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Abstract—In this article, we propose a new model based
on mixed linear programming to determine a composite web
service (structured by a workflow) minimizing a QoS measure
while satisfying some QoS constraints. The proposed mixed
linear program is solved using a standard solver (CPLEX). Our
experiments show that big-size instances can be exactly solved.
To the best of our knowledge, it is the first time that a linear
program with a polynomial number of variables and constraints
is proposed for QoS-driven web service composition based on
complex workflow with interlaced patterns.

I. WEB SERVICE COMPOSITION

Web services (WS) are the most famous implementation
of service oriented architectures (SOA) [1] allowing the
construction and the sharing of independant and autonomous
softwares [2]. WS composition consists in combining several
existing WS into a composite one, which becomes a value-
added process [3]. The WS composition problem aims at
identifying a set of existing WS such that the composition of
those WS can satisfy the user’s functional and non-functional
requirements [4]. To differentiate several WS having the same
functionality, QoS criteria can be used to select the ”best”
WS satisfying the users’ requirements.

The following sub-sections describe our context: the work-
flow structure of the composite WS and the QoS criteria.
Then, some related works are studied. Section II presents and
justifies our new mixed linear programming model. Section III
presents some very promising experimental results that show
the relevance of our model. Finally, Section IV concludes.

A. Workflow

A workflow describes how to combine the functionalities
of different WS in order to satisfy the user. In a workflow,
an activity represents a set of WS sharing a same function-
ality, and a pattern represents temporal dependency between
different activities. In this article, we consider three patterns:
sequence, parallel (AND) and exclusive choice (XOR). Figure
1 represents these workflow patterns, based on YAWL model
[5], where Ai is an activity. The sequential pattern, see Figure
1.(a), indicates that A1 must be executed before A2. The XOR
and AND patterns start with a split and finish with a join. In
AND pattern, see Figure 1.(b), all activities A1, . . . , Ak have
to be executed in parallel. For XOR pattern, see Figure 1.(c),
only one activity among A1 to Ak has to be executed.

In the following, we consider general complex workflows
in which these patterns can be recursively concatened and
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Fig. 1. Workflow patterns

interlaced (an example of such a workflow is given in Fig-
ure 3). A pattern can be decomposed on several branches (each
branch being a workflow containing several activities linked
by patterns). For XOR pattern (see Figure 2), one and only
one branch must be selected. For AND pattern, all branches
must be performed.
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Fig. 2. Complex XOR pattern with interlaced patterns

The first vertex ui of branch i can be an activity or a split,
the last vertex vi can be an activity or a join.

In a complex workflow, an end-to-end route is a path going
from the first vertex of the workflow to the last one containing
all branches of each AND pattern belonging to the path and,
containing exactly one branch of each XOR pattern belonging
to the path.

Therefore, the composition problem is simultaneously the
problem of:
- selecting an end-to-end route,
- and choosing a WS for performing each activity belonging
to the selected end-to-end route.

Several WS, with similar functionality, permit to perform
the same activity. These WS may have different Quality of



Service (QoS) levels. These QoS criteria represent the non-
functional properties of web services.

B. QoS criteria

In a large majority of studies (e.g. [6], [7]), the QoS criteria
are: execution price, execution duration/response time, repu-
tation, reliability (the probability that its execution performs
successfully) and availability. The way to compute the score
of a composite WS depends on the type of the QoS criterion
and on the pattern. For some criteria, the score of a composite
web service is the sum of the web services’ values belonging
to the composition (e.g. price), for others, the score is based
on a max operator (e.g. time for WS executed in parallel),
otherwise, the score is the multiplication of the web services’
values belonging to the composition (e.g reliability).

In the following, we consider that each WS is evaluated on
three criteria:

• the first criterion is the cost of a WS j denoted cj ,
• the second criterion is the duration of a WS j denoted

dj ,
• the third is the reliability of a WS j, denoted pj .
We choose these three criteria because they represent dif-

ferent ways of score computing: the first criteria is a sum-type
measure to be minimized, the second is a max-type measure
to be minimized and the third one is a multiplication-type
measure to be maximized.

C. Related works on QoS-aware web service composition

Several recent articles propose different algorithms for QoS-
driven WS composition based on workflow (see [8], [9]
for recent surveys). The QoS criteria are used to define an
overall QoS score and some constraints to satisfy (e.g. the
response time has to be less than 5 seconds). The constraints,
representing the user’s requirements, are expressed in terms of
upper or lower bounds on the QoS scores.

