encountered in the data-
base, with the aim of exploiting them in future CBIR applications, for improving tasks such as object
recognition or retrieval.

To infer new knowledge from an existing one, several rules can be defined :

— A TRUE higher level C' node can implicate TRUE lower level C' nodes assigned to a subset of its
set of categories. For relationship type between these C' nodes, we can add an UNCERTAIN R node
containing all configurations of type that are not yet represented. Fig.13 illustrates this rule. Let
K be the set of categories represented by C'. Let [ the level of C. The complexity of this inference
is Hl' (KD

i=0 (K-

— We can infer the relationship between two TRUE C nodes based on confirmed relationships
between these two C' nodes and the third intermediate TRUE C' node. Note that for UNCERTAIN
R node, we can associate each configuration to some probabilities or to a expected values. Fig.14
illustrates this rule. Here, to avoid complicate structure graph and useless knowledge, we would
not like to introduce an implication based on existing UNCERTAIN nodes. [t means that we cannot
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(b) Impact of status modification of a higher level C' node on lower level C' node.

FIGURE 12 — An example on relationships between two categories CAR-PERSON, and the impact of a
status modification. Relationships are spatial binary relationships described with a topological model.

do a recursive implication, thus, the complexity of this inference is O(1).

4.2 Graph-based representation of image context

In section 2.1, we have defined the context of an image as the representation of every categories
in this image and of their spatial relationships. Thus, the graph concept defined in previous sections
can be applied to describe the context of an image. For example, the context of the image in Fig.15(a)
can be represented by the graph shown in Fig.16. In this image, four entity categories : SKY, SUN,
SEA, MOUNTAIN are detected. Suppose that we study only topological relationships. Note that the
existence of the category nodes in level 1 allows to extend this graph to a higher level by studying
ternary relationships. In this section, we explain how to compare the context of two images based on
graph representation.

Section 4.2.1 defines the similarity between 2 category nodes, section 4.2.2 defines the one between
2 relationship nodes while section 4.2.3 defines the one between 2 graphs.
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(c) Inferences at step 2 : inferences of the R nodes
FIGURE 13 — Example of automatic inferences in the graph. The discontinuous line rectangles represent

the sets of new nodes inferred from existing nodes.

4.2.1 Similarity between two category nodes

We can say that two similar contexts necessarily contain common entity categories. Therefore,
firstly, to evaluate the similarity of context of images I; and I;

, we evaluate the similarity of their
entity categories.
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FI1GURE 14 — Example of automatic inferences in the graph.

(a) (b)

FIGURE 15 — Example of two images that may have similar contexts in terms of entity categories and
of topological relationships.

G, G, are the graphs of I;, I; respectively. We denote SC(G;,G;) the set of matched category
couples that are in common between I; and I; : SC(G;,G;) = {(C%', ng)}. We split this set in two
subset : a set of (TRUE, FALSE) confirmed couples (SCTF)and a set of uncertain couples (SCV). Our
idea is that the computation of the similarity between two graphs is based on the weighted evaluation
of these two sets. Let :

SoY(Gy,Gy) = {(C’[G{, C’%)|C’[G<i.stat :UNCERTAIN\/C'gj.stat —UNCERTAIN }
SCTF(Gi, Gy) = {(C, CIG(j)]CIG(i.stat #UNCERTAIN/\C%.stat #UNCERTAIN}
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Thus, SC(GZ,G]) = SCU(GZ,G]) @] SCTF(GZ',G]'). Let u = ‘SCU(GZ,G])’, tf = ’SCTF(GZ,G])
Then, u +tf = [SC(G;,Gj)l, it is also the number of nodes C' in each graph that participate to the
matching. We call sim®¢(G;, G;) the category similarity function of two graphs, that can be defined
as :

SC () — 2x (ut1f) e
s G Gs) = G Cr 116, 4G "

. u e ON Uia: G tf  mCN TF (1. (3.
Knowing that : ¢CN = pU x S ST l(LSC’“ (u.Gi) 4 (1—pY) x Ly S i?c’“ (¢:,G;))

where :

~ SC¥(Gy,G)|X € {U,TF} is the k™ couple of entity categories of SCX(G;, G;),
— G;.{Ck} the set of the C nodes in G},

— pY is weight parameter on evaluation of UNCERTAIN part.

sim“N (SCX(Gy, G;) varies in [0..1], it evaluates the similarity of couples SC, then sim°¢(G;, G;)

also varies in [0..1]. sim®“(G;,G;) = 1 when two images contains the same set of entity categories. If

lkicl(Gi’Gm sim“N (SCx(G;,G;)) = |G;.{Cs}|, then I; contains all of categories of I;. Here, we can
define the similarity of two C' nodes in two graph as :

Gj) _ { 0 if K # J, otherwise (16)

. CN(G;
sim= N (CF C
(O Cy sim(Cg .stat, Cy.stat)

sim(C.stat,Cj.stat) evaluates the similarity of status of Cx and C.

For example, sim(Ck.stat,Cj.stat) = 1 when Ck.stat = Cj.stat or sim(Cg.stat,Cj.stat) = 0
when Cg.stat = true A Cj.stat = false.

However, if we take into account other attributes for category node in each graph, in this case, we

CN

have to consider the comparison of image visual contents also. We can redefine the sim~*" as :

. CN G ’
s1m (CK ) CJ LSEtOfAth'lbutes‘ sim(Ck .attributey ,C j.attributey) (17)

|SetO f Attributes|

Gj) _ { 0 if K # J, otherwise

where C.attribute, is the k' attribute of Cx and sim(Cg .attributey, Cy.attributey) the simila-
rity of the k™ attribute between Cx and Cj. These attributes are status, furthermore, they can be
the size, shape, or color histogram of I (in this case, the similarity is computed from the intersection
of two histograms of two nodes or any usual description of graph).

The matching of category nodes in two graphs is not complex, it can be realized based on their id and
by using a hash table. This operation has a complexity of O(N) with N = min(|G; {Ck}|,|G;{Cs}|).
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4.2.2 Similarity between two relationship nodes

The comparison of context of two images can be studied deeper by taking into account R nodes
in the two graphs of these images. Then, similarly to the comparison of C' nodes in the two graphs,
we define the similarity function to compare R nodes. We denote SR(G;,G;) the set of matched
relationship node couples from I; and I; : SR(G;,Gj) = {(RGi,Rf(j)|RK.type = Ry .type}. Here,
because of the existence of different statuses of the R node, we impose a constraint of matching :

~ a TRUE R’ node in G; can be matched with a TRUE R}¥* node in G,

~ a FALSE R node in G; can be matched with a FALSE R’ node in G},

~ a UNCERTAIN R node in G; can be matched with any R%"° node in G.

