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Abstract

Outranking relations such as produced by the ELECTRE I or II or the TAcTIC
methods are based on a concordance and non-discordance principle that leads to
declaring that an alternative is “superior” to another, if the coalition of attributes
supporting this proposition is “sufficiently important” (concordance condition) and
if there is no attribute that “strongly rejects” it (non-discordance condition). Such
a way of comparing alternatives is rather natural and does not require a detailed
analysis of tradeoffs between the various attributes. However, it is well known that
it may produce binary relations that do not possess any remarkable property of
transitivity or completeness. The axiomatic foundations of outranking relations
have recently received attention. Within a conjoint measurement framework, char-
acterizations of reflexive concordance-discordance relations have been obtained.
These relations encompass those generated by the ELECTRE I and II methods,
which are non-strict (reflexive) relations. A different characterization has been
provided for strict (asymmetric) preference relations such as produced by TAC-
TIC. The goal of this paper is to analyze the relationships between reflexive and
asymmetric outranking relations. Co-duality plays an essential réle in our analysis.
It allows to understand the correspondence between the previous characterizations.
Making a step further, we provide a common axiomatic characterization for both
types of relations. Applying the co-duality operator to concordance-discordance
relations also yields a new and interesting type of preference relation that we call
concordance relation with bonus. The axiomatic characterization of such relations
results directly from co-duality arguments.

Keywords: Multiple criteria analysis, Concordance, Discordance, Outranking
methods, Conjoint measurement, Nontransitive preferences, Veto, Bonus, Co-
duality
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1 Introduction

Most outranking methods, including the well known ELECTRE methods (Roy,
1968, Roy and Bertier, 1973), base the comparison of alternatives on the so-called
concordance € non-discordance principle. It leads to accepting the proposition
that an alternative is “superior” to another if the following two conditions are

fulfilled:

e concordance condition: the coalition of attributes supporting this assertion
is “sufficiently important”,

e non-discordance condition: there is no attribute that “strongly rejects” this
assertion.

Stating that an alternative is “superior” to another may have two different mean-
ings. In ELECTRE methods, “superior” means “not worse” i.e., “at least as good
as'". Such methods aim at building a reflexive preference relation that is inter-
preted as an “at least as good as” relation. In general, such relations may lack
nice transitivity or completeness properties (on these issues, see Bouyssou, 1992,
1996). In previous work (BP09b)!, we have characterized the reflexive binary re-
lations that can be obtained on the basis of the concordance-discordance principle
like in the ELECTRE I (Roy, 1968) and ELECTRE II methods (Roy and Bertier,
1973).

In other outranking methods, like the TACTIC method (Vansnick, 1986), “su-
perior” means “strictly better than”. Such methods build an asymmetric relation
that is interpreted as strict preference. As in the reflexive case, the obtained
relations are not necessarily transitive and they may have cycles. Asymmetric re-
lations satisfying the concordance/non-discordance condition have been previously
characterized in BP02c, BP05b, BP06.

Common sense and usage suggest a simple relationship between strict and non-
strict preference relations: alternative x is at least as good as alternative y if y
is not better than z and wvice versa. In terms of binary relations, this amounts
saying that the “at least as good as” and “better than” relations are the co-dual of
each other, i.e., one is the complement of the inverse of the other. This intuition
should be questioned. Indeed, starting from an asymmetric preference relation
and taking its co-dual leads to a complete preference, while, usually, non-strict
outranking relations are incomplete preference relations. Conversely, the co-dual of
an incomplete relation, such as a non-strict outranking relation, is not asymmetric,
hence it hardly can be interpreted as a strict preference. Should we consider the

'Tn the sequel, previous papers by the present authors will be referred to by the authors’
initials, BP, followed by the year of publication and possibly a letter to distinguish different
papers published the same year.



asymmetric part of the co-dual? As we shall see, such a relation is not a strict
outranking relation as they can be defined in the spirit of the TACTIC method.

The purpose of this paper is to examine the correspondence between strict and
non-strict outranking relations. After notation is presented in the next section, we
discuss this question in an informal way in Section 3, using definitions of strict and
non-strict outranking relations that respectively encompass the relations yielded
by the TAcTIC and ELECTRE methods. In Section 4, we recall what is needed from
our previous axiomatic work and analyze in depth the relationship between strict
and non-strict outranking relations mainly using co-duality. This analysis leads
us to the definition and characterization of a new model for preference relations
(strict and non-strict concordance relations with “bonus”). Finally, we draw some
conclusions and present perspectives for future research.

2 Notation and definitions

In this section we set the notation and recall some elementary definitions that will
be used throughout the paper.

A preference relation on a set X is, in general, denoted by R. A binary relation
R on X is said to be reflexive if a R a, for all a € X. It is complete if a R b or
bR a, for all a,b € X. Relation R is asymmetric if a R b = Not[b R al, for all
a,b € X. It is transitive if (a R band b R ¢) = a R ¢, for all a,b,c € X. It
is Ferrers if (a R band ¢ R d) = (a R d or ¢ R b), for all a,b,c,d € X. It is
semi-transitive if (a R band b R ¢) = (a R dor d R ¢), for all a,b,c,d € X. A
weak order is a complete transitive relation. A semiorder is a reflexive Ferrers and
semi-transitive relation. A pair of semiorders (R, R2) on X form a homogeneous
chain of semiorders (Doignon et al., 1988) if Ry C R, and there is a weak order
T on X such that, for i = 1,2, we have

xTy=forallz€ X, [yR;z=xR;z]and [z R; z = z R, y|. (1)

When a pair of alternatives (a, b) belongs to a relation R, we write indifferently
(a,b) € R or a R b. Starting from a relation R, we can derive several other
relations by using appropriate operators. For all a,b € X, we define:

e the dual (or inverse or reciprocal) R%: a R4 bif bR a

the complement R°: a R b if Not[a R 0]
the co-dual R*: a R°* b if Not[b R d

the asymmetric part R*: a R* bif a R b and Not[b R a]

the symmetric part R%: a R° bifa R band bR a



e the symmetric complement R?: a R’ b if Notla R b] and Not[b R a].

We recall a few straightforward properties of the co-dual operator, for they will
be used in the sequel. The co-dual of a complete relation is its asymmetric part.
The co-dual of an asymmetric relation is complete. The co-dual operator is an
involution between the set of complete relations and the set of asymmetric ones.
It also establishes an involution between reflexive and irreflexive relations (see
Monjardet (1978) for proofs and many more results).

The set of alternatives will be denoted by X. As is usual in conjoint mea-
surement this set will be identified with the Cartesian product ] ; X; of n sets
X;. The latter are interpreted as the range of values of n attributes (n > 2) that
completely describe the alternatives in the decision problem at hand. These sets
X, are not assumed to be sets of numbers, not even to be ordered sets. The set
{1,2,...,n} will be denoted by N. We use X_; to denote the cartesian product
[ljen j2i Xj. Assuming that z is an element of X, x_; is the element of X_; ob-
tained by removing the ith coordinate of vector x, which describes x on attribute
i. Assuming that a belongs to X and x; € X;, (z;,a_;) is the element of X which
has the same description as a on all attributes but one: the description of (z;,a_;)
on the ith attribute is x;.

3 Variants of outranking relations

We start with briefly recalling the definition of a reflexive outranking relation as
used in the ELECTRE I method and show that such relations fit in with a slightly
more general and abstract definition. Such relations are interpreted as non-strict
preferences. We do the same with the asymmetric outranking relation of the
TacTic method. Such relations are interpreted as strict preferences. On the basis
of these general definitions, we investigate the relationship between reflexive and
asymmetric outranking relations, mainly using co-duality.

In order to avoid unnecessary minor complications, we restrict our attention
to relations R on X = [[;, X, for which each attribute is influential. This re-
quirement is a sort of non-triviality condition for attributes. We say that attribute
i € N is influential (for R ) if there are z;,y;, z;,w; € X; and z_;,y_; € X_;
such that (z;,z_;) R (yi,y—;) and Not[(z;, x—;) R (w;,y—;)] and degenerate other-
wise. A degenerate attribute has no influence whatsoever on the comparison of
the elements of X and may be suppressed from N.



3.1 ELECTRE I

We describe how a reflexive outranking relation, interpreted as a non-strict prefer-
ence, is built according to the ELECTRE I method?. Using a real-valued function
u; defined on X;, and a pair of non-negative thresholds pt; and vt;, with pt; < vt;,
we define the semiorders S; and U; as follows®: for all z;,y; € X,

z; S; Y € wi(w;) > wi(y) — pts (2)
z; U yi & wi(z) > wi(ys) — vt (3)

The pair of relations (S;, U;) on X; form a homogeneous nested chain of semiorders
as defined in Section 2 (with the underlying weak order T; such that z; T; y; <
wi(z;) > wu;(y;)). Relation S; interprets as the “at least as good” relation on
attribute i. The relation P;, the asymmetric part of S;, is interpreted as a “better
than” relation. pt; is the preference threshold on attribute 7. We read “z; U; v;”
as “level x; is not unacceptably bad with respect to level y;”. The relation U; is a
non-veto relation on attribute 7. In contrast, the co-dual of U; is the veto relation
V;. It is defined as follows: for all x;,y; € X;,

(4)

Hence y; V; x; means that y; is far better than z;.

In ELECTRE I, the outranking relation R is determined using positive weights
w; attached to each attribute and a threshold s with (1/2 < s < 1), such that, for
all v,y € X,

> ieS(z,y) Wi

rRy&
Zjerj

>sand V(y,z) =g, (5)
where S(z,y) = {i € N : z; S; y;}, the set of attributes on which x is at least as
good as y, and V(y,z) = {i € N : y; V; z;}, the set of attributes on which x is
unacceptably bad as compared to y.

Outranking relations such as R are reflexive, need not be complete and do not
in general enjoy nice transitivity properties (Bouyssou, 1996). As a consequence,
deriving a recommendation to the decision maker on the basis of such relations is
not straightforward. In order to do that, the analyst may use one of the so-called

exploitation procedures (see Roy and Bouyssou (1993, Ch. 6), or Bouyssou et al.
(2006, Ch. 7)).

2This version of the ELECTRE I method is not the historical one (Roy, 1968), but a more
“modern” version as presented in Roy and Bouyssou (1993, p. 251).

3 Assuming the existence of constant threshold representations for these semiorders is not
restrictive for finite X; (Aleskerov et al., 2007, p.222).
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Remark 1

Note that we do not consider valued outranking relations such as those obtained
by the ELECTRE III (see Roy (1978), Roy and Bouyssou (1993, pp. 284-289)) and
the PROMETHEE (Brans and Vincke, 1985) methods. This is due to the fact that
the tools currently developed in the framework of conjoint measurement theory
only deal with crisp relations. In contrast, our analysis does encompass the crisp
outranking relations produced by the ELECTRE II method. We do not develop
this point further for the sake of conciseness. °

3.2 Outranking relations

A general definition of a reflexive outranking relation was given in BP09b, where
such a relation is referred to as a reflexive concordance-discordance relation (R-
CDR). The same paper established a characterization of such relations by a system
of independent axioms. Since it turns out that reflexivity plays no rdle in the
analysis, we restate this definition below, dropping the assumption that the relation
is reflexive. In the sequel, the expression outranking relation will be used as exact
synonymous of concordance-discordance relation (CDR).

Definition 2 (Concordance-discordance relation (CDR))
A binary relation R on X = [[i~, X; is a concordance-discordance relation (CDR)
if there are:

1. a complete binary relation S; on each X; (i =1,2,...,n) (with asymmetric
part P; and symmetric part I;),

2. an asymmetric binary relation V; on each X; (i = 1,2,...,n) such that
Vi C P,

3. a binary relation > between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C,D C N with AUB = N and
CuD =N,

[A>B,CDOABDOD|=CP>D, (6)

such that, for all x,y € X,
xRy« [Sx,y) > Sy, x) and V(y,z) = 2], (7)
where S(z,y) ={i € N :z; S; i} and V(y,x) ={i € N :y; V; z;}.

We say that (>, S;,V;) is a type I representation of R as a CDR.
A concordance relation (CR) is a CDR in which the V; relations are all empty’.



As explained in BP09b, the type I representation (>,S;,V;) of a CDR may
not be unique. This is true even if all attributes are supposed to be influential.
When we speak below of a representation of type I (&>, 5;, Vi) of a CDR, we mean
one possible representation of type I of the CDR. As detailed in BP05a, BP07
the situation is different with CR. When all attributes are influential, they have a
unique representation of type I. Similar remarks will hold for the representations
of type II introduced below.

In the above definition, for each attribute 7, .S; is interpreted as a non-strict
preference relation on X;. The asymmetric part P; of S; is the strict preference
on X; and V; is the veto relation. Relation > is used in pairwise comparisons of
alternatives, it compares coalitions of attributes in terms of their importance: if A
and B denote subsets of attributes, A > B reads “the coalition of attributes A is
at least as important as the coalition B”. In the sequel, we shall use the notation
> (resp. =) to denote the asymmetric (resp. symmetric) part of >. Consequently,
A > B (resp. A £ B) reads “the coalition of attributes A is strictly more important
(resp. equally important as) coalition B).

It is easy to see that the outranking relation of ELECTRE I satisfies the above
definition. In particular®, the relation I> is defined by:

dicA Wi

jeN Wy

AD> Bif > s

Rule (5) implies that the relation built in the ELECTRE I procedure is reflexive.

Remark 3 (Outranking relations with attribute transitivity)

Due to (2) and (3), relations S; and V; in ELECTRE I have additional proper-
ties, namely S; is a semiorder, V; is the asymmetric part of the semiorder U; and
S; and U; form a homogeneous chain of two semiorders. Concordance discor-
dance relations with these additional properties have been defined and charac-
terized in BP09b under the name reflexive concordance-discordance relations with
attribute transitivity (R-CDR-~AT). When required, the suffix “-AT” will be added
to acronyms characterizing outranking relations, meaning that the corresponding
relations also have the attribute transitivity property. °

Remark 4 (Concordance and non-discordance relations)
Condition (7) explicitly defines an outranking relation as a relation that satisfies
two rules: a concordance rule (S(z,y) > S(y,x)) and a non-discordance rule

4When a concordance discordance (resp. concordance relation) relation is irreflexive, reflexive
or asymmetric we will use the acronyms I-CDR, R-CDR and A-CDR (resp. I-CR, R-CR and
A-CR) when we want to emphasize this fact.

5See BP09b, p. 470, for more detail.



(V(y,z) # @). Alternatively, an outranking relation R can be viewed as the
intersection of two relations: a concordance relation C(R) and a non-discordance
relation. The concordance relation C(R) is defined by z C(R) y if S(z,y) &> S(y, ).
The non-discordance relation ND(R) is defined by x ND(R) y if V(y,z) = @.
Hence, we have x R y iff [ C(R) y and z N'D(R) y].

Note that the concordance relation C(R) associated with a concordance-discor-
dance relation in the sense of Definition 2 is itself a particular case of this definition,
in which the veto relation V; is assumed to be empty. Such relations were studied
and characterized in (BP05a, BP0T7)S. .