The problem difficulty depends on the type of the con-
sidered workflow. When the input workflow only contains
sequential patterns, the problem is represented as a Multiple
Choice Knapsack Problem [10]. In [11], a heuristic is proposed
to select a web service for each activity so that the utility pro-
vided by the QoS attributes of the composition is maximised
subject to constraints defined by the user.

When several patterns are considered in the input workflow,
determining the composite WS that maximizes the QoS criteria
subject to QoS constraints, becomes a more complex problem.
One of the difficulties comes from the XOR pattern which
implies a choice between the activities to be done.

This difficulty no longer exists (in [12] and [13]) when
the considered workflow includes the probability for execut-
ing each XOR branch. The problem remains then to select
one WS per activity (some activities being chosen with a
known probability). Thus, the QoS criteria cannot be exactly
computed but an average-case analysis is performed (authors
propose also to perform a best-case and a worst-case analysis).
In this context, the problem can be represented with an integer
linear program. In [14] the authors extend their model to

new patterns. To address scalability issues, they propose an
approximate algorithm.

Without considering probability for executing each XOR
branch, the problem of WS selection concerns both the se-
lection of the activities (included in XOR branch) and the
selection of one WS by chosen activity. In [15], the proposed
model contains as many constraints as end-to-end routes in
the workflow. This model is used to solve some instances
but, as the number of end-to-end routes exponentially grows
with the workflow size, some large-size instances may not be
formulated and even less solved. Thus, authors propose to find
near-optimal solutions in polynomial time with an approximate
algorithm. In [7], authors also claim that all end-to-end routes
of the workflow must be generated in order to find the best
composite WS. So, they propose to decompose the problem
into two steps: in the first one, an end-to-end route is chosen
and, in the second one, they propose a MIP formulation to
select one WS per activity belonging to the chosen route in
order to maximize QoS criteria. With such a decomposition,
the obtained solution is not necessarily optimal.

The real challenge is to include into the same optimization
problem the selection of activities and the selection of WS for
performing each activity structured by a complex workflow.

This work follows the study presented in [16]. In [16],
we have proposed a 0-1 linear model for representing the
composition problem based on a complex workflow satisfying
transactional properties (without QoS constraints).

We propose an extension of the model presented in [16] for
exactly solving the QoS-aware WS composition problem by
simultaneously considering the choice of activities and web
services. In this new version, we address complex workflows
with global QoS constraints, the objective being to minimize
a sum-type criterion. More precisely, our objective is to
minimize the cost criterion and to satisfy two QoS constraints
concerning execution time and reliability. Our model is very
interesting since it avoids the enumeration of all end-to-end
routes and the number of variables and constraints is a linear
function of the workflow size.

In the section II, we present our model by introducing data,
decision variables and constraints. The section III is devoted
to experiments showing reasonable execution times.

II. MATHEMATICAL PROGRAMMING MODEL

In this section, we present our mixed linear programming-
based model for determining a composite WS (structured by a
complex workflow) minimizing a QoS measure and satisfying
QoS constraints.

A. Data

The inputs of our model are:
1) a workflow which is a graph G = (V,E), describing

the execution order of a set A of n activities and the
patterns (sequence, AND and XOR) combining them,

2) for each activity Ai, a list Wi of |Wi| web services
which can perform activity Ai (we denote by W =
∪n
i=1Wi the set of WS with total cardinality |W |),



3) for each WS j, its values on each criteria represented
by a vector (cj , dj , pj).

As usually, ∀v ∈ V , Γ+(v) represents the set of direct
successors of vertex v and Γ−(v) the set of direct predecessors
of vertex v.

The vertices of G represent the activities and the AND and
XOR patterns of the workflow. Each AND (resp. XOR) pattern
is represented by two vertices u and v, where u represents the
split of the pattern and v represents the join. Figure 3 gives
an example of such a graph with the corresponding numbered
vertices. For each vertex v which represents a join of AND
or XOR pattern, let s be a function which returns the vertex
number corresponding to the split. For example, in Figure 3,
s(12) = 7.
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Fig. 3. Example of graph associated with a workflow

Let us recall that a composite WS is associated to an end-
to-end route. For example, in Figure 3 the candidate end-to-
end route {1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20} implies that the
activities A2, A4, A5, A6, A7, A12 must be executed (one WS
per activity must be chosen). In this solution, A6, A7 and
(A4, A5) can be performed in parallel.

