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Abstract

When considering a graph problem from a parameterized point of view,
the parameter chosen is often the size of an optimal solution of this prob-
lem (the “standard”). A natural subject for investigation is what happens
when we parameterize such a problem by the size of an optimal solution of
a different problem. We provide a framework for doing such analysis. In
particular, we investigate seven natural vertex problems, along with their
respective parameters: « (the size of a maximum independent set), 7 (the
size of a minimum vertex cover), w (the size of a maximum clique), x (the
chromatic number), v (the size of a minimum dominating set), ¢ (the size
of a minimum independent dominating set) and v (the size of a minimum
feedback vertex set). We study the parameterized complexity of each of
these problems with respect to the standard parameter of the others.

1 Introduction: cross-parameterization

Parameterized complexity has been widely studied over the past few years. The
main motivation for this area is to study the tractability of a problem with
respect to the size of some of its parameters besides the size of the instance. In
particular, some NP-hard problems may become more tractable for instances
with small parameter value (see the books [5, 8, 12] for more details about
parameterized complexity). From a practical point of view this may be interest-
ing when the considered parameter has a strong dependence on the underlying
model, in which case instances with low parameter value are relevant. Most
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of the time in the related literature, the main parameter used for an optimiza-
tion problem is the optimal value itself. This causes two limitations: first, it
sometimes becomes difficult to compare the parameterized complexity of two
different problems, each of them dealing with a specific parameter. Second, it
may happen that instances with small parameter value but large optimal value
are relevant and in this case an approach with this specific parameter allows us
to solve such instances efficiently.

In this paper we propose a framework for considering the complexity of any
problem with respect to any kind of parameter. Considering the parameterized
complexity of a problem with respect to several parameter gives more informa-
tion and deeper insight to the real tractability of a problem. It also provides
a more stable framework for comparing the tractability of different problems.
If we consider standard parameters for a series of problems, then it could be
relevant to study parameterized complexity for each of the problems considered
with respect to the standard parameters of the others. This is what we call
cross-parameterization, in what follows. Here, we draw a first framework for
addressing this question and we test its relevance by considering seven very nat-
ural combinatorial optimization problems on graphs, leading to seven related
parameters. Our aim here is to study the tractability of each problem under
each considered parameter (see Table 1). However, this can be done for any
other combinatorial problem and any parameter.

When handling optimization problems, three different versions of a problem
can be considered: either computing, for any instance, an optimal solution (the
constructive version), calculating the optimal value (the non-constructive case)
or solving the decision version of a problem. We include this distinction in our
general framework (see Section 2), defining a general notion of FPT reducibility
and proving the equivalence between these different approaches for a wide range
of problems including our seven basic graph problems. Then, in Section 3, we
prove the results of Table 1, considering first tractability and then intractability
results. Some of the proofs in this section rely on results given in Section 2.

1.1 Notation

As a first attempt to draw such a general cross-parameterization framework, we
have selected seven basic vertex parameters in graphs:

«: the size of a maximum independent set;
7: the size of a minimum vertex cover;
w: the size of a maximum clique;

the chromatic number;

the size of a minimum dominating set;

the size of a minimum independent dominating set;

.

v: the size of a minimum feedback vertex set.



We also write n for the number of vertices and A for the maximum degree.
All these values are integer graph-parameters and we will use p to refer to any
general graph parameter, i.e. p is any computable function that takes a graph
as input and outputs an integer value. Here we will mainly consider parameters
with non-negative integral values. For a graph G, p(G) denotes the value of the
related parameter for G.

For any such parameter p, there is an associated combinatorial problem IIP,
which is that of computing the parameter for a given graph. Here, the considered
parameters are in fact the value of the optimization problem II? and in Section 2
we will distinguish between computing the parameter itself and computing a
corresponding optimal solution. A graph problem asking for a value, solution
or answer to a decision question is said to be fized-parameter tractable (FPT)
with respect to a parameter p (or simply FPT(p)) if there is an algorithm that
solves the problem in O(g(p(G))P(n(G)) time on input graph G, where ¢ is a
computable function and P is a polynomial function. Without loss of generality
we assume that g is non-decreasing (otherwise replace g(p) by max, <, g(p’)).
When no ambiguity occurs, we write O(f(p)P(n)) = O*(f(p)). We say that such
an algorithm is an FPT algorithm and runs in FPT time. We will sometimes
write (II, p) to refer to the problem II parameterized by p.

For a graph G with a vertex x, the set N(z) denotes the neighbourhood of z,
ie. the set of vertices adjacent to z. We set N[z] = N(z) U {x}, the closed
neighbourhood of x. If D is a set of vertices, N[D] denotes the union of the
closed neighbourhoods of vertices in D. Finally, V(G) denotes the vertex set
of G and for V' C V(G), G[V'] denotes the sub-graph of G induced by V.