3.3 TAcTIC

Another type of outranking relation has been introduced by Vansnick (1986). His
TAcTIiC method yields an asymmetric outranking relation interpreted as a strict
preference. We briefly recall its definition. Let P; be the asymmetric part of the
semiorder S; defined by (2) and let V; be the asymmetric part of relation U; defined
by (3). Since U; is complete, V; is also the co-dual of U;. An outranking relation
R of the TACTIC type is defined as follows:

tRys > w>p > wjteand V(y,z)=2, (8)

where w; is a weight assigned to attribute ¢, p is a multiplicative threshold with
p > 1, £ is a nonnegative additive threshold, P(y,x) = {i € N : x; P; y;} and
Such an outranking relation is clearly asymmetric by construction, hence ir-
reflexive.
As with ELECTRE I, TACTIC inspires a general definition of outranking rela-
tions that we discuss in the next section.

3.4 An alternative definition of outranking relations

The alternative definition of a concordance-discordance relation that we give below
is a variant of the one originally proposed in BP06, BP12, which was restricted
to asymmetric preference relations. We drop this restriction and, in Lemma 6, we
show that the unrestricted version of the definition is equivalent to Definition 2.

Definition 5
A binary relation R on X = [[-; X; is a concordance-discordance relation if there
are:

6This characterization was given for reflezive concordance relations (R-CR), but this restric-
tion is inessential and our characterization is valid for general CR.



e an asymmetric binary relation P on each X; (i =1,2,...,n),

e an asymmetric binary relation V;° on each X; (i = 1,2,...,n), with V;° C P?,

e a binary relation >° between disjoint subsets of N that is monotonic w.r.t.
inclusion, i.e., for all A,B,C,D C N with ANB=% and CND = @,

[A>° B,C 2 A,BD D] = C>°D, (9)

such that, for all x,y € X,
xRy [P(x,y) 2° P°(y,x) and V°(y,z) = 2], (10)
where P°(x,y) ={i € N : x; P y;} and V°(y,x) ={i € N :y; V,° x;}.
We say that (>°, PP, V°) is a type 1I representation of R .
It is readily checked that the outranking relation produced by TACTIC satisfies
this definition. In TACTIC the relation >° is asymmetric.

Lemma 6 (Equivalence of the definitions of CDR)
Definitions 2 and 5 are equivalent.

PROOF
Assume that R satisfies Definition 2 and that (>, .S;,V;) is a type I representation
of R. We construct a representation (>°, P2, V,°) of type II satisfying (10) letting:

P? = P; (the asymmetric part of S;),Vi € N

! ‘ (11)
Ve=V, Vie N

and >° is defined as follows: for all A, B C N, with AN B =,

A Bif (N\B)> (N\ A). (12)

It is straightforward to check that I>° satisfies monotonicity condition (9) and that
R satisfies condition (10).

Conversely, let R be a relation that satisfies (10) and (>°, P2, V,°) a type II
representation of R. We build a type I representation (>, S;, Vi) of R by letting:

S; = (P?)° (the co-dual of P?),Vi € N (13)
Vi=V° VieN (14)

and > is defined as follows: for all A, B C N, with AUB =N,
A Bif (N\B)>° (N\A). (15)

Again, it is easy to prove that > satisfies (6) and that R satisfies condition (7).
Observe that because P?, it co-dual S; is complete. O

8



The proof of the lemma has established a correspondence between representa-
tions of type I and type II of a CDR, which we state in the following definition.

Definition 7 (Conjugate representations)

Let R be a CDR and (*>,S;,V;) (resp. (>°, P?,V°)) a representation of type I
(resp. of type II) of R. We say that these representations are conjugate if S; and
P? are linked by co-duality, i.e., x; S; y; if and only if y; PS z;, Vi = V.°, and

provided > and >° are linked by (12) or, equivalently, by (15).

We state below three consequences of the equivalence of the two definitions of
CDR.

1. It is immediate that an asymmetric outranking relation as yielded by the
TAcTIC method described above satisfies the alternative definition of a CDR
(Definition 5). By Lemma 6, it also satisfies Definition 2. Asymmetric
concordance-discordance relations will be referred to by the acronym A-CDR.

2. If (>, S;, Vi) and (>>°, P?, V.°)) are dual representations of a CDR, R, we see
that condition (5) in ELECTRE I could equivalently be formulated in terms
of the strict preference P; as

ZiEP(y,m) W; <1-s.
2 jeN Wj

3. Let R be a CDR and let (>, S;, V;), (&°, PP, V.°) be conjugate representations
of R. The concordance part C(R) of the outranking relation R has been
defined, using (7) and assuming V; = &, by = C(R) y if S(z,y) > S(y, x).
In the same spirit, we may use (10), assuming V,° = &, yielding x C(R) y if
P(z,y) > P(y,z). Assuming that (>, 5;,V;) and (>°, PP, V,°) are conjugate
representations of R, it is easy to see that the latter definition is equivalent
with the initial one.

Summarizing, we may say that all crisp outranking relations, either those re-
flexive relations produced e.g., by the ELECTRE I method, or the asymmetric
ones produced e.g., by TACTIC are CDR. Their distinctive structural features are
mainly properties such as reflexivity vs irreflexivity, asymmetry or completeness.
These properties of the outranking relations are reflected in their representations,
more precisely, in corresponding properties of > or >°. The following proposition
formally states some useful related results.

Proposition 8
Let R be a CDR and (>, S;,V;) (resp. (B°, P2, V,?)) its representation of type I
(resp. of type II). We have:



1. R is either reflexive or irreflexive,
R is reflerive < N > N & @ D° &)
otherwise, R is irreflexive,

2. R is asymmetric <> is asymmetric <>° is asymmetric,

3. R is complete
& (A BorB>A)WA BCNAUB=N
& (C°DorCP>°D)VC,DCNCND=g.

The straightforward proof is left to the reader. For Parts 2 and 3, the proof of
the = part uses the hypothesis that all attributes are influential (so that, for all
A,B C N such that AU B = N, there are z,y € X such that S(z,y) = A and
S(y,x) = B and for all C, D C N such that C' N D = &, there are z,w € X such
that P°(z,w) = C and P°(w,z) = D).

These properties can immediately be applied to outranking relations built using
ELECTRE I or TACTIC. If R arises from ELECTRE I, it satisfies (5) so that N > N.
As a consequence of Proposition 8.1, R is reflexive. A relation R arising from
TAcTIC satisfies (8). This implies @ >° @& and [C' >° D = Not[D >° C]], for all
C,D C N with C N D = @. Hence, using Proposition 8.1 and 8.2, we see that R
is irreflexive and asymmetric.

Remark 9 (The role of co-duality)

This section has shown that both reflexive and asymmetric outranking relations
can be described in a common framework specified by either Definition 2 or, equiv-
alently, Definition 5. In spite of this resemblance, their interpretations are rather
contrasted since reflexive preferences are usually interpreted as “at least as good”
relations while asymmetric preferences are interpreted as “better than” relations.
With these interpretations, some sort of semantic relationship is intuitively ex-
pected between “at least as good” and “better than” relations. If we start with a
reflexive preference relation R, interpreted as an “at least as good” relation, the
corresponding “better than” relation is the asymmetric part R* of R. Conversely,
starting with an asymmetric preference relation R (like in the TACTIC method),
how can we define the corresponding “at least as good” relation? At first glance,
it is tempting to say that x is at least as good as y if y is not better than x, which
amounts to define the “at least as good” relation as the co-dual of R . Such a
definition automatically yields a complete reflexive relation (in view of the prop-
erties of the co-dual operator that were recalled in Section 2). This is problematic
since reflexive preference relations cannot always be assumed to be complete (see
Deparis et al., 2012, for an experimental investigation of incomparability in pref-
erences). In particular, in the context of outranking methods, pairs of alternatives
may be incomparable, due for instance to veto effects (see Roy, 1996). Actually, an

10



asymmetric outranking relation can be, in general, the asymmetric part of several
reflexive outranking relations. Determining a unique reflexive relation having a
given asymmetric part requires additional information, namely the specification
of the list of incomparable pairs of alternatives (referred to as the incomparability
relation in Roy, 1996).

Although co-duality does not determine a correspondence between reflexive
and asymmetric outranking relations, it plays a major role for understanding their
relationship. Therefore, we devote the rest of Section 3 to investigate the effect of
the the co-dual and asymmetric part operators on outranking relations. We first
consider concordance relations (with empty veto relations) then we examine the
case of concordance-discordance relations.

3.5 The co-dual and the asymmetric part of a concordance
relation

We first define the co-dual of the relation comparing the coalitions of attributes in
Definition 2 and state properties of such relations that will be useful in the sequel.

Definition 10

Let &> be a relation between subsets of N having N for union. We call the co-dual
of >, the relation > between subsets of N having N for union that is defined as
follows: for all A,B C N, with AU B = N, we have A > B & Not[B > A].

Lemma 11
Let > and > be two relations between subsets of N having N for union and satis-
fying monotonicity condition (6).

1. The intersection > N> of these relations is a relation between subsets of N
having N for union and satisfying (6).
2. The co-dual > and the asymmetric part > of ™ both satisfy condition (6).

Proof. The proof is left to the reader.

Remark 12

Similar properties can be established for relations >° that intervene in type Il
representations of concordance relations (C'R). We emphasize that >>° is a relation
between disjoint subsets of N and satisfies monotonicity condition (9). )

The co-dual of a C'R is a C'R and there is a correspondence between the type
I representations of these relations.

Proposition 13
Let R be a CR that has a representation of type I, (&,5;). The co-dual R of R
is also a CR with a representation of type I that is (>4, S;).

11



PRrRoOOF

We have z R y < [S(z,y) > S(y,z)]. The co-dual R* of R is such that = R
y < Notly R x]. Hence, we have x R y < Not[S(y,z) > S(x,y)]. The latter
condition can be rewritten as x R y < {S(x, y) >4 S(y, x)}, where > is the

co-dual of >. Using Lemma 11.2, we know that (> S;) is a type I representation
of R, O

Remark 14

A quite similar correspondence holds for type II representations. If (>° P?) is a
type II representation of R, (>°?, P?) is a type II representation of R, Moreover,
if the type I and II representations of R are dual of one another (Definition 7), the
corresponding representations of R are also dual of one another. In particular, if
> and >° are linked through relations (12) and (15) then their respective co-dual

>l and >° are linked through the same relations. °

Remark 15

The general properties of the co-dual operator, which were recalled in Section 2,
apply to the particular case of concordance relations. In particular, the co-dual
of a reflexive CR is an irreflexive CR and conversely. Also, the co-dual of an
asymmetric CR is a complete CR and conversely. °

We now turn to considering the asymmetric part of a R-CR. Taking the asym-
metric part of a R-CR yields a CR (that is of course asymmetric hence irreflexive).

Proposition 16

The asymmetric part of a R-CR, that has a type I representation (&>,S;), is the
A-CR that has a type I representation (>%,S;) with >%, the asymmetric part of
>,

PRrROOF

Let R be a R-CR. We have x R y < [S(z,y) &> S(y,z)]. The asymmetric part
R* of R is such that * R* y <& = R y and Notly R z]|. Hence, we have z R*
y < [S(z,y) > S(y,x) and Not[S(y,z) > S(x,y)]]. The latter condition can be
rewritten as * R* y < [S(z,y) > S(y,z)], where >* is the asymmetric part of
>. Using Lemma 11.2, we know that (>%,5;) is a type I representation of R®. O

Remark 17 (Type II representations)

A remark similar to Remark 14 can be formulated for type II representations of
R and R®. In particular, let (>° P?) be a type II representation of R. The
asymmetric part R® of R has a type II representation (>°“ P?), with >°%  the
asymmetric part of >°. °

12



Summarizing, if a R-CR is complete, its asymmetric part is an A-CR which
is also its co-dual. On the other hand, for a given A-CR, there are several R-CR
having it as their asymmetric part. One of them is a complete relation and its
co-dual. Note also that all what we said for CR remains valid for CR-AT, i.e., CR
with attribute transitivity (as defined in Remark 3).

3.6 Vetoes and bonuses

We now address the general case of outranking relations with veto. Consider-
ing concordance-discordance relations changes the picture. The correspondence
between R-CR and A-CR described in the previous section no longer holds. In
particular, the asymmetric part of a R-CDR is not, in general, an A-CDR. We
investigate such issues below.

Let R be a R-CDR. For all z,y € X, we have that x R y if x C(R) y and
z ND(R) y, where C(R) is the R-CR associated with R and x ND(R) y if
Not[y; V; z;], for all i € N (see Remark 4).

The asymmetric part R* of R obtains as follows:

xRy < xRy and Notly R z]

{ [t C(R)y and x ND(R) y] and
[Notly C(R) x] or Notly ND(R) z]]

It is easy to see that the above definition can equivalently be written as:

TRy <
{ [ C(R) y and Notly C(R) z] and x ND(R) y] or
[z C(R) y and y C(R) x and x ND(R) y and Not[y ND(R) z]] .

Hence we have z R“ y if and only if one of the following two exclusive conditions
is fulfilled:

1. (z,y) belongs to the asymmetric part of C(R) and x ND(R) y or

2. (z,y) belongs to the symmetric part of C(R), x ND(R) y and, for some
1€ N, x; Viy;

Case 1 corresponds to the definition of an A-CDR since, by Proposition 16,
the asymmetric part of C(R), which is a R-CR, is an A-CR, a non-discordance
condition is imposed on it.

Case 2 looks a bit more unexpected. There is no such condition in the definition
of an A-CDR or in the TACTIC motivating example of an A-CDR. With Case 2,
we have x R* y when (z,y) belongs to the symmetric part of C(R) and there is no
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veto of y against = (Vj, Not[y; V; x;]) but on some attribute i, we have z; V; y;,
which means that z; is a much better performance than y; on attribute ¢. The
presence of a veto in favor of x against y can thus have a positive effect in breaking
a tie in the concordance relation. We call such an effect a bonus.

In contrast with Proposition 16, the asymmetric part of an R-CDR is not, in
general, an A-CDR, due to the possible occurrence of bonus effects.

Let us now examine the effect of the co-dual operator on concordance-discor-
dance relations. Assume, for instance, that R is an A-CDR. By definition of an
A-CDR, we have: R y if  C(R) y and x N'D(R) y, where C(R) is the A-CR
associated with R. The co-dual R° of R is such that:

xRy < Notly C(R) z] or Notly ND(R) z]. (16)

The first condition in the righthand side of (16) states that (z,y) belongs to
the co-dual of C(R). We know that the co-dual of this A-CR is a complete R-
CR (Proposition 13). The second condition in the righthand side of (16), means
again that there may be a bonus effect, i.e., that x; V; y; (for any i € N) entails
z R y. Condition (16) defining the co-dual of an A-CDR is very similar to the
one defining a R-CDR except that veto plays a positive réle here. In contrast
with Proposition 13, the co-dual of a CDR is not, in general, a CDR, due to the
possible occurrence of bonus effects. It is a concordance relation with bonus (CRB)
as defined below. In this definition, the non-veto condition in Definition 2 is just
transformed into a bonus condition.