The set V of vertices can be partitioned into 5 subsets: VA,
V S
AND, V J

AND, V S
XOR and V J

XOR.
• VA is the set of vertices corresponding to the activities.

Given v ∈ VA, let a(v) be the indice of the activity in
the workflow associated with v. By convention, a(v) = 0
if v is not associated with an activity and we define an
empty set of WS for this fictitious activity (W0 = ∅).
For example vertex 4 is associated with activity A3 then
a(4) = 3,

• V S
AND (resp. V S

XOR) is the set of vertices corresponding
to the split of AND (resp. XOR) patterns,

• V J
AND (resp. V J

XOR) is the set of vertices corresponding
to the join of AND (resp. XOR) patterns.

The set E of arcs can be partitioned into 3 subsets: ESEQ,
ES and EJ .

• ESEQ is the set of arcs (u, v) corresponding to sequence
patterns, where u ∈ VA ∪ V J

AND ∪ V J
XOR and v ∈ VA ∪

V S
AND ∪ V S

XOR,
• ES = ES

AND ∪ ES
XOR is the set of arcs (describ-

ing split operator) which initial extremity belongs to

V S
AND ∪ V S

XOR,
• EJ = EJ

AND ∪EJ
XOR is the set of arcs (describing join

operator) which final extremity belongs to V J
AND∪V J

XOR.

B. Decision variables for selecting activities and WS

As previously explained, our WS composition problem is to
select simultaneously the activities to be performed and one
WS for each chosen activity. For the selection of activities,
we introduce 3 types of variables:

1) ∀v ∈ VA, xv is a binary variable equal to 1 if the activity
with index a(v) is performed,

2) ∀v ∈ V J
AND ∪ V S

AND, xv is a binary variable equal
to 1 if the join (or split) operator of the AND pattern
represented by v is successful (meaning that all activities
inside the AND pattern are performed) and 0 otherwise,

3) ∀v ∈ V J
XOR ∪ V S

XOR, xv is a binary variable equal
to 1 if the join (or split) operator of the XOR pattern
represented by v is successful (meaning that only one
branch inside the XOR pattern is performed) and 0
otherwise.

Any end-to-end route is represented by a 0-1 vector x =
(xv)v=1,...,|V |. For the selection of WS, we introduce the
following variables: ∀Ai ∈ A and ∀j ∈ Wi, wij is a binary
variable equal to 1 if the activity Ai is performed by the WS
j and 0 otherwise.

C. Constraints for selection

We have to modelize the fact that each selected activity must
be realized by exactly one WS and no WS must be retained
for non-selected activities.

(C1) (WS selection) For each vertex v belonging to VA, we
have to select at most one WS for the activity a(v):

xv =
∑

j∈Wa(v)

wa(v)j

Moreover, the WS composition satisfies the user’s functional
requirement if the last operation has been successfully com-
pleted.

(C2) (Ending activity or operator) For the last vertex of indice
|V |, we have:

x|V | = 1

This constraint can be seen as an objective to achieve.

The constraints induced by the workflow, presented in the
following section, describe the patterns (and the corresponding
activities) that must be selected in order to satisfy constraint
(C2).

D. Constraints induced by the workflow

We can represent the workflow constraints in a linear form.
(C3) (Sequential pattern) For each arc (u, v) ∈ ESEQ, if the

pattern is selected then xu = xv = 1, if it’s not the case
xu = xv = 0. So we have:

xu = xv



(C4) (AND pattern) For each vertex v ∈ V J
AND, the corre-

sponding AND join pattern v is performed if and only if
the last vertex u of each branch is selected:

xv = xu ∀u ∈ Γ−(v)

(C5) (XOR pattern) For each vertex v ∈ V J
XOR, if xv = 1 then

only one branch has to be selected and, if xv = 0, then
none branch is selected. Considering the last vertex u of
each branch, these two cases are represented by:

xv =
∑

u∈Γ−(v)

xu

(C6) (SPLIT-JOIN) For each AND (resp. XOR) pattern asso-
ciated with vertices u and v (with u = s(v)), we have:

xv = xu

Example 1: Applied to the example of Fig-
ure 3, we have the following data: VA =
{2, 3, 4, 8, 9, 10, 11, 13, 14, 16, 17, 20}, V S

AND = {7},
V J
AND = {12}, V S

XOR = {1, 6, 15} and V J
XOR = {5, 18, 19}.