1.2 Our results

To date, research has mostly focused on the complexity of a problem when
parameterized by the solution size, so we can already fill the diagonal line of
Table 1. Some problems have been shown to be fixed parameter-tractable: I1™
and TI* are FPT(7) [1], and T1” is FPT(v) [7].

On the other hand, TI¥ (resp. I1%) is a classic example of a problem which is
W|1](w)-complete (resp. W[1](a)-complete) [6], while II7 and II* are W[2](7)-
complete and W/[2](7)-complete, respectively [4]. Problem ITX is ¢XP(x) since
chromatic number remains NP-hard when the optimum is 3 [11, 14|. Here, we
take ¢XP to mean that the problem is not in the class XP (assuming P #
NP). Note that a any vertex cover is consists of vertices whose removal leaves
an independent set (and vice versa). Therefore, any minimum vertex cover
consists of precisely those vertices that are not in some maximum independent
set. Therefore, any results for the complexity of II* will also apply to the
complexity of TI™ and vice versa(as suggested in Table 1).

The overall results are summarized in Table 1 where, for a complexity class C,
C-c (resp. C-h) means C-complete (resp. C-hard).
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Table 1: A summary of our results. The columns represent graph problems.
The rows represent parameters.

2 Constructive vs. non-constructive computation

Before going into the proofs of the main results reported in Table 1, we first
revisit, in the context of the present framework, the question of equivalence
between computing an optimal solution of an optimization problem, computing
its optimal value and the related decision problem. In particular, we will make
use of this distinction in the proof of Proposition 11.

Definition 1. Any instance of an optimization problem I1 can be expressed as a

mathematical program of the form below with objective function f and constraint
set C: (@)
max or min f(x

{ )

reC

When dealing with such optimization problem several frameworks can be
considered, leading to three different versions of the problem. The constructive
version II. asks us to compute an optimal solution for the input instance, while
the non-constructive (or value) version II, only asks us to compute an optimal
value. Finally, the decision version I1; asks us to decide, for any value k, whether
there is some feasible solution x € C satisfying f(x) > k (if II is a maximization
problem) or f(x) < k (if IT is a minimization problem). When needed, we will
denote any problem with its version II;, with ¢ € {¢,v,d}; when this subscript
is not specified, we will consider the constructive version t = c.

This distinction, along with the relative complexity of the different versions
has been considered several times in the literature, in particular for the classical
complexity framework [13] and for the framework of polynomial approxima-
tion [3]. This same distinction can be considered in the frame of parameterized
complexity. Most often, negative results are stated for the value-version while
positive results are stated for the constructive version. Note that the value
version is not more difficult than the constructive one as long as the objective
function can be computed in reasonable time. More precisely if f can be com-
puted in polynomial time (resp. FPT time) then any polynomial (resp. FPT)
algorithm for the constructive version can immediately be turned into a poly-
nomial (resp. FPT) algorithm for the value version. The same holds between



the value version and the decision version, the former being at least as difficult
as the latter if f can be efficiently computed.

In this paper we only consider problems for which f can be computed in
polynomial time and consequently the constructive version is at least as hard as
the non-constructive one, which itself is also as hard as the decision version. An
interesting question is whether or not these versions are equivalent in complexity.
To study the relative complexity of problems and, in particular of the different
versions of a problem, the notion of reduction is useful. Many kinds of reductions
(mainly polynomial ones) have been introduced in the literature, allowing us
to compare tractability of different problems and even between the different
versions of a given problem. The notion of FPT reduction able to transfer
FPT algorithms from one problem to another one has also been introduced (see
e.g. 5,8, 12]). Here, we somewhat enhance it in order to integrate the possibility
of considering any kind of parameters for the considered problems.

Definition 2. Let (II} ,p1), (I, p2) be two optimization problems parame-
terized by p1 and po respectively, with ti,to € {c,v,d}. An FPT-reduction
from (I, p1) to (I, p2) is an algorithm solving Ay in FPT time with re-
spect to parameter py using an Oracle Oy for HtZ2 such that for any instance I
of H,}] , any call on Oy is made on instances I} for Hfz whose size is polynomi-
ally bounded with respect to Iy and which satisfy ps(15) < h(pi(I1)) for some
function h. We then say that (11} , py) FPT-reduces to (117, p2) and denote this
by (I}, ,p1) <ppr (II,p2). If the reduction is polynomial, we denote it by
I}, <p 11}, (no parameter needs to be specified).

