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Abstract

We present a natural wireless sensor network problem, which we model as a probabilistic
version of the MIN DOMINATING SET problem. We show that this problem, being a general-
ization of the classical MIN DOMINATING SET, is NP-hard, even in bipartite graphs. We first
study the complexity of PROBABILISTIC MIN DOMINATING SET in graphs where MIN DOMI-
NATING SET is polynomial, mainly in trees and paths and then we give some approximation
results for it.

1 Wireless sensor networks and probabilistic dominating set

Very frequently, in wireless sensor networks [31], one wishes to identify a subset of sensors, called
“master” sensors, that will have a particular role in messages transmission, namely, to centralize
and process messages sent by the rest of the sensors, called “slave” sensors, in the network. These
latter sensors will be only nodes of intermediate messages transmission, while the former ones
will be authorized to make several operations on messages received and will be, for this reason,
better or fully equipped and preprogrammed.

So, the objective for designing such a network is to identify a subset of sensors (the master
sensors) such that, every other sensor is linked to some sensor in this set. In other words, one
wishes to find a dominating set in the graph of sensors. If we suppose that equipment of master
sensors induces some additional cost with respect to that of the slave ones, if this cost is the same
for all master sensors, we have a minimum cardinality dominating set problem (MIN DOMINATING
SET), while if any master sensor has its own cost, we have a minimum weight dominating set
problem.

Sensors can be broken down any time but, since the network must be remain operational,
once a break down, one must be able to recompute a new set of master sensors very quickly (and
in any case as quickly as solution from scratch is not allowed). This is the problem handled in
this paper.

For simplicity, we deal with master sensors of uniform equipment cost (hopefully, it will be
clear later that this assumption is not restrictive for the model) and we suppose that any sensor,
can be broken down with some probability ¢; (so, it remains operational, i.e., present in the
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network, with probability p; = 1 — ¢;) depending on its construction, proper equipment, age, etc.
Informally, the approach we propose, in order to maintain the network operational at any time,
is the following;:

e design an algorithm M that, given a set D of master sensors of the network, if some sensors
of D fail, it adapts D to the surviving network (in other words, the new D becomes the
new master set of sensors for the surviving part of the network); this algorithm must be as
efficient as possible, in order that long idle periods for the network are avoided;

e given the network, its sensors’ surviving probabilities p; and M, compute a solution D*,
called “a priori” solution that, informally, has the basic property to be close, in a sense
that will be defined later, to every possible solution obtained by a modification of D* when

applying M.

The problem of determining an optimal a priori master set D* is the problem handled in this
paper.

It is clear that given a network of sensors, identifying master set of them is equivalent to
determining a dominating set in the associated graph where vertices are the sensors of the
network and, for any linked pair of them, an edge links the corresponding vertices. The MIN
DOMINATING SET problem is formally defined as follows. Let G(V,E) be a connected graph
defined on a set V of vertices with a set £ C V x V of edges. A vertex-set D is said to
be a dominating set of G if, for any v € V' \ D, v has at least one neighbor in D. In the
MIN DOMINATING SET problem, the objective is to determine a minimum-size dominating set
in GG. The decision version of MIN DOMINATING SET problem is one of the first 21 NP-complete
problems [21] and remains NP-complete even in bipartite graphs, while it is polynomial in trees.

Figure 1: A graph together with a dominating set (bold-circled vertices).

In our sensor network problem handled, we associate a probability p; to every vertex v; €
V' (the probability that sensor ¢ remains operational). We specify also a strategy M, called
modification strategy, that when given a dominating set D of G and a subgraph G’ = G[V']
induced by aset V! C V (the surviving sensors), it transforms D into a set D’ that is a dominating
set of G’. Let us note that the simplest modification strategy, consisting of just returning
D’ = DNV’ is not feasible since it does not always produces feasible dominating sets for G’.
For example, consider the graph of Figure 1 for which the set D = {v3,vg} is dominating. If
we consider V' = {v1,v9,v4,v6,v7}, then D' = DNV’ = {vg} is no longer a dominating set
of G'. Hence, we will consider the following somewhat more complicated modification strategy M
associated with our problem:

given a graph G(V, F), a dominating set D of G and subgraph G’, set D' := () and,
for any v; € V"



e if v; € D, then set D' := D" U {v;};
e otherwise, if T'(v;) N (D N V') = (), then set D' := D" U {v;}, where, for any
vertex v, I'(v) denotes the set of its neigbors.

In other words, M first takes D NV’ in D’ and then completes it with all the non-dominated
vertices of V'. It is easy to see that the complexity of M is polynomial, since it is bounded by the
sum of the degrees of the vertices of V/\ D that is at most O(|E|).

Figure 2: The graph of Example 1.

Example 1. Consider the graph of Figure 2 and a dominating set D = {vy,vs,v7} and its
subgraph induced by the set V' = {vy, va,v3,v6,v7,v9} (Figure 3). For these vertices two cases
are possible:

1. either a vertex is in D and it will be part of D" also (this is the case of vy and vr);

2. or a vertex does not belong to D and in this case it will be added to D’ if all its neighbors
that were in D are not in V'’ (this is the case of vs, vg and vg).

The set D’ is shown in Figure 3 by the bold-circled vertices i

Figure 3: The subgraph G[V'] and the solution computed by M in Example 1.

Consider now a graph G(V, E), a probability p; for every vertex v; € V', a dominating set D of G
and the modification strategy M just specified. The functional of M can be expressed by:

E(G,D,m)= > Pr[V']|D| (1)
VICV

3



where Pr[V’] is the probability of V' (i.e., the probability that only the vertices of V'’ will not be
broken down) and D’ is the dominating set returned by M for G[V].