Values of functions a are represented in Table I (only for v
such that a(v) ̸= 0) and s in Table II (only for v such that
s(v) ̸= 0).

TABLE I
FUNCTION a APPLIED TO THE EXAMPLE

v 2 3 4 8 9 10 11 13 14 16 17 20

a(v) 1 2 3 4 5 6 7 8 9 10 11 12

TABLE II
FUNCTION s APPLIED TO THE EXAMPLE

v 5 12 18 19

s(v) 1 7 15 6

Then, we have the following constraints induced by the
workflow:

(C2) : x20 = 1
(C3) : x6 = x5 x9 = x8 x14 = x13

x15 = x14 x20 = x19

(C4) : x12 = x9 x12 = x10 x12 = x11

(C5) : x5 = x2 + x3 + x4

x19 = x12 + x18 x18 = x16 + x17

(C6) : x5 = x1 x19 = x6 x12 = x7 x18 = x15.

E. The Qos measures

Concerning the value of a composite WS w represented by
the wij variables, each criterion induces a specific analysis.
For the first criterion which is a sum-type criterion, we have :

c(w) =

n∑
i=1

∑
j∈Wi

cijwij

For the second criterion, which is a max-type criterion, the
analysis is much complex since some WS can be executed
in parallel inside a same AND pattern. Indeed, in order to
compute the execution time of a given AND pattern, we have
to compute the execution time of each branch of the pattern

(which is the sum of the execution time of the WS chosen for
each activity belonging to the branch). Then, the execution
time of the considering AND pattern is equal to the maximal
branch execution time.

In our model, we introduce the following additional vari-
ables : tv represents the starting time of the vertex v, ∀v ∈ V .
The ending time of vertex v is obtained by adding to tv its
execution time depending on the type of v:

• the execution time of a vertex representing an activity
a(v) is computed as follows :

∑
j∈Wa(v)

da(v)jwa(v)j

(when the activity a(v) is not performed, all variables
wa(v)j are equal to 0 and the execution time is 0),

• the execution time of a vertex representing a pattern is
equal to 0.

We have to introduce a set of constraints in order to compute
the starting time variables.

To begin, we define the starting time of the first vertex of
the workflow :

(T0) t1 = 0.

To force tv = 0 when the vertex v is not selected, we
introduce the following constraint:

(T1) ∀v ∈ V \ {1}, tv ≤ Mxv , with M a big constant which
does not limit the t values. We propose to take M equal
to M =

∑
i∈A

max
j∈Wi

dij

For the sequential patterns, we introduce the following
constraint :

(T2) ∀(u, v) ∈ ESEQ tv ≥ tu +
∑

j∈Wa(u)
da(u)jwa(u)j with

the convention that a(u) = 0 and W0 = ∅ when u is a
pattern. Thus, when u represents a pattern, the inequality
becomes tv ≥ tu.

Example 2: In the example of Figure 3, for each activity
we consider three WS having durations given in Table III.

TABLE III
WS DURATIONS FOR THE EXAMPLE

v 2 3 4 8 9 10 11 13 14 16 17 20

Ai = a(v) 1 2 3 4 5 6 7 8 9 10 11 12

di1 = da(v)1 4 3 4 1 1 2 3 2 3 8 7 3

di2 = da(v)2 3 4 4 1 2 1 4 3 4 9 6 5

di3 = da(v)3 5 2 5 2 3 3 2 1 2 7 8 6

For arc (8, 9), the constraint (T2) is:

t9 ≥ t8 + wa(8)1 + wa(8)2 + 2wa(8)3

For arc (5, 6), constraint (T2) becomes: t6 ≥ t5.