In the same way, we can split SR(G;,G;) in two subsets SRY(G;,G;) and SRTF(G;, G;). Let
NREi the number of R nodes in G; and NRSi the number of R nodes in G that participate to the
matching. Consequently, we call sim>%(G;, () the relationship similarity function of two graphs that
can be defined as :

G G
__ NRG4NRG oy 1)
|Gi{Rk }| + |G {R,}|

v gimBN(SRU (GG tj: . RN(SRTF Gi,G;)
2k=1 Sim z(L ke ( ]))+(1_pU)X 2o Sim 7 i ( 5))

sim™N (SRy(Gy, G;) is the function that allows to evaluate the similarity of two R nodes. Then,
we can take into account any information from these nodes such as frequency of each conf € ®.

SimSR(Gi, Gj)

Knowing that : N = pU x

4.2.3 Similarity between two image graphs

Finally, we can evaluate the similarity of two image graph based on the similarity of category nodes
and relationship nodes. We call SIM (G;,G;) the function evaluating similarity between two graphs.
Then :

SIM(G;,Gy) = p x sim®“(G;, G;) + (1 — p) x sim™F(G;, G;) (19)

Knowing that p is a weight parameter and STM varies in [0..1].

For example, we compare the contexts of the two images from Fig.15. Suppose that we study only
the topological spatial relationships and choose p = 0.5 (equation 19) to give equal importance to
categories and relationships. The context representation of these two images can be seen in Fig.16. We
obtain simSC(G;,G;) = 1 and simSR(G;,G;) = 1. Finally, SIM(G;,G;) = 1, we can say these two
images have the same context.

We can add other attributes for category nodes in each graph, for example information on size
to each category node (SKY, SUN, SEA, MOUNTAIN). In the first image, SKY and SEA occupy around
39.2% and 58.3% of image respectively. In the second image, they occupy around 45.6% and 54.2%
A

respectively. Suppose that we define sim*(Cy.size,Cj.size) as :

2 x |Cr.size — Cy.size]

sim(Cy.size,Cj.size) =1 — (20)

Cr.size+ Cj.size
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Symbol | Meaning
C | category node
R | relationship node

lev | level of node
stat | status of node
type | type of relationship
® | set of configurations
FIP(K) | function computing the id of the C node from a
set of entity categories
FIP(K) | function computing the id of the R node from a
set of entity categories
UG/DG | upgrade/downgrade the status of a node
SC(Gy,Gj) | set of matched category couples from graphs G;
and G
SC(G;,G;) | set of matched relationship couples from graphs
Gi and Gj
sim“N(G;, G;) | similarity between two C nodes from graphs G;
and G, (section 4.2.1)
sim°T(G;, G;) | similarity between two R nodes from graphs G;
and G (section 4.2.2)
SIM(G;,Gj) | similarity between two image graphs (section
1.2.3)
Gk | knowledge graph

TABLE 1 — Meaning of symbols used.

Consequently, we obtain sim3¢ (G, G) ~ 0.93. We can find too a different score if we add other spatial
relationships like 9D Spa which describe directional relationships [17].

5 Spatial reasoning

In this section, we present two ways for automatically building an image context graph by using the
knowledge graph : graph building based only on the knowledge graph in section 5.1 and graph building
based on the knowledge graph and the annotation of image in section 5.2. An overview of these main
algorithms proposed is presented in section 5.3. From this strategy, several scenarios of query based on
the image context graph can be applied, we present them in section 5.4.

5.1 Image context graph building based only on knowledge graph

We present how to build the context graph of an image I, denoted G, based only on visual content
of I and on a knowledge graph G'x. We suppose that we have built G from a training image database
and that G contains several categories of entities and useful knowledge on unary, binary relationships
on them as well as on their visual features (e.g. color histograms, interest points, etc.) or a dedicated
algorithm of category detection (the visual attributes of a category in Gk can be for example learnt
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from the set of visual attributes of N instances of this one). Note that, every nodes in Gk have a
TRUE or FALSE status because we suppose that the training database Gi represents the universe and
that all knowledge collected from this database is verified. The presence of an entity category, a couple
or a triplet of categories together at least in an image can be represented by a TRUE C' node. The
relationships between them can be represented by a TRUE R node. However, for multiple categories
and a given configuration of a relationship type, if we cannot find at least one example in the training
database, this configuration is presented in a FALSE R node.

The building of G is based on the knowledge of G by exploiting the visual features of I, for
the confirmation of the existence of an entity category in I. Differently to G, a final G will contain
only TRUE or UNCERTAIN nodes. Certainly, if the presence of an entity category in [ is not confirmed
with a high probability by a detection tool for example, we represent this one by a UNCERTAIN C'
node. On the other hand, every categories from the training database that are not present in I can be
represented by FALSE C' nodes in GG;. However, this last representation is useless and complicate the
representation of G; because of a great number of absent categories and then we do not put such nodes
in GG7. Consequently, the absence of C' node in G expresses the absence of entity category associated
with it in [I.

Algo.3 describes the main steps of this construction. Before starting Algo.3, we have to define the
five following parameters :

1. Type of unary relationship type" to be studied in I, for example, type" € {9-area, 16-area} (see
section 2.1);

2. Type of binary relationship type® to be studied in I, for example, type® € {9Dspa, topological}
(see section 2.1);

3. Probability threshold ¢, /0 < ¢, < 1 : this parameter allows to filter all configurations of a given
type of relationship with a low frequency or a low presence probability in G . For example, by
using unary relationship, in I, we can begin by verifying the presence of a category on areas
where its presence probability learnt from G is higher than ¢, ;

4. Probability threshold ¢;/0 < ¢; < 1 for deciding of the TRUE status of a category or a relation-
ship node in G : when the detection probability of an entity of given category cat; reaches ¢; by
using the visual features of an area in [ in comparison with the visual features associated with
category node in Gk, a TRUE category node assigned to cat; can be created in G. It means that
category cat; is present in [ ;

5. Probability threshold ¢,/0 < ¢, < ¢ for deciding of the UNCERTAIN status of a category or
a relationship node in G : similarly to ¢, when the detection probability of an entity of cat;
varies in [@,..¢¢], @ UNCERTAIN category node assigned to cat; can be created in Gy. It means
that category cat; may be present in I.

