
la
m
sa

d
e

LAMSADE

Laboratoire d’Analyses et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

Décembre 2012

Using greediness for parameterization: the case of
max and min (k, n - k)-cut

E. Bonnet, B. Escoffier, V.Th. Paschos, E. Tourniaire

CAHIER DU
 330

Using greediness for parameterization: the case of

max and min (k, n − k)-cut∗

Edouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos(a), Emeric Tourniaire

PSL Research University, Université Paris-Dauphine, LAMSADE

CNRS, UMR 7243, France

edouard.bonnet@dauphine.fr,{escoffier,paschos}lamsade.dauphine.fr

emeric.tourniaire@lamsade.dauphine.fr

December 11, 2012

Abstract

max (k, n − k)-cut (resp., min (k, n − k)-cut) is a constrained version of max-cut (resp.,
min-cut) where one has to find a bipartition of the vertex set into two subsets with respec-
tively k and n − k vertices (n being the total number of vertices of the input graph) which
maximizes (resp., minimizes) the number of edges going from one subset to the other. In this
paper, we investigate the parameterized complexity of these two graph problems by consider-
ing several parameters, such as the value p of the solution, k, the size τ of a minimum vertex
cover and the treewidth tw of the input graph. We also give approximation schemata in FPT
time for parameterizations which turn out to be W[1]-hard.

1 Introduction

Given a graph G = (V, E) and two integers p and k, the parameterized version of the max (k, n−k)-
cut problem consists in deciding whether there exists, or not, a subset V ′ ⊆ V such that |V ′| = k
and |E(V ′, V \ V ′)| > p, where E(A, B) = {xy ∈ E : x ∈ A ∧ y ∈ B}, while the min (k, n − k)-cut

problem consists in deciding whether there exists, or not, a subset V ′ ⊆ V such that |V ′| = k and
|E(V ′, V \ V ′)| 6 p.
Both problems belong to a large set of problems, sometimes called fixed cardinality problems,

where one wishes to optimize (maximize or minimize) the number of edges incident to exactly k
vertices and satisfying some property. max k-vertex cover, k-densest subgraph, k-lightest

subgraph, max (k, n − k)-cut and min (k, n − k)-cut are the most known fixed cardinality
problems.
When dealing with max (k, n − k)-cut and min (k, n − k)-cut, two natural parameters come

immediately in mind, k and the value p of the solution E(V ′, V \ V ′) (frequently called standard
parameter). More about parameterized complexity can be found in [7]. The problems handled
in this paper have mainly been studied in [3, 6], from a parameterized point of view, and have
been proved W[1]-hard when parameterized by k, while complexity of standard parameterization
remained open.
On the other hand, approximation of min (k, n − k)-cut has been studied in [8] where it is

proved that, if k = O(logn), then the problem admits a randomized polynomial time approximation
schema, while, if k = Ω(logn), then it admits an approximation ratio (1 + εk

logn), for any ε > 0.

Approximation of max (k, n−k)-cut has been studied in several papers and a ratio 1/2 is achieved
in [1] (slightly improved with a randomized algorithm in [9]), for all k.
Here, we first consider the parameterized complexity of max and min (k, n−k)-cut with respect

to the standard parameter p and prove that the former problem is fixed parameter tractable (FPT),

∗Research supported by the French Agency for Research under the program TODO, ANR-09-EMER-010
(a)Institut Universitaire de France

1

while, unfortunately, the status of the latter one remains still unclear (Section 2). In order to handle
max (k, n−k)-cut we first show that when p 6 k or p 6 ∆, where ∆ denotes the maximum degree
of G, the problem is polynomial. So, the only “non-trivial” case occurs when p > k and p > ∆.
We then design an FPT algorithm parameterized by k∆ which allows us to conclude that max

(k, n − k)-cut parameterized by p is FPT. Then, a refinement of this algorithm allows to show
that min (k, n − k)-cut parameterized by k∆ is also FPT. Unfortunately, this shows inclusion in
FPT of min (k, n − k)-cut only for some particular cases.
To achieve these FPT algorithms, which are the main contributions of this article, we use the

following original idea, which might also be useful for other problems. It consists of performing a
branching with respect to a vertex chosen upon some greedy criterion. For max (k, n−k)-cut this
criterion is to consider some vertex v that maximizes the number of edges added to the cut under
construction. Without branching, the greedy algorithm is not optimal. However, the principle is
that at each step either the greedily chosen vertex v is a good choice (it is in an optimal solution),
or some of its neighbors (or a vertex at bounded distance from v) is a good choice (it is an optimal
solution). This induces a branching rule on neighbors of v which leads to a branching tree whose
size is, in our case, bounded by a function of k and ∆.
In Section 3, we mainly revisit the parameterization by k but we handle it from an approxi-

mation point of view. Given a problem Π parameterized by parameter ℓ and an instance I of Π,
a parameterized approximation algorithm for Π is an algorithm running in time f(ℓ)|I|O(1) that
either finds an approximate solution of size g(ℓ) as close as possible to ℓ, or reports that there is no
solution of size ℓ. We prove that, althoughW[1]-hard for the exact computation, max (k, n−k)-cut