For the AND patterns, we introduce the following con-
straints :

(T3) the first vertex v of each branch can begin when the split
represented by u is performed,

∀u ∈ V S
AND, ∀v ∈ Γ+(u), tv ≥ tu



(T4) the join pattern v can be performed when the last activity
of each branch is ended,

∀v ∈ V J
AND, ∀u ∈ Γ−(v), tv ≥ tu+

∑
j∈Wa(u)

da(u)jwa(u)j

Example 3: In our example, only u = 7 is a split AND
pattern, then (T3) induces the constraints:
t8 ≥ t7 t10 ≥ t7 t11 ≥ t7
The vertex 12 is the only join AND pattern, then (T4) induces
the constraints:
t12 ≥ t9 + wa(9)1 + 2wa(9)2 + 3wa(9)3

t12 ≥ t10 + 2wa(10)1 + wa(10)2 + 3wa(10)3

t12 ≥ t11 + 3wa(11)1 + 4wa(11)2 + 2wa(11)3

For a split XOR pattern u, only one branch is executed.
Then, for the first activity v of each branch, we have to satisfy
the non-linear constraint:

∀v ∈ Γ+(u), tvxv ≥ tu

From (C5), only one branch is selected. Let us denote
v′ the first activity of the selected branch. We have:∑

v∈Γ+(u) tvxv = tv′xv′ . Constraint (T1) implies that tv = 0,
∀v ̸= v′ thus the previous expression can be linearized as
follows:

∑
v∈Γ+(u) tvxv =

∑
v∈Γ+(u) tv .

For the XOR patterns, we introduce the following constraints:
(T5) the starting time of the first vertex of the selected branch

can be obtained as follows,

∀u ∈ V S
XOR

∑
v∈Γ+(u)

tv ≥ tu

(T6) for the ending time of the patterns,

∀v ∈ V J
XOR tv ≥

∑
u∈Γ−(v)

(tu +
∑

j∈Wa(u)

da(u)jwa(u)j)

Example 4: Let us consider the vertex u = 6 which is a
split XOR pattern. Constraint (T5) gives: t7 + t13 ≥ t6
The join vertex associated being v = 19, constraint (T6)
gives: t19 ≥ t12 + t18

Finally, we have to introduce a global constraint to limit
the total duration time to T . Since we set t1 = 0, the total
execution time of the composite WS is given by:
t|V | +

∑
j∈Wa(|V |)

da(|V |)jwa(|V |)j

Consequently, the global constraint on time is:
(Q1) t|V | +

∑
j∈Wa(|V |)

da(|V |)jwa(|V |)j ≤ T

For the third criterion, which is a multiplicative-type
criterion, we apply the same approach as in [7]. The global
reliability of a composite WS w, denoted r(w), is given by
r(w) =

∏
(i=1,...,n, j∈Wi):wij=1

pij

If we want to guarantee a reliability of probability P for the
selected composition, then we have to add: r(w) ≥ P . The
linearization of this expression is natural by considering the

log function:
log(r(w)) =

∑
(i=1,...,n, j∈Wi):wij=1

log(pij) ≥ log(P )

Since
∑

(i=1,...,n, j∈Wi):wij=1

log(pij) =

n∑
i=1

∑
j∈Wi

log(pij)wij

the global constraint on reliability is:

(Q2)
n∑

i=1

∑
j∈Wi

log(pij)wij ≥ log(P )

The constraint (Q1) represents the fact that the execution
time is limited by T . The constraint (Q2) represents the fact
that the reliability must be at least equal to P . Parameters T
and P are given by the user.

The following section presents the final model.

F. The model

Our purpose is to minimize the cost criterion and to satisfy
two QoS constraints concerning the execution time and the
reliability.



min

n∑
i=1

∑
j∈Wi

cijwij

xv =
∑

j∈Wa(v)

wa(v)j ∀v ∈ VA (C1)

x|V | = 1 (C2)
xu = xv ∀(u, v) ∈ ESEQ (C3)
xu = xv ∀(u, v) ∈ EJ

AND (C4)∑
u∈Γ−(v)

xu = xv ∀v ∈ V J
XOR (C5)

xu = xv ∀v ∈ V J
AND ∪ V J

XOR with u = s(v) (C6)
t1 = 0 (T0)
tu ≤ Mxu ∀u ∈ V \ {1} (T1)

tv ≥ tu +
∑

j∈Wa(u)

da(u)jwa(u)j ∀(u, v) ∈ ESEQ (T2)

tv ≥ tu ∀(u, v) ∈ ES
AND (T3)

tv ≥ tu +
∑

j∈Wa(u)

da(u)jwa(u)j ∀(u, v) ∈ EJ
AND (T4)∑

v∈Γ+(u)

tv ≥ tu ∀u ∈ V S
XOR (T5)

tv ≥
∑

u∈Γ−(v)

