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Abstract

We present a natural wireless sensor network problem, which we model as a probabilistic

version of the min dominating set problem. We show that this problem, being a general-

ization of the classical min dominating set, is NP-hard, even in bipartite graphs. We first

study the complexity of probabilistic min dominating set in graphs where min domi-

nating set is polynomial, mainly in trees and paths and then we give some approximation

results for it.

1 Wireless sensor networks and probabilistic dominating set

Very frequently, in wireless sensor networks [31], one wishes to identify a subset of sensors, called
“master” sensors, that will have a particular role in messages transmission, namely, to centralize
and process messages sent by the rest of the sensors, called “slave” sensors, in the network. These
latter sensors will be only nodes of intermediate messages transmission, while the former ones
will be authorized to make several operations on messages received and will be, for this reason,
better or fully equipped and preprogrammed.

So, the objective for designing such a network is to identify a subset of sensors (the master
sensors) such that, every other sensor is linked to some sensor in this set. In other words, one
wishes to find a dominating set in the graph of sensors. If we suppose that equipment of master
sensors induces some additional cost with respect to that of the slave ones, if this cost is the same
for all master sensors, we have a minimum cardinality dominating set problem (min dominating

set), while if any master sensor has its own cost, we have a minimum weight dominating set
problem.

Sensors can be broken down any time but, since the network must be remain operational,
once a break down, one must be able to recompute a new set of master sensors very quickly (and
in any case as quickly as solution from scratch is not allowed). This is the problem handled in
this paper.

For simplicity, we deal with master sensors of uniform equipment cost (hopefully, it will be
clear later that this assumption is not restrictive for the model) and we suppose that any sensor,
can be broken down with some probability qi (so, it remains operational, i.e., present in the
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network, with probability pi = 1− qi) depending on its construction, proper equipment, age, etc.
Informally, the approach we propose, in order to maintain the network operational at any time,
is the following:

• design an algorithm M that, given a set D of master sensors of the network, if some sensors
of D fail, it adapts D to the surviving network (in other words, the new D becomes the
new master set of sensors for the surviving part of the network); this algorithm must be as
efficient as possible, in order that long idle periods for the network are avoided;

• given the network, its sensors’ surviving probabilities pi and M, compute a solution D∗,
called “a priori” solution that, informally, has the basic property to be close, in a sense
that will be defined later, to every possible solution obtained by a modification of D∗ when
applying M.

The problem of determining an optimal a priori master set D∗ is the problem handled in this
paper.

It is clear that given a network of sensors, identifying master set of them is equivalent to
determining a dominating set in the associated graph where vertices are the sensors of the
network and, for any linked pair of them, an edge links the corresponding vertices. The min

dominating set problem is formally defined as follows. Let G(V,E) be a connected graph
defined on a set V of vertices with a set E ⊆ V × V of edges. A vertex-set D is said to
be a dominating set of G if, for any v ∈ V \ D, v has at least one neighbor in D. In the
min dominating set problem, the objective is to determine a minimum-size dominating set
in G. The decision version of min dominating set problem is one of the first 21 NP-complete
problems [21] and remains NP-complete even in bipartite graphs, while it is polynomial in trees.

v1 v2 v3 v4

v5 v6 v7

Figure 1: A graph together with a dominating set (bold-circled vertices).

In our sensor network problem handled, we associate a probability pi to every vertex vi ∈
V (the probability that sensor i remains operational). We specify also a strategy M, called
modification strategy, that when given a dominating set D of G and a subgraph G′ = G[V ′]
induced by a set V ′ ⊆ V (the surviving sensors), it transforms D into a set D′ that is a dominating
set of G′. Let us note that the simplest modification strategy, consisting of just returning
D′ = D ∩ V ′ is not feasible since it does not always produces feasible dominating sets for G′.
For example, consider the graph of Figure 1 for which the set D = {v3, v6} is dominating. If
we consider V ′ = {v1, v2, v4, v6, v7}, then D′ = D ∩ V ′ = {v6} is no longer a dominating set
of G′. Hence, we will consider the following somewhat more complicated modification strategy M

associated with our problem:

given a graph G(V,E), a dominating set D of G and subgraph G′, set D′ := ∅ and,
for any vi ∈ V ′:
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• if vi ∈ D, then set D′ := D′ ∪ {vi};

• otherwise, if Γ(vi) ∩ (D ∩ V ′) = ∅, then set D′ := D′ ∪ {vi}, where, for any
vertex v, Γ(v) denotes the set of its neigbors.

In other words, M first takes D ∩ V ′ in D′ and then completes it with all the non-dominated
vertices of V ′. It is easy to see that the complexity of M is polynomial, since it is bounded by the
sum of the degrees of the vertices of V ′ \D that is at most O(|E|).

v8 v9 v10

v5 v6 v7

v1 v2 v3 v4

Figure 2: The graph of Example 1.

Example 1. Consider the graph of Figure 2 and a dominating set D = {v1, v5, v7} and its
subgraph induced by the set V ′ = {v1, v2, v3, v6, v7, v9} (Figure 3). For these vertices two cases
are possible:

1. either a vertex is in D and it will be part of D′ also (this is the case of v1 and v7);

2. or a vertex does not belong to D and in this case it will be added to D′ if all its neighbors
that were in D are not in V ′ (this is the case of v3, v6 and v9).

The set D′ is shown in Figure 3 by the bold-circled vertices

v9

v6 v7

v1 v2 v3

Figure 3: The subgraph G[V ′] and the solution computed by M in Example 1.

Consider now a graph G(V,E), a probability pi for every vertex vi ∈ V , a dominating set D of G
and the modification strategy M just specified. The functional of M can be expressed by:

E(G,D, M) =
∑

V ′⊆V

Pr
[

V ′
] ∣

∣D′
∣

∣ (1)
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where Pr[V ′] is the probability of V ′ (i.e., the probability that only the vertices of V ′ will not be
broken down) and D′ is the dominating set returned by M for G[V ′].