Definition 18 (Concordance relation with bonus (CRB))
A binary relation R on X =[], X; is a concordance relation with bonus (CRB)
if there are:

1. a complete binary relation S; on each X; (i =1,2,...,n) (with asymmetric
part P; and symmetric part I;),

2. an asymmetric binary relation V; on each X; (i = 1,2,...,n) such that
Vi C P,

3. a binary relation > between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C,D C N with AUB = N and
CuD =N,

[A>B,CDOABDOD|=CP>D, (17)

such that, for all z,y € X,
e Ry [S(x,y) = S(y,z) or V(z,y) # 2], (18)
where S(z,y) ={i € N :z; S; yi} and V(z,y) ={i € N :x; V; y;}.
We say that (>>,S;,V;) is a representation of R as a CRB.

14



Note that a concordance relation (CR) is a CRB in which all the V; relations
are empty. As for concordance-discordance relations, we may distinguish reflexive
CRB’s (R-CRB) on the one hand and asymmetric CRB’s (A-CRB) on the other
hand. The alternative definition of a CDR established in Lemma 6 can also be
transposed for CRB’s without any difficulty and we omit the details.

It is easy to see that CRB’s and CDR’s are related through co-duality as stated
in the following proposition.

Proposition 19
Relation R on X is a concordance-discordance relation if and only if its co-dual
R is a concordance relation with bonus and conversely.

PRrOOF

Let R be a CDR having (&>, S;,V;) as a representation of type I. Using Propo-
sition 13, we know that R is a concordance relation that has (>4 S;) as a
representation of type I as a CR. Since R is defined, for all z,y € X, by

xRy < Not[S(y,z) > S(z,y) and V(y, z) = 2]
< Not[S(y,z) = S(z,y)] or [V(y,z) # 2]
& [S(z,y) 27 S(y, )] or [V(y,x) # 2],
we see that it is a CRB having a representation of type I, which is (>4, S;, V;).

The converse is also true. Starting with R, a CRB that has a type I represen-
tation (¢ S;), we apply the co-dual operator as follows:

Ry < Not[S(y,x) > S(z,y) or V(y,z) # 2]
< Not[S(y,x) > S(x,y)] and [V (y,x) = 2]
& [S(z,y) = S(y,2)] and [V(y, ) = 2.

Relation R* is a CDR that admits the type I representation (>4, S;, V;). O

Because the asymmetric part R® of a R-CDR, R may involve at the same time
bonus and veto effects, simple examples show that it is neither an asymmetric CDR
nor an asymmetric CRB. Such relations require an analysis that is more complex
than the one for CDR or CRB. It is detailed in Bouyssou and Pirlot (2013).

3.7 Summary

Summarizing the above analysis of the relationship between non-strict and strict
outranking relations, we draw the reader’s attention to the following points.
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1. Aslong as we are concerned with concordance relations, without considering
vetoes, we see that there is no deep difference in nature between non-strict
and strict concordance relations: R-CR and A-CR satisfy the same definition
(Definition 2). They just differ by the additional property that they are
respectively reflexive or asymmetric. Moreover, the asymmetric part of a
R-CR is an A-CR. The co-dual of an A-CR is a complete R-CR. Knowing an
A-CR, there is no way of distinguishing indifference from incomparability in
view of reconstructing an hypothetic original R-CR of which the A-CR that
we know would be the asymmetric part. From a practical point of view, this
can be seen as an advantage of R-CR models over A-CR’s. The preferential
information encoded in a R-CR permits to distinguish incomparable pairs of
alternatives from indifferent ones, while A-CR’s do not allow for that.

2. Allowing for vetoes changes the picture. The asymmetric part of a R-CDR
is not an A-CDR but a more complex object, in general consisting of two
disjoint relations: on the one hand, the intersection of the asymmetric part
of the associated concordance relation and the non discordance relation (as
expected). On the other hand, a part of the indifference relation of the
associated concordance relation determined as follows: if one of the two
arcs linking a pair of alternatives in the indifference part of the concordance
relation is broken due to a veto, while the other is not, then the remaining
arc belongs to the asymmetric part of the R-CDR. In this case, the veto
relation acts as a bonus.

In the rest of this paper, we take advantage of the just explored co-duality
relationships between strict and and non-strict outranking relations, in order to

unify and deepen the axiomatic analysis that we presented in several previous
papers (BP02b, BP05a, BP06, BP07, BP09D).

4 Axiomatic analysis

We start by recalling some of earlier results on the characterization of CR and
CDR. Then we study the effect of the co-dual operator on our axioms. We de-
rive new axiomatic characterizations of classical outranking relations as well as
we obtain characterizations of preference relations involving bonuses instead of ve-
toes. Our main goal is to offer a unified and comprehensive framework allowing
clear understanding of the relationships between strict and non strict outranking
relations.
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4.1 Background

We briefly recall the axioms used in the characterization of reflexive CDR obtained
in BP09b, under the assumption that all attributes are influential.

Definition 20 (Axioms RC1, RC2)
Let R be a binary relation on a set X =[]y X;. This relation is said to satisfy:

(ziya—i) R (yi, b-i) (ziya—i) R (wi, by)
RC1; if and = or

(Zi, c.i) R (wi7 d_;) (zi,c-i) R (yi,d i),

(i, a—i) R (Yi, b—i) (zi,a-i) R (wi, b-)
RC?2; if and = or

(yi, c—i) R (w5, d ) (wi, c—i) R (2i,d-),

for all x;,y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;. We say that R satisfies
RC1 (resp. RC2) if it satisfies RC1; (resp. RC2;) for alli € N.

An interpretation of these axioms was provided in BP02a. Basically, axiom RC;
amounts to say that all preference differences (x;, y;) on X; can be weakly ordered.
Axiom R(C?2; establishes a link between opposite differences of preferences such as
(x;,y;) and (y;, z;). Note that RC2 entails that R is an independent preference
relation. Since they will be useful in the sequel, we recall the precise definition of
the weak orders on preference differences induced on each attribute X; as well as
the main properties linking them to axioms RC'1 and RC?2.

Definition 21 (Relations =¥, 7= )

~? ~e
Let R be a binary relation on a set X = [[i-, X;. We define the binary relations
=* and = on X? letting, for all x;,y;, 2, w; € X5,

(i, i) Zi (21, wi) &
Va_;,b_; € X_i, [(2i,0-5) R (wi, b)) = (w5,a-;) R (i, b—5)],

(i, y:) 277 (2, wi) & (2o, 95) 27 (26, wi) and (wi, zi) 227 (Y, 74)] -

These relations allow to give a precise meaning to the comparison of preference
differences on each attribute (see BP02a, for more detail). In the same paper, we
have shown the following result.

Lemma 22 (Bouyssou and Pirlot, 2002a, Lemma 1)
1. RC1; & [ZF is complete],

~Jl

2. RC2; &
[fm’ all x;, i, 2, w; € Xz'7N0t[($z"yi> =i (Zi;wi)] = (yiaxi> i (wl-,zi)],

~1 ~1

17



3. [RC1; and RC2;| < [ZF* is complete].

~Jl

*

Since 777 and 7 are transitive by definition, the above lemma states that =}
(resp. 77" is a weak order if and only if RC1; holds (resp. RC'1; and RC?2; hold).

~Jl

A crucial feature of CR and CDR is that they induce relations 7ZF and Z}*

(2
having a limited number of equivalence classes. This is the motivation for the

following two conditions.

Definition 23 (Axioms M1, M2)
Let R be a binary relation on a set X =[], X;. This relation is said to satisfy:

(yi,a—i) R (xi,b-4)

(xi,a—;) R (yi, b_;) or
M1, Zf and = ('LUi, a_i) R (ZZ', b_l) (19)
(zi,¢c-i) R (w;,d_;) or

(zi;c-i) R (yi, d—s),

(yi, CLi) R (iUi, bfi)

(xi,a—;) R (yi, b_) or
M2; if and = (zi,a-;) R (w;,b_y) (20)
(Yi,c—i) R (xi,d_;) or

(Zi,C—i) R (wi,d—i),
for all x;,y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X ;. We say that M1 (resp.
M2) holds if M1; (resp. M2;) holds for alli € N.

The interpretation of M1, and M2;, respectively conditional on RC2; and RC1;,
results from the following lemma.

Lemma 24

1. If R satisfies RC2;, then R satisfies M1; <
[for all x;, yi, zi,wi € Xy, Not[(yi, i) 27 (i, vi)] = (i, vi)

~1

27 (zi,wi)],

~t

2. If R satisfies RC1;, then R satisfies M2; <
[for all x4, y;, zi, ws € Xy, Not[(ys, v5) 225 (2, y:)] = (20, wi) 25 (Y, 7)),

~1

PROOF
The proof of item 1 (resp. item 2) results from the combination of BP07, Lemma
11.1 and 11.3 (resp. 11.2 and 11.4) and BP05a, Lemma 16.1 (resp. 16.2). O

Let us call a positive preference difference (resp. negative preference difference)
one that is at least (resp. at most) as large as the opposite preference difference.
Under RC?2;, M1; says that a positive preference difference is at least as large as
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any other preference difference. In other terms, there is only one class of positive
preference differences. Under RC1;, M2; states the symmetric property for nega-
tive preference differences. For more detail on the interpretation of M1 and M2,
see BP05a, BP07).

Remark 25 (Axioms UC and LC)

A simpler—and slightly stronger—version of axioms M1;, M2; was used in our ini-
tial characterization of concordance relations in BP05a. These axioms, respectively
labeled UC; and LC, obtain by dropping the second in the three possible con-
clusions in the definitions of M1; and M2;. The substitution of UC; and LC; by
M1; and M2; in the characterization of reflexive CR was motivated by the need
for independent sets of axioms. By Lemma 16.3 in BP05a, we established indeed
that RC2;, UC; and LC; imply RC1;. The second in the three possible conclu-
sions in the definitions of M1; and M2; has precisely the effect of guaranteeing
the independence of the set of axioms RC1;, RC2;, M1; and M2;, as is shown in
the next theorem. °

Theorems 26 and 28 below are variants of Theorems 13 in BP07 and Theorem
19 in BP0O9b, respectively. The theorems stated below are slightly more general
than their previous versions in two respects. First they are stated for general
binary relations, instead of reflexive relations. The reflexivity property was actu-
ally playing no role in the proofs of the previous characterizations, which remain
unchanged and are thus omitted. The second detail is that the independence of
the axioms is now stated in the class of complete relations (instead of the class of
reflexive ones). Most of the examples previously used to show the independence
of the axioms were complete relations. For the sake of completeness, we recall
these examples below and provide an additional one that is needed for proving
Theorem 28.

Theorem 26

The binary relation R on X = [, X; is a concordance relation (CR) iff it satisfies
RC1, RC2, M1 and M2. These axioms are independent in the class of complete
binary relations.

Proor

As we said before, the proof of Theorem 13 in BP0O7 remains valid for general
binary relations and we omit it. The independence of the axioms in the class of
complete relations results from the following examples (see Appendix):

Violated axiom RC1; RC2; M1, M2,
Example 78 76 7 82
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We now introduce a weakened version of M2;, axiom M 3;, which allows for
vetoes, i.e., “large negative” preference differences forbidding that a pair of alter-
natives may belong to the global preference relation.

Definition 27
Let R be a binary relation on a set X = [[;y X;. This relation is said to satisfy:

(5% a—i) R (yi7 b—i) (yi, a—i) R (-’Eu b—i)
and or

M3 if  (yic—i) R (xi,d—) =1 (2,a-:) R (w,b_y)
and or

(zise—i) R (wi, f-i) (zi,¢-4) R (wy,d ),

for all x;,y;, z;,w; € X; and all a_;,b_;,c_;,d_;j,e_;, f_; € X_;. We say that R
satisfies M3 if it satisfies M3; for alli € N.

We observe that M 3; only differs from M2; by the adjunction of the third premise,
implying that M3; is a weakening of M2;. The interpretation of M3;, under the
hypothesis that RC'1; holds, results from that of M2; as stated in Lemma 24.2.
Assuming RC'1; amounts to say that 2= is complete. Hence if the first two
premises of M3; hold and neither the first nor the third conclusion do, then we
have (z;,v;) =7 (yi, x;) >F (2, w;). In these circumstances, the second conclusion
cannot be true, since this would imply that (z;,w;) =7 (v, 2;), a contradiction
with (v, z;) =7 (2, w;). Hence, none of the three conclusions holds and M3; can
only be satisfied if it never happens that (z;,e_;) R (w;, f—;). This means that the
pair (z;,w;) represents an unacceptable preference difference, leading to a veto.
We have the following result.

Theorem 28

The binary relation R on X = [[' X, is a concordance-discordance relation
(CDR) iff it satisfies RC1, RC2, M1 and M3. These axioms are independent
in the class of complete binary relations.

Proor

As said before, the proof of Theorem 19 in BP09b remains valid for general binary
relations and we omit it. In order to prove the independence of the axioms in the
class of complete relations, we may invoke again those examples used in the proof of
Theorem 26. It only remains to exhibit an example of a complete relation satisfying
RC1,RC2, M1 and M3; on all attributes but one. Example 82 in appendix fulfills
this requirement. O
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4.2 Characterizations of CR via co-duality

From Proposition 13 we know that the co-dual of a concordance relation R is also
a CR. Starting from the axioms above, it is not difficult to reformulate them in
terms of the co-dual relation R°*. Let R be any relation on X. Consider for
instance axiom RC'l;. Using contraposition, we obtain:

R satisfies RC'1;, i.e.,

Not[(z;, C—i)zlz (i, d—y)] Not[(zi,a—;) R (yi, b-i)]
an = or
Not[(zi,a_;) R (w;, b_;)] Not[(z;, c—i) R (wy, d—;)]

if and only if R satisfies:

(Z/m dfi) RCd (xiu sz') (yi, bfi) RCd (l’u flfi)
and = or
(wi, b_i) R (21, a_;) (wi, d_;) R (23, c_4),

for all z;, y;, z;,w; € X;and alla_;,b_;,c_;,d_; € X_;. Clearly, the above condition
is axiom RC1; imposed on relation R®. Hence, R satisfies RC1, iff its co-dual
does. It can be similarly shown that it is also the case for RC2;. We refer to this
property saying that axioms RC1 and RC2 are self co-dual.

The picture is not exactly the same for M1 and M2. Let us recall axioms
Majl and Maj2 that have been introduced for characterizing strict concordance
relations in BP05b, BP06, Th. 2.