has a parameterized approximation schema with respect to k and min (k, n−k)-cut a randomized
parameterized approximation schema. These results exhibit two problems which are hard with re-
spect to a given parameter but which become easier when we relax exact computation requirements
and seek only (good) approximations. To our knowledge, the only other problem having similar
behaviour is another fixed cardinality problem, the max k-vertex cover problem [13]. Note
that the existence of problems having this behaviour but with respect to the standard parameter
is an open (presumably very difficult to answer) question in [13].
In Section 4, we first handle parameterization of both problems by the treewidth tw of the

input graph and show, using a standard dynamic programming technique, that they admit an
O∗(2tw)-time FPT algorithm, when the O∗(·) notation ignores polynomial factors. Indeed, the
result is stronger as we prove that a whole class of problems, including fixed cardinality problems
but also, for instance min bisection problem can be solved by the same algorithm. Let us
note that the interest of this result, except its structural aspect (many problems for the price
of a single algorithm), lies also in the fact that max and min k-vertex cover does not fit
Courcelle’s Theorem [5]. Indeed, max and min bisection are not expressible in MSO since the
equality of the cardinality of two sets is not MSO-definable. In fact, if one could express that
two sets have the same cardinal in MSO, one would be able to express in MSO the fact that a
word has the same number of a’s and b’s, on a two-letter alphabet, which would make that the
set E = {w : |w|a = |w|b} is MSO-definable. But we know that, on words, MSO-definability is
equivalent to recognizability; we also know by the standard pumping lemma (see, for instance, [11])
that E is not recognizable [12], a contradiction. Henceforth, max and min k-vertex cover are
no more expressible in MSO; consequently, the fact that those two problems, parameterized by tw
are FPT cannot be obtained by Courcelle’s Theorem. Furthermore, even several known extended
variants of MSO which capture more problems [14], does not seem to be able to express the equality
of two sets either.

2 Standard parameterization

2.1 Max (k, n − k)-cut

In the sequel, we denote by N(v) the set of neighbors of v in G = (V, E), namely {w ∈ V :
{v, w} ∈ E} and define N [v] = N(v) ∪ {v}. We also use the standard notation G[U] for any
U ⊆ V to denote the subgraph induced by the vertices of U . In this section, we show that max

(k, n − k)-cut parameterized by the standard parameter, i.e., by the value p of the solution, is
FPT. Using an idea of bounding above the value of an optimal solution by a swapping process (see

2

V1 V2

v′

?

?

v
Swap

(a) Vertices v ∈ V2 and v
′

∈ V1

(that has at least one neighbor in
V1) will be swapped.

V1 V2

v

?

?

v′

(b) With the swapping the cut size
increases.

Figure 1: Illustration of a swapping

Figure 1), we show that the non trivial case satisfies p > k. We also show that p > ∆ holds for non
trivial instances and get the situation depicted by Figure 2. The rest of the proof (see Theorem 3)
shows that max (k, n − k)-cut parameterized by k∆ is FPT, by designing a particular branching
algorithm. This branching algorithm is based on the following intuitive idea. Consider a vertex v
of maximum degree in the graph. If an optimal solution E(V ′, V \ V ′) is such that no vertex of
N(v) is in V ′, then it is always interesting to take v in V ′ (this provides ∆ edges to the cut, which
is the best we can do). This leads to a branching rule with ∆+ 1 branches, where in each branch
we take in V ′ one vertex from N [v].

Lemma 1. In a graph with minimum degree r, the optimal value opt of a max (k, n − k)-cut

satisfies opt > min{n − k, rk}.

Proof. We divide arbitrarily the vertices of a graph G = (V, E) into two subsets V1 and V2 of size k
and n−k, respectively. Then, for every vertex v ∈ V2, we check if v has a neighbor in V1. If not, we
try to swap v and a vertex v′ ∈ V1 which has strictly less than r neighbors in V2 (see Figure 1). If
there is no such vertex, then every vertex in V1 has at least r neighbors in V2, so determining a cut
of value at least rk. When swapping is possible, as the minimum degree is r and the neighborhood
of v is entirely contained in V2, moving v from V2 to V1 will increase the value of the cut by at
least r. On the other hand, moving v′ from V1 to V2 will reduce the value of the cut by at most
r − 1. In this way, the value of the cut increases by at least 1.
Finally, either the process has reached a cut of value rk (if no swap is possible), or every vertex in

V2 has increased the value of the cut by at least 1 (either immediately, or after a swapping process),
which results in a cut of value at least n − k, and the proof of the lemma is completed.

Corollary 2. In a graph with no isolated vertices, the optimal value for max (k, n − k)-cut is at

least min{n − k, k}.

Theorem 3. The max (k, n−k)-cut problem parameterized by the standard parameter p is FPT.

Proof. Considering the symmetry between V ′ and V \ V ′, one can assume that k 6 n
2 6 n − k.