Note that, since A; is FPT, the number of calls to Oracle Oy is bounded
by an FPT function with respect to parameter p; and consequently if Oy is an
FPT algorithm with respect to ps, then the conditions on po(I5) and on the size
of I% ensures that the reduction leads to an FPT algorithm for IT} with respect
to parameter p;. In other words, such a reduction is able to transform an FPT
algorithm for Hi with respect to parameter po into an FPT algorithm for H%l
with respect to parameter p;.

Note that the decision version and the non-constructive version are equiva-
lent for a very large class of problems, as stated by the following proposition:

Proposition 1. Let IT be an optimization problem, an instance of which is
defined as in Definition 1, with parameter p satisfying:

1. f has integral values;

2. the output value associated to some feasible input can be found in polyno-
mial time;

3. there is a polynomial function P and a function £ such that Vz,y €
C,1f(z) - f(y)] < 22@F,

Then (11, p) <ppr (4, p).

In particular, this holds for integral non-negative objective functions boun-
ded by 2¢(@)P(n)



Proof. The reduction is easily done by binary search. Without loss of gener-
ality we assume that IT is a maximization problem (the minimization case is
similar). We start by finding a feasible output value. Next, we try to find a
K < 2/@P()+1 guch that the optimal value lies in [\, A + K. Note that £(p)
may not be explicitly known. We ask the Oracle O for the problem I1;, whether
3z € C, f(x) = X\ + 2F for successive values of k > 1, or not. Let K be the first
value for which the answer is NO. We know that K < 2(@)P()+1 by hypothesis.
We then find the optimal value by binary search in the interval [\, A + K], using
Oracle O.

This process is FPT with respect to parameter p since the number of calls
to Oracle O is at most 2¢(p)P(n) + 4, each time for the same I-instance. [

For any optimization problem II and parameter p, we let II|,_poundea denote
the sub-problem of II restricted to instances where p < K for a fixed bound K.
In [13] a general process was proposed to reduce the constructive version II,.
of an optimization problem II to its non-constructive version II,. The main
idea is to transform IT into IT" by transforming the objective function f into a
one-to-one function f’ such that Vz,y € C, f(x) < f(y) = f'(x) < f'(y).

Moreover, one needs to suppose that the inverse function f/~! can be com-
puted in polynomial time. In particular, this holds when f has integral values,
there is a polynomial-time computable bound B such that |C| < B and there
is a total order on C such that the related rank-function r as well as its inverse
function 7! are both polynomially computable. Typically, for C C {0, 1}7(),
where P is a polynomial function, the lexicographic order can be computed and
inverted in polynomial time.

We can then take f'(z) = (B+1)f(z)+r(z). Note that if such a function f’
does exist and if II; € NP, then IT/, € NP.

Proposition 2. Suppose II; € NP, (II|,—bounded)d s NP-complete for a pa-
rameter p and there is a polynomial function P such that any instance of 11
satisfies C C {0,137 Then (M., p) <ppr (I, p).

Proof. We have I, <p II. since both problems have exactly the same feasible
solutions and any optimal solution to IT/, is also optimal for II.. T, <p II, by
definition of II" (see above).

Taking the bound B = 27 we get TI/, <p II/; and since I/, is in NP
and (IT|p_pounded)a is NP-complete, IT); <p (II|,—bounded)d- Given an instance
of (II.,p), the reduction (see Definition 2) simply computes an equivalent in-
stance of ((II|,—bounded)d, P), where p < K, for a constant K, h is the constant
function equal to K and O is an oracle for (II|,—pounded)a- Note that any FPT
algorithm for (II,p) leads to a polynomial-time algorithm for (II|,—bounded)d;
and consequently such a reduction transforms an FPT algorithm into a polyno-
mial time one. O

Proposition 3. We have (Il.,p) <ppr (IL,,p) for:
1. 1% I T T Y and p € {w, X}



2. I, 11X and p = «;
3. II' and p = ;
4. o, 17 119, T1X, 1 and p € {v,}.

Proof. All these results are the consequence of Proposition 2. For all these
problems C C {0, 1} for some polynomial function P and the decision version
is known to be in NP. So, we need to show that in each case the problem
(IT|p—boundea )a is NP-complete.

1. This follows from the inequality A(G) + 1 > x(G) > w(G). We simply
recall that all these problems remain NP-complete on graphs of degree 3 [9],
and that 3-colouring is NP-complete [9].

2. Using the previous results in G we get the NP-completeness of IT5 in
graphs whose maximum independent set is of size 3. A colouring in G induces
a clique partition in G. The decision version of MINIMUM CLIQUE PARTITION is
NP-complete in graphs of maximum degree 3 [2], and thus in graphs of maximum
clique 4. Thus, II} is NP-complete in graphs whose maximum independent set
is of size 4.