Following M, if a vertex v; € D, then it will be always in D’ if it belongs to V'; hence, its
contribution to E(G, D,M) in (1) will be equal to p;. On the other hand, if v; ¢ D but v; € V|
it will be included in D’ only if all its neigbors in G that belonged to D are not in V’; in this
case, its contribution to E(G, D,M) in (1) will be equal to p; ijel“(vi)ﬂD(l — pj). Based upon
these remarks, starting from (1) we get:

E(G,DM) = Y Pr(V]Y Lyep = > > Pr[V]lyen

VICV v, €V v, EV VICV
= > > Pr[V]Lyer + D D Pr[V] Levnnw)nonv—o
v, €DVICV vi¢DV'CV
= Z pi+ Z Z Pr [V'] 1(,av7=v) Lo n(DAv7)=0
v €D v;¢D V'CV
= > pm+> ] (-p) (2)
v, €D vi¢D  wv;el(v;)ND

It is easy to see that, from (2), E(G, D,M) can be computed in polynomial time. Also, setting
p; = p, l.e., considering that vertices of G have identical probabilities (this is quite natural if we
assume identical sensors), one gets:

E(G,D,M) = p|D| + Z p(1 = p)t@)ND| 3
’UZ¢D

We consider E(G, D,M) as the objective function of the problem handled here which, by symmetry,
we call PROBABILISTIC MIN DOMINATING SET. [ts goal is to determine a dominating set D* of G,
called a priori dominating set, that minimizes E. Obviously, such a solution D*, has the basic
property that, in average, any solution obtained by D* via M on any subgraph G’ of G is optimal
for G'.

In other words, for our wireless sensor network design problem, the a priori solution D* has
the property that, under the modification strategy M described above, the solution constructed on
the surviving network minimizes in average the additional cost needed in order that this network
remains operational.

The following results holds for PROBABILISTIC MIN DOMINATING SET.

Proposition 1. PROBABILISTIC MIN DOMINATING SET is INP-hard, even in bipartite graphs
and inapprozimable in polynomial time within ratio O(logn).

Proof. The inclusion of PROBABILISTIC MIN DOMINATING SET in NP is immediately de-
duced from (2) that is computable in polynomial time. Also, if in (3) we set p = 1, then
E(G,D,M) = |D|, i.e., the a priori solution minimizing E is a minimum dominating set in G. So,
PROBABILISTIC MIN DOMINATING SET, having as particular case MIN DOMINATING SET, inherits
all its hardness results either in exact computation [15, 21|, or in polynomial approximation [14].
Note the O(logn) lower bound of [14] mentioned in the statement of the proposition is originally
addressed to MIN SET COVER problem. But, by a classical approximability preserving reduction
(that preserves both constant ratios and ratios depending on the sizes of the instances [28]), this
bound also applies to MIN DOMINATING SET. I

As we have already mentioned, MIN DOMINATING SET is polynomial in trees. In Section 3, we
explore complexity of PROBABILISTIC MIN DOMINATING SET in those graphs, while in Section 4,
we give non-trivial (positive) approximation results.



2 Some words about probabilistic combinatorial optimization

It is hopefully clear that the way PROBABILISTIC MIN DOMINATING SET has been mathemat-
ically defined in Section 1 remains valid for every combinatorial optimization (deterministic)
problem II. In this way the probabilistic version PROBABILISTIC II of II becomes another deter-
ministic problem II’, the solutions of which have the same feasibility constraints as those of IT
but II’ has a different objective function where vertex-probabilities intervene. In this sense, prob-
abilistic combinatorial optimization is very close to what in the last years has been called “one
stage optimisation under independent decision models”, an area very popular in the stochastic
optimization community. Also, as one can see from (2) and from the whole discussion deriving
it, D’ strongly depends on the modification strategy M used to adapt the a priori solution D
to the present graph G’. So, both E(G, D,M) and the a priori solution D* optimizing it, also
strongly depend on M. In other words, for a fixed instance I of a deterministic problem II, two
distinct modification strategies induce two distinct probabilistic problems having I and II as com-
mon deterministic supports. These two distinct problems may have very different functionals
and, consequently, different optimal a priori solutions that induce very different complexities for
computing them techniques for handling them.

What are the main mathematical problems dealing with probabilistic consideration of a
problem II in the sense discussed above? One can identify at least three interesting mathematical
and computational problems:

1. write the functional down in an analytical closed form and, if possible characterize the
optimal a priori solution;

2. if such an expression of the functional is possible, prove that its value is polynomially
computable (this amounts to proving that the decision version of the modified problem IT’
belongs to NP); this is neither trivial nor senseless (see, for example, [13, 23, 33|) if one
considers that the summation for the functional includes, in a graph of order n, 2" terms,
one for each subgraph of G; so, polynomiality of the computation of the functional is, in
general, not immediate;

3. determine the complexity of the computation of the optimal a priori solution, i.e., of the
solution optimizing the functional (in other words, determine the computational complexity
of II') and if IT" is NP-hard, study approximation issues, and/or complexity of IT' in special
cases where II is polynomial.

The framework of probabilistic combinatorial optimization that we adopt in this paper was intro-
duced by [16, 3|. In [1, 3, 4, 5, 6, 16, 17, 18, 19], restricted versions of routing and network-design
probabilistic minimization problems (in complete graphs) have been studied under the robustness
model dealt here (called a priori optimization). In [2, 7, 8, 11, 12|, the analysis of the proba-
bilistic minimum travelling salesman problem, originally performed in |3, 16|, has been revisited.
Several other combinatorial problems have been also handled in the probabilistic combinatorial
optimization framework, including minimum coloring (|27, 10]), maximum independent set and
minimum vertex cover (|25, 26]), longest path ([24]), Steiner tree problems ([|29, 30]), minimum
spanning tree |5, 9].

Revisit PROBABILISTIC MIN DOMINATING SET. Unfortunately, even if this functional is writ-
ten in an analytical closed form satisfying at half point 1 above, this form does not derive a
compact combinatorial characterization for the optimal a priori solution of PROBABILISTIC MIN
DOMINATING SET. In particular, the form of the functional does not imply solution, for instance,
of some well-defined weighted version of the (deterministic) MIN DOMINATING SET. This is due
to the second term of (2). There, the “costs” assigned to the edges depend on the structure of
the anticipatory solution chosen and of the present subgraph of G.



