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Abstract

Given a weighted undirected graphGwith a set of pairs of terminals {si, ti}, i =
1, ..., d, and an integer L ≥ 2, the two node-disjoint hop-constrained sur-
vivable network design problem (TNHNDP) is to find a minimum weight
subgraph of G such that between every si and ti there exist at least two
node-disjoint paths of length at most L. This problem has applications to
the design of survivable telecommunications networks with QoS-constraints.
We discuss this problem from a polyhedral point of view. We present several
classes of valid inequalities along with necessary and/or sufficient conditions
for these inequalities to be facet defining. We also discuss separation routines
for these classes of inequalities. Using this, we propose a Branch-and-Cut
algorithm for the problem when L = 3, and present some computational
results.

Keywords: Survivable network, node-disjoint paths, hop constraint,
polyhedron, facet, branch and cut

1. Introduction

Given a weighted undirected graph G = (N,E), an integer L ≥ 2, and a
set of demands D ⊆ N×N , the two node-disjoint hop-constrained survivable
network design problem (TNHNDP) consists in finding a minimum wieght
subgraph of G containing at least two node-disjoint paths of at most L hops
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between each pair of nodes {s, t} in D. The case in which there are one
source and several destinations is called the rooted TNHNDP.

In this work, we consider the associated polytope. We give some classes of
valid inequalities along with necessary and/or sufficient conditions for these
inequalities of the formulation to define facets. We also derive separation
procedures for these inequalities. Using these results, we finally develop a
branch-and cut algorithm and discuss some computational results for L = 3.

Given an edge subset F ⊆ E, the 0 − 1 vector xF ∈ R
|E|, such that

xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the incidence vector of
F . The convex hull of the incidence vectors of the solutions to the TNHNDP
on G, denoted by P (G,L), will be called the TNHNDP polytope. Given a
vector w ∈ R

|E| and an edge subset F ⊆ E, we let w(F ) =
∑

e∈F w(e). If
W ⊂ N is a node subset of G, then the set of edges that have only one node
in W is called a cut and denoted by δ(W ). We will write δ(v) for δ({v}). A
cut δ(W ) such that s ∈ W and t ∈ N \W will be called an st-cut. Given a
node z ∈ N , the graph G − z is the subgraph obtained from G by deleting
the node z and all its incident edges (but not their other end nodes). Let
V0, V1, . . . , VL+1 be a partition of N such that s ∈ V0, t ∈ VL+1, and Vi 6= 0
for all i = 1, . . . , L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj ,
and |i− j| > 1.

In [3], Gouveia et al. discuss the TNHNDP within the context of an
MPLS (Multi-Protocol Label Switching) network design model. The authors
propose two extended formulations involving one set of variables for each path
between each pair of terminals. The first model uses standard flow variables,
and the second uses hop-indexed variables. Each subsystem of constraints
associated with a path is a flow model with additional cardinality constraints.
The authors also introduce a third model involving one set of hop-indexed
variables for each pair of terminals. They show that this aggregated and
more compact model produces the same linear programming bound as the
multipath hop-indexed model. They also present computational results for
L = 4, 5, and 6 using these formulations. Unfortunately, as the number of
variables of the resulting models grows with L (and the number of pairs of
terminals), the size of the corresponding linear programming relaxation may
lead to excessive computational time when more dense instances (or instances
with a larger value of L or a larger number of nodes) are considered. As
mentioned in [3], this points out the need for looking for formulations using
only natural variables.

The edge version of the problem (TEHNDP) has been already investi-

2



gated by several authors when L = 2, 3. In particular, [4] give a complete
and minimal linear description of the corresponding polytope when L = 2, 3
and |D| = 1. In [16] and [21], Huygens et.al. and Diarrassouba have studied
the problem when |D| ≥ 2 and when two and k edge-disjoint paths, respec-
tively, are required. They devise Branch-and-Cut algorithms for the problem
when L = 2, 3 and give some computational results. Also, Huygens and
Mahjoub [2] have studied the two versions of the problem (TNHNDP and
TEHNDP) when L = 4. They give an integer programming formulation for
the problem in the two cases. In [6], Dahl considers the hop-constrained path
problem, that is the problem of finding between two distinguished nodes s
and t a minimum cost path with no more than L edges when L is fixed.
He gives a complete description of the dominant of the associated polytope
when L ≤ 3. Dahl and Gouveia [1] consider the directed hop-constrained
path problem. They describe valid inequalities and characterize the associ-
ated polytope when L ≤ 3. In [5], Coullard et al. investigate the structure
of the polyhedron associated with the st-walks of length L of a graph, where
a walk is a path that may go through the same node more than once. Dahl
et al. [7] also consider the hop-constrained walk polytope in directed graphs
when L = 4. This is the first work that addresses a polyhedral analysis for
a hop-constrained network design problem with L = 4. By introducing ex-
tended variables in addition to the design variables, the authors characterize
the polytope. They also introduce a large class of facet-defining inequalities
for the dominant of that polytope, which surprisingly shows that describing
the hop-constrained walk polytope for L = 4 is easier than describing its
dominant. Moreover, one of their conclusions is that the structure of the
hop-constrained path polytope for L = 4 is considerably more complicated.

Further hop constrained survivable network design problems are studied
in [9, 10, 11, 13, 14, 15]. A survey of survivability, which also includes a
section with hop-constraints, can be found in [12].

To the best of our knowledge, this paper is the first work for node case
of the problem from a polyhedral point of view.

The following linear system along with the integrality constraints formu-
lates the THNDPP as an integer program when L = 2, 3, 4 (see [2]).

x(δ(W )) ≥ 2, for all st-cuts δ(W ), (1.1)

x(δG−z(W )) ≥ 1, for all st-cuts δG−z(W ), for all z ∈ N\{s, t}, (1.2)

x(T ) ≥ 2, for all L-path-cuts T, (1.3)
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x(TG−z) ≥ 1, for all L-path-cuts TG−z, for all z ∈ N \ {s, t}, (1.4)

x(e) ≤ 1, for all e ∈ E, (1.5)

x(e) ≥ 0, for all e ∈ E. (1.6)

Inequalities (1.1),(1.2),(1.3) and (1.4) are called st-cut inequalites, st-
node-cut inequalites, L-path-cut inequalites and L-path node-cut inequalites,
respectively. The remaining inequalities are called trivial inequalites.

This formulation is called the Natural Formulation. We will also call
inequalities (1.1)-(1.4) the basic inequalities (here ”basic” means that they
are necessary in the natural formulation).

The above formulation is not complete that is its linear relaxation is not
integral when L = 3, 4. Consider the graph G = K5 in Figure 1, where the
edges in solid lines have value 1/2, the ones in bold have value 1, and the
remaining edges have value zero. It is easy to verify that this solution is a
fractional extreme point of the polyhedron given by the linear relaxation of
the node TNHNDP with L = 3 and {s, t} = {1, 4}. This point can be cut
off by the following valid inequality

x(e1) + 2x(e2) + x(e3) + 2x(e4) + x(e5) + 2x(e8) ≥ 3.

Moreover, this inequality is facet defining for the polytope on this graph.
A solution which is a fractional extreme point of the polyhedron given by
the LP relaxation of TNHNDP when L = 4 is given in [2]. Therefore, for
a complete description of TNHNDP when L = 3, 4, some valid inequalities
addition to (1.1)-(1.6) are necessary.

e1 e2e8 e9

e6

e7

e3 e5

e4

e10

1

2 3

4 5

Figure 1: A fractional extreme point of the linear relaxation of the TNHNDP with L = 3 and {s, t} =
{1, 4}.
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Theorem 1. If the graph G is complete and all edge costs are equal to 1,
the rooted TNHNDP can be solved in polynomial time for every L ≥ 2.

Proof. In [16], Huygens at al. proposed a polynomial algorithm for the
rooted two-edge connected hop-constrained network design problem if the
graph is complete and all edge costs are equal to 1. This algorithm actually
produces two-node connected graph.

The paper is organized as follows. In the next section, we present a new
class of valid inequalities for TNHNDP. In Section 3, we give further valid
inequalities for the rooted TNHNDP. Necessary and sufficient conditions for
these inequalities to be facet defining are discussed in Section 4. In Section 5
and 6, we study the separation of these inequalities and propose a heuristic
algorithm to find good lower bound, respectively. In Section 7, we derive a
branch-and-cut algorithm and present our experimental results. Finally, we
give some concluding remarks in Section 8.

