
la
m
sa

d
e

LAMSADE

Laboratoire d'Analyses et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

Septembre 2013

Parameterized algorithms for the max k-set cover
and related satisfiability problems

E. Bonnet, V.Th. Paschos, F. Sikora

CAHIER DU
 341

Parameterized Exact and Approximation Algorithms for
Maximum k-Set Cover and Related Satisfiability Problems

Édouard Bonnet1, Vangelis Th. Paschos2, Florian Sikora2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
bonnet.edouard@sztaki.mta.hu

2 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
{paschos,florian.sikora}@lamsade.dauphine.fr

Abstract. Given a family of subsets S over a set of elements X and two integers p and k,
max k-set cover consists of finding a subfamily T ⊆ S of cardinality at most k, covering
at least p elements of X. This problem is W[2]-hard when parameterized by k, and FPT
when parameterized by p. We investigate the parameterized approximability of the problem
with respect to parameters k and p. Then, we show that max sat-k, a satisfiability problem
generalizing max k-set cover, is also FPT with respect to parameter p.

1 Introduction

In the max k-set cover problem, we are given a family of subsets S = {S1, . . . , Sm} over a set
of elements X = {x1, . . . , xn}, and two integers p and k. The goal is to find a subcollection T of at
most k subsets that covers at least p elements. In what follows, we make the following two natural
hypotheses for the instances of max k-set cover: (a) Si 6= Sj , i, j = 1, . . . ,m and (b) Si * Sj ,
i, j = 1, . . . ,m.

max k-set cover is a well-known problem met in many real-world applications. To the best of
our knowledge, it has been studied for the first time in the late seventies by Cornuejols et al. [13].
This combinatorial problem originated from a financial application, where one wishes to find an
optimal location of bank accounts in order to maximize clearing time. Since then, it is used for
modeling real problems met in several areas such as databases, social networks, sensor placement,
information retrieval, etc. A non-exhaustive list of references to such applications can be found in
Badanidiyuru and al. [2].

max k-vertex cover, the graph version of max k-set cover is defined as follows: given
a graph G = (V,E) and two integers k and p, one wants to determine k vertices that cover at
least p edges. max k-vertex cover is a special case of max k-set cover where any element
of X belongs to exactly two sets of S.

Both max k-set cover and max k-vertex cover are very important problems, since they
are natural generalizations of min set cover and min vertex cover, respectively. Both are
NP-hard (setting p = n, max k-set cover becomes the seminal min set cover problem; setting
p = |E|, max k-vertex cover coincides with the min vertex cover problem).

max k-set cover is known to be approximable within a factor 1 − 1/e (to our knowledge, it
is the only polynomial approximation result known for max k-set cover on general instances)
but, for any ε > 0, no polynomial algorithm can approximate it within ratio 1 − 1/e + ε unless
P = NP [19], while min set cover is polynomially inapproximable within ratio (1 − ε) lnn, for
arbitrarily small ε > 0, unless P = NP [25]. On the other hand, max k-vertex cover, is APX-
hard and the best-known approximation ratio for this problem, in general graphs, is bounded
below by 3/4, obtained by a very smart linear programming method by Ageev et al. [1].

max sat-k is a satisfiability problem closely related to max k-set cover. It is also a natural
“fixed cardinality generalization” of max sat. In max sat-k, we are given a CNF on n variables
and m clauses and we ask for setting to true at most k variables satisfying at least p clauses. One
may observe that max sat-k without negation is max k-set cover.

1

The goal of the paper is to establish several parameterized results for max k-set cover
and for max sat-k. We mainly study the parameterized approximability of the former and exact
parameterization of the latter.

2 Preliminaries

We first give the basic definitions of the parameterized complexity theory. A parameterized prob-
lem (Π, k) is said fixed-parameter tractable (or in the class FPT) with respect to a parameter k
if it can be solved by an algorithm with running time f(k) · |I|O(1) time (in fpt-time), where f is
some computable function and |I| is the instance size. Such algorithms are called fixed-parameter
tractable algorithms, or FPT algorithms. A parameterized reduction (or FPT reduction) from a
problem Π1 to a problem Π2 is a mapping of an instance (I, k) of Π1 to an instance (I ′, k′)
of Π2, computable in time f(k) · |I|O(1), such that (I, k) ∈ Π1 ⇔ (I ′, k′) ∈ Π2, k′ 6 g(k), and
|I ′| 6 h(k) · |I|O(1) for some computable functions f , g, and h. This seemingly technical definition
is just tailored to ensure that if Π2 is in FPT and there is an FPT reduction from Π1 to Π2, then
Π1 is also in FPT. Some problems such as Clique parameterized by the solution size are not in
FPT. In fact, there is a whole hierarchy of classes beyond FPT: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
W[P] ⊆ XP. It is commonly believed that FPT 6= W[1].

We need some additional definitions in order to give a precise meaning to those classes. A
boolean circuit is a directed acyclic graph where every vertex of in-degree 0 is an input vertex,
every vertex of in-degree 1 is a negation vertex and every vertex of in-degree greater than 2 is
either an and-vertex or an or-vertex. Exactly one vertex with out-degree 0 is the output vertex.
The depth of such a circuit is the maximum length of a path from an input vertex to the output
vertex, and the weft of such circuit is the maximum number of large vertices on a path from
an input vertex to the output vertex. A vertex is large if its in-degree exceeds some pre-agreed
constant bound. Giving boolean values to the input vertices determines the value of every vertex
in the classic way, and in particular, if the output vertex receive value true for a given assignment,
we say that this assignment satisfies the circuit.

The weighted circuit satisfiability (WCS) problem takes as input a boolean circuit and
an integer k and decides if there is a satisfying assignment for this circuit with exactly k input
vertices set to true. A parameterized problem Π belongs to the class W[t], t > 1, if there is an FPT
reduction from Π to WCS restricted to circuits of weft at most t. A parameterized problem Π
is hard for the class W[t] (with t > 1) if, for any problem Π ′ in W[t], there is an FPT reduction
from Π ′ to Π; or equivalently if there is an FPT reduction from WCS restricted to circuits of weft
at most t to Π. A parameterized problem Π is W[t]-complete if it is W[t]-hard and in W[t]. For
example, max independent set parameterized by the size of the solution is W[1]-complete and
min dominating set parameterized by the size of the solution is W[2]-complete. The class W[P]
contains problems reducible to WCS without constraints on the weft of the circuits. The class XP
contains problems solvable in time |I|f(k), where f is any computable function. See for example
the monograph of Downey and Fellows for more details about fixed-parameter tractability [16].

We now go back to our problems. max k-set cover is W[2]-hard for the parameter k since,
by setting p = n, we obtain an instance of min set cover which is W[2]-hard. An FPT algorithm
with respect to the standard parameter p is given by Bläser [4]. Let us note that recently and
independently certain aspects of parameterized complexity of max k-set cover have also been
studied by Skowron and Faliszewski [29]. These results are summarized in Table 1.

Note that different parameterizations are possible for the same problem. In fact, one can
also parameterize a problem by a combination of parameters (instead of just one parameter). A
multiparameterization by parameters k1, k2, . . . , kh consists of taking k1+k2+. . .+kh as parameter.
Multiparameterization poses novel and interesting open questions. For max k-set cover, for
instance, several natural parameters as p (commonly called the “standard parameter”), k, ∆ =
maxi{|Si|} and f = maxi |{j|xi ∈ Sj}| (commonly called the maximum frequency), can be jointly
involved in a complexity study of the problem.

We first give multiparameterization of max k-set cover with respect parameters k and p
(Section 3). The most important part of this section is Subsection 3.2 dedicated to the study

2

of the parameterized approximation of max k-set cover for these two parameters. Consider
a problem Π, parameterized by some parameter π. Then, we say that Π is parameterized r-
approximable if there exists an algorithm A that is FPT when parameterized by π such that:

– if Π is a minimization problem, then for any instance I of Π where π 6 β, A produces a
solution with value at most rβ; otherwise it returns any solution (which can be smaller or
greater than rβ);

– if Π is a maximization problem, then for any instance I of Π where π > β, A produces a
solution with value at least rβ; otherwise it returns any solution (which can be smaller or
greater than rβ).

This line of research was initiated by three independent works [17, 8, 11]. For an excellent overview,
see the survey of Marx [24]. It aims at beating polynomial approximation barriers by offering
more generous running time. The underlying question motivating Subsection 3.2 is to what extent
parameterized approximation is able to do it for max k-set cover?.

Skowron and Faliszewski show, in [29], that it is possible when the parameter considered is
k + f , where f is the frequency of the max k-set cover-instance, i.e., the maximum number of
sets in S, a ground element belongs to. But what happens when considering only k instead?

For parameter k we mainly show a conditional result, informally, a parameterized (with respect
to k) approximation of max k-set cover within ratio greater than 1 − 1/e + ε, for some ε > 0,
would lead to a parameterized approximation of min set cover (with respect to the standard
parameter) within ratio (1 − ε) lnn, for some fixed ε > 0. Even if this is a conditional result,
we conjecture that the right answer is negative, i.e., that max k-set cover is inapproximable
within ratio greater than 1− 1/e+ ε, for any ε > 0, in FPT time parameterized by k. We also give
in Subsection 3.2 a weaker negative result for max k-set cover, namely, that under the same
parameterization, it is inapproximable within ratio 1− (1/n)

4√
lnn, unless ETH3 fails.

Let us mention that max k-vertex cover can be approximately solved within ratio 1 − ε,
for any fixed ε > 0, in FPT time parameterized by k [24].

For parameter p, we show that max k-set cover can be solved within ratio (strictly) greater
than 1 − 1/e in time FPT parameterized by p, which is smaller than that needed for the exact
solution of the problem.

In Section 4, we settle the parameterized complexity of max sat-k, where, given a CNF on n
variables andm clauses, one asks for setting to true at most k variables satisfying at least p clauses.
The main result is that max sat-k is FPT with respect to parameter p.

To prove that, we refine a technique for obtaining multiparameterized FPT algorithms de-
veloped by Bonnet et al. [5], called greediness-for-parameterization, which is based on branching
algorithms. Roughly, a branching algorithm extends a partial solution at each recursion step. The
execution of such an algorithm can be seen as a branching tree. The best among the complete so-
lutions at the leaves of the branching tree, is output. The basic idea of the technique is to branch
on:

– a greedy extension of the partial solution;
– other extensions in the neighborhood of the greedy extension.

The soundness of the algorithm lies on the fact that if none of the above extensions of the partial
solution is done by a supposed optimal solution, then the greedy choice stays optimal at the end.
Although the techniques are not the same, greediness-for-parameterization shares some common
points with the greedy localization technique (see [10, 15, 23] for some applications). Here, one
uses a local search approach: one starts from a computed approximate solution and turns it to
an optimal solution. However, greedy localization technique is less general than greediness-for-
parameterization, since it suits maximization problems only.

In Section 5, we suggest an enhanced weft hierarchy called counting weft hierarchy dedicated
to those cardinality-constrained problems, such as max sat-k and max k-set cover which are
3 Exponential Time Hypothesis: there is a real number δ > 0 such that 3-sat is not solvable in O(2δn)
on instances with n variables.

3

W[i]-hard for some i, and in W[P], but not even known to be in W[j] for some integer j. Related
issues have been discussed by Fellows et al. [20].

3 Parameterizations for max k-set cover

3.1 Exact Parameterization

As mentioned in Section 1, in the max k-set cover problem, we are given a family of subsets
S = {S1, . . . , Sm} over a set of elements X = {x1, . . . , xn}, and two integers p and k. The goal is
to find a subcollection of S of size k that covers at least p elements of X.

Let us first note that, as p 6 ∆k, the FPT result for max k-set cover with respect to
parameter p presented by Bläser [4], immediately implies that this problem is also FPT when
parameterized by k + ∆. An alternative proof using greediness-for-parameterization is given by
Bonnet et al. [6]. It might be worth reading it since it is a good introduction to the FPT algorithm
for max sat-k in Section 4.

We now explain why max k-set cover parameterized by k + f is W[1]-hard. Each in-
stance (S, X) of max k-set cover such that f = 2 (that is, each element appears in at most two
sets) can be seen as a graph whose vertices are the sets in S, and where there is an edge between
two vertices if the corresponding sets share at least one element. Therefore max k-set cover
with frequency 2 is equivalent to the max k-vertex cover problem where, given a graph G and
a number k, the goal is to cover at least p edges with k vertices. Thus, max k-vertex cover,
W[1]-hard with respect to k [7], is a restricted case of max k-set cover.