Definition 29 (Axioms Majl, Maj2)
Let R be a binary relation on a set X =], X;. This relation is said to satisfy:

(%‘, CLZ‘) R (yi, bfi)

and (Yi,a—i) R (74,b4)
Majl; if (zi,a—;) R (wi,by) » = or (21)
and (x'ia C—i) R <y17 d—i>7

(2i,c—i) R (w;,d_;)

(zi,a-3) R (i, b—)

and (Yira—i) R (z;,b_;)
MCL]QZ Zf (wi, a,i) R (Zi, b,Z) = or (22)
and (zi,c-5) R (wy,dy),

(?Jz', C—i) R (xz', d_;)

for all x;,y;, zi,w; € X; and all a_;,b_;,c_;,d_; € X_;. We say that Majl (resp.
Maj2) holds if Majl; (resp. Maj2;) holds for alli € N.
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Contraposition of M1, yields: R satisfies M1; if and only if R satisfies the
following condition: for all z;,y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;,

(fEia b—i) RCd (yu a—i)

and (yu b—z) RCd (Ii, a_i)
(2i,0_4) R (wi,a_;) ¢ = or (23)
and (wj, d_;) Red (2i,C—4).

(yi7 d*l) RCd (ajia C*i)

It is readily seen that this condition is axiom Maj2; imposed on relation R
Indeed expressions (22) and (23) only differ by the positions of a_; and b_;, c_;
and d_;, z; and w;, which have been interchanged, and by the substitution of R with
R, Paraphrasing this result, we state that imposing M1; on R is tantamount to
imposing Maj2; on its co-dual R°¢ and conversely.

In a similar way, starting from condition M2; imposed on R, we obtain the
following equivalent condition imposed on R for all z;, yi, z;, w; € X; and all
a_;, b_i7 C_q, d_i € X_i7

(l‘i, b—i) RCd (Z/zw Cl—z')

and (yz; b,Z) RCd (l’i, CL,Z‘)
(’U)i, b—z) RCd (Zz'7 CL_Z') = or (24)
and (zi,d_;) R (i, c_s).

(wi7 d—i) RCd (Zz‘, C—i)

We observe that the latter condition is axiom Majl; imposed on relation R** (with
the positions of a_; and b_;, c_; and d_;, z; and w; having been interchanged). Im-
posing M2; on R is equivalent to imposing Maj1; on its co-dual R and conversely.

We collect our findings in the next lemma. Its proof results from the above
observations.

Lemma 30
Let R be any relation on X and R its co-dual. The following statements hold,
forallie N :

1. R satisfies RC1; iff R* satisfies RC'1;,
2. R satisfies RC2; iff R satisfies RC2;,
3. R satisfies M1; iff R satisfies Maj2;,

4. R satisfies M2; iff R° satisfies Majl,.
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Co-duality induces a simple correspondence between the relations comparing
preference differences on each attribute, namely the relations 2ZF (resp. 2Z1*) asso-
ciated with a relation R and its co-dual R®. To avoid ambiguity, we write =¥ (R),
= (R) (resp. ==F (R, ==5* (R®Y)) to denote the two relations comparing prefer-

ence differences on attribute i associated with R (resp. R“?). Using Definition 21
and that of R, it is straightforward to establish the following result.

Lemma 31
Let R be any relation on X and R its co-dual. For alli € N, forall x;,y;, z;, w; €
X;, we have:

1 (i) ZE (R (2o, ws) iff (wi, z1) ZHR) (i, ),
2. (@i, yi) 2 (R (zi,wy) iff (i, yi) 27 (R) (20, wy).

Remark 32

In Remark 25, we pointed out that M1; (resp. M2;) is a weakening of axiom
UC; (resp. LC;) that was used in an earlier-non independent—characterization of
concordance relations. It is easy to see that also axioms Majl;, and Maj2; are
respectively weakened forms of UC; and LC';, obtained by imposing an additional
clause (the second one) as a premise. We thus have that UC; entails Majl; and
LC; entails Maj2;, a property that will be used below.

In the context of the present paper, UC and LC' are at an advantage w.r.t. M1
and M2 or Majl and Maj2 since they form a pair of cross co-dual conditions. It
is indeed easy to check that imposing UC; on relation R is equivalent to imposing
LC; on its co-dual R and conversely. °

Starting from the characterization of a reflexive concordance relation (Theo-
rem 26) and using the results of Lemma 30, we easily obtain a “dual” characteriza-
tion of irreflexive CR’s. Actually, the characterization of reflexive CR’s is also valid
for irreflexive CR’s and conversely. The following lemma will help us establish-
ing characterizations that are valid for both reflexive and irreflexive concordance
relations. Recall that a CR is either reflexive or irreflexive (Proposition 8.1).

Lemma 33
The following implications hold for all 1 € N:

1. M1; and RC?2; entail Majl;,
2. Majl; and RC1; entail M1;,
3. M2; and RC1; entail Maj2;,

4. Maj2; and RC?2; entail M2;.
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Under RC1; and RC2;, we have:

Proor
1. Assume that RC2; and M1, hold for a relation R . If we have Not[(w;,a_;) R
(zi,b_;)] in (19), M1; entails the two remaining possible consequences in
(21). On the contrary, if (w;,a—;) R (z;,b—;) holds true, since we have that
(ziyc—i) R (w;,d_;), we may apply RC2; yielding (y;,a_;) R (x;,b_;) or
(x;,¢c—;) R (yi,d_;), which are the desired consequences in order to establish
that Maj1; holds.

2. Assume that RC1; and Majl; hold. If (z;,a—;) R (w;, b_;) is true then Majl;
implies that the first or the third conclusion of M1; is true. Otherwise, we
have (x;,a_;) R (y;,b—;) and (z;,¢c—;) R (w;,d_;). Applying RC1; we get
either (z;,a—;) R (w;, b_;) or (x;,¢—;) R (yi,d—;). We have assumed that the
former does not hold, hence the latter is true, which establishes M1;.

3. Assuming that RC1; and M2; hold, we show that Maj2; is satisfied. If the
second consequence in (20) does not hold, i.e., if we have Not[(z;,a_;) R
(w;, b_;)], then M2; entails one or the other consequence in Maj2;. On the
contrary, if (z;,a_;) R (w;, b_;) holds, considering the third premise of Maj2;,
i.e., (yi,c—;) R (x;,d_;) and using RC1;, we get either consequence of Maj2;.

4. Finally, assuming that RC?2; and Maj2; hold, we derive M2;. This is im-
mediate whenever (w;,a_;) R (z;,b_;) is true since then Maj2; implies that
the first or the third conclusion of M2; is true. In the opposite case, from
(xi,a—;) R (y;,b—;) and (y;,c—;) R (x;,d_;), we obtain, using RC2;, that
(wiya—;) R (2i,b-;) or (2z;,¢—;) R (w;,d—;). Since the former has been as-
sumed to be false, the latter, which is the third conclusion of M2;, is true,
concluding the proof.

The equivalence of M1; and Majl; under RC'1; and RC2; results from the first two
items. The equivalence of M2; and Maj2;, under RC1; and RC?2; is a consequence
of items 3 and 4. O

We also have the following result.

Lemma 34
If relation R satisfies RC2;, M1; and Maj2;, then it satisfies RC1;.
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PROOF

By Lemma 11.3 in BP07, we have that RC2; and M1; imply UC;. By co-duality
arguments, this implies that RC?2; and Maj2; imply LC;. By Lemma 8.3 in BP07,
RC?2;, UC; and LC; imply RC1,. O

Theorem 35 (Characterizations of CR)
Let R be a relation on X. The following statements are equivalent:

1. R is a concordance relation (CR),
2. R satisfies RC1, RC2, M1 and M2,
3. R satisfies RC1, RC2, Majl and Maj2.

The axioms used in each of the above characterizations are independent in the class
of complete relations and in the class of asymmetric relations.

PROOF
1. Let us first note that any relation R that satisfies RC?2 is either reflexive or
irreflexive. The relation is irreflexive if for all x € X, we have Not[z R z].
Assume there is some z such that R x and consider any z € X. From
(x;,x—;) R (x;,x—;) and RC2;, we deduce that (z;,z_;) R (z;,x_;). For
J # i, using RC2;, we can similarly show that (z;, zj,2_i;) R (2, 2, x_ij).
Continuing in a similar way, we finally obtain z R z.

2. By Proposition 8.1, we know that any concordance relation R is either reflex-
ive or irreflexive. If R is reflexive, Theorem 26 establishes the first character-
ization. Since any irreflexive CR is the co-dual of a reflexive CR, Lemma 30
implies that the second characterization holds for irreflexive CR’s.

3. Lemma 33 establishes that under conditions RC'1 and RC2, M1 is equivalent
to Majl and M2 is equivalent to Maj2. As a consequence, both characteri-
zations are valid for reflexive CR’s. Using Lemma 30, this implies that both
characterizations are also valid for irreflexive CR’s.

4. We know (Theorem 26) that axioms RC1, RC2, M1 and M2 (first charac-
terization) are independent in the class of complete relations. The following
examples (the same as for Theorem 26) show their independence. Each ax-
iom is violated on a single attribute, referred to by 4, and satisfied on all
other attributes.

Violated axiom RC1; RC2; M1; M2,
Example 78 76 7 82
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The following examples (see in appendix) prove that RC1, RC2, Majl and
Maj2 are also independent in the class of complete relations:

Violated axiom RC1; RC2; Majl; Maj2;
Example 79 76 77 82

Using co-duality, this implies that both sets of axioms are independent in
the class of asymmetric relations. O

Remark 36

For showing the independence of RC1 in both characterizations, we need two
different examples (we used Examples 78 and 79). It is indeed a consequence of
Lemma 34 that there is no relation satisfying RC2;, M1;, Majl;, M2;, Maj2; and

Remark 37 (Earlier characterization of asymmetric CR)

For asymmetric relations, the properties in the third item in Theorem 35 have
been previously shown to constitute a characterization of a concordance relation
by a set of independent axioms (BP06, Theorem 2). °

Remark 38 (Other characterizations)
In view of Lemma 33, it is clear that

e R satisfies RC1, RC2, Majl and M2,
e R satisfies RC'1, RC2, M1 and Maj2,

are two alternative characterizations of a CR. The examples used in the proof of
Theorem 35 for showing that RC'1, RC2, M1 and M2 are independent in the class
of complete relations also show that RC'1, RC2, Majl and M2 are independent
in the same class. By co-duality, this implies that RC'1, RC2, Majl and M2 are
independent in the class of asymmetric relations. This means that these axioms
constitute a third independent characterization of CR. In contrast, RC1, RC2,
M1 and Maj2 do not form an independent family of axioms, be it in the class of
complete or in the class of asymmetric relations, as implied by Lemma 34. We
have no simple explanation for this asymmetry. We conjecture that it is linked to
the fact that the respective roles of RC'1 and of RC2 are not symmetric in our
analysis. °
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Remark 39 (Axioms UC and LC and co-duality)

Since UC and LC are cross co-dual conditions (see Remark 32), the family of
axioms RC1, RC2, UC and LC clearly offer a characterization of concordance re-
lations within both reflexive or irreflexive relations (as well as within both complete
or asymmetric relations). Unfortunately, these axioms are not independent since
BP05a, Lemma 16 establishes that RC2;, UC; and LC; imply RC1;. Dropping
RC1, however, yields an independent characterization of a CR since we know
(BP0ba, Theorem 18) that a binary relation is a CR iff it satisfies RC2, UC' and
LC' . Moreover, the latter axioms are independent in the class of complete re-
lations as attested by Examples 76, 77 and 82, in appendix. The dependence
of RC1, RC2, UC and LC lead us to introduce axioms M1 and M2, which are
discussed in BP07. Theorem 35 tells us that Majl and Maj2, introduced for char-
acterizing asymmetric relations, can substitute M1 and M2, also in the case of
complete relations, without hampering the independence of the axioms. °

4.3 A new independent self co-dual characterization of CR

Axioms M1; and Majl; (resp. M2; and Maj2;) admit a common weaker formula-
tion, MM1; (resp. MM2;), that simplifies the characterizations of CR and will be
useful in the sequel.

Definition 40 (Axioms MM1, MM?2)
Let R be a binary relation on a set X =1y X;. This relation is said to satisfy:

(zi;a—i) R (yi,b-i) (Yi,a—i) R (w5,b4)
and or

MDM1; Zf (Zi, CL,,L') R (U)i, b,Z) = (U}Z’, CL,Z') R (Zi, bfl)
and or

(Zi7 C—i) R (U}Z‘, d_z) (l’u C—i) R (yl, d_z‘),

(@i, a-3) R (i, b-) (yira-i) R (2,0-)
and or

MDM2; Zf (wi, a_i) R (ZZ', b_l) = (Zi, a_i) R (U)i, b_1>
and or

(i c—i) R (i, d—;) (25, =) R (wi, d—),

for all z;,y;, zi,w; € X; and all a_;,b_;,c_;,d_; € X_;. We say that MM1 (resp.
MM?2) holds if MM1; (resp. MM2;) holds for all i € N.

Note that MM1;, without its second premise, is identical to M1;. MM1;, without

its second conclusion, is Majl;. MM1;, without both its second premise and its
second conclusion, is UC;. MM1; is clearly a weaker condition than both M1; and
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Majl;. Similar observations can be made, linking MM2;, M2; and Maj2;. MM?2;
is a weakened variant of the two others. However, under RC1; and RC2;, MM]1,
can be shown to be equivalent to M1;, Majl;, and UCj;, as stated in the following
lemma. A similar statement holds for MM?2;.

Lemma 41
The following implications hold for all 1 € N:

1. MM1; and RC1; entail M1;,

2. MM1; and RC2; entail Majl;,

3. MM2; and RC2; entail M?2;,

4. MM?2; and RC1; entail Maj2;.
Under RC1; and RC2;, we have:

1. MM1;, & M1, < Majl; < UC,,

2. MM2; & M2; < Maj2;, < LC,;.

PRrOOF

The proofs are very similar to those used to establish Lemma 33. We prove the
first implication, leaving the three others to the reader. Assume that MM1; and
RC1; hold. We show that M1; must be true. Applying RC1; to the premises of
M1; yields (z;,c—;) R (yi,d;) or (z;,a—;) R (w;,b_;). If the former is true, then
M1; is verified. Else, all three premises of MM1,; are satisfied, which entails the
disjunction of three conclusions that is common to M1; and MM1;. The proofs
of the two equivalences directly results from the four implications, Lemma 33 and
Lemma 11.3 and 11.4 in BPO7. The latter says that RC2; and M1; entail UC; and
that RC'1; and M2; entail LC;. By definition, UC; entails M1; and LC; entails
M2z O

Axioms MM1; and MM2; are cross co-dual, as are UC; and LC; (Remark 32).
More precisely, we have:

Lemma 42
Let R be a binary relation on X and R its co-dual. The following hold for all
1€ N:

1. R satisfies MM1; iff R satisfies MM2;,
2. R satisfies MM2; iff R satisfies MM1,.
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PROOF
The proof results immediately from contraposition and using the definition of the
co-dual. O

Using Lemmas 41 and 42, it is easy to derive the following new characterization
result.

Theorem 43

The relation R on X is a CR iff it satisfies RC1, RC2, MM1 and MM?2. These
axioms are independent both in the class of complete relations and in the class of
asymmetric relations.