Following M, if a vertex vi ∈ D, then it will be always in D′ if it belongs to V ′; hence, its
contribution to E(G,D, M) in (1) will be equal to pi. On the other hand, if vi /∈ D but vi ∈ V ′,
it will be included in D′ only if all its neigbors in G that belonged to D are not in V ′; in this
case, its contribution to E(G,D, M) in (1) will be equal to pi

∏

vj∈Γ(vi)∩D
(1 − pj). Based upon

these remarks, starting from (1) we get:

E(G,D, M) =
∑

V ′⊆V

Pr
[

V ′
]

∑

vi∈V

1vi∈D′ =
∑

vi∈V

∑

V ′⊆V

Pr
[

V ′
]

1vi∈D′

=
∑

vi∈D

∑

V ′⊆V

Pr
[

V ′
]

1vi∈V ′ +
∑

vi /∈D

∑

V ′⊆V

Pr
[

V ′
]

1(vi∈V ′)∩(Γ(vi)∩(D∩V ′)=∅)

=
∑

vi∈D

pi +
∑

vi /∈D

∑

V ′⊆V

Pr
[

V ′
]

1(vi∩V ′=vi)1Γ(vi)∩(D∩V ′)=∅

=
∑

vi∈D

pi +
∑

vi /∈D

pi
∏

vj∈Γ(vi)∩D

(1− pj) (2)

It is easy to see that, from (2), E(G,D, M) can be computed in polynomial time. Also, setting
pi = p, i.e., considering that vertices of G have identical probabilities (this is quite natural if we
assume identical sensors), one gets:

E(G,D, M) = p|D|+
∑

vi /∈D

p(1− p)|Γ(vi)∩D| (3)

We consider E(G,D, M) as the objective function of the problem handled here which, by symmetry,
we call probabilistic min dominating set. Its goal is to determine a dominating set D∗ of G,
called a priori dominating set, that minimizes E. Obviously, such a solution D∗, has the basic
property that, in average, any solution obtained by D∗ via M on any subgraph G′ of G is optimal
for G′.

In other words, for our wireless sensor network design problem, the a priori solution D∗ has
the property that, under the modification strategy M described above, the solution constructed on
the surviving network minimizes in average the additional cost needed in order that this network
remains operational.

The following results holds for probabilistic min dominating set.

Proposition 1. probabilistic min dominating set is NP-hard, even in bipartite graphs
and inapproximable in polynomial time within ratio O(log n).

Proof. The inclusion of probabilistic min dominating set in NP is immediately de-
duced from (2) that is computable in polynomial time. Also, if in (3) we set p = 1, then
E(G,D, M) = |D|, i.e., the a priori solution minimizing E is a minimum dominating set in G. So,
probabilistic min dominating set, having as particular case min dominating set, inherits
all its hardness results either in exact computation [15, 21], or in polynomial approximation [14].
Note the O(log n) lower bound of [14] mentioned in the statement of the proposition is originally
addressed to min set cover problem. But, by a classical approximability preserving reduction
(that preserves both constant ratios and ratios depending on the sizes of the instances [28]), this
bound also applies to min dominating set.

As we have already mentioned, min dominating set is polynomial in trees. In Section 3, we
explore complexity of probabilistic min dominating set in those graphs, while in Section 4,
we give non-trivial (positive) approximation results.
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2 Some words about probabilistic combinatorial optimization

It is hopefully clear that the way probabilistic min dominating set has been mathemat-
ically defined in Section 1 remains valid for every combinatorial optimization (deterministic)
problem Π. In this way the probabilistic version probabilistic Π of Π becomes another deter-
ministic problem Π′, the solutions of which have the same feasibility constraints as those of Π
but Π′ has a different objective function where vertex-probabilities intervene. In this sense, prob-
abilistic combinatorial optimization is very close to what in the last years has been called “one
stage optimisation under independent decision models”, an area very popular in the stochastic
optimization community. Also, as one can see from (2) and from the whole discussion deriving
it, D′ strongly depends on the modification strategy M used to adapt the a priori solution D
to the present graph G′. So, both E(G,D, M) and the a priori solution D∗ optimizing it, also
strongly depend on M. In other words, for a fixed instance I of a deterministic problem Π, two
distinct modification strategies induce two distinct probabilistic problems having I and Π as com-
mon deterministic supports. These two distinct problems may have very different functionals
and, consequently, different optimal a priori solutions that induce very different complexities for
computing them techniques for handling them.

What are the main mathematical problems dealing with probabilistic consideration of a
problem Π in the sense discussed above? One can identify at least three interesting mathematical
and computational problems:

1. write the functional down in an analytical closed form and, if possible characterize the
optimal a priori solution;

2. if such an expression of the functional is possible, prove that its value is polynomially
computable (this amounts to proving that the decision version of the modified problem Π′

belongs to NP); this is neither trivial nor senseless (see, for example, [13, 23, 33]) if one
considers that the summation for the functional includes, in a graph of order n, 2n terms,
one for each subgraph of G; so, polynomiality of the computation of the functional is, in
general, not immediate;

3. determine the complexity of the computation of the optimal a priori solution, i.e., of the
solution optimizing the functional (in other words, determine the computational complexity
of Π′) and if Π′ is NP-hard, study approximation issues, and/or complexity of Π′ in special
cases where Π is polynomial.

The framework of probabilistic combinatorial optimization that we adopt in this paper was intro-
duced by [16, 3]. In [1, 3, 4, 5, 6, 16, 17, 18, 19], restricted versions of routing and network-design
probabilistic minimization problems (in complete graphs) have been studied under the robustness
model dealt here (called a priori optimization). In [2, 7, 8, 11, 12], the analysis of the proba-
bilistic minimum travelling salesman problem, originally performed in [3, 16], has been revisited.
Several other combinatorial problems have been also handled in the probabilistic combinatorial
optimization framework, including minimum coloring ([27, 10]), maximum independent set and
minimum vertex cover ([25, 26]), longest path ([24]), Steiner tree problems ([29, 30]), minimum
spanning tree [5, 9].

Revisit probabilistic min dominating set. Unfortunately, even if this functional is writ-
ten in an analytical closed form satisfying at half point 1 above, this form does not derive a
compact combinatorial characterization for the optimal a priori solution of probabilistic min

dominating set. In particular, the form of the functional does not imply solution, for instance,
of some well-defined weighted version of the (deterministic) min dominating set. This is due
to the second term of (2). There, the “costs” assigned to the edges depend on the structure of
the anticipatory solution chosen and of the present subgraph of G.
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3 Probabilistic dominating set in paths, cycles and trees

We handle in this section probabilistic dominating set in paths, cycles and trees. Let us
recall that min dominating set in these graphs is polynomial. We prove that probabilis-

tic dominating set in paths and cycles remains polynomial for any vertex-probability, while
probabilistic min dominating set in trees is plynomial either when the maximum degree of
the input tree is bounded, or when the vertex-probabilities are all equal.

Recall that the contribution of a node refers to the probability for this node to be present
in D′ for a given a priori solution D and for the modification strategy M adopted in Section 1. Let
us recall that the contribution of a node vi that belongs to D is pi, and for a node that does not
belong to D, its contribution amounts to pi

∏

vj∈Γ(vi)∩D
(1 − pj). This notion will be extended

to a set: the contribution C(V ′) of a node-set V ′ is the expected number of nodes of V ′ in D′.
In other words, C(V ′) is the sum of the contributions of all the nodes in V ′.