Note that in the reduction above the maximum set-cardinality ∆ in an instance of max k-set
cover with f = 2, coincides with the maximum degree of the derived graph. Hence, with the same
argument, it can be shown that max k-set cover is not in XP when parameterized by ∆ + f ,
since max k-vertex cover is NP-hard even in graphs with bounded degree (being, as mentioned
above, a generalization of min vertex cover that remains NP-hard even in these graphs).

Finally, in the following proposition, we prove that max k-set cover parameterized by k
belongs to W[P].

Proposition 1. max k-set cover parameterized by k belongs to W[P].

Proof. The proof is in exactly the same spirit with the proof by Cesati [9]. We reduce max
k-set cover to bounded non-deterministic Turing machine computation which is a
known W[P]-complete problem [16] and defined as follows. Given a non-deterministic Turing ma-
chine M , an input word w, an integer n encoded in unary and a positive integer k, does M(w)
non-deterministically accept in at most n steps and using at most k deterministic steps?

Let I = (S = {S1, . . . , Sm}, p) be an instance of max k-set cover. Build a Turing MachineM
with three tapes T1, T2 and T3. Tape T1 is dedicated to non-deterministic guess. Write there the k
sets Sa1 , . . . , Sak . Then, the head of T1 runs through all the elements and when a new element is
found it is written down on the second tape. The third tape counts the number of already covered
elements. If this number reaches p, then M accepts. Thus, there exist k non-deterministic steps,
and a polynomial (in |I|) number of deterministic steps (precisely, O(|I|2)). ut

The results mentioned in this paragraph as well as literature results are summarized in Table 1.

Parameter: ∆+ f k k + f k +∆ or p n− p (n− p) + k

Status: /∈ XP W[2]-hard
in W[P] (Prop. 1)

W[1]-hard
in W[P] FPT [4, 6] /∈ XP [29] W[2]-complete [29]

Table 1. Exact parameterized complexity of max k-set cover for different parameters.

4

3.2 Approximation Issues

Let us now handle parameterized approximation of max k-set cover. We first prove the following
basic lemma that is an easy generalization of Proposition 5.2 given by Feige [19].
Lemma 2. Any r-approximation algorithm, parameterized by k, for max k-set cover can be
transformed into an FPT t-approximation algorithm, parameterized by the standard parameter
(optimum value), for min set cover where:

t <

⌈
− lnn

ln(1− r)

⌉
Proof. The basic idea is similar to the idea of Feige [19] (Proposition 5.2). Its key ingredient
is the following. Consider some algorithm kSC-ALG that solves max k-set cover. Then, it can
iteratively be used to solve min set cover as follows. Consider an instance I = (F , U) of min set
cover where F is a family of subsets of a ground set U . Iteratively run kSC-ALG for k = 1, . . . ,m
(where m is the size of F). Eventually, one value of k will equal the value of the optimal solution
for min set cover. Let us reason with respect to this value of k, denoted by k0. Furthermore,
assume that kSC-ALG achieves approximation ratio r for max k-set cover. Invoke it with value k0,
(note that now p = n, the size of the ground set U), remove the ground elements covered, store
the k0 elements used and relaunch it with value k0, until all ground elements of U are removed.
Since it is assumed to achieve approximation ratio r after its `-th execution at most (1 − r)`n
ground elements remain uncovered. Finally, suppose that after t executions, all ground elements
are removed (covered). Then, the tk0 subsets stored form a t-approximate solution for the min
set cover-instance, where t satisfies (after some very simple algebra):

(1− r)tn < 1 =⇒ t <

⌈
− lnn

ln(1− r)

⌉
(1)

Moreover, observe that the complexity of the algorithm derived for min set cover is at most m
times the complexity of kSC-ALG; so, it remains FPT with respect to the optimal value for min
set cover . ut
Recall that, as mentioned in the beginning of Section 1, max k-set cover is inapproximable in
polynomial time within ratio 1 − 1/e + ε, for any ε > 0, unless P = NP [19]. We first prove in
the sequel a conditional result, informally, getting such a ratio even in FPT time parameterized
by k, is a rather difficult task. More precisely, we prove that if this were possible, then we could
get, in parameterized time, an approximation ratio of (1 − ε) ln(n/lnn) for min set cover, for
some fixed ε > 0. Even if this result is, properly speaking, a conditional result, it gives, in some
sense, the measure of the difficulty of approximating max k-set cover within ratio strictly better
than 1 − 1/e in FPT time parameterized by k. Next, we prove an FPT inapproximability result,
namely that FPT approximation of max k-set cover within ratio greater than 1− (1/n)

4√
ln k is

impossible unless W[2] = FPT.
Proposition 3. max k-set cover parameterized by k is inapproximable within ratio (1−1/e+ε),
for any ε ∈ [0, 1/e), unless min set cover is approximable within ratio (1− η) ln(n/lnn), for some
fixed η > 0, in FPT time parameterized by the value of the optimum.

Proof. Revisit Lemma 2, take r = 1− (1/e) + ε, for some ε ∈ [0, 1/e) and assume that the kSC-ALG
of Lemma 2 (that is FPT in k) achieves approximation ratio r. Then, in order to prove the result
claimed, follow the procedure described in Lemma 2 until there are at most lnn, say c lnn for some
c 6 1, uncovered elements in U and solve the remaining instance by, say, the best known exact
algorithm which works within O∗(2n) in instances with ground set-size n [3]. Since the surviving
ground set has size c lnn, it is polynomial to optimally solve it. Reasoning exactly as in Lemma 2
we get:

n(1− r)t = c lnn =⇒ t =
ln c+ ln lnn− lnn

ln(1− r)
6

ln lnn− lnn

ln(1− r)
' ln lnn− lnn

−εe− 1

=
lnn− ln lnn

1 + εe
=

1

1 + εe
ln
(n

lnn

)
5

Setting η = εe/(1+εe), the proof of the proposition is concluded. ut

As one can see, the result of Proposition 3 is conditional and relates the parameterized approx-
imability of max k-set cover within ratios better than the one achieved in polynomial time to
the parameterized approximability of min set cover within ratios that are almost the same (in
fact slightly smaller) as the one polynomially achieved for this problem. Furthermore this ratio is
tight for the polynomial time (recall that it is NP-hard to approximate min set cover within
ratio (1 − ε) lnn, for arbitrarily small ε > 0 [25]). We conjecture that the real parameterized
(with respect to the optimum) inapproximability bound of min set cover is O(log n), so that
the inapproximability bound (conditionally) conjectured by Proposition 3 is the correct one. But,
unfortunately, we have not been able to prove it until now and the negative result by Moshkovitz
in [25] does not seem to be usable as it is for the parameterized inapproximability of max k-set
cover.

In what follows, in the spirit of Lemma 2 and of Proposition 3 and based upon a recent result
by Chen and Lin [12], we show a weaker upper bound for the parameterized approximability of
max k-set cover with respect to k.

Consider the min dominating set problem defined as follows: given a graph G = (V,E),
determine a minimum size vertex subset D ⊆ V such that every vertex of V is either in D or
has a neighbor in D. There exists a well-known approximability preserving reduction from min
dominating set to min set cover that works as follows: given a graph G = (V,E) of order n,
instance of min dominating set, we transform it into an instance I = (F , U) of min set cover
as follows:

– F = {F1, . . . , Fn};
– U = {u1, . . . , un};
– ∀i ∈ {1, . . . , n}, Fi = {uj : vj ∈ Γ [vi]}, where Γ [vi] denotes the closed neighborhood of vertex
vi ∈ V .

Then, it is easy to see that any dominating set D of G corresponds to a set cover F ′ of I of the
same cardinality by simply considering in F ′ the subsets of F having the same indices with the
vertices of D and vice-versa. An immediate consequence of this reduction is that both problems
share the same approximation ratios and inapproximability bounds.

Recently, Chen and Lin [12] have proved that, under ETH, no FPT algorithm for min domi-
nating set can achieve approximation ratio smaller than, or equal to, 4+ε

√
ln γ(G), for any positive

constant ε, where γ(G) denotes the cardinality of a minimum dominating set in G. The reduction
just described, immediately transfers this lower bound to min set cover; so the following holds
for this latter problem: under ETH, no FPT algorithm for min set cover can achieve approxi-
mation ratio smaller than, or equal to, 4+ε

√
ln k0, for any positive constant ε, where k0 denotes the

cardinality of a minimum set cover instance (F , U).
Based upon the result by Chen and Lin [12], Lemma 2, and the approximation-preserving

reduction from min dominating set to max k-set cover given just above, the following can
be proved.

Proposition 4. max k-set cover is inapproximable within ratio 1 − (1/n)
4√
ln k in FPT time

parameterized by k, unless ETH fails.

Proof. The proof follows the one of Lemma 2. From (1), taking for t (the ratio of min set cover)
the 4
√

ln k0-inapproximability bound derived by the the reduction above and by Chen and Lin
in [12] and omitting (in order to simplify calculations) the ceiling in (1), some elementary algebra
leads to:

ln(1− r) 6 − lnn

t
6
− lnn
4
√

ln k0
=⇒ 1− r >

(
1

n

) 4√lnK0

=⇒ r 6 1−
(

1

n

) 4√ln k0

as claimed. ut

6

Let us note that a parameterized inapproximability bound weaker than that of Proposition 4
can be obtained as follows. Consider an instance G of min dominating set and transform it to
an instance I = (F , U) of min set cover by the transformation seen above. Assume now that
kSC-ALG achieves ratio 1− c/n for some fixed c > 1. Then, just run kSC-ALG only once for every k.
Assuming that kSC-ALG runs in time O(p(n)F (k)) for some polynomial p, the whole of runs will
take m ·O(p(n)F (k))-time that remains FPT in k. For k0 (the value of the optimal solution for min
set cover in instance I), it holds that, after this run, at most n− n(1− (c/n)) = c elements will
remain uncovered. Any (non-trivial) cover for them uses at most c sets to cover them. In this
case, the procedure above achieves an additive approximation error c + 1 (recall that c is fixed)
for min set cover, and this ratio is identically transferred to min dominating set via the
reduction. But for min dominating set, achievement of any constant additive approximation
error is W[2]-hard [18]. So, the following corollary holds.

Corollary 5. max k-set cover is inapproximable within ratio 1 − c/n in time parameterized
by k, for any constant c > 1, unless W[2] = FPT.

For the rest of the section, we relax the optimality requirement for the max k-set cover-
solution and we show that we can devise an approximation algorithm with ratio strictly better than
1− 1/e (beating so the polynomial inapproximability bound of Feige [19]), that runs in FPT time
parameterized by k and ∆ but whose complexity is lower (although depending on the accuracy)
than the best exact parameterized complexity for max k-set cover.

In fact, we are going to prove a stronger result, claiming that, for any polynomial approx-
imation ratio r achieved by some polynomial time algorithm APPROX and any parameterized
algorithm PARAM(π) for max k-set cover, where π can be a single parameter or a vector of
parameters, r can be improved in FPT time parameterized by π by an algorithm whose running
time is smaller than the one of PARAM(π).

The way of doing it is to built a kind of hybrid algorithm that, informally, in the case of max
k-set cover we deal with, where π = (k,∆), it works as follows:

– it solves max k-set cover by invoking PARAM(π′), with π′ = (k′, ∆) for some k′ < k, stores
the solution computed, and removes it from the initial instance;

– it invokes APPROX on the surviving instance and stores the solution obtained;
– it takes the union of the two solutions.

Here, our objective is to establish a trade-off between the solution quality and the running time.
Therefore, the running time of the presented algorithms depend on the approximation ratio.

Assume an FPT (exact) algorithm running in time O∗(F (k,∆)) for some function F (that is
Algorithm PARAM(k,∆)) together with an approximation algorithm APPROX achieving approxima-
tion ratio r for max k-set cover and consider Algorithm 1, called pSC-IMPROVED in what follows,
running on an instance (S, X) of max k-set cover, where X is the ground set and S a family
of subsets of X.