3. Let G = (V, E) be an arbitrary non-empty graph. Let Gy and G; be
disjoint copies of G. We form the graph G’ by taking the disjoint union of Gy
and G, adding a vertex u which dominates the vertices of Gy, adding a ver-
tex v which dominates G; and joining u to v with an edge. Then (G’) = 2
(since {u,v} is a dominating set and there is no dominating vertex). Consider
an independent dominating set I in G’. It cannot contain both u and v. If it
contains neither, then |I| > 2i(G) > i(G) + 1. If it contains exactly one of u
and v (without loss of generality v), then it must contain an independent domi-
nating set for Gy, so |I| > i(G) + 1. But any independent dominating set of Gy,
together with w is an independent dominating set of G’. Thus i(G’) = i(G) + 1,
so IT% is NP-complete, even for graphs with v = 2.

4. Suppose G = (V, E) is a non-empty graph. Let G be the graph obtained
from G by adding a new vertex v adjacent to all of V. Then we have the
following:

o

The first three items are obvious. The fourth follows from the fact a + 7 = n.

For the last one, it is clear that v(G) < v(G) + 1, since adding the dominating

vertex to any feedback vertex set of G yields a feedback vertex set of G. Consider
a minimal feedback vertex set F' of G. Let v be the dominating vertex of G. We



want to show that |F| > v(G) + 1. If v € F, then F'\ {v} is a feedback vertex
set of G, and we are done. Suppose v € F. Then G\ F must be a stable set
(otherwise two adjacent vertices in G, together with v would form a Cs in G).
Let w be an arbitrary vertex in F'. Then F'\ {w} must be a feedback vertex set
in G, since N\ (r\{w})(w) is an independent set. Thus [F| > v(G) + 1 for all
minimal feedback vertex sets of é, ie. G > v(G)+1.

Note also that v(G) = i(G) = 1 and consequently the decision version of I1*,
II7, I1¥, I1X and II” all remain NP-complete in graphs with v = ¢ = 1. This
completes the proof. O

Another case where equivalence between constructive and non-constructive
cases can be easily stated is the hereditary case. A property h : 2V = {0,1}
for a finite set V' is hereditary if h(U'") = h(U),YU' C U C V. We then consider
an hereditary mazimization problem, an instance of which can be written

max f(U)
{ WU) = 1,0 C 2V (2)

The size of this instance is |V| and any subset V' C V also defines an instance
of IL.

Proposition 4. Let Il be an hereditary maximization problem and consider an
non-decreasing parameter p, meaning that U’ C U = p(U’) < p(U). Then
(I, p) <ppr (IL,,p).

Proof. Considering an instance V' of II, and let S = (). The reduction consists
of taking any element v € V' and testing the value of the instance V' \ {v}. If
it is smaller than the value of the instance V', then every optimal solution must
include v, in which case we add it to a set S. If after removing v, the optimal
value is unchanged, there must be an optimal solution which does not contain v,
in which case we delete v from the graph. We continue this process, deleting
vertices from the graph where possible until all remaining vertices belong to S.
Then S is an optimal solution. In all, we will need O(|V]) requests to an
Oracle O for II,, on sub-instances of V. The hypothesis on the parameter makes
the whole process FPT with respect to p if the oracle is also FPT. This concludes
the proof. O

Corollary 1. It holds that (Il., p) <ppr (Il,,p) for I € {I* 1I¥ 1I*, 11"} and
p 6 {a7w7 X7 V7T}'

Note also that for any constructive problem that can be solved in FPT
time with respect to a given parameter p, the FPT equivalence between non-
constructive and constructive versions (Il.,p) and (IL,,p) is trivial and conse-
quently, this holds for all problems considered in this paper under the parame-
ters 7 and v.

Proposition 5. (Il.,p) <ppr (Il,,p) for Il = 117, p € {a,v} and 11 = 1T,
p € {a,i}.