If G contains i isolated vertices, one can run the algorithm we are describing with k′ going from
min{0, k − i} to k, in G′ that is G without the i isolated vertices, with the same value for p,
and output YES, if one of the calls outputs YES. Thus, we consider that G contains no isolated
vertices.
In addition, if p > n

2 , then we may exhaustively compute all the (k, n − k)-cuts, by computing
all the subsets of V on k vertices and the cut any of them induces, in time O∗(2n). Consequently,
in this case, the time needed for the work is FPT, O∗(22p). So, in the sequel, we will assume p 6 n

2 .
Furthermore, by Corollary 2 and the discussion above, the overall assumption for the sequel (in

3

n
2 nk n − kp

∆

Figure 2: Location of parameter p, relatively to k and ∆.

the proof of the theorem) is k 6 p 6 n
2 6 n − k, since in a graph with no isolated vertices, the

minimum degree is at least 1.
Denote by ∆ the maximum degree in the input graph G, and let v0 be a vertex with maximum

degree. If p 6 ∆, putting v0 in V ′, setting d = min{n − k,∆} of its neighbors outside V ′ and
completing arbitrarily (if necessary) the subset V \ V ′, yields a cut of size k and of value at
least d. Since p 6 n − k, we get p 6 d, thus this cut is already a solution. So, together with
k 6 p 6 n

2 6 n − k, we can, in addition, assume ∆ < p.
We are ready now to specify the following branching algorithm. We consider a set T which is

initially empty, and which will intuitively correspond to V ′ at the end. At each branching step the
algorithm puts one more vertex in T . Hence, the depth of the tree is k.
To do the branching, we consider a vertex v in V \ T which maximizes the quantity:

δT (v) = |{u ∈ N(v) ∩ (V \ T)}| − |{u ∈ N(v) ∩ T}|

This is a greedy criterion: δT (v) represents the increasing of the value of the cut by taking v in T .
For instance, initially T = ∅ and one can choose the vertex of maximal degree v0.
Then, in the branching tree, the node has |N [v] ∩ (V \ T)| children: in each child we take one

vertex from N [v]∩ (V \ T) and put it in T . We stop branching in nodes where |T | = k and output
YES if one of the induced (k, n − k)-cuts has value at least p. Note that in branching steps |N [v]|
is bounded by ∆+1, and so is the number of sons of a node (i.e., the arity of the branching tree).
Since the depth of the tree is k, the algorithm runs in O∗(∆k) = O∗(pp).
Let us now show that our algorithm is sound. To prove optimality, we use a classical hybridation

technique between some optimal solution and our solution. Consider an optimal solution V ′
opt (in

the sequel, we assume that a solution is represented by the subset V ′ of size k) different from
the solution computed by the algorithm. A node w of the branching tree has two characteristics:
the set of taken vertices T (w) (or T if no ambiguity occurs) and the vertex chosen by the greedy
criterion v(w) (or simply v). We say that a node w of the branching tree is conform to the optimal
solution V ′

opt if T (w) ⊆ V ′
opt. A node w deviates from the optimal solution V ′

opt if none of its sons
is conform to V ′

opt.
We start from the root of our branching tree and we go to a conform son of our current node

while it is possible. At some point we stop by reaching a node w which deviates from V ′
opt. We

set T = T (w) and v = v(w). Intuitively, T corresponds to the shared choices between the optimal
solution and our algorithm made along the branch from the root to the node w. Given a vertex
z ∈ V ′

opt \ T , we consider the cut induced by the set V ′
opt ∪ {v} \ {z} obtained from V ′

opt by adding
v and removing z. We show that this cut is also optimal. When removing z and adding v to
V ′
opt, we remove δV ′

opt
(z) edges and add δV ′

opt
(v) edges to the cut, so we only need to show that

δV ′

opt
(v) > δV ′

opt
(z) (which is then an equality by optimality of V ′

opt). First note that δT (z) 6 δT (v),

by the choice of v. Moreover, since T ⊆ V ′
opt, δV ′

opt
(z) 6 δT (z) (more generally the quantity δT never

increases since vertices are never removed from T). Furthermore, since the optimal solution does
not take any vertex in N(v)∩(V \T), it holds that δT (v) = δV ′

opt
(v). Therefore, δV ′

opt
(z) 6 δV ′

opt
(v),

and the cut induced by V ′
opt∪{v}\{z} is optimal. Thus, by repeating this process at most k times,

we can conclude that the solution computed by the algorithm has the same value as the optimal
solution considered.

2.2 Min (k, n − k)-cut

We give in this section a result analogous to that of Theorem 3 for min (k, n−k)-cut. We devise a
more “subtle” FPT algorithm in parameter k∆, with some refinements of the proof of Theorem 3.

4

Unfortunately, in the minimization case of (k, n − k)-cut, it enables us to conclude about the
parameterized complexity in p, only in some particular cases.

Before presenting the algorithm, let us remark that the same branching algorithm as in the case
of max (k, n − k)-cut does not work anymore, since choosing to add a vertex in the solution V ′

could seem really bad locally, but could turn out to be an optimal choice if all its neighbors are
taken in the solution later. In other words, it does not seem possible to design a proper notion of
“contribution” of one vertex such as δT (v) which only increases from the moment where it is added
in the solution until the end. In order to get through this difficulty, the algorithm we present has
to be more involved. In particular, first it does not only assign vertices to V ′, but it also fixes some
vertices to V \ V ′ (definitely). To this purpose, we will maintain a partition of the vertices of V in
three sets T (taken vertices), R (rejected vertices) and U (unmarked vertices). More importantly,
instead of exploring only the neighborhood of a vertex v when branching, it explores the set of
vertices at distance at most k from v.