Algorithm 1: A description of the algorithm pSC-IMPROVED.
Input: An instance (S, X, k) of max k-set cover.
Output: A subfamily T̂ ⊂ S containing k subsets.
fix some ε > 0;
take µ ∈ (0, 1) such that ε > (1− e−1)µ2 − (1− 2e−1)µ;
set k′ = µk;
run Algorithm PARAM(k′,∆) and store the solution computed (denoted by T1); let X1 be the subset
of X covered by T1;
set S ′ = S \ T1, X ′ = X \X1 and k′′ = k − k′ = (1− µ)k;
run the r-approximation algorithm APPROX on the max k-set cover-instance (S ′, X ′, k′′) and
store the solution T2 computed;
return T̂ = T1 ∪ T2;

7

Solution T̂ computed by pSC-IMPROVED has cardinality k, i.e., it is feasible for max k-set
cover. Let us now analyze it in the following proposition.

Proposition 6. Given a polynomial time approximation algorithm with ratio r for max k-set
cover, for any µ ∈ (2−(1/r), 1], max k-set cover can be approximated within ratio r(1−µ)2+µ >
r, in O∗(F (µk,∆))-time, where ∆ is the maximum cardinality of a set.

Proof. Fix an optimal solution T ∗ and denote by X∗ the subset of X covered by T ∗. Recall that
in Algorithm 1, we denote by X1 the subset of X covered by the set T1 computed by PARAM(k′, ∆).
Obviously:

|X1| > µ |X∗| (2)

Fix an optimal max k′′-set cover-solution T̄ of (S ′, X ′), denote by X̄∗ the set of elements of X
covered by T̄ and set X̃ = X∗ ∩X1. Remark now the following facts:

1. X∗ \ X̃ is covered with at least k′′ sets in T ∗ (denote by T ′′∗ this system); otherwise, the sets
of T ∗ covering X∗ \ X̃ together with T1 would be a solution better than T ∗; indeed, if the
elements of X∗ \ X̃ were covered with less than k′′ sets, i.e., if |T ′′∗| < k′′, then, since X̃ ⊆ X1,
T1 ∪ T ′′∗ would be a set system of size |T1 ∪ T ′′∗| < k covering |X∗| elements; in this case,
completing (even greedily) the family T1 ∪ T ′′∗ with k− |T1 ∪ T ′′∗| sets would lead to a k-sets
subfamily of S covering more than |X∗| ground elements, absurd since X∗ is the value of an
optimal solution for max k-set cover;

2. the elements of X∗ \ X̃ are still present in the instance (S ′, X ′) where the r-approximation
algorithm APPROX is invoked, as well as the subsets of S covering them, i.e., the sets of T ′′∗;

3. hence, the k′′ “best”4 sets of T ′′∗ form a feasible solution for max k′′-set cover in (S ′, X ′)
and cover more than (k

′′
/k)|X∗ \ X̃| elements of X∗ \ X̃.

Combining Facts 1, 2 and 3 and taking into account that T2 is an r-approximation for max k-set
cover, the following holds denoting by X2 the subset of X covered by T2:

|X2| > r ·
∣∣X̄∗∣∣ > r · k

′′

k
·
(∣∣∣X∗ \ X̃∣∣∣) = r · k − k

′

k
·
(∣∣∣X∗ \ X̃∣∣∣)

= r · (1− µ)
(∣∣∣X∗ \ X̃∣∣∣) (3)∣∣∣X∗ \ X̃∣∣∣ = |X∗| −

∣∣∣X̃∣∣∣ > |X∗| − |X1| (4)

Putting together (2), (3) and (4), we get the following for the approximation ratio of Algorithm
pSC-IMPROVED:

|X1|+ |X2|
|X∗|

>
|X1|+ r · (1− µ) · (|X∗| − |X1|)

|X∗|
(5)

>
r · (1− µ) · |X∗|+ [1− r · (1− µ)] · |X1|

|X∗|

>
|X∗| · [r · (1− µ) + µ · [1− r · (1− µ)]]

|X∗|
= r · (1− µ) + µ · [1− r · (1− µ)] = r(1− µ)2 + µ

Ratio in (5) is at least r, for any µ ∈ ((2− (1/r)), 1].
For the overall running time, it suffices to observe that, since APPROX runs in polynomial time,

the running time of pSC-IMPROVED is dominated by that of PARAM invoked within Algorithm 1.
Thus, the whole complexity of Algorithm pSC-IMPROVED becomes O∗(F (µk,∆)), as claimed. ut

4 In the sense that they cover the most of the elements covered by any other union of k′′ sets of T ′′∗.

8

Revisit now the proof of Proposition 6 and set r = 1− e−1. Then, (5) becomes:

|X1|+ |X2|
|X∗|

>
|X1|+

(
1− e−1

)
· (1− µ) · (|X∗| − |X1|)
|X∗|

>

(
1− e−1

)
· (1− µ) · |X∗|+

[
1−

(
1− e−1

)
· (1− µ)

]
· |X1|

|X∗|

>
|X∗| ·

[(
1− e−1

)
· (1− µ) + µ ·

[
1−

(
1− e−1

)
· (1− µ)

]]
|X∗|

=
(
1− e−1

)
· (1− µ) + µ ·

[
1−

(
1− e−1

)
· (1− µ)

]
=
(
1− e−1

)
−
(
1− 2e−1

)
· µ+

(
1− e−1

)
· µ2

This ratio is at least 1− 1/e+ ε, for any ε > (1− e−1)µ2− (1− 2e−1)µ, and the following corollary
holds.

Corollary 7. For any µ > (e−2)/(e−1) and any ε > (1− e−1)µ2− (1− 2e−1)µ, max k-set cover
can be approximated within ratio 1− 1/e + ε, in O∗(F (µk,∆))-time.

For instance, let us take µ = 0.5 > (e−2)/(e−1). Then application of Corollary 7 leads, after some
easy algebra to an approximation ratio at least 0.75 + (0.25/e) > 0.841 achieved with complex-
ity F (k/2, ∆). Even if, in the case of max k-set cover, the potential of the running time seems to
be quite small, we think that looking for this type of trade-offs between approximation ratios and
running times in order to try to beat polynomial approximation barriers is an interesting research
program.

In [14] an analogous result is given. There, the authors try to beat the APX-hardness of max
k-vertex cover by a moderately exponential approximation algorithm, i.e., by an approximation
algorithm achieving ratio 1 − ε, for any ε > 0, and running in time that, although exponential,
remains smaller than the running time of the best known exact algorithm for this problem. More
precisely, the following is proved by Della Croce and Paschos [14]. If T (n, k) is the running time of
an exact algorithm and ρ the approximation ratio of some polynomial approximation algorithm for
max k-vertex cover, then, for any ε > 0, max k-vertex cover can be approximated within
ratio 1− ε with worst-case running time T (n, [(2ρ− 1) +

√
1− 4ερ]k/2ρ).

4 max sat-k

We now study a generalization of max k-set cover, the max sat-k problem. Recall that in max
sat-k, given a CNF formula on n variables and m clauses, the objective is to satisfy at least p
clauses, by setting at most k variables to true.

Proposition 8. max sat-k parameterized by k is W[2]-hard and in W[P].

Proof. Setting p = m, max sat-k becomes sat-k that is W[2]-hard [26] (under the name weigh-
ted CNF-satisfiability). Proof of membership of max sat-k in W[P] can be done by an easy
reduction of this problem to bounded non-deterministic Turing machine computation.
One can guess within k non deterministic steps the variables to put to true and then one can
check in polynomial time whether, or not, at least p clauses are satisfied. ut

Consider an instance φ of max sat-k on a set of C clauses. Given any subset C ′ of C, we denote
by occ+(xi, C

′) the number of positive occurrences of the variable xi in C ′, and by occ−(xi, C
′) the

number of its negative occurrences. We set f(xi) := occ+(xi, C) + occ−(xi, C); so, the frequency
of the formula is f := maxi f(xi).

Before proving that max sat-k is FPT with respect to parameter p, let us introduce some
vocabulary on branching algorithms. A partial solution is a subset of a (complete) solution. A
branching algorithm is a recursive algorithm. Its execution on an instance I can be seen as a
tree, called branching tree. In this tree, each node is labeled with a sub-instance of I together

9

with a partial solution, or more generally with some data maintained by the algorithm. The root
is labeled with I and a leaf is a sub-instance that causes the branching algorithm to stop. At
a leaf, a complete solution is computed and returned. When identifying a node v to its label (a
sub-instance), the children of a sub-instance are the subinstances which label the children of v in
the branching tree.

We now prove this simple lemma.

Lemma 9. max sat-k is solvable in time O∗(2m).

Proof. We take any variable x that appears positively in at least one clause and negatively in
at least one clause. We do the standard branching: either set x to true (and decrease k by 1),
or set x to false. This branching satisfies at least one more clause in each branch. Therefore, the
branching tree is a subtree of the full binary tree with 2m leaves. At a leaf ` of the branching
tree, the remaining number of clauses is at most m− λ where λ is the depth of `. The branching
stops when each variable appears only negatively, or only positively. At this point, the variables
appearing only negatively can be set to false. This step is safe since we are constrained to put
at most (not exactly) k variables to true. We end up with an instance containing only positive
literals. Therefore, at the leaves, the instances can now be seen as instances of max k-hitting
set with at most m − λ sets; or equivalently, max k-set cover with at most m − λ elements
which can be solved by standard dynamic programming in time O∗(2m−λ). So, the overall running
time is O∗(2m). ut

We identify a solution of an instance of max sat-k to the set S of variables put to true. It induces
a set C ′ of satisfied clauses. The algorithm solving max sat-k we will present, performs two
kinds of choices: (1) setting a variable to true and (2) putting a clause which is not satisfied yet
into a set Cs of clauses that should eventually be satisfied. Putting a clause in Cs means that
we commit to satisfy it later. At any node of the branching tree, a child corresponds to either
performing choice (1) for some given variable, or choice (2) for some given clause. A choice (1) is
in accordance with S if it sets to true a variable in S. A choice (2) is in accordance with S if it
puts in CS a clause satisfied by solution S (i.e., this clause is in C ′). A node v of the branching
tree is in accordance with S if all the choices made from the root to this node are in accordance
with S. A node v of the branching tree deviates from a solution S if it is in accordance with S
but none of its children are in accordance with S.

Let us give a toy example to clarify those notions. Assume a solution which sets x2 and x3
to true and all the other variables to false. So, S = {x2, x3}. And, this assignment satisfies the
following set of clauses: {c2, c4, c5, c6, c8, c9}. Say, the root of the branching tree has 4 children:
setting x1 to true, committing to satisfy c1, committing to satisfy c2, and committing to satisfy c6.
The two first children are not in accordance with S, but the two last are. Indeed, c2 and c6 are
satisfied by S. Let us move to the child where we commit to satisfy c2. Suppose this node has
three children: setting x2 to true, committing to satisfy c1, committing to satisfy c3. We now move
to the child where we set x2 to true. So far, we have only done choices in accordance with S, so
our current node is in accordance with S. Now, say, this new node v has three children: setting x1
to true, committing to satisfy c3, committing to satisfy c7. None of those choices is in accordance
with S, so v deviates from S.

Proposition 10. max sat-k parameterized by p is FPT.

Proof. Let (C, k, p) be an instance of max sat-k where C is a set of clauses over a set of variables
X = {x1, x2, . . . , xn}, k is the maximum number of variables that can be set to true, and p
the minimum number of clauses to satisfy. We can assume that p < m/2. Indeed, if p > m/2,
the algorithm of Lemma 9 is an FPT algorithm. We also assume that the number of clauses
containing only negative literals is bounded above by m/2. Otherwise, setting all the variables to
false, satisfies more than p clauses. We recall that we are not forced to set exactly k variables to
true, but at most k. We observe that instances such that p < f/2 are always YES-instances, since
one can set one variable xi with frequency f to true if occ+(xi, C) > occ−(xi, C), and to false

10

otherwise, and set all the other variables to false. This assignment does indeed satisfy at least
max(occ+(xi, C), occ−(xi, C)) > f/2 < p clauses.

Note also that instances such that p < k are all YES-instances, too. Indeed, one can iteratively
set to true k variables such that at each step one satisfies at least one more clause. If, at some
point this is no longer possible, then setting all the remaining variables to false will satisfy all the
clauses which do not initially contain only negative literals, that is at least half of the clauses, so
more than p clauses. We may now assume that p > f/2 and p > k, so our parameter might as well
be p+ f + k.