3.1 Paths and cycles

Given a path we consider its nodes labeled in the following way: the leftmost endpoint of the
path is labelled by v1 (which might be referred as the first, or left end node), while the rightmost
endpoint will be labelled by vn (last or right end node). Of course, all nodes in between will be
labelled in increasing order from left to right.

Proposition 2. probabilistic dominating set in paths can be solved in polynomial time.

Proof. We show how probabilistic dominating set in paths can be solved by dynamic
programming. First, let us make some preliminary remarks that will help us to build the final
algorithm.

Remark 1. For a given node vi in a dominating set, the “next” dominating node (if any) will
be vi+1, vi+2 or vi+3. Indeed, if none of them is in the dominating set, then vi+2 wouldn’t be
dominated.

Remark 2. The last dominating node is either vn or vn−1.

Considering Remarks 1 and 2, one can see that, except the very last node of the path, any
dominating set D on a path can be partitioned in elementary patterns of shapes D1, D2 or D3,
which are illustrated in Figure 4.

D1

D3

D2

(a) Elementary patterns (b) Examples of partitions

Figure 4: Partitionning nodes with elementary patterns.

One also can see that any sequence of patterns where the first pattern is not D3, forms a
dominating set D where the last node (i.e., vn) is necessarily in D.
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At this point, it is interesting to notice that the contribution of a given pattern can be
determined, regardless the rest of the sequence, but depending on its position in the path. To
be more precise, denoting by Dj(i) the pattern Dj with its dominating node being vi:

C (D1(i)) = pi ∀i

C (D2(i)) = pi + pi−1 (1− pi) i = 2 (4a)

C (D2(i)) = pi + pi−1 (1− pi) (1− pi−2) i > 3 (4b)

C (D3(i)) = pi + pi−1 (1− pi) + pi−2 (1− pi−3) i > 4 (4c)

Indeed, a pattern D1 has clearly a contribution of pi, namely, the probability of its only node,
which is a dominating one. The contribution of D2(i) depends on its position: either i = 2,
then its last node is the second one of the path. Its first node v1 (which is also the first node of
the path) is only dominated by v2; this amounts to (4a). For any other i, it is clear that vi−1

is dominated by both vi and vi−2, given the way a sequence is built: any sequence ends with a
dominating node, so that vi−2 has to be a dominating node. This leads to (4b). For the same
reason, in a sequence D3(i) (which can only appear with i > 4), vi−1 is only dominated by vi,
and vi−2 is only dominated by vi−3, which leads to (4c).

This will be very useful for the method. Indeed, if a pattern has no impact in terms of
contribution neither on the preceding sequence, nor on the following one, then it is quite easy to
give a recursive definition of Wi which is the sequence up to node vi of minimum contribution,
where vi is a dominating node:

C (Wi) =























0 i = 0
p1 i = 1
min
j=1,2

(C (Wi−j) + C (Dj(i))) i = 2, 3

min
j=1,2,3

(C (Wi−j) + C (Dj(i))) 4 6 i 6 n

(5)

Indeed, a sequence Wi always ends with a dominating node. So, leaving aside particular cases
when i 6 3, it ends necessarily with one of the three patterns defined earlier. If it ends with D1

(resp., D2 or D3) then it should be completed with a minimal sequence up to node vi−1 (resp., vi−2

or vi−3), namely Wi−1 (resp., Wi−2 or Wi−3). That among these three possibilities that returns
the minimal contribution, is that chosen for Wi.

At this point, we only have a set of optimal sequences, but these are not necessarily optimal
dominating sets. Indeed, a dominating set can end with a dominated (i.e., non-dominating) node,
whereas a sequence cannot. To take this distinction into account, and allow our final solution
to end with a dominated node, we define the contribution of an optimal dominating set D∗ as
follows:

C (D∗) = min (C (Wn) , C (Wn−1) + pn (1− pn−1))

In all, 3n contributions C(Dj(i)) have to be computed and, in order to compute a Wi, one basi-
cally compares 3 possible values, which amounts to 6n operations to get an optimal anticipatory
solution for probabilistic dominating set in paths. This concludes the proof.

By adapting the method, one can extend the result of Proposition 2 to cycles. In what
follows, we prove the following result.

Proposition 3. probabilistic dominating set in cycles can be solved in polynomial time.

Proof. To extend the result of Proposition 2, it suffices to choose an arbitrary node as starting
point v1 (whose neighbors will be v2 and vn), and to notice that there are three possible posi-
tions regarding the “first” (i.e. the lowest-labelled) dominating node, namely v1 itself, v2 or v3.
Depending on the position of the first dominating node, there are different possibilities for the
position of the “last” (e.g. highest labelled) one:
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1. the first is v1 and the last vn, or vn−1, or vn−2;

2. the first is v2, the last vn or vn−1;

3. the first is v3, the last is necessarily vn (or else v1 is not dominated).

So, we have a total of 6 cases for the position of the “first” and “last” dominating nodes. These 6
cases are illustrated in Figure 3.1, and will be compared by the method.

v2

v2

v2

v3v1

v1

v1

v1

v1

v1

vn

vn

vn

vn

vn

vn

vn−1

vn−1 vn−1

vn−2

Case 1a

Case 1b

Case 1c

Case 2a

Case 2b

Case 3

Figure 5: 6 cases regarding positions of the first and last dominating nodes.

In order to take all these cases into account, we will have to define three kinds of partial
sequences Wi,W

′
i and W ′′

i which represent,respectively, the three cases defined earlier. More pre-
cisely, Wi represents the optimal sequence ending with node vi and starting with pattern D1, W

′
i

corresponds to ending with node vi but starts with D2 and W ′′
i does the same but starts with D3.

The contributions of these three sequences are as follows:

C (Wi) =























p1 i = 1
p1 + p2 i = 2
min
j=1,2

(C (Wi−j) + C (Dj(i))) i = 3

min
j=1,2,3

(C (Wi−j) + C (Dj(i))) i > 4

This definition differs from that defined in (5) only on case i = 2, to ensure that v1 will remain
a dominating node anyway. For the same reason, we define C(W ′

i ) and C(W ′′
i ) as follows:

C
(

W ′
i

)

=



























p1 (1− p2) + p2 i = 2
p1 (1− p2) + p2 + p3 i = 3

min
j=1,2

(

C
(

W ′
i−j

)

+ C (Dj(i))
)

i = 4

min
j=1,2,3

(

C
(

W ′
i−j

)

+ C (Dj(i))
)

i > 5

(6)

C
(

W ′′
i

)

=



























p1 (1− pn) + p2 (1− p3) + p3 i = 3
p1 (1− pn) + p2 (1− p3) + p3 + p4 i = 4

min
j=1,2

(

C
(

W ′′
i−j

)

+ C (Dj(i))
)

i = 5

min
j=1,2,3

(

C
(

W ′′
i−j

)

+ C (Dj(i))
)

i > 6

(7)

In (7), we consider that v1 has a contribution of p1(1 − pn). Indeed, it is not dominated in
any partial sequence W ′′

i , but will have to be dominated by vn in our final solution, so that its
contribution has to be p1(1− pn) anyway.