2. Valid Inequalities

In this section we present valid inequalities for the TEHNDP that have
been introduced in the literature. As we will see in the following, they are
also valid for the TNHNDP.

2.1. Generalized L-path-cut Inequalities

Theorem 2. [1] Let V0, . . . , VL+r be a partition of N such that r ≥ 1, s ∈ V0

and t ∈ VL+r. Then the generalized jump inequality is

∑

e∈[Vi,Vj ],i 6=j

min(|i− j| − 1, r)x(e) ≥ r

is valid for the L-hop-constrained path problem.

These inequalities can be easily extended to the TNHNDP as follows:

∑

e∈[Vi,Vj ],i 6=j

min(|i− j| − 1, r)x(e) ≥ 2r. (2.7)

Note that inequalities (2.7) generalize the L-path-cut inequalities (by setting
r = 1).
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2.2. Rooted Partition Inequalities

Theorem 3. [16] Let L = 3 and T = {t1, . . . , tp} be a subset of p destination
nodes relative to node s. Let π = (V0, V1, . . . , Vp) be a partition of N such
that s ∈ V0, and ti ∈ Vi, for all i = 1, . . . , p. Then the inequality

x(δ(V0, . . . , Vp)) ≥ ⌈4p/3⌉ (2.8)

is valid for the two-edge connected hop-constrained network design problem.

2.3. Double Cut Inequalities

Theorem 4. [21] Let L = 3 and Π = {V 1
0 , V

2
0 , V1, V2, V3, V4} be a partition

of V such that π = (V 1
0 , V

2
0 ∪ V1, V2, V3, V4) induces a 3-st-path-cut, and V1

induces a valid st-cut in G. If F ⊆ [V 2
0 ∪ V1 ∪ V4, V2] is chosen such that |F |

is odd, then the inequality

x([V 1
0 , V1 ∪ V2 ∪ V3 ∪ V4]) + x([V 2

0 , V1 ∪ V3 ∪ V4]) + x([V1, V3 ∪ V4])

+x([V 2
0 ∪ V1 ∪ V4, V2]) ≥ ⌈3 − |F |/2⌉ (2.9)

is valid for the two-edge connected hop-constrained network design problem.

Since every solution of the TNHNDP is also solution of the TEHNDP,
Inequalities (2.8) and (2.9) are also valid for TNHNDP.

3. Further Valid Inequalities

In this section, we introduce several classes of inequalities that are valid
for the TNHNDP polytope. As we see in Section 4, they define facets of
P(G,L) under some conditions and reinforce the linear relaxation of the in-
teger programming formulation presented in the previous section.

3.1. st-jump Inequalities

Theorem 5. Let L = 3 and G = (N,E) with |N | ≥ 5 and (V0, V1, . . . , V4)
be a partition of N such that s ∈ V0 and t ∈ V4. Then the st-jump inequality

2∑

i=0

x([Vi, Vi+2]) +

1∑

i=0

4∑

j≥i+3

2x([Vi, Vj]) +

1∑

i=0

x([Vi, Vi+1 \ {ui+1}])

+
3∑

i=2

x([Vi \ {ui}, Vi+1]) ≥ 3 (3.10)

,where ui ∈ Vi, i = 1, 2, 3 is valid for the TNHNDP polytope.
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Proof. Let u ∈ V1, w ∈ V2, z ∈ V3 and T1, T2, T3 and T4 be the L-path-
cuts induced by (V0, {u}, V2∪V1 \{u}, V3, V4), (V0, V1, {w}, V3∪V2 \{w}, V4),
(V0, V1∪V2 \{w}, {w}, V3, V4) and (V0, V1, V2∪V3 \{z}, {z}, V4), respectively.
Then the following inequalities are valid for the TNHNDP:

x(T1) ≥ 2,

x(T2) ≥ 2,

x(T3) ≥ 2,

x(T4) ≥ 2,

x(δG−u(V0)) ≥ 1,

x(δG−w(V0 ∪ V1)) ≥ 1,

x(δG−z(V4)) ≥ 1,

x(e) ≥ 0, for all e ∈ [V1\{u}, V3] ∪ [V2\{w}, V4] ∪ [V1, V3\{z}],

3x(e) ≥ 0, for all e ∈ [V0, V1\{u} ∪ V4] ∪ [V1, V2\{w}] ∪ [V3\{z}, V4],

4x(e) ≥ 0, for all e ∈ [V0 ∪ V2\{w}, V3] ∪ [V1, V4].

By summing these inequalities, dividing the sum by 5, and rounding up the
right-hand side, we obtain inequality (3.10).

3.2. Rooted Node Partition Inequalities

Theorem 6. Let L = 3 and T = {t1, . . . , tp} be a subset of p destination
nodes relative to node s. Let π = (V0, V1..., Vp) a partition of N \ {u} such
that u ∈ N \ {s}, s ∈ V0, and ti ∈ Vi, for all i = 1, . . . , p. Then the rooted
node partition inequality

x(δG−u(V0, . . . , Vp)) ≥ p (3.11)

is valid for the rooted TNHNDP.

Proof. Let u be a node in N \ {s}. G − u is a complete graph after
deleting u and its incident edges in G. x(δG−u(V0, . . . , Vp)) ≥ p is valid
inequality for the 1ECON(G − u) polytope [18]. We can easily say that
the TNHNDP (G − u) polytope is inside the 1ECON(G − u) polytope.
Therefore, x(δG−u(V0, . . . , Vp)) ≥ p is alo valid for the TNHNDP (G − u)
polytope and the TNHNDP (G) polytope.

If p is 1, then inequality (3.11) is redundant with respect to the st-node-
cut inequalities.
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3.3. Node Double Cut-1

Theorem 7. Let {s1, t1} and {s2, t2} be two demands and π = (V0, ..., V4) a
partition of the graph such that s1 ∈ V0, t1 ∈ V4, t2 ∈ V2 and s2 /∈ V2. Let T
be the 3-path-cut induced by {s1, t1}, ∆1 = (T \ [V2, V4]) ∪ ([V2, V3] ∪ [V1, V2])
and ∆2 = [V2, V4]. Also let F ⊆ [V1, V2] such that |F | is odd.

Then, the inequality

x(∆1 \ F ) + 2x(∆2) ≥ 3−

⌊
|F |

2

⌋
(3.12)

is valid for the TNHNDP.

Proof. Let T be the 3-path-cut of G induced by the partition π and
{s1, t1}. As T is a 3-s1t1-path-cut, and s2 /∈ V2 and s1 ∈ V4, V2 induces
a valid s2t2-cut and V3 ∪ V4 induce a valid s1t1-cut. Then, the inequalities
below are valid for the TNHNDP polytope

x(T ) ≥ 2,

x(δ(V2) ≥ 2,

x(δ(V3 ∪ V4)) ≥ 2,

−x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ [V1, V2] \ F.

By summing these inequalities, dividing by 2 and rounding up the right
hand side, we obtain inequality (3.12).

3.4. Node Double Cut-2

Theorem 8. Let {s1, t1} and {s2, t2} be two demands and πu = (V0, ..., V4)
a partition of N \ {u}, with u ∈ N \ {s1, s2, t1, t2} and s1 ∈ V0, t1 ∈ V4,
t2 ∈ V2 and s2 /∈ V2. Let Tu be the 3-path-cut induced by {s1, t1}, ∆1 =
(Tu\[V2, V4])∪([V2, V3]∪[V1∪{u}, V2]) and ∆2 = [V2, V4]. Also let F ⊆ [V1, V2]
such that |F | is odd.

Then, the inequality

x(∆1 \ F ) + 2x(∆2) ≥ 3−

⌊
|F |

2

⌋
(3.13)

is valid for the TNHNDP.
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Proof. Let T be the 3-path-cut of G induced by the partition π and
{s1, t1}. As T is a 3-s1t1-path-cut, and s2 /∈ V2 and s1 ∈ V4, V2 induces
a valid s2t2-cut and V3 ∪ V4 induce a valid s1t1-cut. Then, the inequalities
below are valid for the TNHNDP polytope

x(TG−u) ≥ 1,

x(δG−u(V3 ∪ V4) ≥ 1,

x(δ(V2)) ≥ 2,

−x(e) ≥ −1, for all e ∈ F,

x(e) ≥ 0, for all e ∈ [V1 ∪ {u}, V2] \ F.