We construct a branching algorithm which operates accordingly to a greedy criterion. A solu-
tion, or complete assignment, is given by a set S of size up to k which contains all the variables
set to true. Additionally, we maintain a list Cs of clauses that we satisfy or commit to satisfy. For
notational convenience we define Cu := C \ Cs, di(C ′) := occ+(xi, C

′), and let C+(xi, C
′) be the

set of clauses in C ′ where xi appears positively and C−(xi, C
′) the set of clauses where xi appears

negatively. Finally, C(xi, C
′) := C+(xi, C

′) ∪ C−(xi, C
′). Algorithm pSAT-k (see Algorithm 2) is

fairly simple. We find the variable x that, if set to true, would satisfy the maximum number of
clauses among the still unsatisfied clauses. We branch on setting x to true (choice (1)) or for each
still unsatisfied clause c that x would satisfy, on putting c in Cs (choice (2)).

Algorithm 2: A description of the algorithm pSAT-k.
Input: A set C of clauses on a set X of variables.
Output: A subset S ⊆ X of size at most k such that setting all the variables in S to true and all

the variables in X \ S to false, satisfies the greatest number of clauses in C.
set S = ∅, Cs = ∅;
ALG1(S,Cs):
if |S| < k and |Cs| < p then

pick the variable xi maximizing di(C \ Cs);
run ALG1(S ∪ {xi}, Cs ∪ C+(xi, C \ Cs));
for each clause c ∈ C(xi, C \ Cs) do

run ALG1(S,Cs ∪ {c});

else
if |S| = k then

store S;
else

(|Cs| > p) store a complete assignment satisfying Cs, if possible;

return the best among the solutions stored ;

The branching tree has depth at most k + p and arity at most f + 1, so the running time
of pSAT-k is O∗(2p(f + 1)k+p) = O∗(pO(p)), that is FPT with respect to parameter p, because
completing a solution to satisfy all the clauses of Cs can be done in time O∗(2|Cs|) since max
sat-k can be solved in O∗(2m) time by Lemma 9.

We now show the soundness of the algorithm. Let S0 be an optimal solution. From the root of
the branching tree, while it is possible, we follow a branch where all the nodes are in accordance
with S0. Let Sc be the set of variables set to true along this branch (by definition, Sc ⊆ S0), and
set Sn = S0 \ Sc. By construction, this branch terminates at v, which is either a leaf or a node
that deviates from S0. The leaf case being a special case of v being a deviating node, we assume
that v deviates from S0, i.e., no child of v is in accordance with S0. Let xi be the variable chosen
at this point by pSAT-k and consider Cd := C(xi, Cu) that is the set of clauses not yet in Cs in
which xi appears positively or negatively. We know that no clause in Cd is satisfied by S0. Let xj
be any variable in Sn.

We claim that Sh = (S0 \ {xj}) ∪ {xi} is also optimal and, by a straightforward induction,
a solution at the leaves of the branching tree is as good as S0. Setting xj to false, one loses at

11

most dj(Cu) clauses and setting xi to true, one gains exactly di(Cu) clauses. Indeed, we recall that
no clause of Cd can be satisfied by S0, and a fortiori by Sn, since otherwise, v would not deviate
from S0 (if a clause c ∈ Cd is satisfied by S0, then the child of v that commits to satisfy c remains
in accordance with S0). And, by our greedy choice, di(Cu) > dj(Cu). ut

We may observe that the previous algorithm has a worse time complexity than the already known
FPT algorithm for max k-set cover [4]. This is rather not surprising since, as we recall, max
k-set cover is a particular case of max sat-k corresponding to CNFs without negative literals.

We close this section by recalling that if the length of the clauses is also part of the parameter,
the decision version sat-k is FPT [26]. In other words, denoting by l-sat-k, the version sat-k
where each clause contains at most l literals, the following holds.

Proposition 11. [26] l-sat-k parameterized by k + l is FPT.

The proof of Proposition 11, as it is given by Niedermeier [26] works only because one has to
satisfy all the clauses. The parameterized complexity of max sat-k with respect to k + l still
remains unclear and, to our opinion, deserves further investigation.

5 Some Preliminary Thoughts About an Enhanced Weft Hierarchy:
the Counting Weft Hierarchy

A natural way to generalize any problem Π where one has to find a solution which universally
satisfies a property is to define partial Π, where the solution only satisfies the property a “suf-
ficient number of times”. In this sense, as mentioned, max k-set cover where one has to cover
at least p elements, generalizes min set cover, where all the elements must be covered. Simi-
larly max k-vertex cover where one has to find a minimum subset of vertices which covers at
least p edges, generalizes min vertex cover, where one has to cover all the edges; yet, max sat
generalizes sat. Cai studied the parameterized complexity of such partial problems (and others)
in [7].

These partial problems come along with two parameters: the size of the solution, frequently
denoted by k and the “sufficient number of times” quantified by p. Many of these problems when
parameterized by k are shown to be either W[1]- or W[2]-hard, but we do not know how to
prove a better membership result than the membership to W[P] (note that this is not the case of
max k-vertex cover, already proved to be W[1]-complete by Guo et al. [22]). This is a quite
important asymmetry between classical complexity theory as we know it from the literature (see,
for example, [21, 27, 28]) and parameterized complexity theory.

Showing the completeness of a W[1]- or a W[2]-hard problem, would imply that we can count
up to p with a circuit of constant depth and weft 1 or 2. By definition of the W-hierarchy, the
fact that k input-vertices of the boolean circuit can be set to true permits to deal with cardinality
constraint problems, but it is not suitable to problems, such as max k-set cover, where both the
value and the cardinality of the solution are constrained. We sketch, in what follows, a hierarchy
of circuits named counting weft hierarchy whose classes are larger than the corresponding ones in
the weft hierarchy (W-hierarchy). Basically, in the boolean circuit, we generalize the and -vertex
to a counting-vertex.

A counting vertex Cj with in-degree i where j ∈ {0, . . . , i} has out-degree 1 and outputs 1 iff
at least j of its i inputs are 1’s. Note that Ci corresponds to an and -vertex and C1 is an or -vertex.
A counting circuit is a circuit with some input vertices, counting vertices, negation vertices, and
exactly one output vertex. Correspondingly, CW[k] is the class of problems Π parameterized by p
such that there is a constant h and an FPT algorithm (in p) A, such that A builds a counting
circuit C of constant depth h and weft k, and I ∈ Π iff C(I) = 1. It can be immediately seen that
the counting weft hierarchy has exactly the same definition as the weft hierarchy up to replacing
a (boolean) circuit by a (boolean) counting circuit.

Based upon the sketchy definition just above, the following can be proved by just taking the
usual circuits for min set cover and sat (recall for completeness that for min set cover, the

12

input-vertices are the sets, elements are large or -vertices taking as input the sets where they
appear, and the output-vertex is a large and -vertex taking all or-vertices as input) and replacing
the corresponding large and -vertices by vertices Cp.

Proposition 12. The following inclusions hold for the counting weft hierarchy: both max k-set
cover and max sat-k are in CW[2].

As mentioned in the introduction, the results by Fellows et al. [20] which also focus on parallel
W-hierarchy with other types of vertices, cannot be used here since the counting vertices are
symmetric but not bounded.

Acknowledgement. The pertinent suggestions and comments of two anonymous referees have
greatly improved the quality of this paper.

References

1. A. A. Ageev and M. Sviridenko. Approximation algorithms for maximum coverage and max cut with
given sizes of parts. In G. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Proc. Conference
on Integer Programming and Combinatorial Optimization, IPCO’99, volume 1610 of Lecture Notes in
Computer Science, pages 17–30. Springer-Verlag, 1999.

2. A. Badanidiyuru, R. Kleinberg, and H. Lee. Approximating low-dimensional coverage problems. In
T. K. Dey and S. Whitesides, editors, Proc. Symposuim on Computational Geometry, SoCG’12, Chapel
Hill, NC, pages 161–170. ACM, 2012.

3. A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput.,
39(2):546–563, 2009.

4. M. Bläser. Computing small partial coverings. Inform. Process. Lett., 85(6):327–331, 2003.
5. E. Bonnet, B. Escoffier, V. Th. Paschos, and E. Tourniaire. Multi-parameter complexity analysis for

constrained size graph problems: using greediness for parameterization. Algorithmica, 71(3):566–580,
2015.

6. E. Bonnet, V. Th. Paschos, and F. Sikora. Multiparameterizations for max k-set cover and related
satisfiability problems. CoRR, abs/1309.4718, 2013.

7. L. Cai. Parameter complexity of cardinality constrained optimization problems. The Computer Jour-
nal, 51:102–121, 2008.

8. L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approximability
results. In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop on Parame-
terized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages
96–108. Springer-Verlag, 2006.

9. M. Cesati. The turing way to parameterized complexity. J. Comput. System Sci., 67(4):654–685, 2003.
10. J. Chen, D. K. Friesen, W. Jia, and I. A. Kanj. Using nondeterminism to design deterministic

algorithms. In R. Hariharan, M. Mukund, and V. Vinay, editors, Proc. Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’01, volume 2245 of Lecture Notes in Computer
Science, pages 120–131. Springer-Verlag, 2001.

11. Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability. In H. L. Bodlaender and
M. A. Langston, editors, Proc. International Workshop on Parameterized and Exact Computation,
IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages 109–120. Springer-Verlag, 2006.

12. Y. Chen and B. Lin. The constant inapproximability of the parameterized dominating set problem.
CoRR, abs/1511.00075, 2015.

13. G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to optimize float: an
analytic study of exact and approximate algorithms. Management Sci., 23(8):789–810, 1977.

14. F. Della Croce and V. Th. Paschos. Efficient algorithms for the max k-vertex cover problem.
J. Comb. Optim., 28(3):674–691, 2014.

15. F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization, iterative compres-
sion, modeled crown reductions: new FPT techniques, an improved algorithm for set splitting, and
a novel 2k kernelization for vertex cover. In R. G. Downey, M. R. Fellows, and F. Dehne, editors,
Proc. International Workshop on Parameterized and Exact Computation, IWPEC’04, volume 3162 of
Lecture Notes in Computer Science, pages 271–280. Springer-Verlag, 2004.

16. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.
Springer, New York, 1999.

13

17. R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In H. L.
Bodlaender and M. A. Langston, editors, Proc. International Workshop on Parameterized and Ex-
act Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages 121–129.
Springer-Verlag, 2006.

18. R. G. Downey, M. R. Fellows, C. McCartin, and F. A. Rosamond. Parameterized approximation of
dominating set problems. Inform. Process. Lett., 109(1):68–70, 2008.

19. U. Feige. A threshold of lnn for approximating set cover. J. Assoc. Comput. Mach., 45:634–652, 1998.
20. M. R. Fellows, J. Flum, D. Hermelin, M. Müller, and F. A. Rosamond. W-hierarchies defined by

symmetric gates. Theory Comput. Sys., 46(2):311–339, 2010.
21. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-

completeness. W. H. Freeman, San Francisco, 1979.
22. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of vertex cover variants. Theory

Comput. Syst., 41(3):501–520, 2007.
23. Y. Liu, S. Lu, J. Chen, and S.-H. Sze. Greedy localization and color-coding: improved matching and

packing algorithms. In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop
on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer
Science, pages 84–95. Springer-Verlag, 2006.

24. D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51(1):60–
78, 2008.

25. D. Moshkovitz. The projection games conjecture and the NP-hardness of lnn-approximating set-
cover. In A. Gupta, K. Jansen, J. D. P. Rolim, and R. A. Servedio, editors, Proc. Workshop on
Approximation Algorithms for Combinatorial Optimization Problems and Workshop on Randomization
and Computation, APPROX-RANDOM’12, volume 7408 of Lecture Notes in Computer Science, pages
276–287. Springer-Verlag, 2012.

26. R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, Oxford, 2006.

27. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
28. C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity. Prentice

Hall, New Jersey, 1981.
29. P. Skowron and P. Faliszewski. Fully proportional representation with approval ballots: approximating

the maxcover problem with bounded frequencies in FPT time. In AAAI Conference on Artificial
Intelligence, 2015.