3 Probabilistic dominating set in paths, cycles and trees

We handle in this section PROBABILISTIC DOMINATING SET in paths, cycles and trees. Let us
recall that MIN DOMINATING SET in these graphs is polynomial. We prove that PROBABILIS-
TIC DOMINATING SET in paths and cycles remains polynomial for any vertex-probability, while
PROBABILISTIC MIN DOMINATING SET in trees is plynomial either when the maximum degree of
the input tree is bounded, or when the vertex-probabilities are all equal.

Recall that the contribution of a node refers to the probability for this node to be present
in D' for a given a priori solution D and for the modification strategy M adopted in Section 1. Let
us recall that the contribution of a node v; that belongs to D is p;, and for a node that does not
belong to D, its contribution amounts to p; ij €M ()N p(1 —pj). This notion will be extended
to a set: the contribution C(V') of a node-set V' is the expected number of nodes of V’ in D’.
In other words, C(V’) is the sum of the contributions of all the nodes in V.

3.1 Paths and cycles

Given a path we consider its nodes labeled in the following way: the leftmost endpoint of the
path is labelled by v; (which might be referred as the first, or left end node), while the rightmost
endpoint will be labelled by v, (last or right end node). Of course, all nodes in between will be
labelled in increasing order from left to right.

Proposition 2. PROBABILISTIC DOMINATING SET in paths can be solved in polynomial time.

Proof. We show how PROBABILISTIC DOMINATING SET in paths can be solved by dynamic
programming. First, let us make some preliminary remarks that will help us to build the final
algorithm.

Remark 1. For a given node v; in a dominating set, the “next” dominating node (if any) will
be vijt1, Vitys or v;+3. Indeed, if none of them is in the dominating set, then v;;2 wouldn’t be
dominated. 1

Remark 2. The last dominating node is either v,, or v,_1. 1

Considering Remarks 1 and 2, one can see that, except the very last node of the path, any
dominating set D on a path can be partitioned in elementary patterns of shapes Dy, Dy or Ds,
which are illustrated in Figure 4.

" ©-010e—o0)
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(a) Elementary patterns (b) Examples of partitions

Figure 4: Partitionning nodes with elementary patterns.

One also can see that any sequence of patterns where the first pattern is not D3, forms a
dominating set D where the last node (i.e., v,) is necessarily in D.



At this point, it is interesting to notice that the contribution of a given pattern can be
determined, regardless the rest of the sequence, but depending on its position in the path. To
be more precise, denoting by D;(i) the pattern D; with its dominating node being v;:

(D1(i)) = pi Vi

(Da2(d)) = pi+pi-1(1-pi) i=2 (4a)
(D2(i)) = pi+pi-1(1=pi) (1= pi-2) i>3 (4b)
(D3(d)) = pi+pia(l=pi)+pi2(l—piz) >4 (4¢)

Indeed, a pattern D has clearly a contribution of p;, namely, the probability of its only node,
which is a dominating one. The contribution of Ds(7) depends on its position: either i = 2,
then its last node is the second one of the path. Its first node v; (which is also the first node of
the path) is only dominated by ve; this amounts to (4a). For any other ¢, it is clear that v;_q
is dominated by both v; and v;_o, given the way a sequence is built: any sequence ends with a
dominating node, so that v;_2 has to be a dominating node. This leads to (4b). For the same
reason, in a sequence Ds(7) (which can only appear with ¢ > 4), v;_; is only dominated by v;,
and v;_9 is only dominated by v;_3, which leads to (4c).

This will be very useful for the method. Indeed, if a pattern has no impact in terms of
contribution neither on the preceding sequence, nor on the following one, then it is quite easy to
give a recursive definition of W; which is the sequence up to node v; of minimum contribution,

C
C
C
C

where v; is a dominating node:

0 i=0
p1 1=1

C(Wi) = min (€ (Wi-j) + C(D;())) i=2,3 (5)
join (C(Wij) +C (D)) 4<isn

Indeed, a sequence W; always ends with a dominating node. So, leaving aside particular cases
when i < 3, it ends necessarily with one of the three patterns defined earlier. If it ends with Dy
(resp., Dy or D3) then it should be completed with a minimal sequence up to node v;_1 (resp., v;_2
or v;_3), namely W;_1 (resp., W;_o or W;_3). That among these three possibilities that returns
the minimal contribution, is that chosen for W;.

At this point, we only have a set of optimal sequences, but these are not necessarily optimal
dominating sets. Indeed, a dominating set can end with a dominated (i.e., non-dominating) node,
whereas a sequence cannot. To take this distinction into account, and allow our final solution
to end with a dominated node, we define the contribution of an optimal dominating set D* as
follows:

C(D*) =min (C (Wy,),C (Wy_1) +pn (1 —pn_1))

In all, 3n contributions C'(D;(i)) have to be computed and, in order to compute a W;, one basi-
cally compares 3 possible values, which amounts to 6n operations to get an optimal anticipatory
solution for PROBABILISTIC DOMINATING SET in paths. This concludes the proof. I

By adapting the method, one can extend the result of Proposition 2 to cycles. In what
follows, we prove the following result.

Proposition 3. PROBABILISTIC DOMINATING SET in cycles can be solved in polynomial time.

Proof. To extend the result of Proposition 2, it suffices to choose an arbitrary node as starting
point v; (whose neighbors will be v9 and v,,), and to notice that there are three possible posi-
tions regarding the “first” (i.e. the lowest-labelled) dominating node, namely vy itself, vo or vs.
Depending on the position of the first dominating node, there are different possibilities for the
position of the “last” (e.g. highest labelled) one:



1. the first is v and the last v, or v,,_1, or v,_o;
2. the first is vg, the last v, or v,_1;
3. the first is vs, the last is necessarily v, (or else v; is not dominated).