PROOF

Using Lemma 41.1 and 41.3, we obtain that a relation R satisfying RC1, RC?2,
MM1 and MM?2 also satisfies M1 and M2. Theorem 35 entails that R is a CR.
The converse is also true by Theorem 35 and the fact that M1 implies MM 1 and
M2 implies MM?2. The examples used to show the independence of the axioms
in Theorem 35 can be used here. This is due to the fact, on the one hand, that
M1 and Majl imply MM1, hence if R is an example of relation satisfying one of
the former, it satisfies the latter. On the other hand, if R is an example that does
not satisfy M1; or Majl; (resp. M2; or Maj2;), while satisfying RC'1 and RC2, it
cannot satisfy MM1; (resp. MM2;), due to Lemma 41. O

4.4 Concordance relations with attribute transitivity

An additional property of CR, called attribute transitivity, was defined and studied
in BP05a, BP07. Attribute transitivity amounts to assuming that the relations S;
in Definition 2 are semiorders as is the case in most ordinal aggregation methods.
We have shown in the two above-mentioned papers that reflexive concordance rela-
tions with attribute transitivity (R-CR-AT) can be characterized by adding axioms
AC1,AC2 and AC3, which are similar to RC'1 and RC?2 and were introduced and
discussed in BP02a, BP04. We recall these axioms and examine how they behave
w.r.t. co-duality. Reflexive CR with attribute transitivity have been characterized
in BP0ba, BP07. We use co-duality to derive characterizations of irreflexive CR
with attribute transitivity.
Axioms AC1, AC2 and AC3 are recalled in the following definition.

Definition 44 (Axioms AC1, AC2, AC3)
Let R be a binary relation on a set X = [[;y X;. This relation is said to satisfy:

(zi,a-3) R (yi,b-4) (zi,a-i) R (yi,b-)
AC1; if and = or
(zi,c2) R (wg,d ;) (zi, i) R (wi, d ),
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(zi,a-5) R (yi, b—) (zi,a—i) R (wi, by)

AC2; if and = or
(Zz‘, Cfi) R (wi; d*i) (22'7 Cfi) R (Z/zw dfi)
(5% a—i) R (yi, b—i) (Ii, a—i) R (Zu b—i)
AC3; if and = or
(yia C*i) R (wi7 d*l) (Z’ia C*i) R (wia d*l)

for all x;,y;, zi,w; € X;, all a_;,b_;,c_;,d_; € X_;.
We say that R satisfies AC1 (resp. AC2, AC3) if it satisfies AC1; (resp. AC2;,
AC3;) for alli € N.

An interpretation of these axioms was provided in BP04. Essentially, these ax-
ioms are related to the existence of linear arrangements of the elements (levels)
of X;. AC1; suggests that the elements of X; can be linearly ordered relatively
to “upward dominance”: if z; “upward dominates” z;, then (z;,c_;) R (w;,d_;)
entails (x;,c_;) R (w;,d_;). AC2; has a similar interpretation regarding “down-
ward dominance”. AC3; ensures that the upward and downward dominance orders
are not incompatible. The following gives a precise definition of the upward and
downward dominance relations.

Definition 45 (Relations =}, =7 and =)

~T ) ~JT

Let R be a binary relation on a set X = [[;-, X;. We define the binary relations
=¥ =7 and =F on X; letting, for all z;,y; € X;,

~l )~ K3

Z; ij Y; &= Va,i € X,i, b e X, [(yl, G/,Z') Rb= (l’i, a,i) R b], (25)
v o i Vae X,bo; € Xy [aR (z4,b-;) = aR (yi,b_i)], (26)
T SF v e w of v and @ 7y (27)

By definition, >;", =7 and = are transitive relations. Axioms AC1;, AC2; and

? ~vT )

AC3; ensure that they are complete, as restated in the next lemma.

Lemma 46 (Bouyssou and Pirlot (2004), Lemma 3.1-4)
Let R be a binary relation on a set X =[], X;. R satisfies:

1. AC1; & = is complete,

~J

2. AC2; & 7. is complete,

8. AC3; & [Notlx; ZF vi) = vi T @] © [Notlw; Z7 vl = vi T @),

4. [AC1;, AC2; and AC3;] & =F is complete.

~Jl
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As implied by Remark 3, a concordance relation with attribute transitivity is
a CR having a representation (>, S;), with relations S; that are semiorders. The
following theorem characterizes CR with attribute transitivity. As for Theorems 26
and 28, it is a slight variation on Theorem 26 in BP07, which is formulated here
for general binary relations. The independence of the axioms is not only valid for
reflexive but also complete relations.

Theorem 47

The binary relation R on X = [[;, X; is a concordance relation with attribute
transitivity (CR-AT), i.e., has a representation (>, S;) in which all S; are semi-
orders, iff it satisfies RC1, RC2, AC1, AC3, M1, M2. In the class of complete
relations, these axioms are independent

Proor

The proof of the characterization result in Theorem 26 in BP07 remains valid for
general binary relations and it is omitted. The latter was formulated for reflexive
relations but this hypothesis plays no role in the proof so that the result is valid
for general relations. We recall the examples establishing the independence of the
axioms in the proof of Lemma 19 in BPOT7:

Violated axiom RC1; RC2; AC1, AC3;, M1, M2,

Example 78 76 80 81 77 82
All these relations are complete. Therefore the axioms are independent in the set
of complete relations. O
Remark 48

Note that axiom AC?2 does not appear in this characterization because it is not
independent of the other axioms. Indeed, Lemma 27.1 in BP06 and Lemma 11,
items 3 and 4 in BP0O7 imply that under RC1, RC2, M1 and M2, axioms AC1
and AC?2 are equivalent. AC2 can thus substitute AC1 in the characterization of
reflexive CR with attribute transitivity. °

We now examine how axioms AC'1, AC2, AC3 can be transposed in terms of
the co-dual relation R®. Using contraposition, as we have done above with RC1;,
we can easily prove the following results.

Lemma 49

Let R be any relation on X and R its co-dual. The following equivalences hold,
foralli e N :

1. R satisfies AC1; iff R® satisfies AC2;,
2. R satisfies AC2; iff R satisfies AC1;,
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3. R satisfies AC3; iff R satisfies AC3;.

In the theorem below we extend the characterizations obtained in Theorem 35 to
CR with attribute transitivity (CR-AT). The next lemma will be used in the proof
of the theorem.

Lemma 50
Let R be a relation on X and R? its dual relation. We have the following:

1. R satisfies RC1; (resp. RC2;, AC3;, M1;, Majl;, M2;, Maj2;, UC;, LC;)
for some i € N if and only if R¢ satisfies the same property,

2. R satisfies AC1; (resp. AC2;) for some i € N if and only if Re satisfies
AC2; (resp. AC1;) for the same i.

Proor
The proof consists in checking that each of the equivalences holds, starting from
the properties definition. It is easy once it is noted that, for all ¢ € N and all
Ti, Yi, Ziy Wi € Xia

2 ZH (R yi < v i (R)

~Jl

zi Zi (RY) yi & yi T (R) @i,

(z, 1) 25 (RY) (zi,wi) & (yi, ) ZH(R) (wi, 2),

where 7= (K) (resp. =7 (K), =i (K)) denotes the relation /= (resp. 2=;, 7F) using

NENT) ~T )~

K as the base relation. O

A result similar to Lemma 31 can be established for the upward and downward
dominance relations =, =, > As in this lemma, our notation makes explicit

~T ) ~NIT ) NI

whether the upward and downward dominance relations refer to R or its co-dual
R
Lemma 51

Let R be a binary relation on X and R its co-dual. For all i € N, for all
i, Y € X;, we have:

12 ZH (R s iff @i o7 (R) i,

~Jl

2. @i i (R) yi iff i 27 (R) wi,

8. i ZE(R) i iff v 5F(R) i

~J1

PRrROOF
The proof follows immediately from Definition 45 and from that of R O
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Theorem 52 (Characterization of CR-AT)

The relation R on X is a concordance relation with attribute transitivity (CR-AT)
iff R satisfies RC'1, RC2, AC1, AC3, MM1 and MM?2. These axioms are inde-
pendent in the class of complete relations and in the class of asymmetric relations.
In this characterization, AC1 can be substituted by AC2 without any other change.

PRrROOF

If R is a CR-AT, we know by Theorem 47 that it satisfies RC'1, RC2, AC1, ACS3,
M1 and M2. M1 (resp. M2) implies MM1 (resp. MM2). Conversely, if R satisfies
RC1, RC2, AC1, AC3, MM 1 and MM2, it satisfies M 1 and M2 (Lemma 41) hence
it is a CR-AT.

By Remark 48, we may substitute AC'1 by AC?2 in the characterization since,
under RC1, RC2, M1 and M2, axioms AC1 and AC?2 are equivalent.

To prove the independence of the axioms in the set of complete relations, the
examples used in the proof of Theorem 47 are also suitable here since these exam-
ples satisfy M1; whenever they satisfy MM1; and similarly for M2; and MM?2;.
According with Lemma 50, t he duals of these examples show that substituting
AC1 by AC?2 in the characterization preserves the independence of the axioms.
The co-duals of the same examples and of their duals are asymmetric relations
showing the independence of the axioms characterizing CR-AT in the class of
asymmetric relations. 0O

Corollary 53

The relation R on X is a concordance relation with attribute transitivity (CR-AT)
iff R satisfies RC1, RC2, AC1, AC3, Majl and Maj2. These axioms are inde-
pendent in the class of complete relations and in the class of asymmetric relations.
In this characterization, AC1 can be substituted by AC2 without any other change.

PROOF

Under RC1 and RC2, MM1 is equivalent to Majl and MM?2 to Maj2 (Lemma 41).
This new characterization hence results from Theorem 52. The independence of
the axioms in the set of complete relations results from the following examples (in
appendix):

Violated axiom RC1; RC2; AC1;, AC3; Majl; Maj2;
Example (79 76 80 81 77 82

Note that (79)" denotes the dual” of the relation described in Example 79. In
view of Lemma 50, this relation does not satisfy RC1;. It satisfies AC'1; but not
AC?2,. The possibility of substituting AC1 by AC?2 and keep the independence of

"We really mean the dual, not the co-dual.
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the axioms is shown as in Theorem 52 by taking the dual of the examples. The
independence of the axioms in the set of asymmetric relations is established by
taking the co-dual of the examples. O

4.5 Characterizations of a CDR

In the last section we have shown that two different “dual” characterizations of
concordance relations (Theorem 47 and Corollary 53) can be obtained using co-
duality. The picture is not the same for concordance-discordance relations, which
are significantly more complex objects than CR. As discussed in Section 3.6, re-
flexes of automatic “co-dualization” must be abandoned since the co-dual of a CDR
is not a CDR but a CRB (Proposition 19). Nonetheless, two characterizations of
reflexive and irreflexive CDR can be obtained from previous results.

With Theorem 28, we have recalled a characterization of a reflexive concor-
dance-discordance relation (R-CDR). It involves axiom M1 and a weakening of
axiom M2, called M3 (see Definition 27). Examining the proof of this result
in BP09b shows that the reflexivity of the relation plays no rdle, so that this
characterization is valid both for reflexive and irreflexive CDR’s.

A similar characterization of asymmetric CDR was given in BP06, using axiom
Maj1 and a weakening of Maj2, that was called Maj3. This axiom was constructed
as M3 from M2, by adding a premise to Maj2.

In the same spirit as we introduced, in the previous section, axiom MM1 (resp.
MM?2) generalizing both M1 and Majl (resp. M2 and Maj2), we now define the
new axiom MM3 as follows.

Definition 54 (MM3 and Maj3)
A relation R on X satisfies

(zi;a—i) R (yi,b-i)
and (Yiya—i) R (z4,b_;)
(wi,a—;) R (zi,b_) or
MMBZ Zf and = (Zz'7 CL_Z') R (wi, b—z) (28)
(yi,c—i) R (z5,d_;) or
and (ziyc—i) R (w;,d—;),
(zi,e-4) R (wi, f-i)

for all x;,y;, zi,w; € X; and all a_;,b_;,c_;, d_;, e_;, f_; € X_;. Maj3; is the
same condition as MM3; except that the second conclusion has been removed. We
say that R satisfies MM3 (resp. Maj3) if it satisfies MM3; (resp. Maj3;) for all
1€ N.

Dropping the second premise in MM3; yields M3;. Removing the second conclu-
sion yields Maj3;. Obviously, M3; (resp. Maj3;) entails MM3;. Under RC1; and
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RC?2;, axioms M3;, Maj3; and MM3; are equivalent as shown in the following
lemma.

Lemma 55
The following implications hold:

1. MM3; and RC?2; entail M3;,
2. MM3; and RC1; entail Maj3;,
3. M3; and RC1; entail Maj3;,
4. Maj3; and RC?2; entail M3;.
Under RC1; and RC2;, we have:

Proor
The proof, similar to that of Lemma 41, is left to the reader. O
Remark 56

Note that axioms M3; and Maj3; are not linked by co-duality. The co-dual coun-
terpart of MM3; has not been met before. This is related with the fact that the
co-dual of a CDR is not a CDR, in general, but a CRB, i.e., a concordance relation
with bonus (Proposition 19). Such relations will be studied and characterized in
Section 4.7. °

We are in position to produce a new characterization result, valid for any CDR,
which is the following.

Theorem 57 (Characterization of CDR)

The relation R on X is a concordance-discordance relation (CDR) iff R satisfies
RC1, RC2, MM1 and MM3. These axioms are independent in the set of complete
relations and in the set of asymmetric relations.

PRrooOF
By Theorem 28, we know that a relation R that is a CDR satisfies RC'1, RC2, M1
and M2. Since M1 implies MM 1 and M3 implies MM3, R also satisfies MM1 and
MM3. Conversely, if a relation R satisfies RC'1 and RC2, then MM1 (resp. MM3)
is equivalent to M1 (resp. M3) (by Lemmas 41 and 55). Hence, using Theorem 28,
we have that R is a CDR.

In the class of complete relations, the following examples (in appendix) prove
the independence of the axioms.

35



Violated axiom RC1; RC2; MM1, MMS3;
Example 79 76 7 82

For proving the independence of the axioms in the class of asymmetric relations,
we can still use co-duality arguments for obtaining part of the required examples
but not all of them. Since Examples 79 and 76 satisfy MM1 and MM2, their
co-dual also satisfy these two properties (Lemma 42), hence they satisfy MMS3.
In addition, Example (79)° satisfies RC2; but not RC1; and conversely for Ex-
ample (76)“". Example 82 satisfies RC1, RC2, MM]1, MM?2;, for j # 1 but not
MM?2,. Its co-dual satisfies RC1, RC2, MM1; for j # 1, MM2, hence MM3, but
not MM1,. It thus proves the independence of MM1; for asymmetric relations.
For proving the independence of MM3, we need a new example. Example 83 is
an asymmetric relation verifying RC1, RC2, MM 1, but not MM3;. To sum up,
the following examples (in appendix) prove the independence of the axioms in the
class of asymmetric relations:

Violated axiom RC1; RC2; MM1, MMS3;
Example (79)" (76)“"  (82)Y 83

Corollary 58
The relation R on X is a concordance-discordance relation (CDR)

1. iff R satisfies RC1, RC2, Majl and Maj3,
2. iff R satisfies RC1, RC2, M1 and M3.