14

Parameterized Exact and Approximation Algorithms for
Maximum k-Set Cover and Related Satisfiability Problems

Édouard Bonnet1, Vangelis Th. Paschos2, Florian Sikora2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
bonnet.edouard@sztaki.mta.hu

2 Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, Paris, France
{paschos,florian.sikora}@lamsade.dauphine.fr

Abstract. Given a family of subsets S over a set of elements X and two integers p and k,
max k-set cover consists of finding a subfamily T ⊆ S of cardinality at most k, covering
at least p elements of X. This problem is W[2]-hard when parameterized by k, and FPT
when parameterized by p. We investigate the parameterized approximability of the problem
with respect to parameters k and p. Then, we show that max sat-k, a satisfiability problem
generalizing max k-set cover, is also FPT with respect to parameter p.

1 Introduction

In the max k-set cover problem, we are given a family of subsets S = {S1, . . . , Sm} over a set
of elements X = {x1, . . . , xn}, and two integers p and k. The goal is to find a subcollection T of at
most k subsets that covers at least p elements. In what follows, we make the following two natural
hypotheses for the instances of max k-set cover: (a) Si 6= Sj , i, j = 1, . . . ,m and (b) Si * Sj ,
i, j = 1, . . . ,m.

max k-set cover is a well-known problem met in many real-world applications. To the best of
our knowledge, it has been studied for the first time in the late seventies by Cornuejols et al. [13].
This combinatorial problem originated from a financial application, where one wishes to find an
optimal location of bank accounts in order to maximize clearing time. Since then, it is used for
modeling real problems met in several areas such as databases, social networks, sensor placement,
information retrieval, etc. A non-exhaustive list of references to such applications can be found in
Badanidiyuru and al. [2].

max k-vertex cover, the graph version of max k-set cover is defined as follows: given
a graph G = (V,E) and two integers k and p, one wants to determine k vertices that cover at
least p edges. max k-vertex cover is a special case of max k-set cover where any element
of X belongs to exactly two sets of S.

Both max k-set cover and max k-vertex cover are very important problems, since they
are natural generalizations of min set cover and min vertex cover, respectively. Both are
NP-hard (setting p = n, max k-set cover becomes the seminal min set cover problem; setting
p = |E|, max k-vertex cover coincides with the min vertex cover problem).

max k-set cover is known to be approximable within a factor 1 − 1/e (to our knowledge, it
is the only polynomial approximation result known for max k-set cover on general instances)
but, for any ε > 0, no polynomial algorithm can approximate it within ratio 1 − 1/e + ε unless
P = NP [19], while min set cover is polynomially inapproximable within ratio (1 − ε) lnn, for
arbitrarily small ε > 0, unless P = NP [25]. On the other hand, max k-vertex cover, is APX-
hard and the best-known approximation ratio for this problem, in general graphs, is bounded
below by 3/4, obtained by a very smart linear programming method by Ageev et al. [1].

max sat-k is a satisfiability problem closely related to max k-set cover. It is also a natural
“fixed cardinality generalization” of max sat. In max sat-k, we are given a CNF on n variables
and m clauses and we ask for setting to true at most k variables satisfying at least p clauses. One
may observe that max sat-k without negation is max k-set cover.

1

The goal of the paper is to establish several parameterized results for max k-set cover
and for max sat-k. We mainly study the parameterized approximability of the former and exact
parameterization of the latter.

2 Preliminaries

We first give the basic definitions of the parameterized complexity theory. A parameterized prob-
lem (Π, k) is said fixed-parameter tractable (or in the class FPT) with respect to a parameter k
if it can be solved by an algorithm with running time f(k) · |I|O(1) time (in fpt-time), where f is
some computable function and |I| is the instance size. Such algorithms are called fixed-parameter
tractable algorithms, or FPT algorithms. A parameterized reduction (or FPT reduction) from a
problem Π1 to a problem Π2 is a mapping of an instance (I, k) of Π1 to an instance (I ′, k′)
of Π2, computable in time f(k) · |I|O(1), such that (I, k) ∈ Π1 ⇔ (I ′, k′) ∈ Π2, k′ 6 g(k), and
|I ′| 6 h(k) · |I|O(1) for some computable functions f , g, and h. This seemingly technical definition
is just tailored to ensure that if Π2 is in FPT and there is an FPT reduction from Π1 to Π2, then
Π1 is also in FPT. Some problems such as Clique parameterized by the solution size are not in
FPT. In fact, there is a whole hierarchy of classes beyond FPT: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
W[P] ⊆ XP. It is commonly believed that FPT 6= W[1].

We need some additional definitions in order to give a precise meaning to those classes. A
boolean circuit is a directed acyclic graph where every vertex of in-degree 0 is an input vertex,
every vertex of in-degree 1 is a negation vertex and every vertex of in-degree greater than 2 is
either an and-vertex or an or-vertex. Exactly one vertex with out-degree 0 is the output vertex.
The depth of such a circuit is the maximum length of a path from an input vertex to the output
vertex, and the weft of such circuit is the maximum number of large vertices on a path from
an input vertex to the output vertex. A vertex is large if its in-degree exceeds some pre-agreed
constant bound. Giving boolean values to the input vertices determines the value of every vertex
in the classic way, and in particular, if the output vertex receive value true for a given assignment,
we say that this assignment satisfies the circuit.

The weighted circuit satisfiability (WCS) problem takes as input a boolean circuit and
an integer k and decides if there is a satisfying assignment for this circuit with exactly k input
vertices set to true. A parameterized problem Π belongs to the class W[t], t > 1, if there is an FPT
reduction from Π to WCS restricted to circuits of weft at most t. A parameterized problem Π
is hard for the class W[t] (with t > 1) if, for any problem Π ′ in W[t], there is an FPT reduction
from Π ′ to Π; or equivalently if there is an FPT reduction from WCS restricted to circuits of weft
at most t to Π. A parameterized problem Π is W[t]-complete if it is W[t]-hard and in W[t]. For
example, max independent set parameterized by the size of the solution is W[1]-complete and
min dominating set parameterized by the size of the solution is W[2]-complete. The class W[P]
contains problems reducible to WCS without constraints on the weft of the circuits. The class XP
contains problems solvable in time |I|f(k), where f is any computable function. See for example
the monograph of Downey and Fellows for more details about fixed-parameter tractability [16].

We now go back to our problems. max k-set cover is W[2]-hard for the parameter k since,
by setting p = n, we obtain an instance of min set cover which is W[2]-hard. An FPT algorithm
with respect to the standard parameter p is given by Bläser [4]. Let us note that recently and
independently certain aspects of parameterized complexity of max k-set cover have also been
studied by Skowron and Faliszewski [29]. These results are summarized in Table 1.

Note that different parameterizations are possible for the same problem. In fact, one can
also parameterize a problem by a combination of parameters (instead of just one parameter). A
multiparameterization by parameters k1, k2, . . . , kh consists of taking k1+k2+. . .+kh as parameter.
Multiparameterization poses novel and interesting open questions. For max k-set cover, for
instance, several natural parameters as p (commonly called the “standard parameter”), k, ∆ =
maxi{|Si|} and f = maxi |{j|xi ∈ Sj}| (commonly called the maximum frequency), can be jointly
involved in a complexity study of the problem.

We first give multiparameterization of max k-set cover with respect parameters k and p
(Section 3). The most important part of this section is Subsection 3.2 dedicated to the study

2

of the parameterized approximation of max k-set cover for these two parameters. Consider
a problem Π, parameterized by some parameter π. Then, we say that Π is parameterized r-
approximable if there exists an algorithm A that is FPT when parameterized by π such that:

– if Π is a minimization problem, then for any instance I of Π where π 6 β, A produces a
solution with value at most rβ; otherwise it returns any solution (which can be smaller or
greater than rβ);

– if Π is a maximization problem, then for any instance I of Π where π > β, A produces a
solution with value at least rβ; otherwise it returns any solution (which can be smaller or
greater than rβ).

This line of research was initiated by three independent works [17, 8, 11]. For an excellent overview,
see the survey of Marx [24]. It aims at beating polynomial approximation barriers by offering
more generous running time. The underlying question motivating Subsection 3.2 is to what extent
parameterized approximation is able to do it for max k-set cover?.

Skowron and Faliszewski show, in [29], that it is possible when the parameter considered is
k + f , where f is the frequency of the max k-set cover-instance, i.e., the maximum number of
sets in S, a ground element belongs to. But what happens when considering only k instead?

For parameter k we mainly show a conditional result, informally, a parameterized (with respect
to k) approximation of max k-set cover within ratio greater than 1 − 1/e + ε, for some ε > 0,
would lead to a parameterized approximation of min set cover (with respect to the standard
parameter) within ratio (1 − ε) lnn, for some fixed ε > 0. Even if this is a conditional result,
we conjecture that the right answer is negative, i.e., that max k-set cover is inapproximable
within ratio greater than 1− 1/e+ ε, for any ε > 0, in FPT time parameterized by k. We also give
in Subsection 3.2 a weaker negative result for max k-set cover, namely, that under the same
parameterization, it is inapproximable within ratio 1− (1/n)

4√
lnn, unless ETH3 fails.

Let us mention that max k-vertex cover can be approximately solved within ratio 1 − ε,
for any fixed ε > 0, in FPT time parameterized by k [24].

For parameter p, we show that max k-set cover can be solved within ratio (strictly) greater
than 1 − 1/e in time FPT parameterized by p, which is smaller than that needed for the exact
solution of the problem.

In Section 4, we settle the parameterized complexity of max sat-k, where, given a CNF on n
variables andm clauses, one asks for setting to true at most k variables satisfying at least p clauses.
The main result is that max sat-k is FPT with respect to parameter p.

To prove that, we refine a technique for obtaining multiparameterized FPT algorithms de-
veloped by Bonnet et al. [5], called greediness-for-parameterization, which is based on branching
algorithms. Roughly, a branching algorithm extends a partial solution at each recursion step. The
execution of such an algorithm can be seen as a branching tree. The best among the complete so-
lutions at the leaves of the branching tree, is output. The basic idea of the technique is to branch
on:

– a greedy extension of the partial solution;
– other extensions in the neighborhood of the greedy extension.

The soundness of the algorithm lies on the fact that if none of the above extensions of the partial
solution is done by a supposed optimal solution, then the greedy choice stays optimal at the end.
Although the techniques are not the same, greediness-for-parameterization shares some common
points with the greedy localization technique (see [10, 15, 23] for some applications). Here, one
uses a local search approach: one starts from a computed approximate solution and turns it to
an optimal solution. However, greedy localization technique is less general than greediness-for-
parameterization, since it suits maximization problems only.

In Section 5, we suggest an enhanced weft hierarchy called counting weft hierarchy dedicated
to those cardinality-constrained problems, such as max sat-k and max k-set cover which are
3 Exponential Time Hypothesis: there is a real number δ > 0 such that 3-sat is not solvable in O(2δn)
on instances with n variables.

3

W[i]-hard for some i, and in W[P], but not even known to be in W[j] for some integer j. Related
issues have been discussed by Fellows et al. [20].

3 Parameterizations for max k-set cover

3.1 Exact Parameterization

As mentioned in Section 1, in the max k-set cover problem, we are given a family of subsets
S = {S1, . . . , Sm} over a set of elements X = {x1, . . . , xn}, and two integers p and k. The goal is
to find a subcollection of S of size k that covers at least p elements of X.

Let us first note that, as p 6 ∆k, the FPT result for max k-set cover with respect to
parameter p presented by Bläser [4], immediately implies that this problem is also FPT when
parameterized by k + ∆. An alternative proof using greediness-for-parameterization is given by
Bonnet et al. [6]. It might be worth reading it since it is a good introduction to the FPT algorithm
for max sat-k in Section 4.

We now explain why max k-set cover parameterized by k + f is W[1]-hard. Each in-
stance (S, X) of max k-set cover such that f = 2 (that is, each element appears in at most two
sets) can be seen as a graph whose vertices are the sets in S, and where there is an edge between
two vertices if the corresponding sets share at least one element. Therefore max k-set cover
with frequency 2 is equivalent to the max k-vertex cover problem where, given a graph G and
a number k, the goal is to cover at least p edges with k vertices. Thus, max k-vertex cover,
W[1]-hard with respect to k [7], is a restricted case of max k-set cover.