So, we have a total of 6 cases for the position of the “first” and “last” dominating nodes. These 6
cases are illustrated in Figure 3.1, and will be compared by the method.

Case la @—@ Case 2a @—O—@

Un U1 Un U1 V2
Case 1b @—O—@ Case 2b @—O—O—@
Un—1 Un U1 Un—1 Un U1 V2
Case 1c @—O—O—@ Case 3 @—O—O—@
Un—2 Un—1 VUp U1 Un U1 V2 U3

Figure 5: 6 cases regarding positions of the first and last dominating nodes.

In order to take all these cases into account, we will have to define three kinds of partial
sequences W;, W/ and W/" which represent,respectively, the three cases defined earlier. More pre-
cisely, W; represents the optimal sequence ending with node v; and starting with pattern Dy, W/
corresponds to ending with node v; but starts with Dy and W/ does the same but starts with Ds.
The contributions of these three sequences are as follows:

D1 1=1
D1+ P2 1=2

¢ (Wi) = min (€ (Wi—;) + C(D;(0) i=3
min (C(Wij) +C(D;(1)) 124
-7: <

This definition differs from that defined in (5) only on case i = 2, to ensure that v; will remain

a dominating node anyway. For the same reason, we define C(W/) and C(W}/') as follows:

p1(1—p2) +p2 i=2
p1(1—p2) +p2+p3 i=3
C(w) =1 min(C(W,)+Cm) =4 ©
jin (¢(wi)+cwin) izs
p1(1—pn) +p2(1—p3) +ps i=3
pr(L—pn)+p2(l=p3) +p3+ps  i=4
C(WY) = min (C (W) +C(D;0)) i=5 (7)
min (C(W2) +O D) iz

In (7), we consider that v; has a contribution of p;(1 — p,). Indeed, it is not dominated in
any partial sequence W', but will have to be dominated by v, in our final solution, so that its
contribution has to be p1(1 — p,) anyway.

In (6), we consider that vy has a contribution of p1(1 — p2). Actually, this represents its
contribution in the partial sequence but, in the end, its contribution might be decreased in
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Figure 6: Overall structures on the 6 cases.

a dominating set that includes v, (Case 2a). Precisely, the contribution would decrease from
p1(1 — pa) downto p1(1 — p2)(1 — p,). Thus a decrease of py, - p1(1 — p2).

Now, using these sequences, in order to build an optimal dominating set, one defines the op-
timal solution D* as the minimal dominating set over the 6 cases defined earlier, whose structure
is shown in Figure 6 and whose contributions amount to:

Wy,
Wi-1+pn (1 —pp_1) (1 —p1)

Wn—2 + Pn—1 (1 - pn—2) + Pn (1 - pl)

(Case 1a)
( )
* . (
C (D*) = min
(
(
(

Case 1b
Case 1c)
Case 2a)
Case 2b)
Case 3)

W) — pn.p1 (1 — p2)
W1+ (1 —pp_1)
W//

n

Here, since three types of sequences are built, the number of operations required to compute an
optimal solution is 12n which concludes the proof. I

3.2 Trees

With a similar, yet more complex method, one can generalize the result of Proposition 2 from
paths (trees of maximum degree bounded by 2) to trees with bounded maximum degrees. In
what follows, v; will denote the root of the input tree T, T; will denote the subtree rooted at
node v; (so, Ty = T'), F; will denote the set of chilren of given node v;, and vy, the father of v;.
The depth D(T;) of a subtree T; will refer to the minimum number of edges on a path between
the root and a leaf of the subtree.

Proposition 4. PROBABILISTIC MIN DOMINATING SET in trees of mazximum degree bounded
by k can be solved in O*(2F), where O*(-) notation ignores the polynomial terms.



Proof. Consider a tree T" and a dominating set D on T'. For any subtree T; of T', there are only
three possible configurations regarding its root v;:

1. v; € D;

2. v; ¢ D, and vy, ¢ D; in this case, the root has to be dominated in the subtree T; (i.e.,
dominated by at least one of its children);

3. v; ¢ D and vy; € D; in this case, the root might be non-dominated in the subtree T (i.e.,
not dominated by any of its children).

Considering Cases 1 to 3, for a given dominating set D in a tree T, it is always possible to
partition nodes of T" into three sets: D, S and N, where D is the dominating set itself, .S is the
set of nodes that are dominated, but not by their fathers, and NV is the set of nodes dominated
by their fathers (and also possibly by some of their children). Figure 3.2 gives an example of
such a partition.

© b
® S

D & Q e © e
© ©

Figure 7: Partitioning nodes in three subsets.

Now, let us analyze what possible cases can occur for nodes of F; with respect to the status
of v;. The following cases can occur:

e v; € D; then children of v; (if any) might be in D, or in N’
e v; € 5; then children of v; might be in D or in S, and at least one of them should be in D;
e v; € N; in this case, children of v; might be in D or in S.

It is interesting to notice that the situation of a given node impacts only its own contribution if the
status of its children is known, so that, once more, it is possible to run a dynamic programming
method. It will be based upon three partial solutions for each subtree T}, namely, W;, W/ and W/,
where W; (resp., W/, W) is the partial solution of minimum contribution for subtree T} rooted
at v; when v; € D (resp., v; € S, v; € N).

Partial solution W; can be computed on a tree of any depth. Children of v; can belong either
to D, or to N, so that there are 2/Fil possible combinations to evaluate (bounded by 2k). The
combination minimizing the overall contribution leads to the structure we are trying to define,
namely W;. Setting D; = D N F; (the subset of children of v; that are dominating nodes), W; is

defined by:

W)= min [p+ S cW+ Y o) (5)

D, CF;
= UjeDi 'UjeFi\Di

10



This value is quite easy to initialize with leaves where W; = p;.