These parameters will be used in the following algorithms. The main idea of Algo.3 is that, in G,
each TRUE category node at level 0, that is assigned to an entity category, will be examined if it can
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be present in G7. A supplementary function, named "checkCN", used by this algorithm is presented in
Algo.4. This function allows to verify the presence in G of a given category node of Gx by comparing
the visual features of I to the visual features contained in this category node. Algo.4 can be used as
the algorithm to detect the presence of a given entity category in image I. Since its presence is confir-
med with a probability, a TRUE or UNCERTAIN category node will be added into Gj. To reduce the
complexity of Algo.3, while a TRUE C node is added to Gy, all other C nodes that cannot occur with
this node will be deleted from the tail of nodes to be checked. When the level-0 of G is completely
studied by using G, the next level of G can be studied, i.e. the binary, ternary relationships in I. To
illustrate the concept, we only study here binary relationships of type®, which are studied in function
"buildBinaryRelation" of Algo.3 (and fully described in Algo.5). Note that, to be able to study the
binary relationships between two categories, during the building of level 0 in G7, all possible locations
detected for these categories can be stocked as meta-data of G7.

Complexity of Algo.3, Algo.4, Algo.5 : The three algorithms are presented with the paradigm
of Object-oriented programming (OOP), they are entirely implementable and applicable. Let study
the complexities of these algorithms :

— N¢ denotes the number of entity categories presented in G,

- Nggg the average number of categories present in an image,

Ngg;f the average number of configurations assigned to a R node,
Entity

NAvg

O(D) the complexity of the detection processing for a category.

the average number of instances of a category in an image,

In general, the complexity of Algo.4 is Oy = O(Ngg;f x O(D)), the one of Algo.5 is O3 =

o( % (Nfgityy)_ Then, Algo.3 has a maximum complexity of Oy = O(NY™ x Oy + O3).

For example, from the statical studies on the symbolic database studied in [15], we have : N Cat — g6,

N§at = 5 N = 33, N < 138 with 9-area splitting.

(NGat)?
2
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Function : buildGraph 01

Input: Image I, knowledge graph G, type of unary relationship type, type of binary
relationship type®, threshold parameters : ©ps Pty Pu

Output: Graph Gy representing the context of [

G +— O ; # Initialize the context graph of I
Loy «— Gg.get _ListOf TrueCNode AtLevel(0);

# Get the set of TRUE category nodes at level 0 from G

while Loy # @ do

CNcheck <— getRandom CNode From(Lenw);

# cncheck 18 @ C node of G, to be located in T

Tnggéz — CNeheck-getRNode  ByType AndStatus(type”, TRUE) ;

# Get a TRUE R node of type type* that is connected to cncpeck

: type"

if drn ;.. then )

l’LStCOTLf —— rptypre .Q; # Get the list of configurations associated with rntvre®

foundTrueCN <— checkCN(I,Gr, Gk, chcheck, type®, listCon f, op, ¢, 0u) ;

# Verify if cngpecr can be present in Gy. The status of Gr.cnepecr depends on @i, ¢y. checkC Node is defined in
Algo.4

if foundTrueCN = true then
Remove from Lgy other C' nodes that cannot occur with cncpeck ;

# If cnepeck is present as a TRUE node in Gy, we remove all C nodes in G that are connected to cncpeck

by only FALSE R nodes. !
end

end

LCN.remove(cncheck.) ; # Since cncpeck is checked, we can delete it from Loy
end

build BinaryRelation(G, type) ;

# Study other spatial relationships from G such as binary relationships, see this function in Algo.5

Return Gy ;
Algorithm 3: Algorithm of context graph G building for an image I from a knowledge graph
Gk. See Tab.2 on page 39 for the definition of the main used variables/methods.

1. We study the non-occurrence in the same image of two level-0 category nodes in Gx. The determination of this
situation is quickly done by examining the status of the C' node at level 1 that is connected to these level-0 ones. If the
status of this node is FALSE, this pair of nodes cannot occur together. It means that every binary relationship nodes
between these two level-0 C' nodes are FALSE.

27



Function : checkCN

Input: Image I, context graph Gy, knowledge graph G, category node cn of Gi to be located
in I, type of unary relationship type", list of configurations listConf to be verified on
cn, threshold parameters : ¢, ©i,04

Output: foundTrueCN indicates if we find a TRUE C node

foundTrueCN <«— false;

# In unary relationship, conf indicates the area and the presence probability at this area of entity category represented by
cn

for (conf € listConf A conf.probab >= ¢,) do

Tes < I.detectObject(conf, cn) ; # This function returns detection probability res.probab and possible
location of entity res.location in conf. Note that, in the worst case, the detection tool does not provide the location of
the detected object, and then res.location is conf

nodeStatus <— TRUE;

if (res.probab > ¢;) then
fOU’erT’I“u@CN <— true; # If it exists at least one entity of category presented by cn in I, the status of

the C node assigned to this category in Gy must be TRUE
end

else if (res.probab > ¢,) then
| nodeStatus +— UNCERTAIN ;

end

eng, «— Gr.getCNode_Byld(cn.id);
# cng, can be null or a C node having the UNCERTAIN or TRUE status
if (Aeng,) then
‘ eng, «— Gr.newCNode_AssignedTo(cn.getCategory(0), nodeStatus) ;

# cng, is assigned to the same category as cn and has status value of nodeStatus
end
if (foundTrueCN = true) then
eng, .setStatus(TRUE) ;
# In all cases, cng, must change his status to the TRUE status
end

g, <— cng,.getRNode_ ByTypeAndStatus(type”, nodeStatus) ;
# rng, is a R node connected to cng,
if (Brng,) then
rng, <— Gr.newRNode_AssignedT o(cng,.getCategory(0), type, nodeStatus) ;
# rng, is assigned to the same category of cng, and has type of unary relationship type* and status value of
nodeStatus
Gp.setLink(cng,,rng,);
end
rng,.addConf(conf);

Gr.addMetaData(cng,,res.location, nodeStatus) ;

# We add the meta data concerning location and status of cng, to Gy, this information can be used to study binary

or ternary relationships between categories in I
end

Return foundTrueCN ;

Algorithm 4: Algorithm of the function checkCIN(). See Tab.2 on page 39 for the definition of
the main used variables/methods. 28




Function : buildBinaryRelation
Input: Context graph Gy, type of binary relationship type®
Output: Context graph G that is completed with binary relationships

Loy «— Gr.get ListOf CNode AtLevel(0);
# Get the set of category nodes at level 0 from G

for (i € [0..size(Lon) — 2]) do

en; «— Lon.get(i) ;

for (j € (i..size(Lcn) — 1)) do

enj <— Lon.get(j) ;

setCat <— {cn;.getCategory(0), cn;.getCategory(0)} ;
# cn; and cnj are at level 0 then they contain only one entity category.
cn;j <— Gr.getCNode_BySetCat(setCat);
# cn;j is a category node at level 1 in G'; and represents the presence of setCat in I
if (ﬂcnij) then
cngj «— Gr.newCNode_ AssignedT o(setCat, min(cn;.stat, cnj.stat));

ones
end

listMetaData; «— Gr.getMetaData(cn;) ;

listMetaData; «— Gr.getMetaData(cn;);