Proof. Here we need explicit reductions. Consider a graph G = (V, E) and a
vertex v € V. We consider the graph G’ obtained from G by adding a vertex v’
connected to v. We then have v(G’) = v(QG) if and only if there is a minimum
dominating set in G containing v. Indeed, suppose v(G’) = v(G) and consider
a minimum dominating set DS” of G'. If v € DS’, then DS’ \ {v'} U{v} is a
minimum dominating set of G’ and a dominating set of G' containing v. Since
it is of value (@), it is minimum in G. Conversely, suppose that there is a
minimum dominating set DS of G containing v. It is a dominating set in G’
and moreover v(G’) = v(G) since N[v'] C N[v]. So, an oracle for v, allows
us to decide whether there is a minimum dominating set containing v. Since
a(G@) € a(G) + 1 and v(G') € v(G) + 1, an FPT oracle with respect to «
or v remains FPT with respect to the instance G when applied to G’. Using
this, one can identify a first vertex v which occurs in some optimal solution
of the dominating set problem. Then, for any vertex w # v, we consider the
graph G” obtained by merging v and w (i.e. replacing the vertices by a new
vertex whose neighbourhood is (N (v)UN (w))\{v, w}). Using similar arguments,
there is a minimum dominating set of G containing both v and w if and only
if v(G") = v(G"”) + 1. Note also that o(G") < «a(G’) and v(G") < v(G).
By iterating this second reduction, we can identify an optimal solution. By
construction, this will take v(G) — 1 such iterated reductions.

For IT" we devise the following reduction for deciding whether there is a
minimum independent dominating set in G' containing v: consider G"”’ obtained
from G by removing N[v]. Then i(G) = i(G"’) + 1 if and only if v belongs to
some optimal solution. Indeed, suppose i(G) = i(G"") + 1 and take a minimum
independent dominating set IDS”" of G'". Then IDS"" U{v} is an independent
dominating set of G of value i(G). Conversely, if an optimal solution IDS
contains v, then IDS \ {v} is an independent dominating set of G”’. Note
moreover that a(G"”) < «(G) and that i(G"”") < i(G) 4+ 1 for any considered
graph G'”’. Here we simply need to iterate the process on the remaining graph.

Both reductions satisfy the conditions of Definition 2, which concludes the
proof. O

Note that the previous reduction does not work for (II7,4), which needs a
different reduction.

Proposition 6. (II7,4) <ppr (II7,9).

Proof. Consider a graph G = (V, E) and a set of vertices V' C V. We consider
the graph Gy obtained from G by adding a stable set V" |[V”| = |V’| and a
perfect matching between V’ and V. Then, using similar arguments to those
for Proposition 5, we have: v(Gy/) = v(G) if and only if there is a minimum
dominating set containing V’. If such a V’ is known and |V’| < 7(G), then one
can find a new vertex v ¢ V’ to include in the solution by testing the value of
Y(Gvrugwy)- Since for all considered cases i(Gy) < |[V'|+i(G) < 7(G)+i(G) <
2i(G) this provides the required reduction. O

To summarize, in this section we have shown the equivalence between con-
structive and non-constructive optimization for all problems and parameters



considered in Table 1.

Note that, if (IL., p) <ppr (II,,p), then positive (FPT) and hardness results
equivalently hold for one or the other version. Consequently, in the two following
sections, the version is not specified in the results. So, by Proposition 1, we can
consider that FPT results hold for the constructive version and hardness results
hold for the decision version.

3 Main results

3.1 Tractability results

We first recall the following inequalities, which will be useful in many of the
proofs in this section.

Proposition 7. IV, 11¥, T1*, 11" and 11X are FPT(7) and FPT(v).

Proof. Since T > v, we only need to prove that these problems are FPT(v).

The problem IT”, it is known to be FPT(v) [7]. For all of the remaining
problems, we start by finding a minimum feedback vertex set F* in running
time O*(f(v)).

Next, we consider the maximum clique problem II¥. A clique contains at
most two vertices from the forest V'\ F*. For each subset C' C F* which induces
a clique, we search for two adjacent vertices v, v" which are also adjacent to every
vertex of C', and add them to C. If we cannot find such a pair, we look for a single
vertex adjacent to every vertex of C', and add it to C. If we cannot find such a
vertex, we simply keep C. Finally, we return the largest clique constructed in
this way. This algorithm has running time bounded above by O*(f(v)2").

Next, we consider the problem II%*. For each subset S C F* which is indepen-
dent, we can discard N(S) and use a greedy algorithm to compute a maximum
independent set on the remaining forest in polynomial time. This algorithm has
running time bounded above by O*(f(v)2"). Since 7 = n — «, this also proves
the corresponding result for II7.