In (6), we consider that v1 has a contribution of p1(1 − p2). Actually, this represents its
contribution in the partial sequence but, in the end, its contribution might be decreased in
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v1vn

Wn

(a) Case 1a

v1vn

vn−1

Wn−1

(b) Case 1b

v1vn

vn−1

vn−2

Wn−2

(c) Case 1c

v2

v1vn

vn−1

W ′
n

(d) Case 2a

v2

v1vn

vn−1

W ′
n−1

(e) Case 2b

v2

v3

v1vn

W ′′
n

(f) Case 3

Figure 6: Overall structures on the 6 cases.

a dominating set that includes vn (Case 2a). Precisely, the contribution would decrease from
p1(1− p2) downto p1(1− p2)(1 − pn). Thus a decrease of pn · p1(1− p2).

Now, using these sequences, in order to build an optimal dominating set, one defines the op-
timal solution D∗ as the minimal dominating set over the 6 cases defined earlier, whose structure
is shown in Figure 6 and whose contributions amount to:

C (D∗) = min



























Wn (Case 1a)

Wn−1 + pn (1− pn−1) (1− p1) (Case 1b)

Wn−2 + pn−1 (1− pn−2) + pn (1− p1) (Case 1c)

W ′
n − pn.p1 (1− p2) (Case 2a)

W ′
n−1 + pn (1− pn−1) (Case 2b)

W ′′
n (Case 3)



























Here, since three types of sequences are built, the number of operations required to compute an
optimal solution is 12n which concludes the proof.

3.2 Trees

With a similar, yet more complex method, one can generalize the result of Proposition 2 from
paths (trees of maximum degree bounded by 2) to trees with bounded maximum degrees. In
what follows, v1 will denote the root of the input tree T , Ti will denote the subtree rooted at
node vi (so, T1 = T ), Fi will denote the set of chilren of given node vi, and vfi the father of vi.
The depth D(Ti) of a subtree Ti will refer to the minimum number of edges on a path between
the root and a leaf of the subtree.

Proposition 4. probabilistic min dominating set in trees of maximum degree bounded
by k can be solved in O∗(2k), where O∗(·) notation ignores the polynomial terms.
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Proof. Consider a tree T and a dominating set D on T . For any subtree Ti of T , there are only
three possible configurations regarding its root vi:

1. vi ∈ D;

2. vi /∈ D, and vfi /∈ D; in this case, the root has to be dominated in the subtree Ti (i.e.,
dominated by at least one of its children);

3. vi /∈ D and vfi ∈ D; in this case, the root might be non-dominated in the subtree Ti (i.e.,
not dominated by any of its children).

Considering Cases 1 to 3, for a given dominating set D in a tree T , it is always possible to
partition nodes of T into three sets: D, S and N , where D is the dominating set itself, S is the
set of nodes that are dominated, but not by their fathers, and N is the set of nodes dominated
by their fathers (and also possibly by some of their children). Figure 3.2 gives an example of
such a partition.

D

S

N

Figure 7: Partitioning nodes in three subsets.

Now, let us analyze what possible cases can occur for nodes of Fi with respect to the status
of vi. The following cases can occur:

• vi ∈ D; then children of vi (if any) might be in D, or in N ;

• vi ∈ S; then children of vi might be in D or in S, and at least one of them should be in D;

• vi ∈ N ; in this case, children of vi might be in D or in S.

It is interesting to notice that the situation of a given node impacts only its own contribution if the
status of its children is known, so that, once more, it is possible to run a dynamic programming
method. It will be based upon three partial solutions for each subtree Ti, namely, Wi, W

′
i and W ′′

i ,
where Wi (resp., W ′

i , W
′′
i ) is the partial solution of minimum contribution for subtree Ti rooted

at vi when vi ∈ D (resp., vi ∈ S, vi ∈ N).
Partial solution Wi can be computed on a tree of any depth. Children of vi can belong either

to D, or to N , so that there are 2|Fi| possible combinations to evaluate (bounded by 2k). The
combination minimizing the overall contribution leads to the structure we are trying to define,
namely Wi. Setting Di = D ∩ Fi (the subset of children of vi that are dominating nodes), Wi is
defined by:

C (Wi) = min
Di⊆Fi



pi +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(

W ′′
j

)



 (8)
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This value is quite easy to initialize with leaves where Wi = pi.
Now, let us tackle W ′′

i , which can also be initialized on leaves (unlike W ′
i ). Indeed, if a leaf

is dominated, then its father has to be dominating, or else it would not be dominated. So that
a leaf can only be in D or in N . As we said earlier, children of vi in a partial solution W ′′

i can
belong either to D or to S. Thus, the following holds:

C
(

W ′′
i

)

= min
Di⊆Fi



pi (1− pfi)
∏

vj∈Di

(1− pj) +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(

W ′
j

)



 (9)

Note there are also at most 2k combinations to examine in this case.
Finally, let us specify W ′

i . In this case, children of vi should be in S or in D and at least
one of them should be in D. Of course, by definition, none of them can be in N . Once more,
each combination of sons in S or in D (at most 2k combinations) leads to a specific contribution
for the subtree Ti. The partial solution W ′

i is the one minimizing this contribution. Thus, the
following holds:

C
(

W ′
i

)

= min
Di⊆Fi,|Di|>1



pi
∏

vj∈Di

(1− pj) +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(

W ′
j

)



 (10)

Note that such a value can be computed for any subtree Ti of depth at least 1 (not on leaves).
This might be a problem when computing a value W ′

i or W ′′
i on a tree Ti of depth 1 since,

according to (9) and (10), in order to compute W ′
i and W ′′

i , one needs values W ′
j for all the

children vj of vi but these values do not exist for leaves. To keep all formulæ valid and still
ensure that a leaf will never be in S, we will initialize W ′

j to an arbitrarily large value M for
any vj that is a leaf. Thus, when applying (9) and (10), all leaf-children of vi will be forced to
be in Di.

Note also, that definitions of C(W ′
i ) and C(W ′′

i ) differ only by a factor (1 − pfi) in the
contribution of vi.