Now, let us tackle W/, which can also be initialized on leaves (unlike W/). Indeed, if a leaf
is dominated, then its father has to be dominating, or else it would not be dominated. So that
a leaf can only be in D or in N. As we said earlier, children of v; in a partial solution W/’ can

belong either to D or to S. Thus, the following holds:

C(Wy) = min |p;(L—pp) [[ A=p)+ D CW)+ > C (W) (9)

= v;E€D; v;E€D; v; €F\D;

Note there are also at most 2¥ combinations to examine in this case.

Finally, let us specify W/. In this case, children of v; should be in S or in D and at least
one of them should be in D. Of course, by definition, none of them can be in N. Once more,
each combination of sons in S or in D (at most 2¥ combinations) leads to a specific contribution
for the subtree T;. The partial solution W/ is the one minimizing this contribution. Thus, the
following holds:

C(W/)= min pi [[ Q=pp)+ D cWp+ Y. (W) (10)

D;CF;,|D;|>1
i CFi, | Dil v;eD; v;€D; v; EF\D;

Note that such a value can be computed for any subtree T; of depth at least 1 (not on leaves).
This might be a problem when computing a value W/ or W/ on a tree T; of depth 1 since,
according to (9) and (10), in order to compute W} and W/, one needs values W} for all the
children v; of v; but these values do not exist for leaves. To keep all formulee valid and still
ensure that a leaf will never be in S, we will initialize W]' to an arbitrarily large value M for
any v; that is a leaf. Thus, when applying (9) and (10), all leaf-children of v; will be forced to
be in Dz

Note also, that definitions of C(W]) and C(W]’) differ only by a factor (1 — py,) in the
contribution of v;.

The dynamic programming method runs in a “bottom up” way. It is initialized with leaves
where values W;, W/ and W)’ are equal to p; , M and p;(1 — py,), respectively. Then, each

subtree T; is associated with structures W;, W/ and W/ (apart from leaves that are associated

only with W; and W/, and the overall tree which will be associated only with W; and W/
for obvious reasons), whose computation relies on the same structures on subtrees induced by
children of the root v;. In other words, in order to compute, for instance, a value W;, one needs
to have already computed values W; and W;’ for all children v; of v;. Since the method is
easily initialized with leaves, all values can be computed for all subtrees, starting from leaves
and ending with the whole tree.

Finally, the optimum D* is given by D* = argminy,_y, 1 (C(W)). In all, O(2Fn) = O*(2¥)
operations are necessary to compute D*. 1 '

Corollary 1. PROBABILISTIC MIN DOMINATING SET in trees with maximum degree bounded
by O(logn) can be solved in polynomial time.

Corollary 2. PROBABILISTIC MIN DOMINATING SET in trees is fized parameter tractable with
respect to parameter “mazrimum degree”

As one can see from the proof of Proposition 4 the bound 2* for evaluating C(W;) and its
gang was somewhat greedy and includes the real complexity of this evaluation that depends on
which of the children of v; are in D, the quantity of them depending on their probabilities that
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affect C'(v;). So, the real complexity of the method presented is exponential to the number of
distinct vertex probabilities of the children of v; which can be as large as k. In what follows, we
conclude this section by restricting ourselves to the natural case where all the vertices of the tree
have the same probability.

Proposition 5. PROBABILISTIC MIN DOMINATING SET 4s polynomial in general trees with
equiprobable nodes.

Proof. We will use the same kind of recursion as in Proposition 4, but we will adapt slightly
its definition to take advantage of the equiprobability property. What is interesting and useful
with this property, is that the contribution of a given dominated node does not depend on which
of its neighbors are dominating ones, but only on how many of them are dominating. Indeed, if
F; Uy, represents the set of neighbors of a dominated node v; (i # 1), then:

C(v;)) =p(1— p)‘(FiU{Ufi})mD’

Now, let us specify the dynamic programming method. The idea is basically the same as in
Proposition 4, but given the equiprobability assumption, (8), (9) and (10) can be computed
in O(klog k) instead of O(2¥), which enables us to apply the method to trees of any structure,
and any degree.

If one considers that a given node has h children in D (0 < h < k), then one does not
have to check all the possible configurations (at most (z)) for the A children in D. Indeed, the
contribution of v; does not depend on which children are in D, but only on how many of them,
namely h. Thus the following holds:

p v, €D
C (vi) = ¢ p(1—p)" v €8, (h>1) (11)
p(1 — p)ht! v; €N

Now, we will use this, to simplify computations of W;, W/ and W'. We will detail the simplifica-
tion for W/ only, and simply present the final results for W; and W/, but the ideas and methods
are exactly the same as in the proof of Proposition 4.

Let us denote by W/, the partial solution W, where the number |D;| of children of v; in D
is equal to h. Of cours,e, if one computes W/, for each possible h between 1 and |F;|, it is
quite easy to compute W/ since C'(W/) = min1%h<‘Fi‘(Wi’7h). We will show that it is possible to
generate W/, for each possible h in time klog k.

Combining (10) and (11), one gets:

c(w',) = i 1—p)h C(W; C(W!
( z,h) pein (p( ) +j§) ( ])+j€%\D (W3)

:pl—ph+ min c(W;) + c(wW!
(1=p)+, min (Zg W)+ 5 o)

(12)
—p(1—p)h + zc(w;) +  min ZC(W]»)—C(W;)>

JEF; DiCF;,|Dil=h \ jeD

=p(1 —p)h + C(W{)—i— min A
( ) ];y J D;CF;,|Di|=h jg) J

where A’ = C(W;) — C(W}) for all j. This value represents the “additional cost” for a given
subtree T} to have its root v; as dominating node instead of dominated one. Indeed, if the root
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of the subtree is dominating then it must have the structure W; and weight C'(W;), whereas if
the root is dominated then it must have the structure W} and weight C(W}). Obviously, this
value can be negative if the partial solution W; (with the node v; considered as dominating) has
a better expected value than the partial solution Wj/ (with v; considered dominated).