By summing these inequalities, dividing by 2 and rounding up the right
hand side, we obtain inequality (3.13).

3.5. Optimality Constraints

In the following theorem, we introduce a new class of inequalities which
allows to describe the optimal solutions of the TNHNDP in the case where
the demands are rooted and when the edge weights satisfy the triangle in-
equalities.

Theorem 9. Suppose that L = 3, all the demands are rooted in a node s ∈ N
and the weight of the edges of G satisfy the triangle inequalities. Let u ∈ N
be a steiner node and F ⊆ E an optimal solution of the rooted TNHNDP
w.r.t to these edges weights. If F ∩ [s, u] = ∅, then there exists an optimal
solution F ′ such that F ′ ∩ [s, u] = ∅ and δ(u) ∩ F ′ = ∅.

Proof. Consider that there exists an optimal solution induced by an
edge set F ⊆ E such that F ∩ [s, u] = ∅, for some steiner node u ∈ N . If
F ∩ δ(u) = ∅, then F ′ = F and the result is obvious.
Hence, we consider that, for a given steiner node u ∈ N , F ∩ [s, u] = ∅ and
that F∩δ(u) 6= ∅. We will show that there exists an edge set F ′ ⊆ E obtained
from F , which induces a feasible solution for the rooted TNHNDP such that
F ′∩ [s, u] = and F ′∩δ(u) = ∅, and whose weight, c(F ′), is equal to that of F .

Remark that, in the subgraph induced by any feasible solution of the prob-
lem, each terminal belongs to a cycle of length at most 4 and using the source
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node s.

If node u does not belong to any of these cycles, then the edge set F ′ =
F \ {uv} induces a feasible solution with a lower weight, c(F ′) < c(F ). But
this contradicts the fact that F is optimal.

Hence, u belongs to at least one of the cycles described above. Let C1, ..., Cp−1,
p ≥ 2, denote these cycles. Since cycles Ci, i = 1, ..., p−1, share nodes s and
u, they are formed by p paths P1, ..., Pp. Let u1, ..., up be the nodes of these
paths that are incident to u.

First, suppose that for some p0 ∈ {1, ..., p − 1}, the edge up0up0+1 belongs
to F . W.l.o.g., we will suppose that, for i = 1, ..., p0, edges uiui+1 belong
to F , and for i = p0 + 1, ..., p − 1, edges uiui+1 do not belong to F . Then,
F ′ = F \ {uu1, ..., uup0} is feasible for the rooted TNHNDP. This point is
obvious since u is not used in any other cycle of length at most 4 and all the
terminals still belong to a cycle of length at most 4. Also, it is obvious that
c(F ′) < c(F ), and that F is not optimal, a contradiction.

Thus, we suppose now that for all i ∈ {1, ..., p}, the edge uiui+1 does not
belong to F . We denote by fi and gi edges of the form uui and sui, respec-
tively, and by eij an edge of the form uiuj, for all i, j ∈ {1, ..., p}. Recall
that, by the triangle inequalities, we have that c(eij) ≤ c(fi) + c(fj) and
c(eij) ≤ c(gi) + c(gj), for all i = 1, ..., p. We distinguish two cases.

Case 1. p is even (see Figure 2).

In this case, we let F ′ = (F \

p⋃

i=1

{fi}) ∪ (

p

2
−1⋃

i=0

{e2i+1,2i+2}). Observe that

F ′ ∩ δ(u) = ∅. Also, note that F ′ induces a feasible solution of the rooted
TNHNDP since every terminal still belongs to a cycle of length at most

4. Moreover, c(F ′) = c(F ) +

p

2
−1∑

i=0

[c(e2i+1,2i+2)− c(f2i+1)− c(f2i+2)], and by

the triangle inequalities, we have c(e2i+1,2i+2) ≤ c(f2i+1) + c(f2i+2), for all
i = 0, ..., p

2
− 1. Therefore, c(F ′) ≤ c(F ). As F is an optimal solution for the

rooted TNHNDP, we obtain that F ′ is also optimal. Since F ′∩ [s, u] = ∅ and
F ′ ∩ δ(u) = ∅, the result holds in the case where p is even.
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Case 2. p odd (see Figure 3).
Let, in this case,

F ′ = (F \ (

p⋃

i=1

{fi} ∪ {g1})) ∪ {e12, e13} ∪ (

p−1
2⋃

i=2

{e2i,2i+1}). It is not hard to see

that F ′ induces a feasible solution of the rooted TNHNDP since every ter-
minal belongs to a cycle of length at most 4. Also, we have that

c(F ′) = c(F ) + [c(e12) + c(e13)− (c(f1) + c(f2) + c(f3) + c(g1))]

+

p−1
2∑

i=2

[c(e2i,2i+1)− c(f2i)− c(f2i+1))].

In the following, we will show that c(F ′) ≤ c(F ), implying that c(F ′) =
c(F ). As, by the triangle inequalities, c(e2i,2i+1) ≤ c(f2i) + c(f2i+1), for all
i = 2, ..., p−1

2
, to show that c(F ′) ≤ c(F ), it suffices to show that c(e12) +

c(e13) ≤ c(f1) + c(f2) + c(f3) + c(g1).

For this, we will show that c(fi) = c(gi), for all i ∈ {1, ..., p}. Suppose, on
the contrary, that c(gi) 6= c(fi), for some i ∈ {1, ..., p}. If c(gi) < c(fi),
then, w.l.o.g., we suppose that c(g3) < c(f3). Thus, c(e13) ≤ c(g1) + c(g3) <
c(g1)+c(f3). Also, by the triangle inequalities, c(e12) ≤ c(f1)+c(f2). There-
fore, we get c(F ′) < c(F ), a contradiction since F is optimal.
Now if c(gi) > c(fi), then we suppose, w.l.o.g., that c(g1) > c(f1). In a
similar way, we have that c(e12) ≤ c(f1) + c(f2) < c(f2) + c(g1). Also, by the
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triangle inequalities, c(e13) ≤ c(f1) + c(f3). This implies, that c(F ′) < c(F ),
a contradiction. Therefore, we have that c(fi) = c(gi), for all i ∈ {1, ..., p}.

This yields that c(e12) ≤ c(f1)+c(f2) and c(e13) ≤ c(f1)+c(f3) = c(g1)+c(f3),
and hence, c(F ′) ≤ c(F ). As F induces an optimal solution for the rooted
TNHNDP, we obtain that c(F ′) = c(F ) and F ′ also induces an optimal
solution. Since F ′ ∩ [s, u] = ∅ and F ′ ∩ δ(u) = ∅, the result also holds in the
case where p is odd, which ends the proof of the theorem.

Corollary 10. Consider the rooted TNHNDP and let s denotes the root of
the demand set. When L = 3 and when the weight of the edges satisfy the
triangle inequalities, then the incidence vector of an optimal solution of the
rooted TNHNDP satisfies

x(su) ≥
∑

uv∈δ(u)\{su}

x(uv), for every steiner node u ∈ N. (3.14)

Inequalities (3.14) are called optimality constraints. They are in polyno-
mial number and, as we will see in Section 6, they are effective in solving the
TNHNDP in the rooted case.

4. Facets of the TNHNDP Polytope

In this section, we give necessary and sufficient conditions for inequalities
(1.1)-(1.6) and the other types of inequalities to be facet defining for P (G,L).
This conditions will be used later to derive efficient separation procedures.
First, we discuss the dimension of P (G, 3). Let G = (N,E) be a graph. An
edge e is essential if e belongs to an st-cut of cardinality 2 or 3-st-path cut
of cardinality 2 and st-node cut of cardinality 1 or 3-st-path node cut of
cardinality 1.

Theorem 11. dim(P (G, 3)) = |E| − |E∗|, where |E∗| is the set of essential
edges.

In the remainder of this paper, G = (N,E) is a complete and simple
graph with |N | ≥ 4. Thus, P (G,L) is full dimensional. It is clear that,
this assumption can be met by adding missing edges with sufficiently high
costs in the graph. L-path-cut inequalities can be revealed in the graph when
|N | ≥ L+2. L-path-node-cut inequalities can be revealed in the graph when
|N | ≥ L+ 3.
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Theorem 12. Inequality x(e) ≤ 1 defines a facet of P (G, 3) for all e ∈ E.