Theorem 4. min (k, n − k)-cut parameterized by k∆ is FPT.

Proof. Let (G = (V, E), p, k) be a general instance of the min (k, n − k)-cut problem, and ∆ be
the maximum degree of G. Let us first introduce the following additional notations. The set Nk[v]
denotes the set of vertices which are at distance at most k from v in the graph G (N1[v] = N [v]);
it is called k-neighborhood of v. In particular, the size of Nk[v] for a given vertex v is bounded by
∆k+1, thus respecting FPT-time (with respect to k∆).
Besides, one can consider an optimal solution as the union of its (maximal) connected compo-

nents V ′
1 , V ′

2 , . . . V ′
h (with V ′ =

⋃h
i=1 V ′

i). Indeed, the contribution of a connected component V ′
i

is not varying as long as the solution is built and is definitively equal to δ(V ′
i), where δ counts

the number of outgoing edges of a subset of vertices. And the value opt associated to an optimal
solution induced by V ′ is equal to Σh

i=1δ(V
′

i). This idea seems to be good for decomposing an
optimal solution, but if one also uses it for computing a solution (by adding at each step in the
solution not a vertex but a whole connected component), one will be in trouble to prove optimality,
since the hybridation has to preserve the size k of the solution.
The following Algorithm MINCUT(G,T ,R,k), deals with the technical problems presented above:

Algorithm 5: set T = ∅, R = ∅;

• if k > 0 then

– for each vertex v in U and for each i from 1 to k, compute the minimum δi,k(v) =
minS{δ(S)− 2|E(S, T)|} where S is any subset of size i of Nk[v] ∩ U and determine
k vertices v1, v2, . . . , vk respectively minimizing δ1,k, δ2,k, . . . , δk,k; let S1, S2, . . . , Sk

be the corresponding minimizing subsets;

– for each i from 1 to k

∗ for each vertex v of Nk[vi] ∩ U run MINCUT(G, T ∪ {v},R,k − 1);

∗ run MINCUT(G, T ∪ Si,R ∪ (Nk[vi] \ Si),k − |Si|);

• else (k = 0), output (T, V \ T).

Obviously, we return the minimum value of the (k, n − k)-cut among the solutions at the leaves
of the branching tree, and we compare it to p.
Let us now analyze the complexity of the above algorithm. It is divided into two parts: the first

part is computation of v1, v2, . . . , vk and the second part is the branching. Since |Nk[v]| 6 ∆k+1,
computing δi,k(v) and determining v1, v2, . . . , vk takes time O∗((∆k+1)k). Now, the branching tree
has arity at most k(∆k + 1) and depth at most k. So, it has at most kk(∆k + 1)k nodes. Then,
computing the value of a cut can be done in polynomial time, and our algorithm works in FPT-time
O∗(kk∆k2

).
We prove here that the algorithm computes an optimal solution by using hybridation of the

optimal solution and of its solution. Let V ′
opt be an optimal solution. First, we decompose V ′

opt

in its connected components V ′
1,opt, V ′

2,opt, . . . , V ′
h,opt (as mentioned above). Each node of the

branching tree corresponds to some configuration (T, R, U). For instance, the root corresponds to

5

V3

S3

Figure 3: The k-neighborhood of v3 in a fragment of the branching tree. Filled vertices correspond
to taken vertices, crossed vertices correspond to rejected vertices, plain vertices correspond to
unmarked vertices, and spotted vertices correspond to the vertices which has just been added
to the taken vertices. Bold edges are the edges of the current cut. Assume the father node
deviates from the optimal solution. Then, the optimal solution takes no unmarked vertices in
the k-neighborhood of v3. Thus, we can substitute S3 which is the best local choice for adding 3
vertices, to the 3 vertices of the optimal solution which completes one connected component (see
Figure 4).

V
′

j,OP T

V
′′

Figure 4: Representation of the optimal solution. Filled vertices are in V ′
opt and the crossed

vertices are in the other subset; V ′′ = V ′
j,opt \ V ′

shared; where V ′
j,opt is a connected component of

V ′
opt and V ′

shared denotes the vertices both taken by the optimal solution and by MINCUT. As the
node of the branching tree of Figure 3 is supposed to deviate from V ′

opt, we can notice that no
unmarked vertex of the extended neighborhood of v3 is taken in V ′

opt.