Note that in the reduction above the maximum set-cardinality ∆ in an instance of max k-set
cover with f = 2, coincides with the maximum degree of the derived graph. Hence, with the same
argument, it can be shown that max k-set cover is not in XP when parameterized by ∆ + f ,
since max k-vertex cover is NP-hard even in graphs with bounded degree (being, as mentioned
above, a generalization of min vertex cover that remains NP-hard even in these graphs).

Finally, in the following proposition, we prove that max k-set cover parameterized by k
belongs to W[P].

Proposition 1. max k-set cover parameterized by k belongs to W[P].

Proof. The proof is in exactly the same spirit with the proof by Cesati [9]. We reduce max
k-set cover to bounded non-deterministic Turing machine computation which is a
known W[P]-complete problem [16] and defined as follows. Given a non-deterministic Turing ma-
chine M , an input word w, an integer n encoded in unary and a positive integer k, does M(w)
non-deterministically accept in at most n steps and using at most k deterministic steps?

Let I = (S = {S1, . . . , Sm}, p) be an instance of max k-set cover. Build a Turing MachineM
with three tapes T1, T2 and T3. Tape T1 is dedicated to non-deterministic guess. Write there the k
sets Sa1 , . . . , Sak . Then, the head of T1 runs through all the elements and when a new element is
found it is written down on the second tape. The third tape counts the number of already covered
elements. If this number reaches p, then M accepts. Thus, there exist k non-deterministic steps,
and a polynomial (in |I|) number of deterministic steps (precisely, O(|I|2)). ut

The results mentioned in this paragraph as well as literature results are summarized in Table 1.

Parameter: ∆+ f k k + f k +∆ or p n− p (n− p) + k

Status: /∈ XP W[2]-hard
in W[P] (Prop. 1)

W[1]-hard
in W[P] FPT [4, 6] /∈ XP [29] W[2]-complete [29]

Table 1. Exact parameterized complexity of max k-set cover for different parameters.

4

3.2 Approximation Issues

Let us now handle parameterized approximation of max k-set cover. We first prove the following
basic lemma that is an easy generalization of Proposition 5.2 given by Feige [19].
Lemma 2. Any r-approximation algorithm, parameterized by k, for max k-set cover can be
transformed into an FPT t-approximation algorithm, parameterized by the standard parameter
(optimum value), for min set cover where:

t <

⌈
− lnn

ln(1− r)

⌉
Proof. The basic idea is similar to the idea of Feige [19] (Proposition 5.2). Its key ingredient
is the following. Consider some algorithm kSC-ALG that solves max k-set cover. Then, it can
iteratively be used to solve min set cover as follows. Consider an instance I = (F , U) of min set
cover where F is a family of subsets of a ground set U . Iteratively run kSC-ALG for k = 1, . . . ,m
(where m is the size of F). Eventually, one value of k will equal the value of the optimal solution
for min set cover. Let us reason with respect to this value of k, denoted by k0. Furthermore,
assume that kSC-ALG achieves approximation ratio r for max k-set cover. Invoke it with value k0,
(note that now p = n, the size of the ground set U), remove the ground elements covered, store
the k0 elements used and relaunch it with value k0, until all ground elements of U are removed.
Since it is assumed to achieve approximation ratio r after its `-th execution at most (1 − r)`n
ground elements remain uncovered. Finally, suppose that after t executions, all ground elements
are removed (covered). Then, the tk0 subsets stored form a t-approximate solution for the min
set cover-instance, where t satisfies (after some very simple algebra):

(1− r)tn < 1 =⇒ t <

⌈
− lnn

ln(1− r)

⌉
(1)

Moreover, observe that the complexity of the algorithm derived for min set cover is at most m
times the complexity of kSC-ALG; so, it remains FPT with respect to the optimal value for min
set cover . ut
Recall that, as mentioned in the beginning of Section 1, max k-set cover is inapproximable in
polynomial time within ratio 1 − 1/e + ε, for any ε > 0, unless P = NP [19]. We first prove in
the sequel a conditional result, informally, getting such a ratio even in FPT time parameterized
by k, is a rather difficult task. More precisely, we prove that if this were possible, then we could
get, in parameterized time, an approximation ratio of (1 − ε) ln(n/lnn) for min set cover, for
some fixed ε > 0. Even if this result is, properly speaking, a conditional result, it gives, in some
sense, the measure of the difficulty of approximating max k-set cover within ratio strictly better
than 1 − 1/e in FPT time parameterized by k. Next, we prove an FPT inapproximability result,
namely that FPT approximation of max k-set cover within ratio greater than 1− (1/n)

4√
ln k is

impossible unless W[2] = FPT.
Proposition 3. max k-set cover parameterized by k is inapproximable within ratio (1−1/e+ε),
for any ε ∈ [0, 1/e), unless min set cover is approximable within ratio (1− η) ln(n/lnn), for some
fixed η > 0, in FPT time parameterized by the value of the optimum.

Proof. Revisit Lemma 2, take r = 1− (1/e) + ε, for some ε ∈ [0, 1/e) and assume that the kSC-ALG
of Lemma 2 (that is FPT in k) achieves approximation ratio r. Then, in order to prove the result
claimed, follow the procedure described in Lemma 2 until there are at most lnn, say c lnn for some
c 6 1, uncovered elements in U and solve the remaining instance by, say, the best known exact
algorithm which works within O∗(2n) in instances with ground set-size n [3]. Since the surviving
ground set has size c lnn, it is polynomial to optimally solve it. Reasoning exactly as in Lemma 2
we get:

n(1− r)t = c lnn =⇒ t =
ln c+ ln lnn− lnn

ln(1− r)
6

ln lnn− lnn

ln(1− r)
' ln lnn− lnn

−εe− 1

=
lnn− ln lnn

1 + εe
=

1

1 + εe
ln
(n

lnn

)
5

Setting η = εe/(1+εe), the proof of the proposition is concluded. ut

As one can see, the result of Proposition 3 is conditional and relates the parameterized approx-
imability of max k-set cover within ratios better than the one achieved in polynomial time to
the parameterized approximability of min set cover within ratios that are almost the same (in
fact slightly smaller) as the one polynomially achieved for this problem. Furthermore this ratio is
tight for the polynomial time (recall that it is NP-hard to approximate min set cover within
ratio (1 − ε) lnn, for arbitrarily small ε > 0 [25]). We conjecture that the real parameterized
(with respect to the optimum) inapproximability bound of min set cover is O(log n), so that
the inapproximability bound (conditionally) conjectured by Proposition 3 is the correct one. But,
unfortunately, we have not been able to prove it until now and the negative result by Moshkovitz
in [25] does not seem to be usable as it is for the parameterized inapproximability of max k-set
cover.

In what follows, in the spirit of Lemma 2 and of Proposition 3 and based upon a recent result
by Chen and Lin [12], we show a weaker upper bound for the parameterized approximability of
max k-set cover with respect to k.

Consider the min dominating set problem defined as follows: given a graph G = (V,E),
determine a minimum size vertex subset D ⊆ V such that every vertex of V is either in D or
has a neighbor in D. There exists a well-known approximability preserving reduction from min
dominating set to min set cover that works as follows: given a graph G = (V,E) of order n,
instance of min dominating set, we transform it into an instance I = (F , U) of min set cover
as follows:

– F = {F1, . . . , Fn};
– U = {u1, . . . , un};
– ∀i ∈ {1, . . . , n}, Fi = {uj : vj ∈ Γ [vi]}, where Γ [vi] denotes the closed neighborhood of vertex
vi ∈ V .

Then, it is easy to see that any dominating set D of G corresponds to a set cover F ′ of I of the
same cardinality by simply considering in F ′ the subsets of F having the same indices with the
vertices of D and vice-versa. An immediate consequence of this reduction is that both problems
share the same approximation ratios and inapproximability bounds.

Recently, Chen and Lin [12] have proved that, under ETH, no FPT algorithm for min domi-
nating set can achieve approximation ratio smaller than, or equal to, 4+ε

√
ln γ(G), for any positive

constant ε, where γ(G) denotes the cardinality of a minimum dominating set in G. The reduction
just described, immediately transfers this lower bound to min set cover; so the following holds
for this latter problem: under ETH, no FPT algorithm for min set cover can achieve approxi-
mation ratio smaller than, or equal to, 4+ε

√
ln k0, for any positive constant ε, where k0 denotes the

cardinality of a minimum set cover instance (F , U).
Based upon the result by Chen and Lin [12], Lemma 2, and the approximation-preserving

reduction from min dominating set to max k-set cover given just above, the following can
be proved.

Proposition 4. max k-set cover is inapproximable within ratio 1 − (1/n)
4√
ln k in FPT time

parameterized by k, unless ETH fails.

Proof. The proof follows the one of Lemma 2. From (1), taking for t (the ratio of min set cover)
the 4
√

ln k0-inapproximability bound derived by the the reduction above and by Chen and Lin
in [12] and omitting (in order to simplify calculations) the ceiling in (1), some elementary algebra
leads to:

ln(1− r) 6 − lnn

t
6
− lnn
4
√

ln k0
=⇒ 1− r >

(
1

n

) 4√lnK0

=⇒ r 6 1−
(

1

n

) 4√ln k0

as claimed. ut

6

Let us note that a parameterized inapproximability bound weaker than that of Proposition 4
can be obtained as follows. Consider an instance G of min dominating set and transform it to
an instance I = (F , U) of min set cover by the transformation seen above. Assume now that
kSC-ALG achieves ratio 1− c/n for some fixed c > 1. Then, just run kSC-ALG only once for every k.
Assuming that kSC-ALG runs in time O(p(n)F (k)) for some polynomial p, the whole of runs will
take m ·O(p(n)F (k))-time that remains FPT in k. For k0 (the value of the optimal solution for min
set cover in instance I), it holds that, after this run, at most n− n(1− (c/n)) = c elements will
remain uncovered. Any (non-trivial) cover for them uses at most c sets to cover them. In this
case, the procedure above achieves an additive approximation error c + 1 (recall that c is fixed)
for min set cover, and this ratio is identically transferred to min dominating set via the
reduction. But for min dominating set, achievement of any constant additive approximation
error is W[2]-hard [18]. So, the following corollary holds.

Corollary 5. max k-set cover is inapproximable within ratio 1 − c/n in time parameterized
by k, for any constant c > 1, unless W[2] = FPT.

For the rest of the section, we relax the optimality requirement for the max k-set cover-
solution and we show that we can devise an approximation algorithm with ratio strictly better than
1− 1/e (beating so the polynomial inapproximability bound of Feige [19]), that runs in FPT time
parameterized by k and ∆ but whose complexity is lower (although depending on the accuracy)
than the best exact parameterized complexity for max k-set cover.

In fact, we are going to prove a stronger result, claiming that, for any polynomial approx-
imation ratio r achieved by some polynomial time algorithm APPROX and any parameterized
algorithm PARAM(π) for max k-set cover, where π can be a single parameter or a vector of
parameters, r can be improved in FPT time parameterized by π by an algorithm whose running
time is smaller than the one of PARAM(π).

The way of doing it is to built a kind of hybrid algorithm that, informally, in the case of max
k-set cover we deal with, where π = (k,∆), it works as follows:

– it solves max k-set cover by invoking PARAM(π′), with π′ = (k′, ∆) for some k′ < k, stores
the solution computed, and removes it from the initial instance;

– it invokes APPROX on the surviving instance and stores the solution obtained;
– it takes the union of the two solutions.

Here, our objective is to establish a trade-off between the solution quality and the running time.
Therefore, the running time of the presented algorithms depend on the approximation ratio.

Assume an FPT (exact) algorithm running in time O∗(F (k,∆)) for some function F (that is
Algorithm PARAM(k,∆)) together with an approximation algorithm APPROX achieving approxima-
tion ratio r for max k-set cover and consider Algorithm 1, called pSC-IMPROVED in what follows,
running on an instance (S, X) of max k-set cover, where X is the ground set and S a family
of subsets of X.