Both sets of axioms are independent in the class of complete relations and in the
class of asymmetric relations.

PROOF

Under RC'1 and RC2, axiom MM1 (resp. MM3) is equivalent to Majl (resp. Maj3)
by Lemmas 41 and 55. Using the same lemmas also entails that, under RC'1 and
RC2, axiom M1 (resp. M3) is equivalent to MM 1 (resp. MM3). The new charac-
terizations are thus a direct consequence of Theorem 57. The independence of the
axioms for complete relations as well as for asymmetric relations is established by
the same examples as in Theorem 57, except in one case. For complete relations,
in order to prove the independence of RC1 from the other axioms in the second

characterization, we need to invoke Example 78, which is a complete relations
satisfying RC2, M1, M3 and RC1; for j # 1, but not RC1,. O
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4.6 CDR with attribute transitivity

A CDR with attribute transitivity (CDR-AT) is not just a CDR which admits a
representation in which S; are semiorders. A certain relationship between S; and
V; must also be verified. CDR-AT have been studied in BP09b, Section 5.2. We
first recall the definition of a CDR-AT and the characterization result obtained in
BP09b.

Definition 59 (CDR with attribute transitivity)
A CDR with attribute transitivity (CDR-AT) is a CDR for which, for alli € N:

e S; is a semiorder with asymmetric part P;,
o V, is the asymmetric part of a semiorder U; with U; 2 S; and, hence, V; C P;,
e (S;,U;) form a homogeneous chain of semiorders.

The following is Theorem 29 in BP09b. The independence of the axioms is stated
for reflexive relations.

Theorem 60
The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2, ACS3,

M1 and M3. These axioms are independent in the class of reflexive relations.

The question of the independence—or not—of the axioms in the class of complete
relations and in the class of asymmetric relations is more delicate for CDR-AT
than for CR-AT (Theorem 52) or for CDR (Theorem 57). In view of examining the
independence issue for CDR-AT in a simpler way, we relax axioms M1 and M3 into
MM1 and MM 3 respectively. In view of Lemmas 41 and 55, it is clear that axioms
RC1, RC2, AC1, AC2, AC3, MM1 and MM3 yield another characterization of
CDR-AT. In the class of complete relations, this set of axioms, although weaker
than those used in Theorem 60, are not independent as attested by Proposition 73
in Appendix. Similarly, Proposition 75 in Appendix shows that, if R is a relation
(that may not be complete or asymmetric) on X satisfying RC2, AC1, AC2,
AC3, Majl and Maj3, then it also also satisfies RC1. These are other cases of
asymmetry in our results for which we do not presently have a clear explanation.

Our next result is a new characterization theorem for CDR-AT, in the general
case and in the case of complete and of asymmetric relations.

Theorem 61
1. The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC?2,
AC3, MM1 and MM3. These axioms are independent in the class of reflexive
relations.
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2. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC2, AC1,
AC2, AC3, MM1 and MM3. These axioms are independent in the class of
complete relations.

3. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC1,
RC2, AC1, AC2, AC3, MM1 and MM3. These axioms are independent in
the class of asymmetric relations.

PROOF
The usual argument, based on Lemmas 41 and 55 allows us to substitute M1 by
MM1 and M3 by MM3 in the characterization of (general) CDR-AT provided in
Theorem 60. The independence of the axioms is established by the same examples
as in Theorem 60.

For complete CDR-AT, axiom RC'1 can be dropped from their characterization,
in view of Proposition 73. In the class of complete relations, axioms RC2, ACT,
AC2, AC3, MM1 and MM3 are independent as attested by the following examples:

Violated axiom RC2; AC1l; AC2, AC3, MM1, MM3,;
Example 76 84 85 81 7 82

In the class of asymmetric CDR-AT, the axioms RC1, RC2, AC1, AC2, ACS3,
MM1 and MM 3 are independent as shown by the examples below.

Example 89 (76)* 87 88  (81)“ 86 83
(76)°* designates the co-dual of the relation in Example 76 and similarly for
(81). O
Remark 62

Substituting MM1 by M1 or by Majl and/or MM3 by M3 or by Maj3 in one of
the characterizations in Theorem 61 leads to other characterizations of CDR-AT.
The resulting sets of axioms remain independent in the class of complete relations
but this is not always the case in the class of asymmetric relations, as we shall see.

1. The case of complete relations. The examples used in the proof of Theo-
rem 61 for showing the independence of RC2;, AC1;, AC2; and AC3;, namely
Examples 76, 84, 85 and 81, all satisfy axioms M1, Majl, M3, Maj3. Exam-
ples 77 (resp. 82) showing the independence of MM1 (resp. MM3) satisfies
neither M1 nor Majl (resp. neither M3 nor Maj3).

38



2. The case of asymmetric relations. In view of Proposition 75 in Appendix,
RC1; is implied by RC?2;, AC1;, AC2;, AC3;, Majl; and Maj3;. It is also the
case when Maj3 is substituted by M3 (since Lemma 55.4 tells us that Maj3;
and RC2; entail M3;). The following sets of axioms however are independent
in the class of asymmetric relations:

(a) RC1, RC2, AC1, AC2, AC3, M1 and M3,
(b) RC1, RC2, AC1, AC2, AC3, Majl and M3.

The independence of these axioms results from the same examples as those
used in Theorem 61 for asymmetric relations. Indeed, Examples 89, (76)“,
87, 88 and (81)Cd all satisty MM1, M1, Majl, MM3, M3 and Maj3. Exam-
ple 86 violates not only MM1 but also M1 and Majl. Example 83 violates
not only MM3 but also M3 and Maj3. °

4.7 Concordance relations with bonus

We know that the co-dual of a CDR is a CRB, i.e., a concordance relation with
bonus (Definition 18) by Proposition 19. Starting from the characterization of a
CDR given in Theorem 57, we can easily derive a characterization of a CRB using
contraposition and co-duality.

Lemmas 30 and 42 entail that the co-dual of a CDR is a relation that satisfies
RC1, RC2, MM?2 and an axiom that is obtained from MM 3 by using contraposition
and co-duality. We call the latter DMM3 and define it below.

Definition 63 (Axiom DMM3)
A relation R on X satisfies

(Yira—i) R (xi,b-)
(ziya—i) R (yir b-i) or
and (wiya—;) R (zi,b_)
DMM?)Z Zf (Zi7 CL_Z') R (wi, b_1> = or (29)
and (i, c—i) R (yi,d—;)
(zi,¢—i) R (w;,d—;) or
(Zi, 6—i) R (wh f—i),

for all x;,y;, z;,w; € X; and all a_;,b_;,c_;,d_;,e_;, f_; € X_;. We say that R
satisfies DMM3 if it satisfies DMM3; for allt € N.

Note that dropping the second conclusion of DMM3; yields an axiom that is the
“co-dual” of M3; and which we call DM3;. In a similar way, dropping the second
premise of DMM3; yields an axiom that is the “co-dual” of Maj3; and which we
shall call DMaj3;. We note these results in the following lemma.
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Lemma 64
The relation R on X satisfies MM3; (resp. M3;, Maj3;) iff its co-dual R satisfies
DMMS3,; (resp. DM3;, DMaj3;).

Comparing DMM3; with MM1;, we observe that the former only differ from
the latter by an additional conclusion. We thus have the following.

Lemma 65
If the relation R on X satisfies MM1; then it satisfies DMM3;.

As compared with MM1;, DMMS3; offers a fourth possible conclusion, which
interprets, under RC'1; and R(C2;, as the possible existence of a “preference dif-
ference” (z;,w;) on attribute i that is “so large” that we always have (z;,e_;) R
(w;, f—;) whatever the levels e_; and f_; on the other attributes can be. Such a
large difference of preference was called a bonus in Section 3.6. This interpretation
is established in the next lemma.

Lemma 66
Let R be a binary relation on X. If R satisfies RC1;, RC2; and DMM3;, then,
for all xi, yi, zi,wis riy 50 € Xi, if (zi,wi) =7 (04, 9:) =7 (i, 2:), we then have:

1. (zi,wi) 27 (i, 8i),
2. (zi,e—;) R (wi, f-4), foralle_;, f_; € X_;.

PROOF

If (zi,w;) =7 (i, 9:) =F (yi,2;), there are a_;,b_;,c_;,d_; € X_;, such that (7)
(xi,a,i) R (yi,b,i), (Z’&) Not[(yi,a,i) R (l’i,b,i)], (Z’L’L) (ZZ',C,Z') R (wi,d,i) and
(iv) Not[(x;,c—;) R (yi,d—;)]. Applying RC1; to (i) and (éi7), and taking (7v) into
account yields (v) (z;,a—;) R (w;, b—;). Since (%), (¢7) and (v) match the premises
of DMM3;, we get one of the four possible conclusions. The first and the third one
are in contradiction with (47) and (iv). Due to RC?2; and Lemma 22.2; we obtain
that (y;, x;) 2ZF (w;, ;). From this and (47) we deduce that the third conclusion is

not true. The only remaining possibility is thus the fourth conclusion of DMM3;,
which establishes the second part of the lemma and implies the first part. O

Starting from Theorem 57 and considering a relation R that is the co-dual of
a CDR, we obtain directly the following characterization of a CRB.

Theorem 67 (Characterization of CRB)

The relation R on X is a CRB iff it satisfies RC1, RC2, MM2 and DMM3. These
axioms are independent both in the class of complete and in the class of asymmetric
relations.
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Proor
This result is a direct consequence of two facts:

e by definition, the co-dual of a CRB is a C DR and conversely,

e R satisfies RC1, RC2, MM2 and DMM3 iff its co-dual R satisfies RC1,
RC2, MM1 and MM3 (Lemmas 30, 42 and 64).

Examples showing the independence of the axioms are obtained by taking the co-
dual of those used in the proof of Theorem 57 to show the independence of the
axioms characterizing a CDR. O

Corollary 68
The relation R on X is a CRB

1. iff it satisfies RC'1, RC2, M2 and DM3,
2. iff it satisfies RC'1, RC2, Maj2 and DMaj3.

These two families of axioms are independent both in the class of complete and in
the class of asymmetric relations.

PROOF

These characterizations, as well as the independence of the axioms, result from
Theorem 28 and Corollary 58 respectively, by the same argument as we used to
prove Theorem 67 starting from Theorem 57. O

4.8 CRB with attribute transitivity

The co-dual of a CDR-AT is a CRB with attribute transitivity (CRB-AT), i.e.,
a CRB which satisfies AC1, AC2 and ACS3 since the first two axioms are cross
co-dual and the latter is self co-dual (Lemma 49). In view of Proposition 19, and
its proof, the co-dual of a CDR, R, having a type I representation (>, 5;, V), is a
CRB having a type I representation which is (>, S;, V;), with the same relations
S;, Vi as for R . If it happens that R is a CDR-AT, S;,V; form an homogeneous
chain of semiorders as defined in Section 2. These properties are thus inherited by
the co-dual of R, which prompts the following definition of a CRB-AT.

Definition 69 (CRB with attribute transitivity)
A CRB with attribute transitivity (CRB-AT) is a CRB for which, for alli € N:

e S; is a semiorder with asymmetric part P;,
o V, is the asymmetric part of a semiorder U; with U; 2 S; and, hence, V; C P;,

e (S;,U;) form an homogeneous chain of semiorders.
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We obtain a characterization of a CRB-AT from that of a CDR-AT, by co-duality
arguments. This yields the following theorem, which is similar to Theorem 61

Theorem 70
1. The relation R on X is a CRB-AT iff R satisfies RC1, RC2, AC1, AC?2,
AC3, MM2 and DMM3. These axioms are independent in the class of ir-
reflexive relations.

2. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC2,
AC1, AC2, AC3, MM?2 and DMM3. These axioms are independent in the
class of asymmetric relations.

3. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC'1, RC?2,
AC1, AC2, AC3, MM?2 and DMM3. These axioms are independent in the
class of complete relations.

Proor

The proof of this theorem obtains from that of Theorem 61 by co-duality argu-
ments. In particular, the co-dual of the examples used to prove the independence
of the axioms in the three cases considered in Theorem 61 can be used here in
the co-dual case. We emphasize that co-duality transforms complete relations into
asymmetric ones and conversely. O

Remark 71

The independence result in the class of irreflexive relations (Part 1 of Theorem 70)
is not semantically attractive in a preference modelling context, since strict pref-
erence relations are not only irreflexive but also asymmetric. The relevant result
for strict preference relations is contained in Part 2 of Theorem 70. For non-strict
preference relations, which are just supposed to be reflexive, Part 3 is the relevant
result, since independence in the class of complete relations entails independence
in the larger class of reflexive relations. °

Remark 72

Remark 62 can be transposed by co-duality to yield alternative characterizations
of CRB-AT. In particular, for asymmetric CRB-AT, independent characteriza-
tions are obtained by substituting MM2 by M2 or by Maj2 and/or DMM3 by
DM3 or by DMaj3 in the characterization of asymmetric CDR-AT given in the
previous theorem. For complete CRB-AT, the following sets of axioms constitute
independent characterizations:

e RC1, RC2, AC1, AC2, AC3, Maj2 and DM3,
e RC1, RC2, AC1, AC2, AC3, M2 and DM3. .
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5 Conclusion

From the present research and a series of previous papers investigating outranking
relations, we draw the following lessons.

1. It is possible to analyze concordance relations and concordance-discordance
relations, both reflexive (such as ELECTRE) and asymmetric (such as TAC-
TIC), in the framework and with the classical tools of conjoint measurement,

2. This research has illustrated the interest of an axiomatic analysis by showing

(a) that new models (namely, concordance relations with bonus) can be
defined and characterized just by using such a simple transformation as
co-duality,

(b) that new characterizations of known models can be obtained using such
a transformation,

(c) that axiomatic analysis allows to present a corpus of models (reflexive
and asymmetric outranking relations) in a unified framework and to
better understand their inter-relations,

Note also that the aim of characterizing methods is not just better under-
standing: the axioms used in the characterizations are testable in practice, they
are expressed in a language, that of preferences, which allows them to be refuted
experimentally.

Co-duality has played an important role in our analysis. While the co-dual of
a concordance relation is a concordance relation, it is no longer the case as soon
as vetoes come into play.