# Get all possible meta-data of cn; and cn; from Gr. This meta data is created in Algo.4
for (data; € listMetaData;) do

for (data; € listMetaDataj) do
minStat «— min(data;.getC Node().stat, dataj.getC Node().stat) ;

rnij +— cngj.getRNode ByTypeAndStatus(type®, minStat) ;
if (iﬂrnl-j) then
rnij +— Gr.newRNode _AssignedTo(setCat, type®, minStat);
# rn;; is a R node at level 1 and is assigned to the same category of cn;;
Gp.setLink(cngj, i) ;
Gr.setLink(cn;, rngj) ;
Gr.setLink(cng, rngg) ;
end
conf «— getBinaryConf(type®, loc;, locj);
rnij.addConf(conf);
end

end
end

end

# According to status constraints, a higher level C' node cannot have a status superior to the status of lower

Algorithm 5: Algorithm of the function buildBinaryRelation(). See Tab.2 on page 39 for the

definition of the main used variables/methods.
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5.2 Image context graph building based on incomplete image annotation and
knowledge graph

In this section, we present how to build an image context graph from its annotations and the
knowledge graph Gi. The annotations are the location of some given categories, they can be manual
annotations or the result of an object detection task. The annotations are supposed incomplete, several
categories of Gx which can be present in I are not annotated. These annotations will not be put back
into question even if they do not coincide with G . From these annotations, Gy can be initialized :
initially G contains only TRUE nodes that represent the presence of some entity categories and some
unary and binary spatial relationships deduced from the location of the entities annotated in I.

We can easily adapt Algo.3 to these new initial conditions, see this adaptation in Algo.6. One main
difference between these two algorithms is the input variable Gy : in Algo.6, Gy is non empty. Because
(1 contains initially some category nodes, we can check only the category nodes in G that can occur
with these ones. Consequently, the complexity of Algo.6 is reduced considerably compared to Algo.3.

Complexity of Algo.6 : Let study the complexity of this algorithm. N¢® denotes the number of
entity categories presented in G, N}g{l‘iﬂ the number of categories that are consistent with categories
present in initial graph G7. Then the complexity of Algo.6 is O(NS%  x Oy + O3) (see the definitions

Filter
of Oy and Oj in section 5.1) in knowing that N§& << NCat,
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Function : buildGraph 02

Input: Image I, initial context graph G, knowledge graph G, type of unary relationship
type, type of binary relationship type®, threshold parameters : ©p, Pts Pu

Output: Graph Gy representing the context of [

Loy «+— Gg.get_ListOf TrueCNode AtLevel(0);
# Get the set of TRUE category nodes at level 0 from G g

for cn € Gr.get ListOf TrueCNode_ AtLevel(0) do
Remove from Loy other C' nodes that cannot occur with cn ;

# If cn is present as a TRUE node in G, we remove all C nodes in G i that are connected to cn by only FaLSE R nodes
end

7 The following is the same as in Algo.3

while Loy # @ do

CNcheck <— getRandom CNode From(Lenw);

# cnepeck 18 @ C node of Gy to be located in I

rnz%’;iz — CNepeck-get RN ode  ByType AndStatus(type®, TRUE) ;

# Get a TRUE R node of type type" that is connected to cnepeck

. type"

if Elr.ncheck then .

l’LStCOTLf —— rptypre .Q; # Get the list of configurations associated with rntvre"

foundTrueCN <— checkCN(I,G1, Gk, chcheck, type®, listConf, op, ¢, 0u) ;

# Verify if cngpecr can be present in Gy. The status of Gr.cnepecr depends on @i, ¢y. checkC Node is defined in
Algo.4

if foundTrueCN = true then
Remove from Ly other C' nodes that cannot occur with cnepeck ;

# If cnepeck 1s present as a TRUE node in Gy, we remove all C nodes in G that are connected to cncpeck

by only FALSE R nodes.
end

end

LCN.remove(cncheck.) ; # Since cncpeck is checked, we can delete it from Loy
end

build BinaryRelation(Gr, type) ;

# Study other spatial relationships from G such as binary relationships, see this function in Algo.5

Return Gy ;

Algorithm 6: Algorithm of context graph G building from initial incomplete context graph
and a knowledge graph Gg. See Tab.2 on page 39 for the definition of the main used va-
riables/methods.
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Now let us consider the case of binary relationships. We can improve Algo. 6 by using the binary
relationships from knowledge graph G for better filtering the possible locations of category in check.
We define the two following functions; the output of the first function is used as one of the input of
the second one :

1. findLocFromBR() : defined in Algo.7, it allows to determinate the set of possible locations in
I of a category (presented by C node ¢ngpecr) from G by using the binary relationships learnt
from G and the existing C' nodes in G. The presence of this category is confirmed by a TRUE
or UNCERTAIN C node added in Gj. The output of this function is the list of possible locations
and probabilities of cnepeck.

2. filter LocWithU R() : allows to filter all locations predicted in the previous function that do not
agree to the unary relationships of G . This function is presented in Algo.8. In this algorithm,
we use a probability fusion method to compute the final probability for each possible location.
We will detail this point in the following.

Algo.9 combines these two functions to improve Algo.6. Filtering on the entity location, by using
binary relationships, can considerably reduce the number of final possible locations. Consequently,

Ngg;f is notably reduced, then also Oy = O(Ngg;f x O(D)) (see section 5.1).

In function filter LocWithU R() (Algo.8), we can encounter the following problem : how to combine
the different knowledge to determinate the confidence of the results ? Fig.17 illustrates this problem.
I contains entities of category A and C, we would like to verify if entities of category B could be in
I, knowing that A, B,C and binary spatial relationships between A and B, B and C are known in
Gx. From Gk, based on A and binary relationships between A and B, we can deduce three areas 1,
2 and 3 where B may be present with probabilities 0.40, 0.10, and 0.50 respectively. Based on C' and
binary relationships between C' and B, there are two areas 1 and 2 with probabilities 0.50 and 0.50
respectively. Furthermore, from G with the unary relationship of B, we know that B can be present
in four areas, as in Fig.17(b). We denote P(catp|setCat, A;) the presence probability of category B
at area A; in I when set of categories setCat is present. According to literature on data fusion [7, 30]
there are several strategies to merge these informations and to conclude about B :

1. Conjunctive strategy : for each area in I, keep the lowest probabilities and recalculate them by
normalizing with the sum of the kept probabilities. For example, Fig.18(a) presents the results of
this strategy by applying it on the example of Fig.17. When the probability is absent, we consider
the value 0.