Understanding this, one also understands that the min operator can be computed in O(k log k)
for every h. Indeed, it suffices to compute the values A; for all j, and to sort them in increasing
order (which takes O(klog k) operations).

Then, in order to compute the min for a given h, simply pick as subset D the h nodes v;
corresponding to the h first values A; in the sorted list. Furthermore, one needs to sort A;’S only
once to get any W/, for all possible h. Indeed, once sorted, one can use the sorted list to compute
all Wi, just pick ‘the lowest A’ (thus the first element of the sorted list) to compute W/, the
two lowest (first and second elements of this same sorted list) to compute Wi,,2? and so on, for
each h.

This method returns the proper min as well as its associated structure. Indeed, if one wants
to minimize the sum of A values in a set of k values, one only needs to pick the h lowest values. In
this case, the h subtrees with lowest “additional costs” (linked to setting the root as dominating
instead of as dominated) will be the h that actually have their respective roots as dominating
nodes, the |F;| — h other subtrees having their roots set as dominated nodes. Obviously, given
the recursive structure of the method, one knows the optimal partial solutions associated with
all these subtrees.

By the same method, and setting A} = C(W;) — C(W'), one gets:

) = " i "
Co) = e, (T w
JELF; jeD
CWh) = pA=p" 4> CWH+  min | > A (14)
JEF; jeD

Each of these values can be computed for all 4 in O(klog k) in exactly the same way as described
previously. Using these values, one directly defines W; and W) as follows:
C(W;) = min (W;
( Z) Oghg\Fi\( Z,h)
C (W)= min (W/
(W!) = min, (1)

The rest of the algorithm is the same as that described in Proposition 4. In all, each value W;,
W/ or W/ takes O(klog k) operations to be computed, and the method computes 3n of them.
So, the overall running time of the method is O(n?logn), which concludes the proof. i

In order to make clearer how each W, and gang are computed, in appendix we run the
algorithm on a small instance, and detail some interesting steps.

4 Polynomial approximation of PROBABILISTIC MIN DOMINATING SET

4.1 Networks with identical sensors

We consider in this section that the probability that a sensor fails is the same for all of them.
As we have already mentioned, MIN DOMINATING SET is approximate equivalent to MIN SET
COVER, in the sense that an approximation algorithm for one of them can be transformed in poly-
nomial time into an approximation algorithm for the other one achieving the same approximation
ratio. Recall also that the natural greedy algorithm for MIN SET COVER achieves approximation
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ratio either 1+ In [Syax| where |Spax| is the cardinality of the largest set Spax in the set-system
describing the instance of MIN SET COVER [20, 22|, either O(logn) where n is the cardinality
of the ground set describing this instance [32|. In the transformation of MIN DOMINATING SET
into MIN SET COVER, any set S of the set-system becomes a vertex with degree |S|+ 1. So, in
the derived instance of MIN DOMINATING SET, A = |Spax| + 1, where A denotes the maximum
degree of the derived graph. For facility and because of the form of the functional given in (3),
we will use in what follows the former of the above ratios.

The following two easy lemmata that will be used later hold. We prove the first of them
(Lemma 1). The proof of the second one (Lemma 2) is immediate.

Lemma 1. For any instance of MIN DOMINATING SET of size n and mazximum degree A, any
minimal (for inclusion) solution (hence, the minimum-size one also) has size bounded below by

n/(A+1).

Proof. Consider an instance G of MIN DOMINATING SET of size n and maximum degree A, and
a minimal (for inclusion) MIN DOMINATING SET-solution D in G. Set D = V' \ D and, for every
vertex v € D, denote by dp(v) the number of the neighbours of v in D. Since, D dominates V/,
we have >, ., dp(v) > |D| =n—|D|

On the other hand, obviously, for every v € D, dj(v) < A, so that the former sum becomes
A|D| 2n—|D| = |D| 2 n/(A+1) as claimed. I

Lemma 2. Let D be a minimal dominating set in a graph G(V,E). Then, V' \ D is also a
dominating set and, moreover, the smallest of them is smaller than n/2.

Revisit now (3) and observe that the following framing can be easily derived for E(G, D,M):

E(G,D,M) < p|D|+ (n—|D)p(1—p) = p*|D|+pn(l-p) (15)
E(G,D,M) > p|D|+pn—|D)1-p)* = p(1-(1—-p)2)[D|+pn(l-p*= (16)

Denote by D* and D an optimal solution for PROBABILISTIC MIN DOMINATING SET and for MIN
DOMINATING SET in G, respectively. Remark that since D* is a feasible solution for MIN DOMI-
NATING SET, we have:

D] > || (17)

Take D the smallest between the (1 4 In A)-approximate solution computed by the greedy algo-
rithm in G and the complement of it with respect to V' as a priori solution for MIN DOMINATING
SET. Remark that, so computed, the size of D guarantees the ratio 1+ 1In A and, simultaneously,
according to Lemma 2, it is smaller than n/2. Applying the rightmost bound of (15) to D and
the rightmost bound of (16) to D*, we immediately get:

E(G,D,M) < p’ID|+pn(l—p)<p*(l+nA) ‘f?‘ +p(1 —p)n (18)
E(G,D*M) > p(1—(1-p)*)[D*+pn(l-p)> (19)

Combining (18) and (19), we have the following for the approximation ratio of D, first taking
into account that it achieves approximation ratio 1 + In A (21), then taking into account (17)
(in the first inequality of (22)), then that n > |D*| (second inequality of (22)), and finally using
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Lemma 1 (in the first inequality of (23)):

E(G,D,M) p|D| +n(1 —p)
EG.DM S 00 p)D Tl 5 .
p(1+1nA) ‘f) Tl —p)
S T ™D il P (#1)
p(1+1InA)|D*| + n(1 — p) < p(1+InA)|D*|+n(l—p) (22)
S (-1 =pA) D +nl-pA | D*|
< p1+mmA)+(1-p)(A+1) = A+1—p(A—-—InA) (23)

Revisit (20) and use Lemma 2 for D and Lemma 1 for D*. Then, some very easy algebra gives:

EGDM) _(A+1)(1-8) A+l

E(G DM S~ 1+A(1—pA S 1+A0-pA (24)

Ratio’s expression in (23) is bounded above by A —InA for p > InA+1)/(A+1—-1InA) =
In(eA)/(A+1—1InA). On the other hand, if p < In(eA)/(A +1 —1InA), expression A(1 —p)2
in the denominator of (24) is A(1 — p)® ~ 1+ e~! = 1.37 and the ratio given by (24) becomes
(A+1)/1.37.