A noticeable product of our investigation using co-duality is the observation
that the asymmetric part of a reflexive concordance-discordance relation is not
a concordance-discordance relation since it involves both veto and bonus effects.
Knowing the properties of such relations (i.e., the asymmetric part of a reflexive
concordance discordance relation) is of importance since they are used in some
multi-criteria sorting methods, namely the optimistic version of the ELECTRE
TRI method (Roy and Bouyssou, 1993, p.391). The pessimistic version of this
method is well-understood (characterized in Stowinski et al. (2002), Bouyssou
and Marchant (2007a,b)) and methods for learning its parameters on the basis of
assignment examples were developed since 1998 (see e.g., Mousseau and Stowinski
(1998), Mousseau et al. (2006), Leroy et al. (2011)). It is not the case with the
optimistic version. No axiomatic characterization is known. A method for learning
its parameters was recently proposed (Zheng et al., 2011). The recent interest for
this method in applications (Metchebon Takougang et al., 2014) motivates further
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investigation. For lack of place, an axiomatic characterization of the asymmetric
part of a concordance-discordance relation was not included in the present paper.
We leave it for another publication.

In closing, two brief remarks on possible additional developments arising from
the present analysis.

With the idea of bonus, some light was shed on what could be called an opti-
mistic counterpart of the notion of veto. The notion of bonus could make sense in
practical situations. Indeed, taking for granted that the usual outranking concept
is relevant for modeling preferences in certain cases, the notion of bonus naturally
comes into play in the asymmetric part of the traditional non-strict outranking
relations as it became apparent in our analysis. Alternative outranking models
could thus consider the possibility of bonuses instead of vetoes.

Another interesting issue is related to recent work by Bisdorff (2010, 2013).
This author adopts a logicist and argumentative viewpoint in his interpretation of
outranking. This is in line with the usual presentation of the outranking concept
according to which alternative x outranks alternative y if there are enough reasons
for asserting that x is at least as good as y while there is no reason that strongly
opposes this assertion (Roy, 1991). Bisdorff starts with the same observation that
we made in Remark 9: for preferences that are not complete relations, their co-
dual is not their asymmetric part, hence the interpretation of the co-dual as the
“better than” relation corresponding to the preference viewed as an “at least as
good” relation is impaired. In order to restore this relationship viewed as essential
in the framework of an argumentative interpretation of outranking relations, R.
Bisdorff uses a bipolar representation of concordance and discordance relations (on
a [—1, 1] scale, with 0 playing the special role of coding contradictory information).
He proposes an adapted definition of an outranking relation, which restores the
identity of the co-dual and the asymmetric part of the relation.

The latter remarks show that new and interesting models of preference can be
developed in the spirit of the classical outranking relations by combining ingredi-
ents such as concordance, vetoes and bonuses, in a way that preserves intuitively
appealing properties. The usefulness of such models for representing actual pref-
erences in practical applications has yet to be investigated.
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Appendices

A Propositions 73 and 75

Proposition 73
If R is a complete binary relation on X satisfying RC2, AC1, AC2, AC3, MM1
and MM3, then R satisfies RC1.

For proving this proposition, we need the following lemma.

Lemma 74

Let R be a binary relation on X satisfying RC2;, AC1;, AC2;, AC3; and Majl;,
on some attribute i. Consider four levels x,y,z,w € X; such that the pairs (x,y)
and (z,w) are not comparable w.r.t. the relation 7Zf, which we denote by (z,y) <

(z,w)). The relative positions of these pairs and the opposite pairs are as follows:
L [(y, ) ~ (w, 2)] =7 [(z,y) >4 (z,w)],

2. furthermore, one of the following configurations holds true:

(a) [(y;2) ~7 (y,x) ~ (w, 2)] =7 [(@,9) > (2,w)] =7 (2,9)
(b) [(w,x) ~ (y,x) ~i (w,2)] = [(2,y) b (z,w)] =] (2, 0).

In the above, the notation [(x,y) > (z,w)] means that the incomparable pairs
[(z,y) and (z,w) have the same relationships with the other pairs listed.

PROOF (OF LEMMA 74)
1. Let z,y,z,w € X; be such that the pairs (z,y) and (z,w) are incomparable
w.r.t. relation =%, i.e., we have:

~J1 )

Not[(z,y) 7=} (z,w)] and Not[(z,w) I (z,y)]. (30)

~1 ~1
In view of Definition 21, this means that there are a, b, c,d € X_; such that:

(x,¢) R (y,d), Not[(z,¢) R (w,d)],

(z,a) R (w,b), Not[(z,a) R (y,b)], (31)

in other words, R does not satisfy RC1;.
Using RC2; and Lemma 22.2 imply that we have (y,z) 2ZF (w, 2) and (w, 2) 2ZF
(y,x), yielding:
(y,2) ~; (w,2) (32)

The same axiom and lemma entail that (z,y) and (y, ) are comparable w.r.t. 7-*

~o )

i.e., we must have (x,y) 2=F (y,x) or (y,z) 2ZF (x,y). The former is incompatible

~1

with Majl; as we shall see. Note that R satisfies Majl; by Lemma 33.1.
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2. We show that assuming (z,y) 7! (y, ) leads to a contradiction. From (z,y) -
(y,x), we first derive the following consequences:

1. (z,w) »! (w,z). Assuming Not[(z,w) ZF (w,z)] implies, by Lemma 22.2,

1 ~JT

that (w, z) 7=F (z,w). Hence we would have: (z,y) =F (y,z) ~F (w,2) !

~Jl

(z,w). Using the transitivity of 2Zf leads to (x,y) ! (2, w), a contradiction.

~1

The same contradiction can be derived if we suppose (z,w) ~} (w, 2).

2. (z,y) > (y,z). Else, from (z,y) ~F (y,z) we would derive (z,w) >}
(w,z) ~F (y,2) ~F (z,y), from which we deduce (z,w) >¥ (x,y), a con-
tradiction.

3. (z,y) =F (w,z). Assuming Not[(z,y) ZF (w,z)] implies, by Lemma 22.2,

that (y,z) =f (z,w). Hence we would have: (w,z) ~F (y,x) = (2, w).

Using the transitivity of =¥ leads to (w, z) 2Zf (z,w), a contradiction. The

~Jl

same contradiction can be derived if we suppose (z,y) ~F (w, 2).
4. (z,w) =} (y,z) is established in a similar way as the previous item.

We thus have the following situation: (x,y) and (z,w) are incomparable differences
w.r.t. ZF, both are strictly preferred to (y, z) and (w, z), which are indifferent pairs.

~o1 )

We now use AC1;, AC2; and AC3;. The main consequence of these axioms is
that the relations =, =7 and = are complete (Lemma 46). Moreover, we have,

~T )~

for all s,t,u,v € X;:

sZi t=(s,u) 2} () (33)
s Zi b= (v,1) Z (v, 9) (34)

(direct consequence of AC1;, AC2; and the definitions of =}, = and =¥).

~Jl 7N’L

Consider the pairs (z,y) and (z,w). We claim that there are u,v € X; such
that (u,v) >=f (z,y) and (u,v) >} (z,w). Furthermore, (u,v) is either (x,w) or

(2 (2
(z,y). Observe first that we cannot have:

1.  =F z and w = y. Else, using (33) and (34), we would have (x,y) =

~Jl
*

(z,y) = (z,w), a contradiction with the fact that (z,y) and (z,w) are
incomparable,

2. z = x and y =F w. Else, using (33) and (34), we would have (z,w) =

~Jl

(x,w) f (x,y), a contradiction with the fact that (z,y) and (z,w) are

~T

incomparable.

Smce >+ is complete, we thus have either [z =F 2 and y =F w] or [z =F = and

~Jl ~J1l

>= y]. Consider the former case. Using (33) and (34) yields (z,w) ¢ (2, w)
and (x,w) =F (z,y). We can have neither (x,w) ~7 (z,w) nor (z,w)

~1

*
)

*

Ni (Ql,y),
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because this would imply that (z,y) and (z,w) are comparable. Our claim is thus
proved with (u,v) = (z,w). If the situation was such that z =F z and w = vy,

~J1 ~J1

then we would have that (z,y) =F (z,w) and (z,y) 2ZF (z,y). The réle of (u,v)

would be played by (z,y). Our cTaim is proved. -
Assume first that (u,v) = (z,w). From (z,¢) R (y,d) in (31) and (x,w) !
(x,y), we derive (z,¢) R (w,d). Similarly, (z,a) R (w,b) and (z,w) = (z,w)

entail (z,a) R (w,b). This allows to derive a contradiction with Maj1;. Indeed, we
have (z,¢) R (w,d), (z,a) R (w,b) and (z,a) R (w,b). Using Majl; yields either
(w,a) R (2,b) or (z,¢) R (w,d). None of this conclusions holds true. The latter is
false by hypothesis (see (31)) and the former cannot be true since (z,y) =7 (w, 2)
and Not[(z,a) R (y,b)]. The case in which we assume (u,v) = (z,y) yields a

similar contradiction. As a conclusion, we have established that (y,z) >! (z,y).

*

3. We draw the consequences of the fact that (y,z) I (z,y), by adapting the
ideas that we used in Part 2 of the present proof, under the opposite hypothesis.
The fact that (y,x) 7=F (z,y) entails the following:

1. (w,z) =¥ (z,w). Assuming Not[(w,z) 2Zf (z,w)] implies, by Lemma 22.2,

that (z,w) 2z (w,z). Hence we would have: (z,w) ZF (w,2) ~f (y,z) 2ZF

~1 ’ ~1 ~1
(x,y). Using the transitivity of =¥ leads to (z,w) = (z,y), a contradiction.

*

The same contradiction arises if we suppose (z,w) ~F (w, 2).

2. (y,x) =7 (x,y). Else, from (y,x) ~F

(y,z) ~F (w,2) =F (z,w), from which we deduce (x,y) >~}
tradiction.

*

(z,y) we would derive (z,y) ~73

(z,w), a con-

3. (y,z) =7 (z,w). Assuming Not[(y,x) ZF (z,w)] implies, by Lemma 22.2,

that (z,y) 2ZF (w, z). Hence we would have: (z,y) 2ZF (w, z) ~f (y,x). Using
the transitivity of =—F leads to (x,y) ZF (y,x), a contradiction. The same
(z,w).

contradiction can be derived if we suppose (y, z) ~!

4. (w,z) >f (z,y) is established in a similar way as the previous item.

We thus have the following situation: (y,z) and (w, z) are incomparable differences

w.r.t. 2. Both are strictly preferred to (z,y) and (z,w), which are indifferent
pairs.
Using AC1;, AC2; and AC3;, we derive exactly the same consequences as in

Part 2, i.e., we have either [z 2= 2z and y =7 w] or [z =F 2 and w = ).

If [z =7 2 and y >=F w], we conclude that (z,y) ! (z,y) and (z,w) =F (2,9).
We can have neither (z,y) ~F (z,y) nor (z,w) ~7

* *

i ¥ (z,y), because this would
imply that (z,y) and (z,w) are comparable. Since we have Not[(z,y) ZF (x,y)],

~Jl

we deduce that (y,z) =F (y,z), using Lemma 22.2. Having (y,z) > (y,x) is

~Jl 7

impossible since this would contradict Majl;. Indeed, assume that there are e, f €
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X_; such that (y,e) R (z, f) and Not[(y,e) R (z, f)]. Since (y,z) >=I (z,w) and
(z,a) R (w,b), we get (y,a) R (z,b). From (y,2) ZF (y,z) and (y,a) R (x,b), we
derive (y,a) R (z,b). By (31), we also have Not[(xz,a) R (y,b)] . The following
configuration is not compatible with Majl;: (y,a) R (z,b), (y,a) R (z,b), (y,e) R
(z,f), Not[(z,a) R (y,b)], Not[(y,e) R (z,[f)]. We have thus established that

(y,2z) ~F (y,x). Starting from Not[(z,y) ZF (z,w)], one proves similarly that

3 ~Jl
*

(y,2) ~f (w, z) and we finally have that (y, z) ~F (w, 2) ~F (y, ).

In the case in which [z >F 2 and w ZF y|, one proves in an analogous way
that (z,y) =I (z,w), (z,w) =} (x,w) and (w,z) ~f (y,x) ~F (w, 2).

This concludes the proof of Lemma 74. O

PROOF (OF PROPOSITION 73)

Since R satisfies MM1 and RC2, it satisfies also Majl (Lemma 41.2). Let us
assume that R does not verify RC1; on some attribute i. We shall derive a
contradiction from this assumption. If RC1; is not verified by R, there exist four
levels z,y,z,w € X; such that (x,y) and (z,w) are incomparable w.r.t. relation
or, in other words, there are a,b,c,d € X_; such that:

N’L7

(z,¢) R (y,d) Not[(z,¢) R (w,d)]

(2,a) R (w,b) Not[(z,a) R (y,b)] (35)

Hence R is in the conditions of application of Lemma 74. We shall assume that
the configuration described in conclusion 2.(a) of the lemma holds true, i.e., we

have:
[(y, 2) ~i (g, ) ~i (w, 2)] =7 [(2,9) a (z,0)] =5 (2, 9)- (36)
Note that case 2.(b) can be dealt with similarly. We leave it to the reader.

Since R satisfies MM3 and RC2, it satisfies M3 (Lemma 55.1). In the con-
figuration described by (36), M3; implies that the pair (z,y) is a veto. In-
deed, assume that there are e, f € X_; such that (z,e) R (y,f). We have
(x,y) =7 (2,y), which means there are g,h € X_; such that (z,9) R (y,h) and
Not[(z,9) R (y,h)]. It holds true that (y,a) R (z,b) since, by (35) (z,a) R (w,b)
and, by (36), (y,z) >=§ (z,w). Finally, we have Not[(x,a) (y,b)] by (35)

7

and Not[(z,a) R (y,b)] since (z,y) =F (z,y). Gathering the relevant prefer—

7

ences, ic.. (y.0) R (2.0). (2.9) R (4.h), (z.¢) R (u.f). Not[(z.a) R (b))
Not[(z,a) R (y,b)] and Not[(z,g9) R (y,h)], yields a contradiction with M3,. We
thus have shown that for all e, f € X_;, we have

Not[(z,e) R (y, f)] (37)

The fact that R is complete enters into play in the following way. Since R
is complete, (37) entails that for all e, f € X_;, we have (y,e) R (z, f). Since
(36) tells us that (y,z) ~F (w,z) ~F (y,z), we also have, for all e, f € X_;,

K3 (2
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(w,e) R (z,f) and (y,e) R (z, f). In other words, (y,z),(w,z) and (y,x) are
bonuses as defined in Section 3.6.

The relation R induces not only a relation 7~} comparing pairs of levels on X,
but also a similar relation 7*; on the pairs of elements of X_;. Fore, f,g,h € X_;,
we have (e, f) 2%, (g, h) iff, for all u,v € X, [(u,g9) R (v,h)] = [(u,e) R (v, f)].
The assumption (35) also means that the pairs (a,b), (¢,d) € X_; x X_; are not
comparable w.r.t. 22*.. This relation is transitive by definition and complete iff
RC'1; holds.

If AC1, AC2 and AC3 hold, we claim that there are g,h € X_; with (a,b) 7*,
(g.h) and (c,d) =%, (g,h). AC1, AC2 and AC3 imply that ZZ; is a complete weak
order for all j € N. We define g (resp.h) by specifying its level g; (resp. h;) for
each j # 1 as follows: for all j # i,

- if e =T g,
aj if ¢; T a;

g; =min{a;,¢;} = { c; if a; = CGj o
~j
b; it b; i:;t d;
h; = max {b;,d;} = d; ifd; =T b; o
~j

Starting from the trivial (a,b) 72*, (a,b) and applying repeatedly (33) and (34),
using ¢ and h, we obtain (a,b) 2Z*; (g,h). One proves similarly that (¢, d) Z*;
(9. h).