2. Disjunctive strategy : for each area in I, keep the highest probability and recalculate them by
normalizing with the sum of kept probabilities. For example, Fig.18(b) presents the results of
this strategy by applying it on the example of Fig.17.

3. Compromise strategy : It is based on the idea of the correlated probabilities fusion model of [21] :

g X h xemxe
h,c) = 21
F(g,hsc) g X hxemxc4(1—g)x(1l—nh)xemxe 21
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(a) Using binary relationship knowledge to  (b) Confidence on possible locations
predict the location of a given entity cate- (unary relationships) of B learnt from G .

gory B in [ from existing entity categories
A and C.

FIGURE 17 — An example of prediction of category B location in I by using learnt spatial knowledge.

where g and h are the probabilities considered, ¢ the correlation, e is the exponential function,
and m € [0, 1] is the weight applied on c.
We extend this definition to a set of probabilities and define P(catp|setCat, A;) as a fusion

function :

H‘]{pi”p x emXc

H'{pz}‘p X emxc + H‘{pZH( p]) X efmxc

where setCat is the set of categories present in image, p; = P(catp|cat;, A;) the presence probabi-

FFusion({p;},c) = (22)

lity of catp at area A; when cat; is present, ¢ = max(correlation(cat;,cat;))/cat;, cat; € setCat.
This strategy contains more information in comparison to the two previous strategies. The use
of the correlation between a couple of existing categories (for example, the correlation obtained
in [15]) can reinforce or reduce the prediction confidence about the presence of a category consi-
dered based on this couple. For example, if couple (A, C) has a high correlation, it means that
the confidence of the prediction of B based on A and based on C'is reinforced ; on the contrary,
a low correlation of (A,C) can reduce this confidence. We have the global form of F'Fusion is
ﬁb and the more correlation c increases, the more a increases and b decreases, consequently, the
more F'Fusion increases.

Because we think that the correlation between categories is a relevant information to integrate in
the analysis, we choose the compromise strategy to compute the presence probability of one category
based on the existing ones (see Algo.8).
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(a) By using the conjunctive strategy,
probabilities 0.35, 0.10, 0.0, 0.0 are kept
for areas 1, 2, 3, 4 respectively. By nor-
malizing with their sum 0.45, we obtain
the results above.
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(b) By using the disjunctive strategy,
probabilities 0.50, 0.50, 0.50, 0.05 are
kept for areas 1, 2, 3, 4 respectively. By
normalizing with their sum 1.55, we ob-
tain the results above.
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(c) By using the compromise strategy,
with m = 0.5 and ¢ = 0.7, merged pro-
babilities for areas 1, 2, 3, 4 are 0.419,
0.182, 0.0, 0.0 respectively. By norma-
lizing with their sum 0.601, we obtain
the results above.

(d) By using the compromise strategy,
with m = 0.5 and ¢ = 0.1, merged pro-
babilities for areas 1, 2, 3, 4 are 0.28,
0.11, 0.0, 0.0 respectively. By normali-
zing with their sum 0.39, we obtain the
results above.

FIGURE 18 — Results of the application of three data fusion strategies to the example of Fig.17.
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Function : findLocFromBR

Input: Context graph Gy, knowledge graph G, category node cngpecr of G to locate in I,
type of unary relationship type", type of binary relationship typeb, threshold parameter
Pp

Output: List of possible unary configurations LCon f

LConf «+— @;

for (cng, € Gr.get_ListOf TrueCNode AtLevel(0)) do

setCat «— {cng,.getCategory(0), cnepeck-getCategory(0)}

# cngy and cncpeck are at level 0 then they contain only one entity category. In consequence, setCat has 2 items.

cng «— Gg.getCNode BySetCat(setCat) ;

# cng, is a category node at level 1 in G

MGy ¢— cngy.-getRNode ByTypeAndStatus(type’, TRUE) ;

for (conf"e’ € rng,.¢) do
if (conf"<’ probab > p,) then
confure" «— getUnaryCon f From(con ftvpe’ ngG;);

. u . :
# Determinates conft¥P¢" the area in I of cnepeck from confberyv and cna,

confU" «— getByConf(LConf,conf¥re"):

other

# In set LConf, looking for a conféf,f:: having the same configuration as con ft¥Pe"

u
if (Jconf¥P°") then
# Store the detection probability and the category that allows to deduce this one before computing the
fusion of probabilities in Algo.8
u
confY°" addCategory(cng,, .getCategory(0)) ;

other

con ;%7:: .addToListO f Probab(con f¥P*" probab) ;
end
else

| LConf.add(conf¥re");

end

end

end
end

Algorithm 7: Algorithm of function findLocFromBR/(). See Tab.2 on page 39 for the definition
of the main used variables/methods.

35




Function : filterLoc WithUR

Input: Relationship node rn®P¢" taken from Gy, list of possible unary relationship
configurations LCon f, probability threshold ¢,

Output: List of possible unary configurations LConf after filtering

for (conf € LConf) do
conf™ «— get ByConf(rnt¥?e" ¢, conf);
# In set rnt¥Pe” ¢, looking for the conf™™ having the same configuration as conf
if (Aconf™ V conf™.probab < ¢,) then
| LConf.remove(conf);
end

else
| conf.addToListO f Probab(conf™.probab) ;
end

end

# Compute final detection probability for each conf € LConf according to strategy of fusion 3 and equation 22

for (conf € LConf) do
maxCorr <— compute M axCorrFrom(conf.getCategories())) ;
# Get the highest correlation of a couple of categories among the list of categories stored for conf in Algo.7
p «— FFusion(conf.listO f Probab, maxCorr) ;
# Compute the fusion probability in according to equation 22 conf.setFinalProbab(p) ;
end

Sort LConf by probability ;

Algorithm 8: Algorithm of function filterLocWithUR(). See Tab.2 on page 39 for the defini-
tion of the main used variables/methods.