(tu +
∑

j∈Wa(u)

da(u)jwa(u)j) ∀v ∈ V J
XOR (T6)

t|V | +
∑

j∈Wa(|V |)

da(|V |)jwa(|V |)j ≤ T (Q1)

n∑
i=1

∑
j∈Wi

log(pij)wij ≥ log(P ) (Q2)

wij ∈ {0, 1} ∀i = 1, . . . , n ∀j = 1, . . . , |Wi|
xv ∈ {0, 1} ∀v = 1, . . . , |V |
tv ≥ 0 ∀v = 1, . . . , |V |

Example 5: For the example of Figure 3 and Table III,
we associate the following costs: let us recall that 3 WS are
associated to each activity i = 1, . . . , 12, ci1 = 4, ci2 = 3 and
ci3 = 2. To simplify, we assume that the reliability of each



WS is equal to 1. In order to determine the less expensive
composite WS, we have to solve our linear program by

setting M = T =
12∑
i=1

max
j∈{1,2,3}

dij = 56.

An optimal solution is given by the following end-to-end
route {1, 3, 5, 6, 13, 14, 15, 17, 18, 19, 20} for which the third
WS of each activity A2, A8, A9, A11, A12 is selected. The
cost of the optimal solution is 10.
If the response time T has to be less than 12 then the
optimal solution corresponds to another end-to-end route
{1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20} for which the third WS of
each activity A2, A4, A6, A7, A12 is selected, and the second
WS of activity A5 is performed.

The number of binary variables is equal to |V | + |W |,
plus |V | real and non negative variables which gives
O(|W |) variables. The number of constraints is equal to
2n+3+2|ESEQ|+3|EJ

AND|+3|V S
XOR|+ |V J | which gives

O(|E|) constraints. Indeed, we have n constraints for (C1),
|ESEQ| constraints for (C3) and (T2), |EJ

AND| = |ES
AND|

constraints for (C4), (T3) and (T4), |V J
XOR| = |V S

XOR| for
(C5), (T5) and (T6) and |V J | pour (C6).

Let us underline that our model can represent several
variants of the composition problem: minimize the execution
time subject to a budget constraint, maximize an aggregate
score subject to several QoS constraints... In practice, it is
of interest to know the best value we can obtain on each
criterion. For that, by changing the objective function of
our model, we can minimize total execution time (without
any QoS constraint) or minimize total cost (without time
constraint).

Example 6: For the previous example, by minimizing t20+
3w12,1 + 5w12,2 + 6w12,3 and removing (Q1) and (Q2), we
obtain 7 which is the minimal duration of a composite WS
(with a total cost equals to 19).

III. EXPERIMENTATIONS

The model was solved using CPLEX solver, and the
experiments were carried out on a Dell PC with Intel (R)
Core TM i7-2760, with 2,4 Ghz processor and 8 Go RAM,
under Windows 7 and Java 7. For testing purpose, we
randomly generated workflows with interlaced XOR and
AND patterns, by varying the number of activities (from 10
to 200), and by randomly varying the number of AND and
of XOR patterns (representing at most 30% of the number
of activities in the workflow) as well as their position in
the workflow. The WS registery was generated by randomly
assigning QoS values to each candidate WS (a value between
10 and 50 for the price and a value between 50 and 200 ms
for the duration). For a given number of activities and a
given number of WS per activity, 10 instances are randomly
generated in order to compute average value.

In order to analyse the impact of one QoS constraint on
computation time and on optimal solution value, we choose in
a first step to relax the reliability constraint Q2: the reliability
of each WS is equal to 1 and P = 1.

The Table IV reports the average size of considered lin-
ear programs. The number of constraints only depends on
the workflow. As expected, the number of variables linearly
increases with the number of WS per activity.

TABLE IV
LINEAR PROGRAM SIZE

n Number of Number of variables for
constraints 10 WS 50 WS 100 WS 200 WS

10 55 131 531 1031 2031
50 269 648 2648 5148 10148
100 514 1285 5285 10285 20285

In the following experiments, for a given workflow and
WS registery, we begin by determining the composite WS
with minimal duration time, denoted T ∗. We recall that the
constraint Q1 is relaxed when the time T increases, inducing
an expansion of the feasible solution set.