The dynamic programming method runs in a “bottom up” way. It is initialized with leaves
where values Wi, W ′

i and W ′′
i are equal to pi , M and pi(1 − pfi), respectively. Then, each

subtree Ti is associated with structures Wi, W
′
i and W ′′

i (apart from leaves that are associated
only with Wi and W ′′

i , and the overall tree which will be associated only with Wi and W ′
i

for obvious reasons), whose computation relies on the same structures on subtrees induced by
children of the root vi. In other words, in order to compute, for instance, a value Wi, one needs
to have already computed values Wj and W ′′

j for all children vj of vi. Since the method is
easily initialized with leaves, all values can be computed for all subtrees, starting from leaves
and ending with the whole tree.

Finally, the optimum D∗ is given by D∗ = argminW=Wi,W ′

i
(C(W )). In all, O(2kn) = O∗(2k)

operations are necessary to compute D∗.

Corollary 1. probabilistic min dominating set in trees with maximum degree bounded
by O(log n) can be solved in polynomial time.

Corollary 2. probabilistic min dominating set in trees is fixed parameter tractable with
respect to parameter “maximum degree”

As one can see from the proof of Proposition 4 the bound 2k for evaluating C(Wi) and its
gang was somewhat greedy and includes the real complexity of this evaluation that depends on
which of the children of vi are in D, the quantity of them depending on their probabilities that
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affect C(vi). So, the real complexity of the method presented is exponential to the number of
distinct vertex probabilities of the children of vi which can be as large as k. In what follows, we
conclude this section by restricting ourselves to the natural case where all the vertices of the tree
have the same probability.

Proposition 5 . probabilistic min dominating set is polynomial in general trees with
equiprobable nodes.

Proof. We will use the same kind of recursion as in Proposition 4, but we will adapt slightly
its definition to take advantage of the equiprobability property. What is interesting and useful
with this property, is that the contribution of a given dominated node does not depend on which
of its neighbors are dominating ones, but only on how many of them are dominating. Indeed, if
Fi ∪ vfi represents the set of neighbors of a dominated node vi (i 6= 1), then:

C (vi) = p(1− p)|(Fi∪{vfi})∩D|

Now, let us specify the dynamic programming method. The idea is basically the same as in
Proposition 4, but given the equiprobability assumption, (8), (9) and (10) can be computed
in O(k log k) instead of O(2k), which enables us to apply the method to trees of any structure,
and any degree.

If one considers that a given node has h children in D (0 6 h 6 k), then one does not
have to check all the possible configurations (at most

(

k
h

)

) for the h children in D. Indeed, the
contribution of vi does not depend on which children are in D, but only on how many of them,
namely h. Thus the following holds:

C (vi) =











p vi ∈ D

p(1− p)h vi ∈ S, (h > 1)

p(1− p)h+1 vi ∈ N

(11)

Now, we will use this, to simplify computations of Wi, W
′
i and W ′′

i . We will detail the simplifica-
tion for W ′

i only, and simply present the final results for Wi and W ′′
i , but the ideas and methods

are exactly the same as in the proof of Proposition 4.
Let us denote by W ′

i,h the partial solution W ′
i where the number |Di| of children of vi in D

is equal to h. Of course, if one computes W ′
i,h for each possible h between 1 and |Fi|, it is

quite easy to compute W ′
i since C(W ′

i ) = min16h6|Fi|(W
′
i,h). We will show that it is possible to

generate W ′
i,h for each possible h in time k log k.

Combining (10) and (11), one gets:

C
(

W ′
i,h

)

= min
Di⊂Fi,|Di|=h

(

p(1− p)h +
∑

j∈D
C (Wj) +

∑

j∈Fi\D

C(W ′
j)

)

= p(1− p)h + min
Di⊂Fi,|Di|=h

(

∑

j∈D
C (Wj) +

∑

j∈Fi\D

C(W ′
j)

)

= p(1− p)h +
∑

j∈Fi

C
(

W ′
j

)

+ min
Di⊂Fi,|Di|=h

(

∑

j∈D
C (Wj)− C

(

W ′
j

)

)

= p(1− p)h +
∑

j∈Fi

C
(

W ′
j

)

+ min
Di⊂Fi,|Di|=h

(

∑

j∈D
∆′

j

)

(12)

where ∆′
j = C(Wj) − C(W ′

j) for all j. This value represents the “additional cost” for a given
subtree Tj to have its root vj as dominating node instead of dominated one. Indeed, if the root
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of the subtree is dominating then it must have the structure Wj and weight C(Wj), whereas if
the root is dominated then it must have the structure W ′

j and weight C(W ′
j). Obviously, this

value can be negative if the partial solution Wj (with the node vj considered as dominating) has
a better expected value than the partial solution W ′

j (with vj considered dominated).
Understanding this, one also understands that the min operator can be computed in O(k log k)

for every h. Indeed, it suffices to compute the values ∆′
j for all j, and to sort them in increasing

order (which takes O(k log k) operations).
Then, in order to compute the min for a given h, simply pick as subset D the h nodes vj

corresponding to the h first values ∆′
j in the sorted list. Furthermore, one needs to sort ∆′

j’s only
once to get any W ′

i,h for all possible h. Indeed, once sorted, one can use the sorted list to compute
all W ′

i,h: just pick the lowest ∆′
j (thus the first element of the sorted list) to compute W ′

i,1, the
two lowest (first and second elements of this same sorted list) to compute W ′

i,2, and so on, for
each h.

This method returns the proper min as well as its associated structure. Indeed, if one wants
to minimize the sum of h values in a set of k values, one only needs to pick the h lowest values. In
this case, the h subtrees with lowest “additional costs” (linked to setting the root as dominating
instead of as dominated) will be the h that actually have their respective roots as dominating
nodes, the |Fi| − h other subtrees having their roots set as dominated nodes. Obviously, given
the recursive structure of the method, one knows the optimal partial solutions associated with
all these subtrees.

By the same method, and setting ∆′′
j = C(Wj)− C(W ′′

j ), one gets:

C (Wi,h) = p+
∑

j∈Fi

C
(

W ′′
j

)

+ min
Di⊂Fi,|Di|=h





∑

j∈D

∆′′
j



 (13)

C
(

W ′′
i,h

)

= p(1− p)h+1 +
∑

j∈Fi

C
(

W ′
j

)

+ min
Di⊂Fi,|Di|=h





∑

j∈D

∆′
j



 (14)

Each of these values can be computed for all h in O(k log k) in exactly the same way as described
previously. Using these values, one directly defines Wi and W ′′

i as follows:

C (Wi) = min
06h6|Fi|

(Wi,h)

C
(

W ′′
i

)

= min
06h6|Fi|

(

W ′′
i,h

)

The rest of the algorithm is the same as that described in Proposition 4. In all, each value Wi,
W ′

i or W ′′
i takes O(k log k) operations to be computed, and the method computes 3n of them.