36




Function : buildGraph 03

Input: Image I, initial context graph G, knowledge graph G, type of unary relationship
type, type of binary relationship type®, threshold parameters : ¢ Fr Pty Pu

Output: Graph Gy representing the context of [

Loy «+— Gg.get_ListOf TrueCNode AtLevel(0);
# Get the set of TRUE category nodes at level 0 from G g

for cn € Gr.get ListOf TrueCNode_ AtLevel(0) do
Remove from Loy other C' nodes that cannot occur with cn ;

# If cnepeck is present as a TRUE node in Gy, we filter all C nodes in G that are connected to cnepecr by only FALSE
R nodes Lo .remove(cn) ;
end

while Loy # @ do
CNcheck <— getRandom CNode From(Lenw);

LConf +— findLocFromBR(Gr, G, cheheek, type, type, ©p);
rn?;’giz — CNeheck-get RNode  ByType AndStatus(type”, TRUE) ;
filter LocWithU R(LConf, rni%iiz, ©p);

foundTrueCN «— checkCN(I,Gr, G, chcheck, type®, LConf, oi, ou, ¢p);
# Verify if ¢ncpeck can be present in Gy. The status of Gr.cncpeck depends on p¢, pu. checkCNode() is defined in

Algo.4

if foundTrueCN = true then
Remove from Loy other C' nodes that cannot occur with cncpeck ;

# If enepeck is present as a TRUE node in G, we filter all C' nodes in Gk that are connected to cn.pecr by only

FALSE R nodes.
end

Len.remove(cnepect) ;
end

build BinaryRelation(Gr, type) ;

# Study other spatial relationships from G such as binary relationships, see this function in Algo.5

Return Gy ;

Algorithm 9: Improved algorithm of context graph G building from initial incomplete context
graph and a knowledge graph G by using binary relationship knowledge. See Tab.2 on page 39
for the definition of the main used variables/methods.
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5.3 Overview of graph building

In Fig.19, we present an overview of the three main algorithms (Algo.3, Algo.6, and Algo.9). Algo.6
improves Algo.3 by filtering the list of categories considered before verifying their presence in 1. Algo.9
improves Algo.6 by using the binary relationships learnt from Gg to filter possible locations of a
category considered. We report the main object variables and functions used in these three algorithms

in Tab.2.
buildGraph_01 buildGraph_02 buildGraph_03
nput data ................................................. I ...................................................................
________ % I
Gi is empty Gi contains some C and R nodes E contains some C and R r‘lodl:J
Begin of programé
......... n : I

Gstm <~ Get all level-0 C nodes from Gk) GﬁtCN <--Get all level-0 € nodes from GD QSICN <--Get all level-0 € nodes from GD

! L

. Eilter C nodes from listCN that are not compatible with GD EGIlcr C nodes from listCN that are not compatible with (D

false : false

Main program

false

listcN = @

stCN =0 listCN = @

checkeN...) filterLocWithUR(...)

checkCN(...)
true

filterLocWithUR(...)

checkCN(...)

buildBinaryRelation...) ‘ buildBinaryRelation(...) buildBinaryRelation(...
: Y

FIGURE 19 — An overview of the three graph building algorithms for a given image.

End of program
-
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Name of variable/method

Meaning

G
cn
m

conf
L

L.remove(o)
L.add(o)
getRandom__CNode From(Lon)

en.getRNode  ByType AndStatus(type, stat)

G.getCNode Byld(id)
G.getCNode BySetCat(setCat)

G.newCNode AssignedTo(setCat, stat)

G.newRNode _ AssignedT o(setCat, stat)

G.setLink(cn,rn)

Knowledge/image context graph

Object variable of type C node

Object variable of type R node

Object variable of type configuration

List of object variables, for example Loy
is a list of C' nodes

Remove object variable o from L

Add object variable o to L

Get a C node from list Loy randomly
Get a R node that has type and stat as
attributes and is connected to cn

Get a C' node from G in function of a given
identificator id

Get a C' node from G in function of a given
set of categories setCat

Create a new C node in G that is assigned
to a set of categories setCat and that has
a status stat

Create a new R node in G that is assigned
to a set of categories setCat and that has
a status stat

In GG, add an arc between ¢n and rn

TABLE 2 — Table of some used variables/functions and their meaning in Algo.3, 4, 5, 6, 7, 8, 9.
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From these strategies, several scenarios of query based on the image context graph can be applied,

we present them in the next section 5.4.

5.4

Scenarios of interrogation

Suppose that we have a knowledge graph G from a training image database where each image is

completely annotated, and that we have a test database D Byes: where each image is not completely

annotated. By building the initial graph for each image in D Bys:, by referencing the knowledge on

G, from the previous algorithms, we can imagine forming some scenarios of query as following :

1.
2.

Is category A present in the given image I, knowing that A is present in Gx 7

What are the images in D By containing category A7 Where is the searching area of A in these
images 7 Where is exactly A, knowing that A is present in G .

. Given two categories A and B, what are the configurations conf of the relationship type between

them in D Byes: 7 Which configuration is the most frequent ?

What are the images where A and B have a conf of relationship type?

. Given category A, and configuration conf of relationship type (e.g. type could be 9DSpa, topo-

logical), which category B have relation conf with A7

. In image I where A is present, is B present ?

Given two categories A, B, and location L4 of A in an image, which configuration conf of
relationship type can we found between A and B ? Where is the searching area for B 7 Where is
B?

. Given a query image, what are the images in D By.g that are similar to this query one?

. Given a prototype context (i.e a context description by a graph), what are the images from

DBy.s that have the similar context ?

In the next section, we integrate some of these scenarios into our experiments. The experiments

in section 6.1 correspond to queries 1,2 while the ones in section 6.2 correspond to queries 5,6,7. The

other queries are studied in section 6.3.

40



6 Experiments

This section is dedicated to the evaluation of our context graph-based model for object detection
and image retrieval by example in a collection of images.

In the following experiments, the knowledge graph, G, is built from statistical results obtained
in [15] on LabelMe? with annotated image database DB. This graph presents a general knowledge on
86 different entity categories, on their frequent locations in images (with 9-area/16-area splitting), and
their binary/ternary relationships (spatial relationships, co-occurrence relationships).

To describe visual content of each entity category, we use the A-TSR description that allows to
describe the triangular relationships between interest points (see section 2.1 or [16]). They are stored
as description attributes of category nodes in G . In fact, for each entity present in images of DB |
we extract all interest points within its boundary (annotated by a polygon). Points are extracted and
characterized with SIFT. The size of the visual vocabulary is Ny = 8000. In consequence, each entity
category can own many A-TSR descriptions. The detection of an entity in the query image is done by
comparing its A-TSR description to each A-TSR one of the entity category (this step is encapulated in
function I.detectObject(conf,cn) of Algo.4 p.28). The comparison can be stopped immediately when
the similarity measure reaches a given threshold.

The test database D By contains a set of 10000 images randomly chosen from LabelMe in daily
contents. The content of these images is very heterogeneous and already annotated. In order to gua-
rantee the quality of the database we verified carefully each annotated image for consistency :

— Firstly, we manually consolidated synonymous labels by correcting orthographic mistakes and
merging labels having the same meaning.