Algorithm 1: A description of the algorithm pSC-IMPROVED.
Input: An instance (S, X, k) of max k-set cover.
Output: A subfamily T̂ ⊂ S containing k subsets.
fix some ε > 0;
take µ ∈ (0, 1) such that ε > (1− e−1)µ2 − (1− 2e−1)µ;
set k′ = µk;
run Algorithm PARAM(k′,∆) and store the solution computed (denoted by T1); let X1 be the subset
of X covered by T1;
set S ′ = S \ T1, X ′ = X \X1 and k′′ = k − k′ = (1− µ)k;
run the r-approximation algorithm APPROX on the max k-set cover-instance (S ′, X ′, k′′) and
store the solution T2 computed;
return T̂ = T1 ∪ T2;

7

Solution T̂ computed by pSC-IMPROVED has cardinality k, i.e., it is feasible for max k-set
cover. Let us now analyze it in the following proposition.

Proposition 6. Given a polynomial time approximation algorithm with ratio r for max k-set
cover, for any µ ∈ (2−(1/r), 1], max k-set cover can be approximated within ratio r(1−µ)2+µ >
r, in O∗(F (µk,∆))-time, where ∆ is the maximum cardinality of a set.

Proof. Fix an optimal solution T ∗ and denote by X∗ the subset of X covered by T ∗. Recall that
in Algorithm 1, we denote by X1 the subset of X covered by the set T1 computed by PARAM(k′, ∆).
Obviously:

|X1| > µ |X∗| (2)

Fix an optimal max k′′-set cover-solution T̄ of (S ′, X ′), denote by X̄∗ the set of elements of X
covered by T̄ and set X̃ = X∗ ∩X1. Remark now the following facts:

1. X∗ \ X̃ is covered with at least k′′ sets in T ∗ (denote by T ′′∗ this system); otherwise, the sets
of T ∗ covering X∗ \ X̃ together with T1 would be a solution better than T ∗; indeed, if the
elements of X∗ \ X̃ were covered with less than k′′ sets, i.e., if |T ′′∗| < k′′, then, since X̃ ⊆ X1,
T1 ∪ T ′′∗ would be a set system of size |T1 ∪ T ′′∗| < k covering |X∗| elements; in this case,
completing (even greedily) the family T1 ∪ T ′′∗ with k− |T1 ∪ T ′′∗| sets would lead to a k-sets
subfamily of S covering more than |X∗| ground elements, absurd since X∗ is the value of an
optimal solution for max k-set cover;

2. the elements of X∗ \ X̃ are still present in the instance (S ′, X ′) where the r-approximation
algorithm APPROX is invoked, as well as the subsets of S covering them, i.e., the sets of T ′′∗;

3. hence, the k′′ “best”4 sets of T ′′∗ form a feasible solution for max k′′-set cover in (S ′, X ′)
and cover more than (k

′′
/k)|X∗ \ X̃| elements of X∗ \ X̃.

Combining Facts 1, 2 and 3 and taking into account that T2 is an r-approximation for max k-set
cover, the following holds denoting by X2 the subset of X covered by T2:

|X2| > r ·
∣∣X̄∗∣∣ > r · k

′′

k
·
(∣∣∣X∗ \ X̃∣∣∣) = r · k − k

′

k
·
(∣∣∣X∗ \ X̃∣∣∣)

= r · (1− µ)
(∣∣∣X∗ \ X̃∣∣∣) (3)∣∣∣X∗ \ X̃∣∣∣ = |X∗| −

∣∣∣X̃∣∣∣ > |X∗| − |X1| (4)

Putting together (2), (3) and (4), we get the following for the approximation ratio of Algorithm
pSC-IMPROVED:

|X1|+ |X2|
|X∗|

>
|X1|+ r · (1− µ) · (|X∗| − |X1|)

|X∗|
(5)

>
r · (1− µ) · |X∗|+ [1− r · (1− µ)] · |X1|

|X∗|

>
|X∗| · [r · (1− µ) + µ · [1− r · (1− µ)]]

|X∗|
= r · (1− µ) + µ · [1− r · (1− µ)] = r(1− µ)2 + µ

Ratio in (5) is at least r, for any µ ∈ ((2− (1/r)), 1].
For the overall running time, it suffices to observe that, since APPROX runs in polynomial time,

the running time of pSC-IMPROVED is dominated by that of PARAM invoked within Algorithm 1.
Thus, the whole complexity of Algorithm pSC-IMPROVED becomes O∗(F (µk,∆)), as claimed. ut

4 In the sense that they cover the most of the elements covered by any other union of k′′ sets of T ′′∗.

8

Revisit now the proof of Proposition 6 and set r = 1− e−1. Then, (5) becomes:

|X1|+ |X2|
|X∗|

>
|X1|+

(
1− e−1

)
· (1− µ) · (|X∗| − |X1|)
|X∗|

>

(
1− e−1

)
· (1− µ) · |X∗|+

[
1−

(
1− e−1

)
· (1− µ)

]
· |X1|

|X∗|

>
|X∗| ·

[(
1− e−1

)
· (1− µ) + µ ·

[
1−

(
1− e−1

)
· (1− µ)

]]
|X∗|

=
(
1− e−1

)
· (1− µ) + µ ·

[
1−

(
1− e−1

)
· (1− µ)

]
=
(
1− e−1

)
−
(
1− 2e−1

)
· µ+

(
1− e−1

)
· µ2

This ratio is at least 1− 1/e+ ε, for any ε > (1− e−1)µ2− (1− 2e−1)µ, and the following corollary
holds.

Corollary 7. For any µ > (e−2)/(e−1) and any ε > (1− e−1)µ2− (1− 2e−1)µ, max k-set cover
can be approximated within ratio 1− 1/e + ε, in O∗(F (µk,∆))-time.

For instance, let us take µ = 0.5 > (e−2)/(e−1). Then application of Corollary 7 leads, after some
easy algebra to an approximation ratio at least 0.75 + (0.25/e) > 0.841 achieved with complex-
ity F (k/2, ∆). Even if, in the case of max k-set cover, the potential of the running time seems to
be quite small, we think that looking for this type of trade-offs between approximation ratios and
running times in order to try to beat polynomial approximation barriers is an interesting research
program.

In [14] an analogous result is given. There, the authors try to beat the APX-hardness of max
k-vertex cover by a moderately exponential approximation algorithm, i.e., by an approximation
algorithm achieving ratio 1 − ε, for any ε > 0, and running in time that, although exponential,
remains smaller than the running time of the best known exact algorithm for this problem. More
precisely, the following is proved by Della Croce and Paschos [14]. If T (n, k) is the running time of
an exact algorithm and ρ the approximation ratio of some polynomial approximation algorithm for
max k-vertex cover, then, for any ε > 0, max k-vertex cover can be approximated within
ratio 1− ε with worst-case running time T (n, [(2ρ− 1) +

√
1− 4ερ]k/2ρ).

4 max sat-k

We now study a generalization of max k-set cover, the max sat-k problem. Recall that in max
sat-k, given a CNF formula on n variables and m clauses, the objective is to satisfy at least p
clauses, by setting at most k variables to true.

Proposition 8. max sat-k parameterized by k is W[2]-hard and in W[P].

Proof. Setting p = m, max sat-k becomes sat-k that is W[2]-hard [26] (under the name weigh-
ted CNF-satisfiability). Proof of membership of max sat-k in W[P] can be done by an easy
reduction of this problem to bounded non-deterministic Turing machine computation.
One can guess within k non deterministic steps the variables to put to true and then one can
check in polynomial time whether, or not, at least p clauses are satisfied. ut

Consider an instance φ of max sat-k on a set of C clauses. Given any subset C ′ of C, we denote
by occ+(xi, C

′) the number of positive occurrences of the variable xi in C ′, and by occ−(xi, C
′) the

number of its negative occurrences. We set f(xi) := occ+(xi, C) + occ−(xi, C); so, the frequency
of the formula is f := maxi f(xi).

Before proving that max sat-k is FPT with respect to parameter p, let us introduce some
vocabulary on branching algorithms. A partial solution is a subset of a (complete) solution. A
branching algorithm is a recursive algorithm. Its execution on an instance I can be seen as a
tree, called branching tree. In this tree, each node is labeled with a sub-instance of I together

9

with a partial solution, or more generally with some data maintained by the algorithm. The root
is labeled with I and a leaf is a sub-instance that causes the branching algorithm to stop. At
a leaf, a complete solution is computed and returned. When identifying a node v to its label (a
sub-instance), the children of a sub-instance are the subinstances which label the children of v in
the branching tree.

We now prove this simple lemma.

Lemma 9. max sat-k is solvable in time O∗(2m).

Proof. We take any variable x that appears positively in at least one clause and negatively in
at least one clause. We do the standard branching: either set x to true (and decrease k by 1),
or set x to false. This branching satisfies at least one more clause in each branch. Therefore, the
branching tree is a subtree of the full binary tree with 2m leaves. At a leaf ` of the branching
tree, the remaining number of clauses is at most m− λ where λ is the depth of `. The branching
stops when each variable appears only negatively, or only positively. At this point, the variables
appearing only negatively can be set to false. This step is safe since we are constrained to put
at most (not exactly) k variables to true. We end up with an instance containing only positive
literals. Therefore, at the leaves, the instances can now be seen as instances of max k-hitting
set with at most m − λ sets; or equivalently, max k-set cover with at most m − λ elements
which can be solved by standard dynamic programming in time O∗(2m−λ). So, the overall running
time is O∗(2m). ut

We identify a solution of an instance of max sat-k to the set S of variables put to true. It induces
a set C ′ of satisfied clauses. The algorithm solving max sat-k we will present, performs two
kinds of choices: (1) setting a variable to true and (2) putting a clause which is not satisfied yet
into a set Cs of clauses that should eventually be satisfied. Putting a clause in Cs means that
we commit to satisfy it later. At any node of the branching tree, a child corresponds to either
performing choice (1) for some given variable, or choice (2) for some given clause. A choice (1) is
in accordance with S if it sets to true a variable in S. A choice (2) is in accordance with S if it
puts in CS a clause satisfied by solution S (i.e., this clause is in C ′). A node v of the branching
tree is in accordance with S if all the choices made from the root to this node are in accordance
with S. A node v of the branching tree deviates from a solution S if it is in accordance with S
but none of its children are in accordance with S.

Let us give a toy example to clarify those notions. Assume a solution which sets x2 and x3
to true and all the other variables to false. So, S = {x2, x3}. And, this assignment satisfies the
following set of clauses: {c2, c4, c5, c6, c8, c9}. Say, the root of the branching tree has 4 children:
setting x1 to true, committing to satisfy c1, committing to satisfy c2, and committing to satisfy c6.
The two first children are not in accordance with S, but the two last are. Indeed, c2 and c6 are
satisfied by S. Let us move to the child where we commit to satisfy c2. Suppose this node has
three children: setting x2 to true, committing to satisfy c1, committing to satisfy c3. We now move
to the child where we set x2 to true. So far, we have only done choices in accordance with S, so
our current node is in accordance with S. Now, say, this new node v has three children: setting x1
to true, committing to satisfy c3, committing to satisfy c7. None of those choices is in accordance
with S, so v deviates from S.

Proposition 10. max sat-k parameterized by p is FPT.

Proof. Let (C, k, p) be an instance of max sat-k where C is a set of clauses over a set of variables
X = {x1, x2, . . . , xn}, k is the maximum number of variables that can be set to true, and p
the minimum number of clauses to satisfy. We can assume that p < m/2. Indeed, if p > m/2,
the algorithm of Lemma 9 is an FPT algorithm. We also assume that the number of clauses
containing only negative literals is bounded above by m/2. Otherwise, setting all the variables to
false, satisfies more than p clauses. We recall that we are not forced to set exactly k variables to
true, but at most k. We observe that instances such that p < f/2 are always YES-instances, since
one can set one variable xi with frequency f to true if occ+(xi, C) > occ−(xi, C), and to false

10

otherwise, and set all the other variables to false. This assignment does indeed satisfy at least
max(occ+(xi, C), occ−(xi, C)) > f/2 < p clauses.

Note also that instances such that p < k are all YES-instances, too. Indeed, one can iteratively
set to true k variables such that at each step one satisfies at least one more clause. If, at some
point this is no longer possible, then setting all the remaining variables to false will satisfy all the
clauses which do not initially contain only negative literals, that is at least half of the clauses, so
more than p clauses. We may now assume that p > f/2 and p > k, so our parameter might as well
be p+ f + k.