Proof. As |N | ≥ 4 and G is complete, the edge set Ef = E \ {f} is a
solution of TNHNDP, for all f ∈ E \ {e}. Hence, the sets E and Ef , for
all f ∈ E \ {e}, constitute a set of |E| solutions of the TNHNDP. Moreover,
their incidence vectors satisfy x(e) = 1 and are affinely independent.

Theorem 13. Inequality x(e) ≥ 0 defines a facet of P (G, 3) if and only if
either |N | ≥ 5 or |N | = 4 and e = uv with {u, v} = N \ {s, t}.

Proof. Suppose that |N | ≥ 5. Then G contains 4 node-disjoint st-paths (an
edge of [s, t] and 3 paths of the form (s, u, t), u ∈ N \ {s, t}). Hence any edge
set E \ {f, g}, f, g ∈ E, contains at least 2 node-disjoint 3-st-paths. The sets
E \ {e} and Ef = E \ {e, f} , for all f ∈ E \ {e}, constitute a set of |E|
solutions of the TNHNDP. Moreover, their incidence vectors satisfy x(e) = 0
and are affinely independent.

Now suppose that |N | = 4. If e 6= uv with {u, v} = N \ {s, t}. then
x(e) ≥ 0 is redundant with respect to the inequalities

x(δ(s)) ≥ 2 ,

−x(f) ≥ −1 for all f ∈ δ(s) \ {e}.

and cannot hence be facet defining. If e = uv with {u, v} = N \ {s, t},
then the edge sets E \ {e} and Ef , f ∈ E \ {e}, introduced above, are still
solutions of TNHNDP. Moreover, their incidence vectors satisfy x(e) = 0 and
are affinely independent.

Theorem 14. Every st-cut inequality defines a facet of P (G, 3).

Theorem 15. Every st-node-cut inequality defines a facet of P (G, 3) other
than those induced by {s} or {t}.

Proof. Let G = (N,E) be a complete graph. Diarrassouba et al. show
that st-cut inequalities for kHNDP (k-edge disjoint hop constrained network
design problem) are facets for any k ≥ 1 [17]. The st-node cut inequality
x(δG−u(W )) ≥ 1 is a valid st-cut inequality for 1HNDP (G − u), where
u ∈ N and W ⊂ N − u. This implies that x(δG−u(W )) ≥ 1 is a facet
for 1HNDP (G − u). Since 1HNDP (G − u) is full dimensional, there are
|E| − (|N | − 1) solutions whose incidence vectors are affinely independent
and satisfy x(δG−u) = 1. Let x′1, . . . , x

′
m be these solutions, where m′ =

13



|E| − (|N | − 1). In each solution, there is exactly one path of length at

most 3 between s and t. The system :
∑m′

i=1 λix
′
i = 0 and

∑m′

i=1 λi = 0
has a unique solution λi = 0 for i = 1, . . . , m′. Each column of the matrix
X of size m × m(m = |E|) in Figure 4 induce a solution of TNHNDP(G)
and its incidence vector satisfies the st-node inequality with equality. The
entries below x′1, x

′
2 and so on belong to the deleted node u, since the graph

is completed, u has |N | − 1 edges. The last two rows represent the edges of
u adjacent to the source node s and to the destination node t.

x1 x2 xm xm xm xm x1 x2

{ |V|-3

. . .

1 1 1. . .

1 1 1. . .

1 1 1. . .

0 1 1. . .

1 0 1. . .

1 1 0. . .

. .
 .. .

 .

1 1 1. . .

1 1 1. . .

0

0

1 1

1

1

1 1

. 
. 
.

. 
. 
.(

(

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

X =mxm

' ' ' '
. . .

Figure 4

If the system of
∑m

i=1 λixi = 0 and
∑m

i=1 λixi = 0 has a unique solution
λi = 0 for i = 1, . . . , m, then there are m affinely independent vectors satisfy
the st-node cut inequality that concludes it is a facet defining inequality.

m′∑

i=1

λix
′
i + λm′+1x

′
m + λm′+2x

′
m + · · ·+ λm−2x

′
m + λm−1x

′
1 + λmx

′
1 = 0,

m′∑

i=1

λi + 0 + λm′+2 + · · ·+ λm = 0,

m′∑

i=1

λi + λm′+1 + 0 + · · ·+ λm = 0,

. . .
m′∑

i=1

λi + λm′+1 + λm′+2 + · · ·+ 0 = 0,

m′∑

i=1

λi + λm′+1 + λm′+2 + · · ·+ λm = 0.

14



The system above can be simplified by algebraic operations as follows:
∑m′

i=1 λix
′
i =

0,
∑m′

i=1 λi = 0 and λi = 0 for i = m′ + 1, . . . , m. We know that the system∑m′

i=1 λix
′
i = 0 and

∑m′

i=1 λi = 0 has a unique solution λi = 0 for i = 1, . . . , m′.
Therefore λi = 0 for i = 1, . . . , m′, m′ + 1, . . . , m. This completes the proof.

Theorem 16. Let L = 3 and G = (N,E) be a complete graph with |N | ≥ 5,
st-jump inequality (3.10) defines a facet of P (G, 3) different from a trivial
inequality, if one of the following conditions meet

1. |V1| = |V3| = 1,

2. |V1| = |V2| = |V4| = 1,

3. |V0| = |V2| = |V3| = 1.

Proof. Let us denote the inequality (3.10) by aTx ≥ α, and let bTx ≥ β be
a facet defining inequality of P (G, 3) such that

F = {x ∈ P (G, 3)|aTx = α} ⊆ {x ∈ P (G, 3)|bTx = β}.

We will show that b = ρa for some ρ > 0.

1. Suppose that |V1| = |V3| = 1.
Let T be the st-jump cut induced by the partition (V0, . . . , V4). Let
aTx ≥ α denote the st-jump cut inequality produced by T . Let E1 =
E \ T = (

⋃2
i=0(E(V2i))) ∪ (

⋃3
i=0[Vi, Vi+1]) \ ([V2 \ {v2}, V1 ∪ V3]), E2 =

T \ ([V0, V3 ∪ V4]∪ [V1, V4]) and E3 = T \
⋃2

i=0[Vi, Vi+2]. Figure 5 shows
the edges of st-jump inequality for this case. Let v1 ∈ V1, v2 ∈ V2 and
v3 ∈ V3.
Let e1 = sv2, e5 = v1v3, e8 = v2t and e2, e3, e4, e6, e7, e9, e10, e11 are
any edge of the form sV2 \ {v2}, V0 \ {s}v2, V0 \ {s}V2 \ {v2}, v1V2 \
{v2}, V2 \ {v2}v3, v2V4 \ {t}, V2 \ {v2}t, V2 \ {v2}V4 \ {t}, respectively.
Notice that e1, . . . , e11 form all edges of E2. As the graph G is complete,
it is easy to see that the sets given by F1 = E1 ∪ {e1, e5, e8}, F2 =
E1 ∪ {e1, e5, e9}, F3 = E1 ∪ {e1, e2, e10}, F4 = E1 ∪ {e1, e2, e11}, F5 =
E1 ∪ {e1, e6, e10}, F6 = E1 ∪ {e2, e5, e8}, F7 = E1 ∪ {e2, e7, e8}, F8 =
E1∪{e3, e5, e8}, F9 = E1∪{e4, e5, e10}, F10 = E1∪{e4, e8, e10} and F11 =
E1 ∪ {e6, e8, e10} induce a solution of TNHNDP and their incidence
vector satisfies aTx ≥ α with equality. Thus, bTxF1 = bTxF2 = bTxF3 =
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V0 V1
V2

V3 V4

s t

Figure 5: Support graph of a st-jump cut inequality when |V1| = |V3| = 1.

bTxF4 = bTxF5 = bTxF6 = bTxF7 = bTxF8 = bTxF9 = bTxF10 = bTxF11 .
As e is an arbitrary edge, we then obtain that

b(e) = ρ for all e ∈ E2, for some ρ ∈ R. (4.15)