— Secondly, we added missing annotations to entities of the considered categories, except for too
small size entities or entities belonging to a category having a high frequency of already annotated
entities in the image, such as "leaf", "window", "flower", etc. In this way, the statistical results
should not be biased by these missing annotations.

In all experiments concerning algorithms presented in section 5 p.24, we choose threshold ¢, = 0.1
(the frequency of location), ¢; = 0.3 (the threshold of true positive), ¢, = 0.15 (the threshold of
uncertainty). These thresholds were determined from different experiments : we vary thresholds ¢,,
¢y, and ¢y in the interval [0.05,0.2], [0.1,0.3] and [0.2,0.5] respectively, and then we choose the values
of thresholds that give the best results in general.

In sections 6.1 and 6.2, we evaluate the ability of describing the image context of the proposed
algorithms of section 5. Then, in section 6.3, we evaluate the approach for the image retrieval based
on context in using our context graph-base model. This evaluation shows the interest of using this
graph-based model in image retrieval in comparison to A-TSR approach only.

2. LabelMe: http://labelme.csail.mit.edu.
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FI1GURE 20 — Distribution of similarity measures between automatically built graphs and ground-truth
graphs.

6.1 Evaluation of image context graph building by using unary relationships

In this section, we evaluate the ability of automatic image context graph building with algorithm
buildGraph 01 (Algo.3 p.27) by only using the unary relationships from Gg. In section 6.1.1, we
present the comparison between the graphs built by this algorithm and ground-truth graphs. Then in
section 6.1.2, we evaluate the ability for object dectection and localization of buildGraph 01. Finally,
in section 6.1.3, we present its ability of object detection compared to A-TSR.

6.1.1 Global comparison with ground-truth graphs

In this section, we evaluate the similarity between context graphs built with algorithm buildGraph 01
and context graphs built from image annotations (what we call a ground-truth graph). The similarity
measure is computed based on the function of equation 19 p.23. Fig.20 displays the distribution of the
similarity measures of 10000 couples of graphs.

The average of similarity measure is 0.531. The highest and lowest measures are 0.79 and 0.27
respectively. The low score is caused by false positives (entity is not present but is detected). Clearly,
the absence of an entity category leads to the absence of its relationships that penalizes more the
similarity between graphs. However, in average, buildGraph 01 gives an initial acceptable result.
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FIGURE 21 — Average precision of detection and localization step with buildGraph 01 ( Algo.3) for
each entity category when this last one is present.

6.1.2 Ability of object detection and localization vs. ground-truth

By using buildGraph 01, firstly, we observed that in average for each image, around 42 categories
are checked for around 5 different categories detected. Secondly, there are about 14 and 21 location
configurations among 138 and 649 different configurations to verify for each category with 9-area and
16-area splitting models respectively. To go deeper, we compare the information contained in the
context graph for each image to the one of the annotation. We evaluate the average of precision for
each entity category in two cases :

— the category is present in a given location in image,

— the category is absent in a given location in image.

Fig.21 shows the distribution of the mean precision (by number of instances of category) obtained
with buildGraph 01 (Algo.3) for each entity category from G . Fig.21(J#) indicates the percentage of
true positives (according to threshold ¢;) while Fig.21(Jj) indicates the percentage of false negatives
(i.e. entity is present in a given location but it is not detected in this location). The uncertainty of the
detection is presented in Fig.21(Jfl). In general, the mean precision of buildGraph 01 reaches 0.526
for true positives, 0.163 for uncertainty and 0.311 for false negatives.

Similarly, we evaluate the precision of buildGraph 01 on the absence of each category. The mean
score of false positive is 0.134 (see the distribution in Fig.22), while the mean one of uncertainty is
0.153. Nevertheless, the mean score more than 0.71 of true negatives can confirm a robustness for
object detection and localization of our model.
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FIGURE 22 — Average precision of detection step with buildGraph 01 (Algo.3) for each entity category
when it is absent.

We illustrate category detection with our approach in Fig.26 of appendix. In this query image,
the algorithm detected "car", "tree", "fence" and other categories. The yellow rectangles indicate a
confirmation of the detection while the blue ones show an uncertainty.

6.1.3 Ability of object detection and localization vs. A-TSR

In this section, we evaluate the impact of using context knowledge for object detection and lo-
calization. Firstly, we compare the ability of detection with buildGraph 01 with the one of A-TSR.
Note that A-TSR cannot allow to localize the entity, this method detect only the presence/absence
of a category in an image by giving a similarity score. Then, to compare to A-TSR, we evaluate
buildGraph 01 also on the criterion of presence/absence of a category in a whole image not taking
into account its location. The comparison is shown in Tab.3 for A-TSR and strategy buildGraph 01
(with and without considering location to be comparable with A-TSR).

We observe that detection with A-TSR is slightly improved of 1%. This improvement results from
the matching of category descriptions on the whole image descriptions. Certainly, buildGraph 01 li-
mits the number of localization to verify, then it collects fewer descriptions from images to compare
with category descriptions. Similarly, uncertainty with A-TSR are slightly improved of 0.8%, in conse-
quence, the false positive are decreased of 2%. However, this advantage can become an important
inconvenient when category C; is absent. True negative of A-TSR decrease of 5%, that means the
score of false negative and uncertainty are worse. It results from a false matching between descriptions
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Category is builGraph_01 builGraph 01 | A-TSR
take into account | do not take into
location account location
*qa; True positive 0.526 0.534 0.543
) Uncertainty 0.163 0.158 0.166
&, False positive 0.311 0.308 0.291
= False negative 0.134 0.127 0.167
Z Uncertainty 0.153 0.159 0.169
© True negative 0.713 0.714 0.664

TABLE 3 — Comparison of average precisions with the two algorithms.

of C; with other descriptions in the image.

On the other hand, we show that the use of context knowledge can reduce the computation costs
notably. We compare the average cost of detection for each category in two models. Note that no
indexing structure is used for the two models. The comparison is presented in Tab.4. Logically, by ex-

ploiting context knowledge, the object detection of buildGraph 01 reduces considerably the number
of comparison while remaining a competitive quality.

| | builGraph_01 | A-TSR |

Average number of categories to check (averaged 42 86

on the set of images)

Average number of A-TSR signatures used per 1571 4315
image (averaged on the set of images)

Average number of A-TSR signatures of each ca- 442 442
tegory in G

Average number of signatures of each A-TSR si- 73 73

gnatures in G

TABLE 4 — Computation cost comparison between builGraph 01 and A-TSR approaches, in terms of
volume of A-TSR descriptors and of volumes of categories to manipulate.