Finally, we show how to solve ITX. Notice that x(F*) < x(G) < x(F*)+2 <
v + 2. We take each value of k = 1,...,v 4+ 2 in turn and test if G has a k-
colouring. To do this, we first find every k-colouring of F* (which can be done
in O*(k") time). For each such colouring, we test if it extends to a k-colouring
of G. To do this, we try to find a k list-colouring of the forest V'\ F*. The list of
admissible colours of a vertex L(v) is those for which no neighbour v € N(v) is
of that colour. This list-colouring problem can be solved in polynomial time [10].
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Note that the algorithm will always find a valid k-colouring when k = v+2. This
whole procedure runs in FPT time when parameterized by v. This completes
the proof. O

Suppose 17 and Ty are vertex-disjoint trees rooted at v; and wvo, respectively.
Let T7 < T be the tree rooted at v; obtained by taking the disjoint union of T3
and T» and then joining v; to vy with an edge. Note that every rooted tree
can be built from its vertex set using just this operation. Moreover, such a
representation for a tree can easily be computed in linear time.

Proposition 8. 117 and II* are FPT(v) and FPT(t).

Proof. Again, we need only to prove that the problems are FPT(v). We start
with the II7 case. Consider a graph G = (V, E). Since II* € FPT(v), we can
compute a feedback vertex set F'* with running time O*(f(v)). Fix some subset
D C F*, that we assume to be the restriction of the minimum dominating set
to F'*.

We now run a dynamic programming algorithm. Note that G[V \ F*] is a
forest. For a rooted tree T' (with root vertex v) which is a subtree of a tree in
G[V \ F*], aset S C F* and a value d € {0,1,2}, we define A(T, S, d) to be the
minimum size of a set D’ € V(T such that N[DUD'| N F* = S, and:

e if d =0, D' includes the vertex v and D U D’ dominates every vertex in
T

e if d =1, D’ does not include the vertex v, but D U D’ dominates every
vertex in 7T

e if d =2, DUD' dominates every vertex in 7'\ {v}, but does not dominate
v.

If, for some choice of T,v, .S, d no such set D’ exists, we set A(T, S, d) = oc.

Now, for each tree T in the forest G\ F'*, we choose an arbitrary root vertex v
and find a decomposition of 7" using < operations.

Let T” be a subtree (rooted at v’) of T' that occurs in the decomposition.
We will show how to calculate the value of A(T”,S,d) for every possible choice
of S and d.

First, as a base case, we suppose that 7" consists of only a single vertex v’. If
d = 0, this corresponds to the case where D' = {v'}. Thus we set A(T",S,0) =1
if S = N[DU{v'}|NnF* and A(T", S,0) = oo otherwise. If d = 1, this corresponds
to the case where D’ = () and v’ has a neighbour in D. Thus if v’ has a
neighbour in D, we set A(T", N[D] N F*,1) = 0. If v' has no neighbour in D
or S # N[D]N F*, we set A(T',S,1) = co. If d = 2, this corresponds to the
case where D’ = () and v" does not have a neighbour in D. Thus if v’ has no
neighbour in D, we set A(T', N[D] N F*,2) = 0. If v/ has a neighbour in D or
S # N|[D]N F*, we set A(T",S,2) = oc.

Now suppose that 7" (rooted at v') contains more than one vertex. Then
T = Ty + Ty for some T1,T> rooted at vi, vy respectively, say. Note that
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vy = v’, by definition of +—. We now show how to calculate A(7", S, d) given the
values for A(Ty,S’,d") and A(T»,S’,d") for all possible choices of S" and d'.

If d = 0, this corresponds to the case where D’ contains v’. Consider the
restriction of D’ to T1. We must have that T is dominated by (D' NV (11))UD
and that it contains the root vertex of v1. In other words, this restriction must
correspond to the A(Ty,S7,0) case for some S;. In this case, any valid D’
for 77 must dominate all of 77 and all of T5. Since v’ € D’, we know that vy
is dominated by v’. Now consider the restriction of D’ to Tb. We must have
that (D' NV (T,)) U D dominates V(Ty) \ {v2}. Since v is adjacent to ve and
is present in D’, vertex vy may or may not be present in D’ and it may or may
not be dominated by (D' NV (T3)) U D. This corresponds to the A(Ty,Ss,d")
case for some Sy and some d’ € {0,1,2}. We therefore set A(T",S,0) to be the
minimum of {A(711, S1,0) + A(Ts, Sa,d")|d" € {0,1,2}, 5, USy = S}.

If d = 1, this corresponds to the case where vy € D’, but v; is domi-
nated by a member of D’. This dominating vertex must either be in D U
(V(Ty) N D') or it must be va. The restrictions of D’ to 71 and Ty therefore
correspond to A(T1,S1,1) and A(Ts, S2,d’) for some d' € {0,1} and some Sy
and Sy or they correspond to A(T1, 51,2) and A(T5, So,0) for some Sy and Ss.
Therefore, A(T”, S, 1) is the minimum of {A(T}, S1,d1)+ A(T%, Sa,d2)|(d1, ds) €
{(1,0),(1,1),(2,0)},51 U Sy = S}.