We construct a branching algorithm which operates accordingly to a greedy criterion. A solu-
tion, or complete assignment, is given by a set S of size up to k which contains all the variables
set to true. Additionally, we maintain a list Cs of clauses that we satisfy or commit to satisfy. For
notational convenience we define Cu := C \ Cs, di(C ′) := occ+(xi, C

′), and let C+(xi, C
′) be the

set of clauses in C ′ where xi appears positively and C−(xi, C
′) the set of clauses where xi appears

negatively. Finally, C(xi, C
′) := C+(xi, C

′) ∪ C−(xi, C
′). Algorithm pSAT-k (see Algorithm 2) is

fairly simple. We find the variable x that, if set to true, would satisfy the maximum number of
clauses among the still unsatisfied clauses. We branch on setting x to true (choice (1)) or for each
still unsatisfied clause c that x would satisfy, on putting c in Cs (choice (2)).

Algorithm 2: A description of the algorithm pSAT-k.
Input: A set C of clauses on a set X of variables.
Output: A subset S ⊆ X of size at most k such that setting all the variables in S to true and all

the variables in X \ S to false, satisfies the greatest number of clauses in C.
set S = ∅, Cs = ∅;
ALG1(S,Cs):
if |S| < k and |Cs| < p then

pick the variable xi maximizing di(C \ Cs);
run ALG1(S ∪ {xi}, Cs ∪ C+(xi, C \ Cs));
for each clause c ∈ C(xi, C \ Cs) do

run ALG1(S,Cs ∪ {c});

else
if |S| = k then

store S;
else

(|Cs| > p) store a complete assignment satisfying Cs, if possible;

return the best among the solutions stored ;

The branching tree has depth at most k + p and arity at most f + 1, so the running time
of pSAT-k is O∗(2p(f + 1)k+p) = O∗(pO(p)), that is FPT with respect to parameter p, because
completing a solution to satisfy all the clauses of Cs can be done in time O∗(2|Cs|) since max
sat-k can be solved in O∗(2m) time by Lemma 9.

We now show the soundness of the algorithm. Let S0 be an optimal solution. From the root of
the branching tree, while it is possible, we follow a branch where all the nodes are in accordance
with S0. Let Sc be the set of variables set to true along this branch (by definition, Sc ⊆ S0), and
set Sn = S0 \ Sc. By construction, this branch terminates at v, which is either a leaf or a node
that deviates from S0. The leaf case being a special case of v being a deviating node, we assume
that v deviates from S0, i.e., no child of v is in accordance with S0. Let xi be the variable chosen
at this point by pSAT-k and consider Cd := C(xi, Cu) that is the set of clauses not yet in Cs in
which xi appears positively or negatively. We know that no clause in Cd is satisfied by S0. Let xj
be any variable in Sn.

We claim that Sh = (S0 \ {xj}) ∪ {xi} is also optimal and, by a straightforward induction,
a solution at the leaves of the branching tree is as good as S0. Setting xj to false, one loses at

11

most dj(Cu) clauses and setting xi to true, one gains exactly di(Cu) clauses. Indeed, we recall that
no clause of Cd can be satisfied by S0, and a fortiori by Sn, since otherwise, v would not deviate
from S0 (if a clause c ∈ Cd is satisfied by S0, then the child of v that commits to satisfy c remains
in accordance with S0). And, by our greedy choice, di(Cu) > dj(Cu). ut

We may observe that the previous algorithm has a worse time complexity than the already known
FPT algorithm for max k-set cover [4]. This is rather not surprising since, as we recall, max
k-set cover is a particular case of max sat-k corresponding to CNFs without negative literals.

We close this section by recalling that if the length of the clauses is also part of the parameter,
the decision version sat-k is FPT [26]. In other words, denoting by l-sat-k, the version sat-k
where each clause contains at most l literals, the following holds.

Proposition 11. [26] l-sat-k parameterized by k + l is FPT.

The proof of Proposition 11, as it is given by Niedermeier [26] works only because one has to
satisfy all the clauses. The parameterized complexity of max sat-k with respect to k + l still
remains unclear and, to our opinion, deserves further investigation.

5 Some Preliminary Thoughts About an Enhanced Weft Hierarchy:
the Counting Weft Hierarchy

A natural way to generalize any problem Π where one has to find a solution which universally
satisfies a property is to define partial Π, where the solution only satisfies the property a “suf-
ficient number of times”. In this sense, as mentioned, max k-set cover where one has to cover
at least p elements, generalizes min set cover, where all the elements must be covered. Simi-
larly max k-vertex cover where one has to find a minimum subset of vertices which covers at
least p edges, generalizes min vertex cover, where one has to cover all the edges; yet, max sat
generalizes sat. Cai studied the parameterized complexity of such partial problems (and others)
in [7].

These partial problems come along with two parameters: the size of the solution, frequently
denoted by k and the “sufficient number of times” quantified by p. Many of these problems when
parameterized by k are shown to be either W[1]- or W[2]-hard, but we do not know how to
prove a better membership result than the membership to W[P] (note that this is not the case of
max k-vertex cover, already proved to be W[1]-complete by Guo et al. [22]). This is a quite
important asymmetry between classical complexity theory as we know it from the literature (see,
for example, [21, 27, 28]) and parameterized complexity theory.

Showing the completeness of a W[1]- or a W[2]-hard problem, would imply that we can count
up to p with a circuit of constant depth and weft 1 or 2. By definition of the W-hierarchy, the
fact that k input-vertices of the boolean circuit can be set to true permits to deal with cardinality
constraint problems, but it is not suitable to problems, such as max k-set cover, where both the
value and the cardinality of the solution are constrained. We sketch, in what follows, a hierarchy
of circuits named counting weft hierarchy whose classes are larger than the corresponding ones in
the weft hierarchy (W-hierarchy). Basically, in the boolean circuit, we generalize the and -vertex
to a counting-vertex.

A counting vertex Cj with in-degree i where j ∈ {0, . . . , i} has out-degree 1 and outputs 1 iff
at least j of its i inputs are 1’s. Note that Ci corresponds to an and -vertex and C1 is an or -vertex.
A counting circuit is a circuit with some input vertices, counting vertices, negation vertices, and
exactly one output vertex. Correspondingly, CW[k] is the class of problems Π parameterized by p
such that there is a constant h and an FPT algorithm (in p) A, such that A builds a counting
circuit C of constant depth h and weft k, and I ∈ Π iff C(I) = 1. It can be immediately seen that
the counting weft hierarchy has exactly the same definition as the weft hierarchy up to replacing
a (boolean) circuit by a (boolean) counting circuit.

Based upon the sketchy definition just above, the following can be proved by just taking the
usual circuits for min set cover and sat (recall for completeness that for min set cover, the

12

input-vertices are the sets, elements are large or -vertices taking as input the sets where they
appear, and the output-vertex is a large and -vertex taking all or-vertices as input) and replacing
the corresponding large and -vertices by vertices Cp.

Proposition 12. The following inclusions hold for the counting weft hierarchy: both max k-set
cover and max sat-k are in CW[2].

As mentioned in the introduction, the results by Fellows et al. [20] which also focus on parallel
W-hierarchy with other types of vertices, cannot be used here since the counting vertices are
symmetric but not bounded.

Acknowledgement. The pertinent suggestions and comments of two anonymous referees have
greatly improved the quality of this paper.

References

1. A. A. Ageev and M. Sviridenko. Approximation algorithms for maximum coverage and max cut with
given sizes of parts. In G. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Proc. Conference
on Integer Programming and Combinatorial Optimization, IPCO’99, volume 1610 of Lecture Notes in
Computer Science, pages 17–30. Springer-Verlag, 1999.

2. A. Badanidiyuru, R. Kleinberg, and H. Lee. Approximating low-dimensional coverage problems. In
T. K. Dey and S. Whitesides, editors, Proc. Symposuim on Computational Geometry, SoCG’12, Chapel
Hill, NC, pages 161–170. ACM, 2012.

3. A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput.,
39(2):546–563, 2009.

4. M. Bläser. Computing small partial coverings. Inform. Process. Lett., 85(6):327–331, 2003.
5. E. Bonnet, B. Escoffier, V. Th. Paschos, and E. Tourniaire. Multi-parameter complexity analysis for

constrained size graph problems: using greediness for parameterization. Algorithmica, 71(3):566–580,
2015.

6. E. Bonnet, V. Th. Paschos, and F. Sikora. Multiparameterizations for max k-set cover and related
satisfiability problems. CoRR, abs/1309.4718, 2013.

7. L. Cai. Parameter complexity of cardinality constrained optimization problems. The Computer Jour-
nal, 51:102–121, 2008.

8. L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approximability
results. In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop on Parame-
terized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages
96–108. Springer-Verlag, 2006.

9. M. Cesati. The turing way to parameterized complexity. J. Comput. System Sci., 67(4):654–685, 2003.
10. J. Chen, D. K. Friesen, W. Jia, and I. A. Kanj. Using nondeterminism to design deterministic

algorithms. In R. Hariharan, M. Mukund, and V. Vinay, editors, Proc. Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’01, volume 2245 of Lecture Notes in Computer
Science, pages 120–131. Springer-Verlag, 2001.

11. Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability. In H. L. Bodlaender and
M. A. Langston, editors, Proc. International Workshop on Parameterized and Exact Computation,
IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages 109–120. Springer-Verlag, 2006.

12. Y. Chen and B. Lin. The constant inapproximability of the parameterized dominating set problem.
CoRR, abs/1511.00075, 2015.

13. G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to optimize float: an
analytic study of exact and approximate algorithms. Management Sci., 23(8):789–810, 1977.

14. F. Della Croce and V. Th. Paschos. Efficient algorithms for the max k-vertex cover problem.
J. Comb. Optim., 28(3):674–691, 2014.

15. F. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization, iterative compres-
sion, modeled crown reductions: new FPT techniques, an improved algorithm for set splitting, and
a novel 2k kernelization for vertex cover. In R. G. Downey, M. R. Fellows, and F. Dehne, editors,
Proc. International Workshop on Parameterized and Exact Computation, IWPEC’04, volume 3162 of
Lecture Notes in Computer Science, pages 271–280. Springer-Verlag, 2004.

16. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.
Springer, New York, 1999.

13

17. R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In H. L.
Bodlaender and M. A. Langston, editors, Proc. International Workshop on Parameterized and Ex-
act Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer Science, pages 121–129.
Springer-Verlag, 2006.

18. R. G. Downey, M. R. Fellows, C. McCartin, and F. A. Rosamond. Parameterized approximation of
dominating set problems. Inform. Process. Lett., 109(1):68–70, 2008.

19. U. Feige. A threshold of lnn for approximating set cover. J. Assoc. Comput. Mach., 45:634–652, 1998.
20. M. R. Fellows, J. Flum, D. Hermelin, M. Müller, and F. A. Rosamond. W-hierarchies defined by

symmetric gates. Theory Comput. Sys., 46(2):311–339, 2010.
21. M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-

completeness. W. H. Freeman, San Francisco, 1979.
22. J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of vertex cover variants. Theory

Comput. Syst., 41(3):501–520, 2007.
23. Y. Liu, S. Lu, J. Chen, and S.-H. Sze. Greedy localization and color-coding: improved matching and

packing algorithms. In H. L. Bodlaender and M. A. Langston, editors, Proc. International Workshop
on Parameterized and Exact Computation, IWPEC’06, volume 4169 of Lecture Notes in Computer
Science, pages 84–95. Springer-Verlag, 2006.

24. D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51(1):60–
78, 2008.

25. D. Moshkovitz. The projection games conjecture and the NP-hardness of lnn-approximating set-
cover. In A. Gupta, K. Jansen, J. D. P. Rolim, and R. A. Servedio, editors, Proc. Workshop on
Approximation Algorithms for Combinatorial Optimization Problems and Workshop on Randomization
and Computation, APPROX-RANDOM’12, volume 7408 of Lecture Notes in Computer Science, pages
276–287. Springer-Verlag, 2012.

26. R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, Oxford, 2006.

27. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
28. C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and complexity. Prentice

Hall, New Jersey, 1981.
29. P. Skowron and P. Faliszewski. Fully proportional representation with approval ballots: approximating

the maxcover problem with bounded frequencies in FPT time. In AAAI Conference on Artificial
Intelligence, 2015.

14

	premiere page cahier 341.pdf
	cahier_341.pdf
	Première page cahier.pdf
	Page 1

	Première page cahier.pdf
	Page 1