Consider now F ∗ = E1∪{e1, e5, e8}, where e1, e5, e8 ∈ E2. It is obvious
that F ∗ induces a solution of TNHNDP and its incidence vector satisfies
aTx ≥ α with equality. Moreover, F ∗∗ = (F ∗ \ {e5, e8}) ∪ {st} induces
a solution of TNHNDP and its incidence vector belongs to F . Thus,
0 = bTxF ∗ − bTxF ∗∗ = b(e5) + b(e8) − b(st), implying that b(st) = 2ρ
since by (4.15).
Let F ∗ = E1 ∪ {e1, e}, where e1 ∈ E2 and e ∈ E3. It is easy to see that
F ∗ induces a solution of TNHNDP and its incidence vector satisfies
aTx ≥ α with equality. Moreover, F ∗∗ = (F ∗ \ {e}) ∪ {st} induces a
solution of TNHNDP and its incidence vector belongs to F . Hence,
0 = bTxF ∗ − bTxF ∗∗ = b(e) − b(st). Since b(st) = 2ρ, we then obtain
that

b(e) = 2ρ for all e ∈ E3. (4.16)

Now, we shall show that b(e) = 0 for all e ∈ E1. Suppose first that
e ∈ [V0, V1]. Consider an edge f ∈ [s, w] with w ∈ V2. F

∗ = E1∪{st, f}
and F ∗ \ {e} induce a solution of TNHNDP and their incidence vector
satisfies aTx ≥ α with equality. Thus, 0 = bTxF ∗ − bTxF ∗\{e} = b(e).
Similarly, we obtain that b(e) = 0 for all e ∈

⋃3
i=0[Vi, Vi+1].

Consider now an edge e = uv ∈ E(V2). Denote by f the edge be-
tween v and t. Obviously, F ∗ = E1 ∪ {st, f} and F ∗ \ {e} induce
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a solution of TNHNDP. As aTxF ∗ = aTxF ∗\{e} = α, we have that
bTxF ∗ = bTxF ∗\{e} = α. Thus, we obtain

b(e) = 0 for all e ∈ E1. (4.17)

From (4.15)-(4.17), we have

b(e) =





ρ for all e ∈ E2,
2ρ for all, e ∈ E3,
0 if not.

Since ax ≥ α is not a trivial inequality, we have that ρ > 0, and
therefore, b = ρa.

2. Suppose that |V1| = |V2| = |V4| = 1. Let T be the st-jump cut in-
duced by the partition (V0, . . . , V4). Let aT ≥ α denote the st-jump
cut inequality produced by T . Let E1 = E \ T = E(V0) ∪ E(V3) ∪
(
⋃3

i=0[Vi, Vi+1]) \ ([V3 \ {v3}, V4]), E2 = T \ ([V0, V3 ∪ V4] ∪ [V1, V4]) and
E3 = T \

⋃2
i=0[Vi, Vi+2]. Figure 6 shows the edges of st-jump inequality

for this case.

V0 V1 V2 V3

V4

s

t

Figure 6: Support graph of a st-jump cut inequality when |V1| = |V2| = |V4| = 1.

Let v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3. Let e1 = sv2, e2 = v1v3, e3 = v2t and
e5 is any edge of the form V0\{s}v2, e4 is any edge of the form v1V3\{v3},
e6 is any edge of the form V3 \ {v3}t. Notice that e1, e2, e3, e4, e5, e6
form all edges of E2. As the graph G is complete, it is easy to see that
the sets given by F1 = E1 ∪ {e1, e4, e6}, F2 = E1 ∪ {e1, e2, e3}, F3 =
E1 ∪ {e2, e3, e5}, F4 = E1 ∪ {e1, e2, e6}, F5 = E1 ∪ {st, e1} and F6 =
E1 ∪ {st, e2} induce a solution of TNHNDP and its incidence vector
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satisfies aTx ≥ α with equality. Thus, bTxF1 = bTxF2 = bTxF3 =
bTxF4 = bTxF5 = bTxF6 . As e is an arbitrary edge, we then obtain that

b(e) = ρ for all e ∈ E2, for some ρ ∈ R. (4.18)

Consider now F ∗ = E1∪{e1, e2, e3}, where e1, e2, e3 ∈ E2. It is obvious
that F ∗ induces a solution of TNHNDP and its incidence vector satisfies
aTx ≥ α with equality. Moreover, F ∗∗ = (F ∗ \ {e1, e2}) ∪ {st} induces
a solution of TNHNDP and its incidence vector belongs to F . Thus,
0 = bTxF ∗ − bTxF ∗∗ = b(e1) + b(e2) − b(st), implying that b(st) = 2ρ
since by (4.18).
Let F ∗ = E1 ∪ {e2, e}, where e2 ∈ E2 and e ∈ E3. It is easy to see that
F ∗ induces a solution of TNHNDP and its incidence vector satisfies
aTx ≥ α with equality. Moreover, F ∗∗ = (F ∗ \ {e}) ∪ {st} induces a
solution of TNHNDP and its incidence vector belongs to F . Hence,
0 = bTxF ∗ − bTxF ∗∗ = b(e) − b(st). Since b(st) = 2ρ, we then obtain
that

b(e) = 2ρ for all e ∈ E3. (4.19)

Now, we shall show that b(e) = 0 for all e ∈ E1. Suppose first that
e ∈ [V0, V1]. Consider an edge f ∈ [s, w] with w ∈ V2. F

∗ = E1∪{st, f}
and F ∗ \ {e} induce a solution of TNHNDP and their incidence vector
satisfies aTx ≥ α with equality. Thus, 0 = bTxF ∗ − bTxF ∗\{e} = b(e).
Similarly, we obtain that b(e) = 0 for all e ∈

⋃3
i=0[Vi, Vi+1].

Consider now an edge e = uv ∈ E(V0). Denote by f the edge be-
tween v and t. Obviously, F ∗ = E1 ∪ {st, f} and F ∗ \ {e} induce
a solution of TNHNDP. As aTxF ∗ = aTxF ∗\{e} = α, we have that
bTxF ∗ = bTxF ∗\{e} = α. Thus, we obtain

b(e) = 0 for all e ∈ E1. (4.20)

From (4.18)-(4.20), we have

b(e) =





ρ for all e ∈ E2,
2ρ for all, e ∈ E3,
0 if not.

Since ax ≥ α is not a trivial inequality, we have that ρ > 0, and
therefore, b = ρa.
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3. This case is the symmetric of the case 2. Hence, the proof follows by
symmetry. Figure 7 shows the edges of st-jump inequality for this case.

V0

V1

V2 V3 V4

s

t

Figure 7: Support graph of a st-jump cut inequality when |V0| = |V2| = |V3| = 1.

Theorem 17. Every L-path-cut inequality defines a facet of P (G,L) if and
only if |V0| = 1 and |VL+1| = 1.

Proof. Necessity: We will show that x(T ) ≥ 2 does not define a facet if
|V0| ≥ 2. The case where |VL+1| ≥ 2 follows by symmetry. Suppose that
|V0| ≥ 2 and consider the partition (V ′0 , . . . , V

′
L+1) given by

V ′0 = {s},

V ′1 = V1 ∪ (V0\{s}),

V ′i = Vi, i = 2, . . . , L+ 1.

This partition induces the L-path-cut inequality x(T ′) ≥ 2, where T ′ =
T\[V0\{s}, V2]. Since G is complete, [V0\{s}, V2] 6= ∅ and T ′ is strictly con-
tained in T . Thus, x(T ) ≥ 2 is redundant with respect to the inequalities

x(T ′) ≥ 2

x(e) ≥ 0, for all e ∈ [V0\{s}, V2],

and hence cannot define a facet of P (G,L).
Sufficiency: Suppose that |V0| = |VL+1| = 1 such that V0 = {s} and

VL+1 = {t}. Let us denote the inequality (1.3) by aTx ≥ α, and let bTx ≥ β
be a facet defining inequality of P (G,L) such that

{x ∈ P (G,L)|aTx = α} ⊆ {x ∈ P (G,L)|bTx = β}.
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We will show that b = ρa for some ρ > 0.
Let T be the L-path-cut induced by the partition (V0, . . . , VL+1). Let

aT ≥ α denote the L-path-cut inequality produced by T . Let E ′ = E \ T =
(
⋃L

i=1(E(Vi)))∪(
⋃L

i=0[Vi, Vi+1]). Let f ∈ [s, t] and Tf = T\{f}. As the graph
G is complete, it is easy to see that the sets given by