If d = 2, this corresponds to the case where T” \ {v;} is dominated by
DU D', but vy is not dominated by D U D’. This means that neither v; nor v,
are present in D’. The restriction of D’ to 77 must be such that D U (D' N
V(T1)) does not dominate vy, which corresponds to the A(Ty,Si,2) case, for
some S;. However, vo must be dominated by a vertex in D U (D' NV (Ty)).
This corresponds to the A(T5, S2,1) case. Thus A(T’,S,2) is the minimum of
{A(Tl, 517 2) + A(TQ, SQ, 1)|51 U SQ == S}

Using the above recursion, we can calculate the value of A(T”, S, d) for every
rooted tree T in G[V(G)\ F*] in FPT time (with parameter ). We label these
trees 11, ..., Tk.

Now, for S C F* and i < k, let B(i,5) be the size of the smallest set
D' e V(Th)U---UV(T;) such that NIDUD'|N(F*UV(T1)U---UV(Ty)) =
SUV(Ty)U---UV(T;). Note that B(0,.5) = 0if S = N[D]NF* and oo otherwise.
Furthermore, for i > 1, B(7, S) is the minimum of { B(i—1, S1)+ A(T;, Sa,d)|S1 U
Sy =85,d € {0,1}}. The minimum size of a dominating set whose intersection
with F* is D is then |D| + B(k, F*). All these calculations can be done in
FPT time with parameter v. We thus branch over all possible choices of D and
then, for each such choice, find the size of the minimum dominating set whose
intersection with F™* is D.

The argument for I is similar. Again, we start by finding a minimal feed-
back vertex set F'*, but this time, we only consider D C F'* that are independent.
We define A'(T, S,d) in the same way as A(T, S, d), except that now we only
comnsider sets D’ such that D U D’ is independent.

We now explain how to calculate A'(T,S,d) for the tree T, rooted at wv.
Again, we first consider the case where T' contains a single vertex. If d = 0, this
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corresponds to the case where D’ = {v}. D U D’ must be independent, so v
cannot have any neighbours in D. Therefore, we set A'(T,S,0) = 1if S = N[DU
{v}]N F* and v has no neighbours in D. Otherwise, we set A’'(7”,5,0) = co. If
d = 1, this corresponds to the case where D’ = () and v has a neighbour in D.
We therefore set A'(T,S,1) =0 if S = N[D] N F* and v has a neighbour in D.
Otherwise, we set A'(T,5,1) = co. If d = 2, this corresponds to the case where
D’ = ) and v does not have a neighbour in D. We therefore set A'(T,5,2) =0
if S = N[D]N F* and v does not have a neighbour in D. Otherwise, we set
AT, S,2) = cc.

Now consider the case where T' contains more than two vertices. Again, it
must be of the form T} < T5, where T7 and 15 are trees rooted at v; and vs,
respectively, say. We now show how to calculate A'(T,S,d). If d = 0, this
corresponds to the case where v; € D’. Note that D U D’ must be independent,
so vy € D'. Vertex v; dominates vg, so the restriction of CUD’ to DUT, may or
may not dominate vy. Therefore A’(T, S,0) is the minimum of {A’(T},S1,0) +
A (Tz,52,d")|S1 U S, = S,d € {1,2}}. If d = 1, this corresponds to the case
where v; € D’, but it is dominated by either D or vy. Therefore, as for the case
of II", A'(T,S,1) is the minimum of {A'(T1, S1,d1) + A'(Ts, S2,d2)|(d1,d2) €
{(1,0),(1,1),(2,0)}, 51 U Sy = S}. Similarly, A'(T,S,2) is the minimum of
{A'(T1,51,2) + A/ (T, S2,1)|S1 U Sy = S}.

Finally, we define B'(i,.S) for the II* problem as we did B(i,S) for the II7
problem, except that we now demand that DU D’ is independent. In the forest
V(G) \ F*, no vertex of any tree can be adjacent to a vertex in different tree.
Therefore, the algorithm for calculating B’(4,.5) from A'(T, S, d) is identical to
that calculating B(i,.S) from A(T,S,d) for II7. We complete the proof in the
same way as for I17. O

3.2 Intractability results

We now prove the negative results claimed in Table 1.
Proposition 9. The following hold:
1. 11, I, 1%, TTY, 11 are ¢ XP(x) and ¢ XP(w);
2. TI¥ and 11X are ¢ XP(a);
3. T is ¢ XP(v);
4. II*, 17, 11¥, 11X and 11" are ¢ XP(y) and ¢ XP(7).