6

the configuration (∅, ∅, V) and any leaf corresponds to a configuration with |T | = k. We say that
a node of the branching tree is conform to the optimal solution V ′

opt, if its configuration (T, R, U)
satisfies T ⊆ V ′

opt and R ∩ V ′
opt = ∅. Also, we say that a node of the branching tree deviates from

the optimal solution when none of its children is conform to the optimal solution.
From the root, we follow any branch of the branching tree until we reach a node which deviates

from V ′
opt, and we denote by V ′

shared ⊂ V ′
opt the set of vertices in the optimal solution V ′

opt which
has been taken in our solution along the followed branch. In other words, V ′

shared corresponds
to shared choices, up to this point, between our branching and the optimal solution (note that
V ′
shared and the crossway node are not necessarily unique). At this node, our algorithm computes

v1, v2, . . . , vk and we know for sure that, for all i, Nk[vi] ∩ (V ′
opt \ V ′

shared) = ∅. Take a whole
connected component V ′

j,opt not entirely contained in V ′
shared and let cj = |V ′

j,opt \ V ′
shared|.

Let us now explain why component S3 of Figure 3 (role played here by S) could substitute V ′′

of Figure 4 (role played here by V ′
j,opt \ V ′

shared).

By construction, in Nk[vcj
] \ V ′

shared, and by the previous remark in Nk[vcj
] \ V ′

opt, there exists
a subset S with cj elements which satisfies δ(S ∪V ′

shared) 6 δ(V ′
j,opt∪V ′

shared). Now, let us consider
the set of k vertices W = (V ′

opt \ (V ′
j,opt \ V ′

shared)) ∪ S. In the sequel, we set V ′′ = V ′
j,opt \ V ′

shared,
X = V ′

shared∪V ′
j,opt = V ′′ ∪V ′

shared and we repeatedly use that δ(A∪B) = δ(A)+δ(B)−2|E(A, B)|.
It holds that:

δ(W) = δ (S ∪ V ′
shared) + δ (W \ (S ∪ V ′

shared))− 2 |E (S ∪ V ′
shared, W \ (S ∪ V ′

shared))|

Besides, W \ (S ∪ V ′
shared) = V ′

opt \ X and, since S and V ′
shared are disjoint:

|E (S ∪ V ′
shared, W \ (S ∪ V ′

shared))| =
∣∣E

(
V ′
shared, V ′

opt \ X
)∣∣+

∣∣E
(
S, V ′

opt \ X
)∣∣

>
∣∣E

(
V ′
shared, V ′

opt \ X
)∣∣

Recall that, by construction of S, δ(S ∪ V ′
shared) 6 δ(X). Hence:

δ(W) 6 δ(X) + δ
(
V ′
opt \ X

)
− 2

∣∣E
(
V ′
shared, V ′

opt \ X
)∣∣

Also, by construction, |E(V ′′, V ′
opt \ X)| = 0; so:

δ(W) 6 δ(X) + δ
(
V ′
opt \ X

)
− 2

(∣∣E
(
V ′
shared, V ′

opt \ X
)∣∣+

∣∣E
(
V ′′, V ′

opt \ X
)∣∣)

= δ(X) + δ
(
V ′
opt \ X

)
− 2

∣∣E
(
X, V ′

opt \ X
)∣∣ = δ

(
V ′
opt

)
(1)

where the first equality in (1) holds due to the fact V ′
shared and V ′′ are disjoint.

By optimality of V ′
opt, one gets δ(W) = δ(V ′

opt). In the branching tree, we move to the one son
taking S and we follow any branch until our algorithm deviates again from the optimal solution.
Then we iterate the same hybridation trick. After at most k steps, we get to a leaf of the branching
tree with a solution V ′ which is as good as the optimal solution.

Let us note that Algorithm MINCUT(G,T ,R,k) can be slightly modified in order to work also
for another fixed-cardinality problem, the k-densest subgraph problem, which consists in deter-
mining a subset of k vertices maximizing the number of edges in the subgraph induced by them.
Indeed, it suffices to switch from minimization of the number of outgoing edges to maximization
of the number of inner edges. The rest of the proof remains the same.

Corollary 6. k-densest subgraph, parameterized by k∆, is FPT.

We now return to the standard parameterization of min (k, n − k)-cut. Unfortunately, unlike
what have been done for max (k, n−k)-cut, we have not been able to show until now that the case
p < k is “trivial”. However, we can prove that when p > k, then min (k, n − k)-cut parameterized
by the value p of the solution is FPT. This is an immediate corollary of the following proposition.

Proposition 7. min (k, n − k)-cut parameterized by p+ k is FPT.

Proof. Each vertex v such that |N(v)| > k + p has to be in V \ V ′ (of size n − k). Indeed, if one
puts v in V ′ (of size k), among its k + p incident edges, at least p+ 1 leave from V ′; so, it cannot
yield a feasible solution. All the vertices v such that |N(v)| > k + p are then rejected. Thus, one
can adapt the FPT algorithm in k∆ of Theorem 4 by considering the k-neighborhood of a vertex
v not in the whole graph G, but in G[T ∪ U]. One can easily check that the algorithm still works
and since in those subgraphs the degree is bounded by p+k we get an FPT algorithm in p+k.

7

In [8], it is shown that, for any ε > 0, there exists a randomized (1 + εk
logn)-approximation for

min (k, n − k)-cut. From this result, we can easily derive that when p < logn
k then the problem

is solvable in polynomial time (by a randomized algorithm). Indeed, fixing ε = 1, the algorithm
in [8] is a (1 + k

log(n))-approximation. This approximation ratio is strictly better than 1 + 1
p . This

means that the algorithm outputs a solution of value lower than p + 1, hence at most p, if there
exists a solution of value at most p.