So, the overall running time of the method is O(n2 log n), which concludes the proof.
In order to make clearer how each Wi and gang are computed, in appendix we run the

algorithm on a small instance, and detail some interesting steps.

4 Polynomial approximation of probabilistic min dominating set

4.1 Networks with identical sensors

We consider in this section that the probability that a sensor fails is the same for all of them.
As we have already mentioned, min dominating set is approximate equivalent to min set

cover, in the sense that an approximation algorithm for one of them can be transformed in poly-
nomial time into an approximation algorithm for the other one achieving the same approximation
ratio. Recall also that the natural greedy algorithm for min set cover achieves approximation
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ratio either 1 + ln |Smax| where |Smax| is the cardinality of the largest set Smax in the set-system
describing the instance of min set cover [20, 22], either O(log n) where n is the cardinality
of the ground set describing this instance [32]. In the transformation of min dominating set

into min set cover, any set S of the set-system becomes a vertex with degree |S| + 1. So, in
the derived instance of min dominating set, ∆ = |Smax|+ 1, where ∆ denotes the maximum
degree of the derived graph. For facility and because of the form of the functional given in (3),
we will use in what follows the former of the above ratios.

The following two easy lemmata that will be used later hold. We prove the first of them
(Lemma 1). The proof of the second one (Lemma 2) is immediate.

Lemma 1. For any instance of min dominating set of size n and maximum degree ∆, any
minimal (for inclusion) solution (hence, the minimum-size one also) has size bounded below by
n/(∆ + 1).

Proof. Consider an instance G of min dominating set of size n and maximum degree ∆, and
a minimal (for inclusion) min dominating set-solution D in G. Set D̄ = V \D and, for every
vertex v ∈ D, denote by dD̄(v) the number of the neighbours of v in D̄. Since, D dominates V ,
we have

∑

v∈D dD̄(v) >
∣

∣D̄
∣

∣ = n− |D|
On the other hand, obviously, for every v ∈ D, dD̄(v) 6 ∆, so that the former sum becomes

∆|D| > n− |D| =⇒ |D| > n/(∆ + 1) as claimed.

Lemma 2. Let D be a minimal dominating set in a graph G(V,E). Then, V \ D is also a
dominating set and, moreover, the smallest of them is smaller than n/2.

Revisit now (3) and observe that the following framing can be easily derived for E(G,D, M):

E(G,D, M) 6 p|D|+ (n− |D|)p(1 − p) = p2|D|+ pn(1− p) (15)

E(G,D, M) > p|D|+ p(n− |D|)(1 − p)∆ = p
(

1− (1− p)∆
)

|D|+ pn(1− p)∆ (16)

Denote by D∗ and D̂ an optimal solution for probabilistic min dominating set and for min

dominating set in G, respectively. Remark that since D∗ is a feasible solution for min domi-

nating set, we have:

|D∗| >
∣

∣

∣
D̂
∣

∣

∣
(17)

Take D the smallest between the (1 + ln∆)-approximate solution computed by the greedy algo-
rithm in G and the complement of it with respect to V as a priori solution for min dominating

set. Remark that, so computed, the size of D guarantees the ratio 1+ ln∆ and, simultaneously,
according to Lemma 2, it is smaller than n/2. Applying the rightmost bound of (15) to D and
the rightmost bound of (16) to D∗, we immediately get:

E(G,D, M) 6 p2|D|+ pn(1− p) 6 p2(1 + ln∆)
∣

∣

∣D̂
∣

∣

∣+ p(1− p)n (18)

E (G,D∗, M) > p
(

1− (1− p)∆
)

|D∗|+ pn(1− p)∆ (19)

Combining (18) and (19), we have the following for the approximation ratio of D, first taking
into account that it achieves approximation ratio 1 + ln∆ (21), then taking into account (17)
(in the first inequality of (22)), then that n > |D∗| (second inequality of (22)), and finally using
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Lemma 1 (in the first inequality of (23)):

E(G,D, M)

E (G,D∗, M)
6

p|D|+ n(1− p)

(1− (1− p)∆) |D∗|+ n(1− p)∆
(20)

6

p(1 + ln∆)
∣

∣

∣
D̂
∣

∣

∣
+ n(1− p)

(1− (1− p)∆) |D∗|+ n(1− p)∆
(21)

6
p(1 + ln∆) |D∗|+ n(1− p)

(1− (1− p)∆) |D∗|+ n(1− p)∆
6

p(1 + ln∆) |D∗|+ n(1− p)

|D∗|
(22)

6 p(1 + ln∆) + (1− p)(∆ + 1) = ∆+ 1− p(∆− ln∆) (23)

Revisit (20) and use Lemma 2 for D and Lemma 1 for D∗. Then, some very easy algebra gives:

E(G,D, M)

E (G,D∗, M)
6

(∆ + 1)
(

1− p
2

)

1 + ∆(1− p)∆
6

∆+ 1

1 +∆(1− p)∆
(24)

Ratio’s expression in (23) is bounded above by ∆ − ln∆ for p > (ln∆ + 1)/(∆ + 1 − ln∆) =
ln(e∆)/(∆ + 1− ln∆). On the other hand, if p 6 ln(e∆)/(∆ + 1− ln∆), expression ∆(1− p)∆

in the denominator of (24) is ∆(1 − p)∆ ∼ 1 + e−1 = 1.37 and the ratio given by (24) becomes
(∆ + 1)/1.37.

Discussion above, leads so to the following approximation result for probabilistic min

dominating set.

Proposition 6. The set D selected to be the smallest between the (1+ln∆)-approximate solution
computed by the greedy algorithm in G and the complement of it with respect to V achieves for
probabilistic min dominating set approximation ratio bounded above by ∆− ln∆, where ∆
is the maximum degree of G.

The mathematical analysis leading to the result of Proposition 6 seems to be quite tight. Indeed,
a numerical study of the ratio in the first inequality of (24) with respect to p derives that function
f(p) = (∆+ 1)(1− (p/2))/(1 +∆(1− p)∆) attains its maximum value for p = 2 ln∆/∆. In this
case, after an easy algebra, the maximum is ∆− ln∆.

4.2 Networks with heterogeneous sensors

Let us now suppose that the sensors of the network are heterogeneous so that each of them
has its own failure probability that can be different from that of another sensor in the network.
We will show that, in this case, any probabilistic min dominating set-solution achieves
approximation ratio bounded above by O(∆2/ log ∆).