Fe = E ′ ∪ {st, e} for all e ∈ Tf

induce solutions of the TNHNDP whose incidence vectors satisfy aTx ≥ α
with equality. Hence, we have bTxFe − bTxFe′ = b(e) − b(e′) = 0 for all
e, e′ ∈ Tf . Thus,

b(e) = b(e′) for all e, e′ ∈ Tf . (4.21)

Now let g ∈ [V0, VL], g
′ ∈ [V1, VL+1], and F ∗ = E ′ ∪ {g, g′}. Clearly, F ∗

induces a solution whose incidence vector satisfies aTx ≥ α with equality.
We have that bTxF ∗ − bTxFg = b(g′) − b(f) = 0. This together with (4.21)
yields

b(e) = ρ for all e ∈ T, for some ρ ∈ R. (4.22)

Now, we shall show that b(e) = 0 for all e ∈ E ′. Suppose first that
e ∈ [V0, V1]. Consider an edge h ∈ [s, w] with w ∈ V2. Fh\{e}, where Fh

is as defined above. It is obvious that Fh\{e} still induces a solution of
TNHNDP and its incidence vector satisfies aTx ≥ α with equality. Thus,
0 = bTxFh − bTxFh\{e} = b(e). Similarly, we obtain that b(e) = 0 for all
e ∈

⋃L

i=0[Vi, Vi+1].
Consider now an edge e ∈ E(Vi), i ∈ {1, . . . , L}. Let v ∈ VL and h′ ∈

[s, v]. Obviously, Fh′ \ {e} induces a solution of TNHNDP. As aTxFh′ =
aTxFh′\{e} = α, we have that bTxFh′ = bTxFh′\{e} = α. Thus, we obtain

b(e) = 0 for all e ∈ E ′. (4.23)

From (4.22)-(4.23), we have

b(e) =

{
ρ for all e ∈ T,
0 if not.

Since ax ≥ α is not a trivial inequality, we have that ρ > 0, and therefore,
b = ρa.

Theorem 18. Every L-path-node-cut inequality defines a facet of P (G,L).
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Proof. The proof can be done in a similar way with the proof of theorem
15.

Theorem 19. The rooted-partition inequality 2.8 defines a facet of P (G,L)
if |Vi| = 1 for all i = 1, . . . , p and p is not a multiple of 3.

Proof. Sufficiency: Suppose that |Vi| = 1 for all i = 1, . . . , p and p is not a
multiple of 3. Let us denote the inequality (2.8) by aTx ≥ α, and let bTx ≥ β
be a facet defining inequality of P (G, 3) such that

{x ∈ P (G, 3)|aTx = α} ⊆ {x ∈ P (G, 3)|bTx = β}.

We will show that b = ρa for some ρ > 0.
Let p = 3q + r, where q is a positive integer and r is either 1 or 2. Con-

sider the edge sets
F0 =

⋃q−1
i=0{st3i+1, t3i+1t3i+2, t3i+2t3i+3, t3i+3s}

⋃
{st3q+1, t3q+rt1}

⋃r−1
i=1{t3q+it3q+i+1}

⋃
E(V0),

Fe = (F0 \ {tpt1}) ∪ {e}, for all e ∈ δ(tp) \ {stp}.
F ′e = (F0 \ {tpt1}) ∪ {e}, for some e ∈ δ(tp).

If p = 3q + 1, it is easy to see that F0 and Fe induce a solution whose
incidence vector satisfies aTx ≥ α with equality. Hence, we have bTxF0 −
bTxFe = b(e)− b(t1tp) = 0 for all e ∈ δ(tp) \ {stp}. Thus,

b(e) = b(t1tp) for all e ∈ δ(tp) \ {stp}. (4.24)

Furthermore, let F ′0 = (F0 \ {stp}) ∪ {tptp−1}. Clearly, F
′
0 induces a solution

of TNHNDP and its incidence vector satisfies aTx ≥ α with equality. As
bTxF ′0 = β, we obtain that b(stp) = b(t1tp−1), This together with (4.24) yields

b(e) = b(e′) for all e, e′ ∈ δ(tp).

If p = 3q+2, it is easy to see that F0 and F ′e induce a solution whose incidence
vector satisfies aTx ≥ α with equality. Hence, we have bTxF0 − bTxF ′e =
b(e)− b(t1tp) = 0 for all e ∈ δ(tp). Thus,

b(e) = b(e′) for all e, e′ ∈ δ(tp).

By exchanging the role of tp and ti’s, i 6= p, we get

b(e) = ρ for all e ∈ δ(V0, . . . , Vp), for some ρ ∈ R.
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Now assume that E(V0) 6= ∅ and let e ∈ E(V0). It is obvious that F0\{e} still
induces a solution of TNHNDP and its incidence vector satisfies aTx ≥ α
with equality. Thus, 0 = bTxF0 − bTxF0\{e} = b(e). Consequently, we have

b(e) =

{
ρ for all δ(V0, . . . , Vp),
0 for all E(V0).

Since ax ≥ α is not a trivial inequality, we have that ρ > 0, and therefore,
b = ρa.

5. Branch-and-Cut Algorithm

In this section we devise a Branch-and-Cut algorithm for solving the
TNHNDP. In order to solve the linear relaxation of the natural formulation
of the TNHNDP, we need to address the separation problem associated with
the basic inequalities (1.1)-(1.4), since they are in exponential number. One
may also add further valid inequalities in the Branch-and-Cut algorithm in
order to reinforce the linear relaxation of the natural formulation. To do this,
we consider Double Cut and Rooted Partition inequalities (2.9) and (2.8),
as well as the Optimality constraints (3.14). Notice that constraints (3.14)
are in polynomial number. Thus, we add all these constraints in the linear
program associated with the linear relaxation.

In the following, we discuss the separation problem associated with the
basic inequalities (1.1)-(1.4), the Double Cut and Rooted Partition inequal-
ities.

Another important issue in a Branch-and-Cut algorithm is to determine
a good upper bound from a fractional solution of the problem. For this we
devise a primal heuristic for the problem. This point is also discussed in the
following.

5.1. Separation procedures

5.1.1. Separation procedures for the basic inequalities

To separate st-cut, st-node-cut, L-path-cut and L-path-node-cut inequal-
ities (1.1)-(1.4), we consider the following argument from [17]. Consider an
undirected graph G = (N,E). Let V = N \ {s, t}, V ′ be a copy of V and
Ñ = V ∪ V ′ ∪ {s, t}. The copy of a node u ∈ V will be denoted by u′ in V ′.
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Let G̃ = (Ñ, Ã) be the directed graph such that Ñ = V ∪ V ′ ∪ {s, t} and
Ã is obtained from as follows. For the edge between s and t, we associate
an arc from s to t in G̃. To each edge su ∈ E (resp. vt ∈ E), we associate
in G̃ the arc (s, u), u ∈ V (resp. (v′, t), v′ ∈ V ′). To each edge uv ∈ E,
with u, v /∈ {s, t}, we associate two arcs (u, v′) and (v, u′), with u, v ∈ V and
u′, v′ ∈ V ′. Finally, to each node u ∈ N \ {s, t}, we associate an arc (u, u′)
in G̃. (see Figure 8 for an illustration).

Note that any st-dipath in G̃ is of length no more than 3. Also note that
each 3-st-path in G corresponds to an st-dipath in G̃ and vice versa. All the
separation procedures are performed on the directed graphs obtained using
the above transformation for every {s, t} ∈ D.

s

u1 u2

u3

u4
u5

t s

u1

u2

u3

u4

u5

t

u'1

u'2

u'3

u'4

u'5

G G
~

Figure 8: Construction of the supported directed graph.

The separation of the st-cut inequalities (1.1) and L-path-cut inequalities
(1.3) can be performed by computing minimum weight st-dicut in G̃st for
every {s, t} ∈ D. By minimum cut-maximum relationship, computing a
minimum weight st-dicut of G̃st is equivalent to computing a maximum flow
separating s and t. The maximum flow computations are handled by the
Edmonds-Karp algorithm [20] that runs in O(m2n) time where m and n are
the number of edges and nodes in G̃st, respectively. Since this operation is
repeated |D| times, the whole algorithm runs in O(m2n|D|), and hence is
polynomial time.

The separation of the st-node-cut inequalities (1.2) and L-path-node-cut
inequalities (1.4) can be performed by deleting the edges one by one in the
graph and using the procedure explained above.
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5.1.2. Separation procedure for the Double cut inequalities

To separate the Double Cut inequalities (2.9), we use the separation
heuristic developed by [21]. Note that the complexity of the separation prob-
lem of these inequalities is still an open question.