We now conclude this section by showing that, when p 6 k, min (k, n − k)-cut can be solved
in time O∗(np).

Proposition 8. If p 6 k, then min (k, n − k)-cut can be solved in time O∗(np).

Proof. Since p 6 k, there exist in the optimal set V ′, p′ 6 p vertices incident to the p outgoing
edges. So, the k−p′ remaining vertices of V ′ induce a subgraph that is disconnected from G[V \V ′].

Hence, one can enumerate all the p′ 6 p subsets of V . For each such subset Ṽ , the graph G[V \Ṽ]

is disconnected. Denote by C = (Ci)06i6|C| the connected components of G[V \ Ṽ] and by αi the

number of edges between Ci and Ṽ . We have to pick a subset C ′ ⊂ C among these components
such that

∑
Ci∈C′ |Ci| = k − p′ and maximizing

∑
Ci∈C′ αi. This can be done in polynomial time

using standard dynamic programming techniques.

3 Parameterization by k and approximation

Recall that both max and min (k, n − k)-cut parameterized by k are W[1]-hard [6, 3]. In this
section, we give some approximation algorithms working in FPT time with respect to parameter k.

Proposition 9. max (k, n − k)-cut, parameterized by k has a fixed-parameter approximation

schema.

Proof. Fix some ε > 0. Given a graph G = (V, E), let d1 6 d2 6 . . . 6 dk be the degrees
of the k largest-degree vertices v1, v2, . . . vk in G. An optima solution of value opt is obviously
bounded above by B = Σk

i=1di. Now, consider solution V ′ = {v1, v2, . . . , vk}. As there exist at
most k(k − 1)/2 6 k2/2 (when V ′ is a k-clique) inner edges, solution V ′ has a value sol at least

B − k2. Hence, the approximation ratio is at least B−k2

B = 1− k2

B . Since, obviously, B > d1 = ∆,

an approximation ratio at least 1− k2

∆ is immediately derived.

If ε > k2

∆ then V ′ is a (1 − ε)-approximation. Otherwise, if ε 6 k2

∆ , then ∆ 6 k2

ε . So, the

branching algorithm of Theorem 3 with time-complexity O∗(∆k) is in this case an O∗(k2k

εk)-time
algorithm.

Proposition 10. min (k, n − k)-cut parameterized by k has a randomized fixed-parameter ap-

proximation schema.

Proof. For any ε > 0, if k < logn, then according to the result of [8], there exists a randomized
polynomial time (1 + ε)-approximation. Else, if k > logn, the exhaustive enumeration of the

k-subsets takes time O∗(nk) = O∗((2k)k) = O∗(2k2

).

Finding approximation algorithms that work in FPT time with respect to parameter p is an
interesting question. Combining the result of [8] and an O(log1.5(n))-approximation algorithm
in [9] we can show that the problem is O(k3/5) approximable in polynomial time by a randomized
algorithm.

We now show that an approximation ratio k2

f(k) + 1 for min (k, n − k)-cut can be achieved

in time O∗(nf(k)). This, for instance, concludes a ratio o(k2) in time O∗(no(k)). We distinguish
three cases with respect to the parameter p. If p > k, then by the discussion just above, since
any solution has size at most k(k+ p), an approximation ratio at most 2k is immediately derived.
Assume now p 6 k. Here, we distinguish two subcases, namely p 6 f(k) and k > p > f(k). In the
first of the subcases, using Proposition 8, an optimal solution for min (k, n − k)-cut can be found
in time at most O∗(nf(k)). For the second subcase, consider a solution consisting of taking the
set V ′ of the k vertices of G with lowest degrees, and denote by σ the sum of these degrees. Then,

8

the value opt of an optimal solution is at least σ − k2, i.e., σ 6 opt+k2. Hence, if p < σ − k2, the
algorithm answers “no”; otherwise, some easy algebra leads to an approximation ratio bounded

above by k2

f(k) + 1.

We feel however that much better results should be achievable for min (k, (n − k)-cut in FPT
time.

4 Other parameterizations

When dealing with parameterization of graph problems, some classical parameters arise naturally.
One of them, very frequently used in the fixed parameter literature is the treewidth of the graph.

In [2], an algorithm solving the k-densest problem in O∗(2tw) is given. We show here that this
algorithm could be adapted for a large class of graph problems including min and max (k, n − k)-
cut.

Definition 11: A local graph partitioning problem is a problem having as input a graph G =
(V, E) and two integers k and p. Feasible solutions are subsets V ′ ⊆ V of size k. The value
of a solution, denoted by val(V ′), is a linear combination α1m1 + α2m2 where m1 = |E(V ′)|,
m2 = |E(V ′, V \ V ′)| and α1, α2 ∈ R. The goal is to determine whether there exists a solution
of value at least p (for a maximization problem) or at most p (for a minimization problem). �

Note that α1 = 1, α2 = 0 corresponds to k-densest subgraph and k-sparsest subgraph,
while α1 = 0, α2 = 1 corresponds (k, n − k)-cut, and α1 = α2 = 1 gives k-coverage. Not only
any fixed cardinality problem (as those mentioned above and in [3]) but many other problems fit
Definition 11. For instance, a very well-known problem, the min bisection problem where one
wishes to minimize the cut between the sets of an equipartition of the vertices into two sets, is also
a local graph partitioning problem.