Discussion above, leads so to the following approximation result for PROBABILISTIC MIN
DOMINATING SET.

Proposition 6. The set D selected to be the smallest between the (1+1In A)-approzimate solution
computed by the greedy algorithm in G and the complement of it with respect to V' achieves for
PROBABILISTIC MIN DOMINATING SET approzimation ratio bounded above by A —1In A, where A
is the maximum degree of G.

The mathematical analysis leading to the result of Proposition 6 seems to be quite tight. Indeed,
a numerical study of the ratio in the first inequality of (24) with respect to p derives that function
f(p) = (A+1)(1—(p/2))/(1+A(1 —p)?) attains its maximum value for p = 2In A/A. In this
case, after an easy algebra, the maximum is A —In A.

4.2 Networks with heterogeneous sensors

Let us now suppose that the sensors of the network are heterogeneous so that each of them
has its own failure probability that can be different from that of another sensor in the network.
We will show that, in this case, any PROBABILISTIC MIN DOMINATING SET-solution achieves
approximation ratio bounded above by O(A?/log A).

Revisit (2) and observe that any dominating set D satisfies the trivial inequality:

EG DM <Y p (25)
v, EV

Fix an optimal a priori dominating set D* and, for a probability p’ that will be fixed later,
partition the vertices of GG into four subsets:

D7 the set of vertices of D* whose probabilities are at least p’; furthermore, set |Dj| = &;
D3 the rest of vertices of D*, i.e., D5 = D* \ Dj;

Dj: the set I'5.(D5) of neighbours of D in D* =V '\ D*, i.e., D = I'(D}) N D*;
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Dj: the set T'p.(D3) \ Dj, i.e., the vertices of D* that have no neighbours in Dj, i.e., D} =
D*\ Tp. (D).

Denote, for simplicity, by p the largest vertex-probability. Now, taking into account the partition
above (2) can be rewritten as:

E(GDM) = > p+ > p+ > o ] C-p)+ > v J[ -p)

’UieDI ’UieD; viEDT UjEF(Ui)ﬂD* viEDg ’l}jEF(Ui)ﬂDE
A
> wpl+ Y p+ 1= > p+(1-0)" D (26)
vieD3 viEDi‘ viEDé‘
A
> > p+(1-9)" > m (27)
vi€D3 v, €D}

Let us first suppose that ZvieDSUDS Pi 2 Y,,ev pi/x for some z to be also defined later. Then,
using (25) and (27), it holds that:

E(GaDaM) < ZviEVpi < ZviEVpi
* ~ A = A
E(G’D ’M) ZWEDE Di + (1 _p/) ZWEDE Di (1 _p,) ZviEDEUDE pi

(1—p)A Zviivp (1—p)

Suppose now that ZvieDguD; pi < X_y,ev Pi/z. Then, for ZvieDI pi + ZviEDI p;, it holds that:

S ot Xz () Ta (29)

v €D} vieD? v EV

Remark, furthermore, that, since |D}| = x, |D}| < Ak and, using (29), the following holds:

r—1 T
KAp + kp > Zpﬁ-Z]%) . sz‘:> Zpigx_lﬁp(A+1) (30)
'UieDI viGDT v, €V v, €V

Remark finally that, from (25) and (26), one can immediately derive another easy expression for
the approximation ratio, namely, E(G, D,M)/E(G, D*,M) < >_ v pi/kp’, since E(G, D*,M) >
kp'. This, using (30), becomes:

E(G, D,M) < xp(A+1) < r(A+1)
E(G,D*M) = (z—1)p =~ (z—1)p

(31)

If we fix p’ = InA/A and x = A/In A, then both ratios given in (28) and (31) become ~ A?/In A
as claimed in the beginning of the section.

5 Conclusion

It seems to us that probabilistic combinatorial optimization is an interesting and appropriate
mathematical framework for handling numerous risk management natural problems where, faced
to some disaster that has destroyed a part of the solution, whatever this solution represents,
the objective of a decision maker is to restore it, or to efficiently compute one having several
good properties, for example, having a good quality (under a predefined criterion) minimizing,
or maximizing the reconstruction costs.
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In this paper we have studied emergency management for a wireless sensor network problem
modelled as a probabilistic version of MIN DOMINATING SET. This has led to a problem that is
quite more difficult to handle than its original deterministic version, in particular when trying
to approximately solve it. We have proposed algorithms for paths, cycles and trees (cases where
MIN DOMINATING SET is polynomial), as well as we have tried a first study of approximability
of PROBABILISTIC MIN DOMINATING SET is general graphs. What is missing with respect to the
latter issue is to propose algorithms that are proper to the probabilistic nature of this problem.
This seems to be a hard issue since no compact characterization of the optimal a priori solution
can be derived from (2) but work is in progress.
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An example of the algorithm of Proposition 5

Suppose p = 0.2 and consider the tree of Figure 5. The algorithm is initialized with leaves:

C(W3)=C(W5)=C(W7)=C(Wg) =C(Wy) =0.2
C(W3)=C(W3)=C(Wy;)=C(Wg)=C(Wg) =M

C (W) = C (W) = C (WYY = C (W) = C (W) = 0.8- 0.2 = 0.16
AL = AL = AL = Ay = Ab = 02— M

A= A= A = Al = Al = 0.2 — 0.16 = 0.04

©
@ & O
® © @
® ©

Figure 8: A tree T.