5.1.3. Separation procedure for Rooted Partition inequalities

Now, we discuss the separation problem of the Rooted Partition inequal-
ities (2.8). Recall that a rooted partition inequality is induced by a set of p
terminals T = {t1, ..., tp} which are destinations relatively to a source node
s and a partition π = (V0, V1, ..., Vp) such that s ∈ V0 and ti ∈ Vi, i = 1, ..., p.

In the following we will describe a separation algorithm for these inequal-
ities when L = 3 and |Vi| = 1, for all i ∈ {1, ..., p}. To do this, we will reduce
the separation problem in this case to finding a maximum flow with lower
bounds in a special graph.

First, we can easily see that Inequality (2.8) is equivalent to

x(δ(V0)) +
∑

u∈N\V0

x(δ(u)) ≥
8

3
p+ α (5.25)

with

α =

{
4
3

if p = 3q + 1, for some q ∈ N
2
3

if p = 3q + 2, for some q ∈ N.

Since p = |N \ V0| and x(δ(V0)) = x(δ(N \ V0)), Inequality (5.25) is
equivalent to

x(δ(N \ V0)) ≥
∑

u∈N\V0

yu + α (5.26)

where yu = 8
3
− x(δ(u)), for all u ∈ N \ V0.

Now we describe our separation algorithm. We start by contracting with
node s all the steiner nodes, every terminal u such that {s, u} /∈ D, and every
terminal u such that {s, u} ∈ D and yu < 0.

In order to find violated Rooted Partition inequalities, we look for violated
inequalities (5.26) by looking for feasible flow with lower bounds in a directed

graph G̃ = (N, Ã). This graph is as follows.
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For every edge uv ∈ E with x(uv) > 0, we add two arcs (u, v) and (v, u)

in G̃ with capacities (0, x(uv)). For every node u ∈ N \ {s}, we add an arc

(s, u) in G̃ with capacities (yu,+∞). Finally we add an arc (s, u0) for some
node u0 6= s, with capacities (0,+∞). This latter arc transforms the feasible
flow problem into a feasible circulation problem (see [22] for more details).

For each arc a of G̃, we denote by La and Ua the lower and upper bounds of
the flow on this arc.

Since the flows in the graph are subject to lower bounds, a flow from a
terminal, say t1 ∈ N \{s} to s in G̃ may not be feasible with respect to these
lower bounds. We have two cases.

Case 1. If there is no feasible flow from t1 to s, then there exists a node set

W ⊆ N in G̃ with W = {t1, t2, ..., tp}, s ∈ N \W and
∑

a∈δ+
G̃
(W )

Ua <
∑

a∈δ−
G̃(W )

La.

It is not hard to see that

∑

a∈δ+
G̃(W )

Ua =
∑

e∈δG(W )

x(e) and
∑

a∈δ−
G̃(W )

La =
∑

t∈W

yt.

From W , we built a rooted partition π = (V0, V1, ..., Vp) with V0 = N \W ,
Vi = {ti}, i = 1, ..., p. Obviously, the inequality (5.26), and hence the rooted
partition inequality, induced by π is violated by x.

Case 2. If there exists a feasible flow from t1 to s, then we compute a max-
imum feasible flow by augmenting as much as possible the current feasible
flow from t1 to s. If W = {t1, ..., tp}, with p ≥ 1, denotes a node set obtained
from this maximum flow, then we built the partition π as in the previous case
and check if Inequality (5.26) is violated or not. If it violated, then we have
found a violated rooted partition inequality. If it is not violated, then we
choose another terminal node, say t2, and compute a maximum feasible flow.
We repeat this procedure until we find a violated rooted partition inequality
or we have selected all the terminals.

This procedure is heuristic and runs in polynomial time since the maxi-
mum feasible flow problem is solved in polynomial time.
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5.2. Primal Heuristic

An important issue in the efficiency of the Branch-and-Cut algorithm is
to compute a good upper bound at each node of the Branch-and-Cut tree.
We improve a primal heuristic described in Algorithm 1 to find good upper
bounds. We first round up to 1 all the variables that are smaller than a
threshold value (0.9 in the beginning), otherwise round down to 0. Then,
we check whether the resulting integer solution is feasible as follows. In the
supported directed graph G̃ for every demand, we calculate the node-disjoint
paths between the source and the destination. If the number of node-disjoint
paths is greater than 1 for every demand, then the integer solution is feasible.
If not, we decrease the threshold value by 0.5 and apply the same procedure
for the initial fractional solution. After finding a feasible solution, we try to
improve this solution by deleting all edges which are not used in any path.

6. Computational Results

Based upon the previous theoretical results, we have developed a branch-
and-cut algorithm to solve efficiently the TNHNDP when L = 3. The algo-
rithm has been implemented in C++, using ABACUS to manage the branch-
ing tree and CPLEX 12.2 as the linear solver. It was tested on a Xeon Quad-
Core E5507 machine at 2.27 GHz with 8GB RAM, running under Linux.
The maximum CPU run time has been fixed to 5 hours. The test problems
are complete graphs with Euclidian edge costs taken from TSPLIB [19] and
complete graphs randomly generated on a 250×250 grid. The demands used
in these tests are randomly generated. Each set of demand is either rooted
at the same node s or arbitrary having multiple sources and destinations.
The random graphs were generated with the same size as TSPLIB graphs.
For each random problem, five instances were tested and the results given
are rounded up averages.

If an optimal solution x∗ of the linear relaxation of the TNHNDP is not
feasible, the Branch-and-Cut algorithm generates additional valid inequalities
of P (G, 3) violated by x∗. Their separations are performed in the following
order:

1. st-cut inequalities,

2. L-path-cut inequalities,

3. st-node-cut inequalities,

4. L-path-node-cut inequalities,
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Algorithm 1: Primal Heuristic Algorithm for TNHNDP

Data: An undirected graph G = (N,E), demands D ⊆ N ×N , a
fractional solution x

Result: An Upper Bound Up
begin1

α← 0.9;2

round up to 1 every variable corresponding to an edge with3

x(e) > α in the fractional solution x;
round down to 0 every variable corresponding to an edge with4

x(e) ≤ α ;
if the resultant solution is not feasible then5

α← α− 0.05;6

go to Step 3;7

build the directed graph G̃ = (Ñ, Ã) from G(x) and give capacity8

1 for each arc;
for each demand {s, t} ∈ D do9

find 2-node disjoint paths between s and t in G̃;10

for all a ∈ Ã do11

if a is used in the 2-node disjoint paths then12

increment counter(e), where e is the corresponding edge;13

Up← sum up the costs of edges e ∈ G with counter(e) ≥ 1;14

return Up.15

end16
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5. Rooted Partition inequalities.

6. double cut inequalities.

We note that all inequalities are global (i.e., valid at every node of the
branch-and-cut tree) and several of them can be added at each iteration.
Furthermore, we go to the next class only if we do not find any violated
inequalities in the current class. In order to store the generated inequalities,
we use a dynamic pool. Inequalities in the pool can be removed from the
current linear program when they are not active. Also, they are the first
inequalities to be separated. If all the inequalities in the pool are satisfied by
the current solution, we then separate the classes of inequalities according to
the order given above.

Abbreviations used in tables are:

|N | : the number of nodes of the problem,
|D| : the number of demands,
NC : the number of generated st-cut inequalities
NNC : the number of generated st-node-cut inequalities
LPC : the number of generated L-path-cut inequalities
LPNC : the number of generated L-path-node-cut inequalities
RP : the number of generated rooted-partition inequalities
RNP : the number of generated rooted node partition inequalities
DC : the number of generated double cut inequalities
SP : the number of subproblems in the branch-and-cut tree
Gap1 : the relative error between the best upper bound and

the lower bound obtained at the root node of the
branch-and-cut tree

Gap2 : the relative error between the best upper bound and
the best lower bound of the branch-and-cut tree

COpt : optimum solution (value of the best upper bound)
CPU : total time in hours:min.sec.