6.2 Evaluation of image context graph building adding binary relationships

In this section, we study the improvement brought by strategies buildGraph 02 (Algo.6 p.31),
buildGraph 03 (Algo.9 p.37) in comparison to building 01 (Algo.3 p.27). Because buildGraph 02
and buildGraph 03 need an initial image context graph, for each image, we choose randomly an an-
notated entity category from image annotation as the initial information to build its initial context
graph. The comparison of these three algorithms is reported in Tab.5.

We observed that :
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‘ builGraph 01 ‘ builGraph 02 ‘ builGraph_ 03 ‘

Average number of categories to check 42 21 21
(averaged on the set of images)

Average number of location configurations 14/21 14/21 7/12
with 9-area and 16-area splittings

True positive 0.526 0.526 0.532
False positive 0.311 0.311 0.257
False negative 0.134 0.134 0.116
True negative 0.713 0.713 0.741

TABLE 5 — Comparison between builGraph 01, builGraph 02, and builGraph_03.

buildGraph 02 and buildGraph 03 reduce considerably the number of category to verify. In
average, there are only 21 categories to check for each image.

buildGraph 01 and buildGraph 02 approximately inspects, in average, 14 and 21 different
location configurations with 9-area and 16-area splitting respectively for each entity category.
Meanwhile, in using 9DSpa relationships as binary relationship, buildGraph 03 inspects only 7
and 12 different location configurations for each type of unary relationship.

buildGraph 02 does not improve the score of buildGraph 01 in terms of detection precision
because buildGraph 02 only uses co-occurrence relationships to reduce the number of categories
to check.

buildGraph 03 improves slightly the score of true positive when a category is present, reduces
the one of false positive (the average score is 0.116). When a category is absent, the score of true
negative is increased about 3%. The ones of false positive and uncertainty are lowered 2% (see
the score of buildGraph 01 in Tab.3).

We illustrate category detection with buildGraph 03 in Fig.27 in appendix. By giving the informa-

tion of "building" category, the algorithm shows different locations detected for other entity categories

than can have a relationship with "building". We illustrate the algorithm with "car", "fence", "tree".

By using binary relationship, buildGraph 03 can be used to respond to queries 5, 6 or 7 presented in

section 5.4. In comparison with buildGraph 01, buildGraph 03 reduced the uncertainty in detection

for remaining true positive.

6.3 Evaluation for image retrieval

In this section, we evaluate our context graph-based model for the scenario of image retrieval. All
the techniques are evaluated under the paradigm of image retrieval by example, in terms of quality of
the responses by computing Precision and Recall (P/R) curves (or at least mAP, i.e. mean Average
Precision, for secondary results). These measures are averaged over all the images of the tested datasets
taken as queries. We propose the evaluation with a database built by giving priority to the annotations.
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FIGURE 23 — Precision/Recall curves of A-TSR and context graph-based model for image retrieval.

In this experiment, we classify D B4 in different classes defined by the set of annotated categories
present in each image (see example of Table 7 in appendix). For example, every images containing
"car", "person", "building", "road" belong to the same class. In our framework, we defined randomly
many classes by group of categories and chose 20 ones that contain the most images (see Tab.6 in
appendix). The number of categories in each class varies between 1 and 5. The comparison of the P/R

curves for the two approaches (A-TSR and the context graph-based model) gives the Fig.23.

We observe that the graph-based model is superior. Its mAP is 0.79 while mAP of A-TSRsp is
0.61. The result of A-TSRsp is worse because of the important variability of the visual content in
each class of this test database. The similarity measure in the graph-based model is always based on
the presence of entity categories and spatial relationships between them, then the better precision is
logical.

6.3.1 Example of retrieval

To conclude these experiments, we give an example of image retrieval by example with A-TSR in
Fig.24 and with the context graph-based model in Fig.25.

7 Conclusion

In this paper, we have presented and evaluated a graph-based model to represent the spatial know-
ledge existing between entity categories in an image. This graph is totally extendible for adding a new
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(a) Query image (b) Results with A-TSRsp

FIGURE 24 — The ten first images similar to the query image in terms of visual content (A-TSR.

(a) Query image (b) Results with context graph-based model

FIGURE 25 — The ten first images similar to query image in terms of context.
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knowledge. The unification of knowledge is guaranteed robustly by using three notions of node situa-
tion : TRUE, UNCERTAIN, FALSE. Moreover, this knowledge graph helps to localize and detect objects
in an image if we can collect some initial information from other categories. And more generally, in the
other cases, the location knowledge of an entity category allows to restrict the number of locations for
its detection if we do not have any a priori information in the image.

We apply this graph model to represent the spatial context of an image. This representation allows
a quick comparison between images based on the context similarity. Each node in the graph has an
unique identification, then the matching between two nodes of two graphs can be done quickly with
a hashing structure. The context similarity of two images is evaluated on the presence of categories
and the similarity of their spatial relationships. So, our graph-based model can be classified with those
using the image context a priori for image processing. In that way, for image retrieval for example,
the model can strengthen the obtained images filtering , then, the execution time. We have also pro-
posed three algorithms to represent automatically the context of image by using a knowledge graph
as external assistance for object detection and localization. We demonstrated also the robustness of
these three algorithms for the building of context of image. We have also experimented its relevance
for image retrieval by context by comparing our graph-based model to A-TSR that allows a similarity
search based on visual content.
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APPENDIX

(a) Image and 9-area splitting

g,

(c) Detection of "fence" (d) Detection of "tree"

FIGURE 26 — Entity categories detected with buildGraph 01 and their locations with 9-area splitting :
blue rectangle for uncertain location and yellow rectangle for a sure one.
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(c) Detection of "fence" (d) Detection of "tree"

FIGURE 27 — Entity categories detected with buildGraph 03 from the given category "building" and
their locations : blue rectangle for uncertain location and yellow rectangle for sure one.

ID Class | Categories
Co1 bicycle, car, road
Co02 bird, grass, lake, tree, path
Co3 bird, plant
Co4 boat, building, lake, sky
C05 building, car
Co6 building, fence
co7 car, road, tree
Co8 chair, window
C09 chimney, roof, building, tree
C10 door, fence, wall
C11 flag, road
C12 grass, flower
C13 lake, tree, sky
C14 lamp, tree
C15 moutain, road
C16 motobike, table, traffic-light
C17 person
C18 sea, sky, mountain
C19 side-walk, tree
C20 table, umbrella

TABLE 6 — 20 image classes in experiment of section 6.3.
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person building, car boat, lake, sky,
building

bycicle, car, road

TABLE 7 — Different classes of test database for evaluation in section 6.3.
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