With all leaves initialized, it is possible to find substructures W;, W/ and W/ on subtrees
rooted at vg and vy.

Let us start with vg. Here it is senseless to sort children v; of vg in increasing values of A;
or A7 since they all have the same values A’; and A’. This means that if, in a given substructure,
only one child v; of v¢ must be dominating, then it is indifferent to choose vg or vg as such a node
(in (32b) and (33a) below, we will choose arbitrarily vg). Applying (13), we get the following:

C(Weo) = p+ Y. C(W/)=02+2x0.16 = 0.52

)

i=8,9

C(We1) = p+ Y. C(W/)+A{=02+2x0.16+0.04 = 0.56 (32a)
1=8,9

C(Ws2) = p+ D C(W/)+ D A/ =02+2x016+2x004=0.6  (32b)
i=8,9 i=8,9
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and thus, C(Ws) = minp—q,1,2C(Ws ) = C(We,0) = 0.52. We now use (12) to get C'(Wy):

C(Wiy) = + )0 (W) + A5 =016+2M +02—M =036 +M (33a)
1=8,9
C (Wi, = —p)?+ D C (W) + D A
1=8,9 1=8,9

= 0.128 +2M +2(0.2 — M) = 0.528

This example shows clearly the role of M in forcing all leaves to be either dominating nodes,
or dominated by their fathers. In any structure with one leaf that is neither dominating, nor
dominated by its father (as it is the case in Wy ;), the overall weight will be in O(M). This is the
case in (33a). Thus, for an arbitrarily large M, Wé71 cannot be picked as optimal substructure,
and C(W¢) = ming,— 2C(W{ ) = C(Ws2) = 0.528. Similarly, applying (14), one gets C(W{') =
ming,_12C(WY,) = C(WY,) = 0.5024.

All these results and corresponding substructures are illustrated in Figure 9. Substruc-
tures Wy, Wy and W}’ are computed in the same way and are illustrated in Figure 10.

b6 00 00

C(Wg) = 0.52 C(W{) = 0.528 = 0.5024

Figure 9: Substructures Wg, W§ and W/.

(@) © ©
> © ®

C(Wy) = 0.36 C(W}) = 0.36 C(W!') = 0.328

Figure 10: Substructures Wy, W and W}'.

Now, all substructures rooted at all children of vy have been computed; we continue by
computing substructures rooted at vy. First, let us sort children v; of vg in increasing order of A/
and A”. Recall that AL = 0.2— M and A} = 0.04 and notice that Aj = —0.08 and Af = 0.0176.
Thus, the two sorted lists are: (Af, Aj) and (Af, AY).

From the first sorted list, we can assert that if vy is dominated and if it has only one dom-
inating child, then this child must me vs, since A} appears first in the list. From the second
sorted list, we can assert that if vy is dominating and if it has only one dominating child, then
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this child must be vg, since Af appears first in the list. We now compute substructure for v:

C(Wa) = p+ Y C(W/)=08624
i=5,6

C(Wa1) = p+ Y C(W/)+Af=088

1=5,6
C(Wap) = p+ Y C(W/)+ > A} =092
i=5,6 i=5,6

and C'(Ws) = C(Wa) = 0.8624. Then:

C(W3,) = p(l—p)+ > C (W) +AL=0.888
1=5,6

C(Wsy) = p(L—p)+ D C(W)+ > Aj=0.776
i=5,6 i=5,6

and C(W3) = C(W3,) = 0.776. Finally:

C (W) = p(l—p)+ Y C (W) =0688+M
1=5,6

C(Wyy) = pl—p)?+ > C(W))+ AL = 0856
1=5,6

C (W) = p(—p)*+ Y C(W))+ > A;=0.7504
i=5,6 i=5,6

and C(Wy') = C(Wyy) = 0.7504. All results and structures are represented in Figure 11.

©) Q o
e @® ©®
©) (® ® © ® ©

C(Wa) = 0.8624 C(W)) =0.776  C(WJ) = 0.7504

Figure 11: Substructures Wy, W4 and W4/

Finally, let us compute structures Wy and W{. Note that we do not compute W7, since v;
has no father, and a fortiori it cannot be dominated by such a node. As before, we first build
sorted lists with A’’s and A!’s for all children v; of v;. These sorted lists are (A%, A}, A%) and
(A7, A, AY) since:

AL =0.0864 A;=02-M A,=0
AI=0.112 Al =0.04 A = 0.032

Suppose that vy is dominated. The first sorted list indicates us that:

e if v; has 1 dominating child, this must be vs; this leads to (34b);
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e if v; has 2 dominating children, these must be v3 and v4. this leads to (34c).
Similarly, suppose that v is dominating. According to the second sorted list:

e if v; has 1 dominating child, this must be vy4, leading to (35a);

e if v; has 2 dominating children, these must be vy and vs, leading to (35b).

Thus:

C(Wio) = p+ Y C(W/)=14384

)

1=2,3,4
C(Wi1) = p+ Y C(W/)+A]=14704 (34a)
1=2,3,4
C(Wi2) = p+ Y C(W/)+ > A =15104 (34b)
1=2,3,4 i=3,4
C(Wiz) = p+ > C(W/)+ Y Al =16224
i=2,3,4 i=2,3,4
and C(Wl) = C(WLO) = 1.4384. Also:
C(Wi,) = p—p)+ > C(W)+Af=1496 (35a)
1=2,3,4
C(Wy) = p(—p)+ > C(W)+ D> A} =1.464 (35D)
i=2,3,4 i=3,4
C(Wis) = p+(-p° > C(W)+ > AY=15504
i=2,3,4 i=2,3,4

and C(W{) = C(W;2) = 1.464. Corresponding structures are represented in Figure 12. The
optimum on this instance is given by W7y, since C(W7) < C'(Wh).

C(W;) = 1.4384 C(W]) = 1.464

Figure 12: Substructures W; and W7.
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