Revisit (2) and observe that any dominating set D satisfies the trivial inequality:

E(G,D, M) 6
∑

vi∈V

pi (25)

Fix an optimal a priori dominating set D∗ and, for a probability p′ that will be fixed later,
partition the vertices of G into four subsets:

D∗
1 : the set of vertices of D∗ whose probabilities are at least p′; furthermore, set |D∗

1| = κ;

D∗
2 : the rest of vertices of D∗, i.e., D∗

2 = D∗ \D∗
1;

D̄∗
1 : the set ΓD̄∗(D∗

1) of neighbours of D∗
1 in D̄∗ = V \D∗, i.e., D̄∗

1 = Γ(D∗
1) ∩ D̄∗;
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D̄∗
2 : the set ΓD̄∗(D∗

2) \ D̄∗
1, i.e., the vertices of D̄∗ that have no neighbours in D∗

1, i.e., D̄∗
2 =

D̄∗ \ ΓD̄∗(D∗
1).

Denote, for simplicity, by p the largest vertex-probability. Now, taking into account the partition
above (2) can be rewritten as:

E (G,D∗, M) =
∑

vi∈D∗

1

pi +
∑

vi∈D∗

2

pi +
∑

vi∈D̄∗

1

pi
∏

vj∈Γ(vi)∩D∗

(1− pj) +
∑

vi∈D̄∗

2

pi
∏

vj∈Γ(vi)∩D∗

2

(1− pj)

> κp′ +
∑

vi∈D∗

2

pi + (1− p)∆
∑

vi∈D̄∗

1

pi +
(

1− p′
)∆

∑

vi∈D̄∗

2

pi (26)

>
∑

vi∈D∗

2

pi +
(

1− p′
)∆

∑

vi∈D̄∗

2

pi (27)

Let us first suppose that
∑

vi∈D∗

2∪D̄
∗

2
pi >

∑

vi∈V
pi/x for some x to be also defined later. Then,

using (25) and (27), it holds that:

E(G,D, M)

E (G,D∗, M)
6

∑

vi∈V
pi

∑

vi∈D∗

2
pi + (1− p′)∆

∑

vi∈D̄∗

2
pi

6

∑

vi∈V
pi

(1− p′)∆
∑

vi∈D∗

2∪D̄
∗

2
pi

6

∑

vi∈V
pi

(1− p′)∆
∑

vi∈V pi

x

6
x

(1− p′)∆
(28)

Suppose now that
∑

vi∈D∗

2∪D̄
∗

2
pi 6

∑

vi∈V
pi/x. Then, for

∑

vi∈D∗

1
pi +

∑

vi∈D̄∗

1
pi, it holds that:

∑

vi∈D∗

1

pi +
∑

vi∈D̄∗

1

pi >

(

x− 1

x

)

∑

vi∈V

pi (29)

Remark, furthermore, that, since |D∗
1| = κ, |D̄∗

1 | 6 ∆κ and, using (29), the following holds:

κ∆p+ κp >
∑

vi∈D∗

1

pi +
∑

vi∈D̄∗

1

pi >
x− 1

x

∑

vi∈V

pi =⇒
∑

vi∈V

pi 6
x

x− 1
κp(∆ + 1) (30)

Remark finally that, from (25) and (26), one can immediately derive another easy expression for
the approximation ratio, namely, E(G,D, M)/E(G,D∗, M) 6

∑

vi∈V
pi/κp

′, since E(G,D∗, M) >

κp′. This, using (30), becomes:

E(G,D, M)

E (G,D∗, M)
6

xp(∆ + 1)

(x− 1)p′
6

x(∆ + 1)

(x− 1)p′
(31)

If we fix p′ = ln∆/∆ and x = ∆/ ln∆, then both ratios given in (28) and (31) become ≈ ∆2/ ln∆
as claimed in the beginning of the section.

5 Conclusion

It seems to us that probabilistic combinatorial optimization is an interesting and appropriate
mathematical framework for handling numerous risk management natural problems where, faced
to some disaster that has destroyed a part of the solution, whatever this solution represents,
the objective of a decision maker is to restore it, or to efficiently compute one having several
good properties, for example, having a good quality (under a predefined criterion) minimizing,
or maximizing the reconstruction costs.
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In this paper we have studied emergency management for a wireless sensor network problem
modelled as a probabilistic version of min dominating set. This has led to a problem that is
quite more difficult to handle than its original deterministic version, in particular when trying
to approximately solve it. We have proposed algorithms for paths, cycles and trees (cases where
min dominating set is polynomial), as well as we have tried a first study of approximability
of probabilistic min dominating set is general graphs. What is missing with respect to the
latter issue is to propose algorithms that are proper to the probabilistic nature of this problem.
This seems to be a hard issue since no compact characterization of the optimal a priori solution
can be derived from (2) but work is in progress.
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An example of the algorithm of Proposition 5

Suppose p = 0.2 and consider the tree of Figure 5. The algorithm is initialized with leaves:

C (W3) = C (W5) = C (W7) = C (W8) = C (W9) = 0.2
C (W ′

3) = C (W ′
5) = C (W ′

7) = C (W ′
8) = C (W ′

9) = M
C (W ′′

3 ) = C (W ′′
5 ) = C (W ′′

7 ) = C (W ′′
8 ) = C (W ′′

9 ) = 0.8 · 0.2 = 0.16
∆′

3 = ∆′
5 = ∆′

7 = ∆′
8 = ∆′

9 = 0.2−M
∆′′

3 = ∆′′
5 = ∆′′

7 = ∆′′
8 = ∆′′

9 = 0.2− 0.16 = 0.04

2 3

6 7

8 9

1

5

4

Figure 8: A tree T.

With all leaves initialized, it is possible to find substructures Wi, W
′
i and W ′′

i on subtrees
rooted at v6 and v4.

Let us start with v6. Here it is senseless to sort children vj of v6 in increasing values of ∆′
j

or ∆′′
j since they all have the same values ∆′

j and ∆′′
j . This means that if, in a given substructure,

only one child vj of v6 must be dominating, then it is indifferent to choose v8 or v9 as such a node
(in (32b) and (33a) below, we will choose arbitrarily v8). Applying (13), we get the following:

C (W6,0) = p+
∑

i=8,9

C
(

W ′′
i

)

= 0.2 + 2× 0.16 = 0.52

C (W6,1) = p+
∑

i=8,9

C
(

W ′′
i

)

+∆′′
8 = 0.2 + 2× 0.16 + 0.04 = 0.56 (32a)

C (W6,2) = p+
∑

i=8,9

C
(

W ′′
i

)

+
∑

i=8,9

∆′′
i = 0.2 + 2× 0.16 + 2× 0.04 = 0.6 (32b)
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and thus, C(W6) = minh=0,1,2C(W6,h) = C(W6,0) = 0.52. We now use (12) to get C(W ′
6):