Proposition 12. Any local graph partitioning problem can be solved in time O∗(2tw).

Proof. A tree decomposition of a graph G(V, E) is a pair (X, T) where T is a tree on vertex
set N(T) the vertices of which are called nodes and X = ({Xi : i ∈ N(T)}) is a collection of
subsets of V such that: (i) ∪i∈N(T)Xi = V , (ii) for each edge (v, w) ∈ E, there exist an i ∈ N(T)
such that {v, w} ∈ Xi, and (iii) for each v ∈ V , the set of nodes {i : v ∈ Xi} forms a subtree
of T . The width of a tree decomposition ({Xi : i ∈ N(T)}, T) equals maxi∈N(T){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We say that a
tree decomposition is nice if any node of its tree that is not the root is one of the following types:

• a leaf that contains a single vertex from the graph;

• an introduce node Xi with one child Xj such that Xi = Xj ∪ {v} for some vertex v ∈ V ;

• a forget node Xi with one child Xj such that Xj = Xi ∪ {v} for some vertex v ∈ V ;

• a join node Xi with two children Xj and Xl such that Xi = Xj = Xl.

Assume that the local graph partitioning problem Π is a minimization problem (we want to find
V ′ such that val(V ′) 6 p), the maximization case being similar. An algorithm that transforms in
linear time an arbitrary tree decomposition into a nice one with the same treewidth is presented
in [10]. Consider a nice tree decomposition of G and let Ti be the subtree of T rooted at Xi,
and Gi = (Vi, Ei) be the subgraph of G induced by the vertices in

⋃
Xj∈Ti

Xj . For each node

Xi = (v1, v2, . . . , v|Xi|) of the tree decomposition, define a configuration vector þc ∈ {0, 1}|Xi|;
þc[j] = 1 ⇐⇒ vj ∈ Xi belongs to the solution. Moreover, for each node Xi, consider a table Ai

of size 2|Xi| × (k + 1). Each row of Ai represents a configuration and each column represents the
number k′, 0 6 k′ 6 k, of vertices in Vi \ Xi included in the solution. The value of an entry of this
table equals the value of the best solution respecting both the configuration vector and the number
k′, and −∞ is used to define an infeasible solution. In the sequel, we set Xi,t = {vh ∈ Xi : þc(h) = 1}
and Xi,r = {vh ∈ Xi : þc(h) = 0}.

9

The algorithm examines the nodes of T in a bottom-up way and fills in the table Ai for each
node Xi. In the initialization step, for each leaf node Xi and each configuration þc, we have
Ai[þc, k′] = 0 if k′ = 0; otherwise Ai[þc, k′] = −∞.

If Xi is a forget node, then consider a configuration þc for Xi. In Xj this configuration is
extended with the decision whether vertex v is included into the solution or not. Hence, taking
into account that v ∈ Vi \ Xi we get:

Ai [þc, k′] = min {Aj [þc × {0}, k′] , Aj [þc × {1}, k′ − 1]}

for each configuration þc and each k′, 0 6 k′ 6 k.
If Xi is an introduce node, then consider a configuration þc for Xj . If v is taken in V ′, its

inclusion adds the quantity δv = α1|E({v}, Xi,t)| + α2|E({v}, Xi,r)| to the solution. The crucial
point is that δv does not depend on the k′ vertices of Vi \ Xi taken in the solution. Indeed, by
construction a vertex in Vi \ Xi has its subtree entirely contained in Ti. Besides, the subtree of v
intersects Ti only in its root, since v appears in Xi, disappears from Xj and has, by definition, a
connected subtree. So, we know that there is no edge in G between v and any vertex of Vi \ Xi.
Hence, Ai[þc × {1}, k′] = Aj [þc, k′] + δv, since k′ counts only the vertices of the current solution in
Vi \ Xi. The case where v is discarded from the solution (not taken in V ′) is completely similar;
we just define δv according to the number of edges linking v to vertices of Ti respectively in V ′

and not in V ′.
If Xi is a join node, then for each configuration þc for Xi and each k′, 0 6 k′ 6 k, we have

to find the best solution obtained by kj , 0 6 kj 6 k′, vertices in Aj plus k′ − kj vertices in Al.
However, the quantity δþc = α1|E(Xi,t)|+ α2|E(Xi,t, Xi,r)| is counted twice. Note that δþc depends
only on Xi,t and Xi,r, since there is no edge between Vl \ Xi and Vj \ Xi. Hence, we get:

Ai [þc, k′] = max
06kj6k′

{Aj [þc, kj] +Al [þc, k′ − kj]} − δc

and the proof of the proposition is completed.

Corollary 13. max and min (k, n − k)-cut parameterized by the treewidth of the input graph are

FPT.

Corollary 14. Restricted to trees, max and min (k, n − k)-cut can be solved in polynomial time.