Proof. All these results are a consequence of the fact that these problems re-
main NP-hard if the related parameter is bounded, as shown in the proof of
Proposition 3. 0

Proposition 10. The following hold:
1. TI¥ 4s W[1](x)-hard;
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2. I* 117 and 11 are W[1](a)-hard.

Proof. Claim 1 follows immediately from the W[1]-completeness of MULTI-CO-
LOUR CLIQUE. This problem asks: given a graph G, and a colouring of G
with k colours, does G contain a clique on k vertices? Given an instance (G, k)
of MULTI-COLOUR CLIQUE, we delete any edges both of whose endpoints are the
same colour. The resulting graph G’ has x < k. Our instance of MULTI-COLOUR
CLIQUE is a yes-instance if and only if G’ has a clique on k vertices.

For Claim 2, let G(V, E) be a graph and G(V, E) its complement, (i.e. e €
E & e ¢ E). Since a(G) = w(G) and w(G) = a(G), the result for I1¢ and 117
is an immediate consequence of II* eW|1|(w)-hard.

We now prove the IT” case. Given a graph G = (V, E), we define G’ to be
the product of G with a single edge, i.e. G' = (V', E'), where V' = V; UV, and
E' = {((0,1), (v,2))[v € V} U {((v,), (w,0))]i € {1,2}, w0 € E}.

We claim that a(G') = a(G),v(G’) = 2(|V|—a(G)). Tt is straightforward to
verify that a(G’) = a(G). Moreover, for any graph G of order n, we have that

1) < a(H), so v(G') = |V(G)] - 20(G") = 2(]V] - 2a(G)). On the other
hand, for a stable set S of G, S x {1,2} induces a forest (in fact a matching)
and consequently v(G') < 2(|V| — a(G)). This completes the proof, since II* is

W][1](«)-hard. O
Proposition 11. 11" and IT* are W[2]-hard(c) and W[2]-hard(i).

Proof. Since i < «, we need only prove that the problems are W[2]-hard(«).
We prove the result for the problem II’. Similarly to the case above, given
a graph G = (V,E), and k € {1,...,|V|}, we define Gy, = (Vi, E)), where
Vi=ViU---UV,, V; =V x {i} and Ex = E; U---U Ey UFE’, where (V;, E;)
induce cliques and E' = {((u,1), (v,j)),4,5 € {1,...,k},i # j,v € Ngu]}.

The following claims then hold:

1. if Dy is an independent dominating set of Gj and D, N V; = ) for some
je{1,...,k} then {v, 3, (v,i) € Dy} is an independent dominating set
of G;

2. a(Gy) < k;
3. if k > i(G) then i(Gy) = i(G).

The first two claims are obvious. In order to prove the third claim, note that
if {a1,...,a,¢)} is an independent dominating set in G, then {(aj;,j),j =
1,...,4(G)} is an independent dominating set for Gi. Applying the first claim
completes the proof.

Thus, given an oracle O for (II%, ), we find a minimum independent dom-
inating set for Gp,Ga,... until such a set has no vertex in some V;. (We
can do this since the constructive and non-constructive versions are equiva-
lent, due to Proposition 6.) The process will finish for Gy, k < i(G) + 1 and
since for j < i(G) + 1, we have that a(G;) < j < i(G) + 1, we find that
(IT%,i) <ppr (II',). Thus I’ is indeed W[2]-hard(a). The corresponding
result for IT7 follows similarly. O
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4 Conclusion

We have studied the cross-parameterization of MIN VERTEX COVER, MAX INDE-
PENDENT SET, MAX CLIQUE, MIN COLORING, MIN DOMINATING SET, MIN INDE-
PENDENT DOMINATING SET and MIN FEEDBACK VERTEX SET. We are aware of
the fact that most of the parameters handled in the paper cannot determined in
FPT time and that our study is limited to only seven problems and parameters.
However, our goal was rather structural than purely algorithmic. We have tried
to show that cross-parameterization provides a somewhat deeper insight to the
real nature of the parameterized (in)tractability of the problems handled and
helps us to better comprehend it.

As one can see in Table 1, any of the problems tackled is FPT with respect
to both 7 (the standard parameter of MIN VERTEX COVER) and v (the standard
parameter of MIN FEEDBACK VERTEX SET). A natural question to be studied
is whether or not there exist natural graph problems that are hard for either 7
or v.

Finally, let us note that cross-parameterization can be applied in many cate-
gories of combinatorial optimization problems defined on several structures (and
not only on graphs). For instance, what is the parameterized complexity of MIN
SET COVER with respect to the standard parameter of MAX SET PACKING or to
that of MIN HITTING SET? What are the complexities of the two latter problems
with respect to the two remaining parameters?
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