C
(

W ′
6,1

)

= p(1− p) +
∑

i=8,9

C
(

W ′
i

)

+∆′
8 = 0.16 + 2M + 0.2 −M = 0.36 +M (33a)

C
(

W ′
6,2

)

= p(1− p)2 +
∑

i=8,9

C
(

W ′
i

)

+
∑

i=8,9

∆′
i

= 0.128 + 2M + 2(0.2 −M) = 0.528

This example shows clearly the role of M in forcing all leaves to be either dominating nodes,
or dominated by their fathers. In any structure with one leaf that is neither dominating, nor
dominated by its father (as it is the case in W ′

6,1), the overall weight will be in O(M). This is the
case in (33a). Thus, for an arbitrarily large M , W ′

6,1 cannot be picked as optimal substructure,
and C(W ′

6) = minh=1,2C(W ′
6,h) = C(W6,2) = 0.528. Similarly, applying (14), one gets C(W ′′

6 ) =
minh=1,2C(W ′′

6,h) = C(W ′′
6,2) = 0.5024.

All these results and corresponding substructures are illustrated in Figure 9. Substruc-
tures W4, W

′
4 and W ′′

4 are computed in the same way and are illustrated in Figure 10.

6

8 9

C(W6) = 0.52

6

8 9

C(W ′
6) = 0.528

6

8 9

C(W ′′
6 ) = 0.5024

Figure 9: Substructures W6, W
′
6 and W ′′

6 .

4

7

C(W4) = 0.36

4

7

C(W ′
4) = 0.36

4

7

C(W ′′
4 ) = 0.328

Figure 10: Substructures W4, W
′
4 and W ′′

4 .

Now, all substructures rooted at all children of v2 have been computed; we continue by
computing substructures rooted at v2. First, let us sort children vi of v2 in increasing order of ∆′

i

and ∆′′
i . Recall that ∆′

5 = 0.2−M and ∆′′
5 = 0.04 and notice that ∆′

6 = −0.08 and ∆′′
6 = 0.0176.

Thus, the two sorted lists are: (∆′
5,∆

′
6) and (∆′′

6 ,∆
′′
5).

From the first sorted list, we can assert that if v2 is dominated and if it has only one dom-
inating child, then this child must me v5, since ∆′

5 appears first in the list. From the second
sorted list, we can assert that if v2 is dominating and if it has only one dominating child, then

20



this child must be v6, since ∆′′
6 appears first in the list. We now compute substructure for v2:

C (W2,0) = p+
∑

i=5,6

C
(

W ′′
i

)

= 0.8624

C (W2,1) = p+
∑

i=5,6

C
(

W ′′
i

)

+∆′′
6 = 0.88

C (W2,2) = p+
∑

i=5,6

C
(

W ′′
i

)

+
∑

i=5,6

∆′′
i = 0.92

and C(W2) = C(W2,0) = 0.8624. Then:

C
(

W ′
2,1

)

= p(1− p) +
∑

i=5,6

C
(

W ′
i

)

+∆′
5 = 0.888

C
(

W ′
2,2

)

= p(1− p)2 +
∑

i=5,6

C
(

W ′
i

)

+
∑

i=5,6

∆′
i = 0.776

and C(W ′
2) = C(W ′

2,2) = 0.776. Finally:

C
(

W ′′
2,0

)

= p(1− p) +
∑

i=5,6

C
(

W ′
i

)

= 0.688 +M

C
(

W ′′
2,1

)

= p(1− p)2 +
∑

i=5,6

C
(

W ′
i

)

+∆′
5 = 0.856

C
(

W ′′
2,2

)

= p(1− p)3 +
∑

i=5,6

C
(

W ′
i

)

+
∑

i=5,6

∆′
i = 0.7504

and C(W ′′
2 ) = C(W ′′

2,2) = 0.7504. All results and structures are represented in Figure 11.

2

5 6

8 9

C(W2) = 0.8624

2

5 6

8 9

C(W ′
2) = 0.776

2

5 6

8 9

C(W ′′
2 ) = 0.7504

Figure 11: Substructures W2, W
′
2 and W ′′

2 .

Finally, let us compute structures W1 and W ′
1. Note that we do not compute W ′′

1 , since v1
has no father, and a fortiori it cannot be dominated by such a node. As before, we first build
sorted lists with ∆′

i’s and ∆′′
i ’s for all children vi of v1. These sorted lists are (∆′

3,∆
′
4,∆

′
2) and

(∆′′
4 ,∆

′′
3,∆

′′
2) since:

∆′
2 = 0.0864 ∆′

3 = 0.2−M ∆′
4 = 0

∆′′
2 = 0.112 ∆′′

3 = 0.04 ∆′′
4 = 0.032

Suppose that v1 is dominated. The first sorted list indicates us that:

• if v1 has 1 dominating child, this must be v3; this leads to (34b);
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• if v1 has 2 dominating children, these must be v3 and v4. this leads to (34c).

Similarly, suppose that v1 is dominating. According to the second sorted list:

• if v1 has 1 dominating child, this must be v4, leading to (35a);

• if v1 has 2 dominating children, these must be v4 and v3, leading to (35b).

Thus:

C (W1,0) = p+
∑

i=2,3,4

C
(

W ′′
i

)

= 1.4384

C (W1,1) = p+
∑

i=2,3,4

C
(

W ′′
i

)

+∆′′
4 = 1.4704 (34a)

C (W1,2) = p+
∑

i=2,3,4

C
(

W ′′
i

)

+
∑

i=3,4

∆′′
i = 1.5104 (34b)

C (W1,3) = p+
∑

i=2,3,4

C
(

W ′′
i

)

+
∑

i=2,3,4

∆′′
i = 1.6224

and C(W1) = C(W1,0) = 1.4384. Also:

C
(

W ′
1,1

)

= p (1− p) +
∑

i=2,3,4

C
(

W ′
i

)

+∆′′
3 = 1.496 (35a)

C
(

W ′
1,2

)

= p(1− p)2 +
∑

i=2,3,4

C
(

W ′
i

)

+
∑

i=3,4

∆′′
i = 1.464 (35b)

C
(

W ′
1,3

)

= p+ (1− p)3
∑

i=2,3,4

C
(

W ′
i

)

+
∑

i=2,3,4

∆′′
i = 1.5504

and C(W ′
1) = C(W1,2) = 1.464. Corresponding structures are represented in Figure 12. The

optimum on this instance is given by W1, since C(W1) < C ′(W1).

5 7

8

1

2 3 4

6

9

C(W1) = 1.4384

5 7

8

1

2 3 4

6

9

C(W ′
1) = 1.464

Figure 12: Substructures W1 and W ′
1.
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