Corollary 15. min bisection parameterized by the treewidth of the input graph is FPT.

It is worth noticing that the result easily extends to the weighted case (edges have weight) and
to the case of partitioning V into a constant number of classes (with a higher running time).

Another natural parameter frequently used in the parameterized complexity framework is the
size τ of a minimum vertex cover of the input graph. Since it always holds that tw 6 τ , the result
of Proposition 12 immediately applies to parameterization by τ . However, the algorithm developed
there needs exponential space. In what follows, we give a parameterization by τ using polynomial
space.

Proposition 16. max and min (k, n − k)-cut parameterized by τ can be solved in FPT O∗(2τ)
time and in polynomial space.

Proof. Consider the following algorithm:

• compute a minimum vertex cover C of G;

• for every subset X of C of size |X| smaller than k, complete X with the k − |X| vertices
of V \ C that maximize (resp., minimize) their incidence with C \ X (i.e., the number of
neighbours in C \ X);

• output the best solution.

Recall that a minimum size vertex cover can be computed in time O∗(1.2738τ) time by means of
the fixed-parameter algorithm of [4] and using polynomial space. The operation on every subset
is polynomial, so the global computation time is at most O∗(2τ).

10

The soundness follows from the fact that a complement of a vertex cover is an independent
set. Denoting by V ′ the optimal vertex-set (i.e., the k vertices inducing an optimal cut), then
V ′ ∩ C will be considered by the above algorithm, and then every vertex of the completion will
add exactly to the solution its number of neighbors in V ′ ∩ C, which is maximized (or minimized)
in the algorithm.

5 Concluding remarks

Table 1 sums up results about parameterizations of max and min (k, n − k)-cut. The first two
lines concern exact algorithms, while the last two deal with approximations. The bold entries show
our contribution. Notatios fpt(r)AS denote FPT (random) approximation schema. Let us note
that our results derive some additional interesting corollaries, for instance, both problems studied,

when parameterized by k are FPT in graphs of bounded degree.

Parameters k k∆ p τ tw

max (k, n − k)-cut W[1]-hard FPT FPT FPT FPT

min (k, n − k)-cut W[1]-hard FPT FPT for p > k FPT FPT

max (k, n − k)-cut fptAS

min (k, n − k)-cut fptrAS

Table 1: The state of the art of max and min (k, n − k)-cut.

Settlement of the parameterized complexity of min (k, n − k)-cut with respect to p is, in
our opinion, the major open problem deserving further efforts. Note that, if this problem is
FPT, then this result would immediately apply to the case of min bisection, whose standard
parameterization is an open problem. Another interesting open question, in the case where min

(k, n−k)-cut is not FPT, is to design parameterized (with respect to p) approximation algorithms
achieving ratios better than O(k2) (deterministic algorithm) and O(k3/5) (randomized algorithms).

Finally, we hope that applying the idea of devising search tree based on the exploration of the
neighborhood of a greedily chosen vertex could be fruitfully applied to other problems.

References

[1] A. A. Ageev and M. Sviridenko. Approximation algorithms for maximum coverage and max
cut with given sizes of parts. In G. Cornuéjols, R. E. Burkard and G. J. Woeginger, editors,
Proc. of the Conference on Integer Programming and Combinatorial Optimization, IPCO’99,
volume 1610 of Lecture Notes in Computer Science, pp. 17–30. Springer, 1999.

[2] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. Th. Paschos. Exact and approxima-
tion algorithms for densest k-subgraph. Cahier du LAMSADE 324, LAMSADE, Université
Paris-Dauphine, 2012.

[3] L. Cai. Parameter complexity of cardinality constrained optimization problems. The Computer

Journal, 51:102–121, 2008.

[4] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoret. Comput.

Sci., 411(40-42):3736–3756, 2010.

[5] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

[6] R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto, and F. A. Rosamond. Cutting
up is hard to do: the parameterized complexity of k-cut and related problems. In Electronic

Notes in Theoretical Computer Science 78, pages 205–218. Elsevier, 2003.

11

[7] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer
Science. Springer, New York, 1999.

[8] U. Feige, R. Krauthgamer, and K. Nissim. On cutting a few vertices from a graph. Discrete

Appl. Math., 127(3):643–649, 2003.

[9] U. Feige and M. Langberg. Approximation algorithms for maximization problems arising in
graph partitioning. J. Algorithms, 41(2):174–211, 2001.

[10] T. Kloks. Treewidth, computations and approximations, volume 842 of Lecture Notes in Com-

puter Science. Springer, 1994.

[11] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation. Prentice-Hall,
1981.

[12] S. Maneth. Logic and automata. Lecture 3: Expressiveness of MSO graph properties. Logic
Summer School, December 2006.

[13] D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal,
51(1):60–78, 2008.

[14] S. Szeider. Monadic second order logic on graphs with local cardinality constraints. In
E. Ochmański and J. Tyszkiewicz, editors, Proc. Mathematical Foundations of Computer Sci-

ence, MFCS’08, volume 5162 of Lecture Notes in Computer Science, pages 601–612. Springer,
2008.

12

	Première page cahier.pdf
	Page 1