In order to analyse the impact of the constraint Q1 on com-
putation time, we first consider 50-activities workflows with
100 WS per activity. In Figure 4, we report the computation
time when T increases from T ∗ to 3T ∗. The Figure 4 clearly
shows that ”easy” cases (with computation times less than
9 ms) appear for high values of T (greater than 1.5T ∗). The
computation times are higher (around 17 ms) when T varies
from 1.1T ∗ to 1.3T ∗.
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Fig. 4. Computation time in function of the QoS time constraint

In order to analyse the influence of the number of WS on
the computation time, we first consider 50-activities workflows
with an increasing number of WS (from 50 to 500 per activity).
Then, we compute minimal cost composite WS in two cases:
in the first case, the total duration mustn’t exceed 1.1T ∗ and,
in the second case, the duration musn’t exceed 1.5T ∗ (the QoS
constraint Q1 is less restrictive). The results are presented in
the Figure 5.
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Fig. 5. Computation time for 50-activities workflows

As previously noted, for a given number of WS, the
optimal solution is found more rapidly when the constraint
on time is ”relaxed” (equals to 1.5T ∗). For realistic instances,
around 50 WS per activity, the average computation time
(obtained on 10 workflows) is less than 7 ms when T equals
1.5T ∗, and less than 13 ms when T equals 1.1T ∗. These
experimental results are very promising. Moreover, it appears
that the execution time linearly increases with the number of
WS.

Afterwards, we consider different workflows with an in-
creasing number of activities (with 100 WS per activity).
The Figure 6 presents the evolution of computation times for
activities’ number varying from 10 to 200.
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We note that the computation time linearly increases with
the number of activities. Moreover, the computation time is
of the same order for the two considered values of T .

The Figure 7 shows the link between the cost of the
optimal composite WS and the time constraint for 50-activities
workflows with 100 WS per activity.

In Figure 7, it clearly appears that the cost of the optimal
composite WS rapidly decreases when the QoS time constraint
is relaxed. More precisely, when T increases from T ∗ to
1.2T ∗, the cost of the optimal solution is divided by 2. From
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Fig. 7. Cost of the optimal composite WS in function of T

T equals to 1.5T ∗, the minimal cost of the optimal composite
WS is reached in a very large majority of cases.

Finally we re-introduce the reliability constraint Q2 to our
model. The score of each WS on the reliability criterion is
randomly chosen in the range [0, 1] and we set P = 0.5. Our
experiments, reported in Figure 8, show that the linear program
is more difficult to solve with two QoS constraints. Indeed, the
computation time exponentially increases with the number of
WS. However, it is still reasonable for realistic instances (an
average of 100 ms for a 50-activities workflow with 50 WS
per activity).
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These computational experiments are very promising. With
the proposed model, the WS composition problem with a
sum-type criterion to optimize and a single QoS constraint
is tractable even for large size instances. However, the same
problem with an additional QoS constraint is much more
difficult to solve for large size instances with a standard solver
like Cplex.

IV. CONCLUSION

In this article, we present a mixed linear program for
determining a composite WS minimizing a sum-type
criterion subject to QoS constraints. This model allows to
simultaneously optimize the activities and the chosen WS per



activity in a workflow including interlaced XOR and AND
patterns. Compared with graph-based approaches [15], we
do not have to enumerate all the potential end-to-end routes
in the workflow. Consequently, the number of variables and
constraints of our proposed model are polynomial in function
of the number of WS and patterns. Extensive computational
experiments on random workflows and WS registries show
that our approach is very promising for exactly solving the
QoS-aware composition problem.

However, the computation time is more important when
several QoS constraints are considered. It takes several
seconds to find the optimal solution for big size instances
and this may be too long for real time computation. In this
case, it would be useful to propose approximate algorithms
to find solutions very rapidly. With our linear programming
approach, we are able to determine the optimal solution,
to compute the distance between the optimal solution and
the approximate one and thus to obtain an experimental
approximation ratio.

Finally, web services are suppose to be independent in our
study. We would like to extend our model in order to take
into account the correlation between web services (generating
compatibility or exclusion constraints, or QoS modifications).
This will be the subject of future research.
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