Table 1 presents the results obtained for instances with graphs having up
to 96 nodes. For each instance, we give the type of the demand set (”a” for
arbitrary, ”r” for rooted). Remark that a value of 0 for Gap2 indicates that
COpt is the optimal solution of the problem, 15 instances over 28 has been
solved to optimality. For the instances solved to optimality, the CPU time
varies from 1 sec to 1h36min. We notice that a small number of double cut
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Table 1: Results for TSPLIB instances when L = 3

|N | |D| NC NNC LPC LPNC RP DC Copt Gap1 Gap2 SP CPU
a 10 5 9 2 188 1 0 15 3500 9.48 0 49 0:00:01
r 10 5 12 4 12 0 1 0 2387 0.77 0 5 0:00:01
r 10 7 4 4 42 0 2 0 3022 1.26 0 3 0:00:01
a 14 10 45 13 5978 517 0 23 4421 14.7 0 563 0:01:19
a 14 7 4 0 191 0 0 0 3938 2.14 0 9 0:00:01
r 14 10 37 15 257 15 4 0 4085 3.58 0 47 0:00:01
r 14 7 17 7 56 6 1 0 3237 3.44 0 21 0:00:01
a 17 45 475 72 43186 138487 0 43 2807 24.5 5.46 1639 5:00:00
a 17 8 32 6 17330 694 0 80 3233 14.18 0 1801 0:14:01
r 17 16 74 33 9522 1659 52 0 3051 8.22 0 1915 0:07:36
a 30 10 78 2 3108 35 0 0 6307 6.19 0 97 0:00:52
a 30 15 19 2 52744 13 0 0 13882 43.97 42.91 101 5:00:00
r 30 10 318 751 509 72 8 0 5002 6.38 0 443 0:01:17
r 30 15 778 1435 14098 1726 92 0 7161 11.53 0 7411 1:30:53
a 48 10 111 18 76852 18 0 0 17824 42.14 40.01 13 5:00:00
a 48 15 68 0 28895 0 0 0 33525 58.9 58.79 7 5:00:00
r 48 10 2425 1411 641 139 18 0 8546 8.1 0 387 1:05:13
r 48 15 631 897 4001 601 55 0 10029 9.62 0 1649 0:43:42
a 52 10 202 4 41755 11 0 0 7268 19.15 15.87 35 5:00:00
a 52 20 57 2 73270 0 0 0 21250 56.35 56.11 35 5:00:00
r 52 10 1188 2583 562 81 8 0 5002 6.38 0 451 1:36:51
r 58 20 183 215 27780 3125 91 0 35582 22.27 16.5 2339 5:00:00
r 58 30 69 31 21317 284 38 0 53144 41.42 38.9 823 5:00:00
r 58 40 244 9 23881 127 23 0 122549 71.88 70.76 215 5:00:00
r 76 20 26 46 14097 2288 37 0 551 27.72 23.68 1635 5:00:00
r 76 40 14 1 12171 116 10 0 1337 53.88 53.01 305 5:00:00
r 96 20 110 4 15828 272 12 0 47389 52.19 48.57 405 5:00:00
r 96 40 63 0 10227 1 28 0 96355 56.71 55.77 121 5:00:00

inequalities are generated and for almost all the instances, the rooted parti-
tion inequalities are generated. Also, we notice that for the instances which
are not solved to optimality, the gaps (Gap1 and Gap2) are relatively high
while the number of nodes in the Branch-and-Cut tree are relatively small
(see for example ”r-96-40”). Also, we notice that a large number of basic
inequalities are generated. This let us suppose that the algorithm spents a
lot of time in the separation of the different inequalities and does not have
enough time to explore more solutions in the Branch-and-Cut tree.

The observations are also the same for random instances (Table 2). Al-
most 37% of the instances are solved to optimality. For several instances, the
gaps (Gap1 and Gap2) are relatively important while the number of nodes
in the Branch-and-Cut tree are relatively small (see for example ”r-96-40”).
Also, a large number of basic inequalities are generated during the resolu-
tion of each of these instances. In fact, one can observe that the randomly
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Table 2: Results for random instances when L = 3

|N | |D| NC NNC LPC LPNC RP DC Copt Gap1 Gap2 SP CPU
a 10 5 6 1 333 16 0 13 984 10 0 81 0:00:01
r 10 5 7 4 19 1 1 1 701 4 0 12 0:00:01
r 10 7 10 9 90 13 2 0 878 40 0 59 0:00:01
a 14 10 49 21 11046 1380 0 34 1252 19 0 1436 0:04:02
a 14 7 10 4 8638 762 0 70 1325 14 0 2005 0:04:44
r 14 10 5 9 603 143 10 3 1256 9 0 341 0:00:05
r 14 7 11 13 180 37 2 5 1055 9 0 122 0:00:01
a 17 45 529 31 90540 31007 0 310 1238 31 8 8018 4:02:31
a 17 8 13 1 63937 91 0 10 1452 21 14 361 3:20:31
r 17 16 29 46 28895 4470 153 0 1384 12 2 16335 3:21:23
a 30 10 39 0 42109 17955 0 2 2611 42 40 67 5:00:00
a 30 15 10 0 35577 8031 0 0 3922 49 48 98 5:00:00
r 30 10 132 108 866 172 13 0 1122 10 0 437 0:00:43
r 30 15 66 140 20527 4175 132 0 1452 12 0 14389 2:07:12
a 48 10 85 1 35143 8705 0 0 2071 34 33 35 5:00:00
a 48 15 55 0 42698 2 0 0 6001 59 58 15 5:00:00
r 48 10 219 96 1314 331 10 0 1171 7 0 802 0:06:44
r 48 15 48 227 27376 6496 156 0 1509 15 4 13431 5:00:00
a 52 10 103 0 44476 3 0 0 3042 54 53 9 5:00:00
a 52 20 48 0 49967 0 0 0 10073 77 77 4 5:00:00
r 52 10 1177 277 698 100 14 0 1077 10 0 341 0:08:47
r 52 20 142 139 28072 2455 75 0 1830 23 16 3886 5:00:00
r 58 20 76 31 19821 1547 89 0 2051 27 22 3548 5:00:00
r 58 30 86 5 13881 280 20 0 4041 51 50 1000 5:00:00
r 58 40 134 3 13080 109 7 0 5006 54 53 348 5:00:00
r 76 20 137 147 13457 957 41 0 2060 29 25 1044 5:00:00
r 76 40 141 15 9709 160 19 0 5432 60 59 208 5:00:00
r 96 20 219 10 9309 333 29 0 171270 40 36 612 5:00:00
r 96 40 113 13 10604 49 23 0 440184 62 61 148 5:00:00

generated instances are as difficult as the TSPLIB instances.

We have also checked the efficiency of the different constraints used in the
Branch-and-Cut algorithm, especially the rooted partition inequalities and
the optimality constraints. For this, we have tried to solve, for both random
and TSPLIB instances, the problem without rooted partition inequalities on
the one hand and without optimality constraint in the other hand (keeping
rooted partition inequalities). For each constraint, we remark that the ef-
ficiency of the algorithm is significantly decreased, with an increase of the
CPU time and the number of nodes in the Branch-and-Cut tree. Moreover,
for some instances, we do not have the optimal solution when one of these
constraints are removed while the algorithm is able to obtain the optimal
solution when they are included.
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7. Conclusion

In this work, we have studied the two-node connected hop-constrained
network design problem (TNHNDP). We have presented an integer program-
ming formulation for the TNHNDP when L = 3, and study the polytope as-
sociated with this formulation. We have then introduced several new classes
of inequalities and study the conditions under which these inequalities define
facets.

We have discussed the separation problem of the basic inequalities, the
Rooted Partition and the Double Cut inequalities based on the polyhedral re-
sults, and devised a Branch-and-Cut algorithm for the problem when L = 3.
The computational results presented in this paper show that the Branch-and-
Cut algorithm is effective in solving the problem when L = 3, even if some
improvments are needed in the separation of the basic inequalities, especially
for instances with a large sized graphs and with a large number of demands.
The results also shows that the rooted partition and optimality constraints
are very effective in the solving the problem.

The polyedral and compuational study realized in this paper raise several
questions. First, it would be interesting to further investigate the polytope
of the problem in order to find more facets especially when the demand set
contains multiple sources. Also, the separation of the different inequalities
may be improved, in particular for the basic inequalities. Finally, the case
where L = 4 (and L > 3 in general) should also be addressed since in
telecommunication networks, the QoS-constraint may be be set up by paths
with more than 3 hops.
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