We finish the proof by showing that the above induces a contradiction with
M3;. We have that Not[(z,a) R (y,b)] entails Not[(z, g) R (y, h)] and Not[(z,¢c) R
(w, d)] entails Not[(z,g) R (w,h)] (since a difference on X_; is substituted by a
smaller one w.r.t. 22* ). Since (y, ) is a bonus, we have in particular (y, g) R (z, h).
By (35), we have (z,¢) R (y,d) and (z,a) R (w,b). Gathering the relevant
preferences, ic., (3,9) R (2,h), (7,¢) R (3 d), (2, ) R (w,b), Not[(z, ) R (3 h)],
Not[(z,9) R (w,h)] and Not[(z,¢) R (w,d)], yields a contradiction with M3;. O

The proposition below is another result, besides Proposition 73, showing that
RC1 has relationships with the other axioms even though the considered relations
here are neither complete nor asymmetric.

Proposition 75
If R is a relation on X satisfying RC2;, AC1;, AC2;, AC3;, Majl; and Maj3;,
for some i € N, then R satisfies RC'1;.

PRroOOF
Let us assume that R does not verify RC1; on some attribute i, i.e., there exist
x,y,z,w € X; and a, b, c,d € X_; such that:

(z,¢) R (y,d) Not[(z,¢) R (w,d)]

(z,a) R (w,b) Not[(z,a) R (y,b)]. (40)

52



In other words, the pairs (z,y) and (z,w) are incomparable w.r.t. relation 2Z*

Therefore, R is in the conditions of application of Lemma 74 and we have [(y, z) ~
(w, 2)] = [(z,9), (z,w)].

The latter is not compatible with Maj3; as we shall see. Since (y,z) =7 (z,w)
and using (z,a) R (w,b) in (40), we obtain that (y,a) R (x,b). From (w,z) ~}
(y,z) and (y,a) R (x,b), we derive (w,a) R (z,b). We also directly use the
four clauses in (40). The following facts contradict Maj3;: (y,a) R (x,b), (w,a) R
(5,), (2,0) R (3,d), (2, @) R (w,b), Not|(z,a) R (3,b)] and Not[(z,) R (w,d)]. O

B Examples

The examples below have been checked in order to determine whether they satisfy
the following axioms:

RC1, RC2, AC1, AC2, AC3, UC, LC, M1, M2, Majl, Maj2,
MM1, MM2, M3, Maj3, MM3, DMMS3.

Those among these axioms that are not satisfied are mentioned below next to the
example label. All axioms from the previous list that are not explicitly mentioned
are proved to be satisfied. By default, the examples are complete relations. Rela-
tions that are asymmetric are explicitly labeled as such, as well as relations that
are neither complete nor asymmetric.

Example 76 (Not[RC2;])
This is example 25 in BP07. Let N = {1,2} and X = {z,y} x {a,b}. Let R on X
be identical to X? except that, Not[(y,a) R (z,a)] and Not[(y,b) R (x,a)]. This
relation is complete.

It is easy to check that we have:

e (z,9), (v,7),(y,y) =7 (y,x) and

¢ [(a,0),(b,0)] -5 [(a, a), (b, a)].

Using Lemma 22, it is easy to see that RC'1 and RC2; hold but that RC2, is
violated. Using Lemma 8.1 and 8.2 in BP07 it is clear that UC' and LC' hold
so that the same is true for M1 and M2. As a consequence of Remark 32, we
have that R satisfies Majl and Maj2. Since M3 (resp. Maj3) is entailed by M2
(resp. Maj2), R also satisfies M3 (resp. Maj3). Since R satisfies M1 (resp. M2)
it satisfies its relaxed version MM1 (resp. MM2). As R satisfies M2 it fulfills M3
and MM3. As R satisfies M1 it fulfills DMM 3.
Finally, using Lemma 15 in BP07, it is routine to check that we have :

° -7y,
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® q >2i b.
Hence AC1, AC2 and AC3 hold. &

Example 77 (Not[UC,;, M 1;, Majl;, MM1;])
This is Example 33 in BP05a. Also used in the proof of Part 5 of BP07, Lemma
11 and as Example 23 in BP07.

Let X ={a,b} x {z,y,2} and R on X be identical to the linear order:

(a,z) R (a,y) R (a,z) R (b,z) R (b,y) R (b, z),

except that (a,z) and (b, z) are indifferent: (a,z) R (b,x) and (b,z) R (a, z) both
hold true.

This is a complete relation.

We have, abusing notation,

e (a,b) 7 [(a,a), (b,b)] =7 (b,a) and

o (v,2) =5 [(z,2), (¥, 9), (2,2), (z,9), (4, 2)] =5 [(y,2), (2,2), (2,9)],
ea>fbandz >3y >3 2.

Using Lemma 22, it is easy to check that R satisfies RC'1, RC2, AC1, AC2, ACS3.

It is clear that UCY, LCy and LC5 hold. UC4 is violated since we have (z,y) =3
(y,x) and Not[(z,y) Z5 (z,2)].

Parts 1 and 2 of Lemma 11 in BP07, show that conditions M1, and M2 hold.
By Part 3 of Lemma 11 in BP07, M 15 cannot hold. Using Lemma 33 shows that
Majl; and Maj2 hold while Majl, does not. Using Lemma 41 shows that MM1,
and MM?2 hold while MM1, does not. Since R satisfies M2 (resp. Maj2, MM?2),
this implies that M3 (resp. Maj3, MM3) also holds. Since M1; holds, DMM3,
holds too. We show that DMM3, also holds. Assume the contrary. Taking RC1,
into account, this implies that there are x5, ys, 20, ws € X; such that (zy,wsy) >5
(x2,Y2) »5 (y2,2). Hence (z3,wsy) can only be (x,z). The fourth conclusion of
DMM3, is always true since (u,z) R (v, z) for all u,v € X; = {a, b}. &

Example 78 (Not[RC1;, AC2;, LC;, Maj2;, Maj3,])
This is Example 12 in BP07. Also used in Example 24 in the same paper.

Let N = {1,2,3} and X = {z,y,z,w} x {a,b} x {p,q}. Let R on X be
identical to X? except that, for all oy, 51 € X1, all ap, 2 € X5 and all az, 33 € X3
the following pairs are missing:

Not[(x,a,a3) R (y,b,53)], Not|[(z,as,p) R (w, 52, q)],
Not[(z,ag,p) R (w, B2, q)], Not[(aw,a,p) R (B1,b,9)],
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zTap zaq xbp xbg yap yaq ybp ybg zap zaq zbp zbg wap wagq wbp wbgq
rap - - - X - - X X - - - X - X - X
xraq - - - - - - X X - - - - - - - -
zbp  — - - - - - - - - - - - - X - X
xbg — - - - - - - - - - - - - - - -
yap — - - X - - - X - - - X - - - X
yaq  — - - - - - - - - - - — - - - -
ybp  — - - - - - - - - - - - - - - -
ybg  — - - - - - - - - - - - - - - -
zap - - - X - - - X - - X - X - X
zaq — - - - - - - - - - - - - -
zbp X X
zbg  — - - - — - — - - - — - - - -
wap  — = = X - - - X - - - X - - - X
waq — — - - — — — — — — - — - - — -
wbp  — - - - — - — - - - - — - - - -
wbqg  — — — - — — — — — — - — - — — —

Table 1: Relation R in Example 78: the missing pairs are marked by a cross.

There is a total of 25 such pairs that are marked by a cross in Table 1.
It is not difficult to check that R is complete.
For i € {2,3}, it is easy to check that we have:

(b, @), (a, a), (b,0)] 5 (a,b),

[(a,p), (p,p), (¢:0)] =3 (p,q),
b >2i a, q >3 P,

which shows,
e using Parts 1 and 2 of Lemma 22, that RC'15, RC13, RC25 and RC23 hold,
e using Lemma 46, that AC1,, AC13, AC2,, AC23, AC35 and AC33 hold.

Using Parts 1 and 2 of Lemma 8 in BP07, it is easy to check that LCy, LCj,
UC5 and UC5 hold. Hence, using Parts 3 and 4 of Lemma 11 in BP07, we know
that M15, M 15, M2, and M23 hold. Using Lemma 33, we have also Majls, Majls,
Maj2s and Maj2;.

On attribute 1, it is easy to check that we have:

(c1,dy) > (x,y) and
(c1,dy) =7 [(z,w), (z,w)],

for all (c1,dr) € I' = {(z,2), (z,2), (y,2), (4. 9), (¥, 2), (Y, w), (2, 2), (2,9), (z,2),
(w,x), (w,y), (w,z), (w,w)}. The pairs (z,w) and (z,w) are linked by ~7.

The pairs (x,y) and (z,w) are not comparable in terms of 2=} since (z,a,p) R
(y,a,q) and Not[(z,a,p) R (w,a,q)], while (z,a,p) R (w,b,p) and Not[(z,a,p) R
(y,b,p)]. Similarly, the pairs (x,y) and (z,w) are not comparable in terms of .
This shows, using Part 1 of Lemma 22, that RC1; is violated.
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Using Part 2 of Lemma 22, it is easy to see that RC?2; holds. Using Part 1 of
Lemma 8 in BP07, shows that UC} holds. Hence, using Part 3 of Lemma 11 in
BP07, we know that M1; holds.

In view of Part 6 of Lemma 16 in BP05a, LC'; does not hold (since this lemma
tells us that RC2;, UC7 and LC; entail RC1;. We now check that M2; holds.
The two premises of M2; are that (ay,a_1) R (by,b_1) and (by,c_1) R (a1,d_1).
The three possible conclusions of M2, are that (b1,a_1) R (a1,b_1) or (c1,a_1) R
(dy,b_1) or (c1,c-1) R (dy,d_1).

Suppose first that (by,a;) € I'. In this case, we have (by,a1) 227 (a1,b1), so
that (a;,a—1) R (by,b_1) implies (by,a—1) R (ar,b_1). Hence, the first conclusion
of M2, holds.

Suppose now that (by,a1) = (z,y).

If (c1,dy) is distinct from (x,w) and (z,w), we have (c1,d;) 727 (x,y), so that
(b1,¢-1) R (ay1,d_y) implies (¢1,¢_1) R (dy,d—1) and the third conclusion of M2,
holds.

If (¢1,d1) = (z,w), it is easy to check that there are no a_1,b_; € X_; such
that (y,a_1) R (x,b_1), Not[(z,a_1) R (y,b_1)] and Not[(z,a_1) R (w,b_y)], so
that no violation of M2, is possible in this case. Since (x,w) ~% (z,w), the same
is true if (¢1,dy) = (z,w).

This shows that M2; cannot be violated if (by,a;) = (z,y). A similar reasoning
shows that M2; cannot be violated if (b1, a1) = (x,w) or if (b1, a1) = (z,w). Hence,
M2, holds and so does M3;.

Using Remark 32, we know that R satisfies Majl; since UC; entails Majl;.

Since R satisfies RC2;, M1; but not RC1y, it cannot satisfy Maj2,, as a
consequence of Lemma 34. Since R satisfies M1 and M2, it also satisfies MM1,
DMM3, MM2, M3 and MM3.

Maj3y (resp. Maj3s) holds because Maj2, (resp. Maj23) holds but Maj3; is
violated as shown by the following configuration (which also confirms that Maj2,
is violated): (y,a,p) R (z,b,p), (w,a,p) R (z,a,p), (w,a,p) R (2,a,q), (z,a,p) R
(w,a,p), Not[(z,a,p) R (y,b,p)], Not[(z,a,p) R (w,a,q)].

On attribute 1, it is easy to check that we have:

{y,w} =1 z =] z.

Hence AC1; holds. Since (z,w) and (x,y) are not comparable w.r.t. 227, y and w

are not comparable w.r.t. >, hence AC2; is violated. It is easy to check, using
Lemma 15 in BP07, that AC3; is satisfied. &

Remark The co-dual of Example 78 is an asymmetric relation that satisfies all

axioms but RC1, AC1, UC and M1.
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Example 79 (Not[RC1;, AC1;, UC;, M1;, DMaj3;])
The co-dual of the relation R described in Table 2 is a complete relation satisfying
all properties except for RC1, AC2, M1 and DMaj3. Note that this relation
verifies DM 3 and DMM3.

Let X = {z,y,2} x {a,b} x {p,q} and R consist of the set of pairs listed
in Table 2. We have to show that R satisfies all properties but RC1, ACI,

zap zaq xbp xbg yap yaq ybp ybg zap zaq zbp zbq
Tap - R R R - R R R - R R R
Taq - - - R - - - R - - - R
xbp - - - R - - - R - - - R
xbq - - - - - - - - - - -
yap - - R R R R R - R R R
yaq - — — R - - - R - - - R
ybp - - - - - - - R - - - R
ybg
zap R R R R R R R R
zaq - - - - - - R - - R
zbp - — - R - - - R - - - R

zbg -

Table 2: Relation R in Example 79.

LC, Maj2, Maj3. Tt is easy to check that R is asymmetric. As for the com-
parison of preference differences on each attribute, we have for all (o, ) € ' =

{(@,2), (y,9), (2,2), (x,9), (x,2), (¥, 2), (2, 9)},

e [(a,p)] »1 (y,x) and [(«, B)] =7 (z,z), while (y,z) and (z,x) are incompa-
rable in terms of 7}

~1

e (a,0) =3 [(a,a), (b,0)] -5 (b, a),

e (p,9) =3 [(p,p), (¢,9)] =3 (¢,p)

The upward and downward dominance relations on attributes 2 and 3 are as fol-
lows:

® >2i b,
® D >§k q.

On attribute 1, we have:
[ I >f Yy, T >f z,

e y and z are not comparable w.r.t. = since, on the one hand, zap R zaq and
Notlyap R zag|, and on the other hand, yap R zbp and Not|zap R xbp],

& T Y Z
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For j € {2,3}, RC1;, RC2;, AC1,, AC2;, AC3;, UC; and LC; are clearly
satisfied, implying M1, and M2; (see Remark 25) as well as Majl; and Maj2; (see
Remark 32), MM1; and MM?2;. On attribute 1 it is easy to check that RC2,, AC2;
and AC3; are verified while RC'1; and AC1; are violated. Using Lemma 8(1) in
BPO07, we observe that UC is satisfied, implying M1,, Majl; and MM1,. LC,
does not hold but M2, does as we shall see.

Using the notation in condition (20), for establishing M2; we only have to
consider the cases in which (y1,x) = (y,x) or (y1,2) = (2,z) (otherwise (y1,z) 2=}
(x,y1) and consequently the first conclusion of (20) is satisfied). Assume that
(y1,2) = (y,z) and that the first conclusion is not satisfied. This means that
either a_y = ap and b_y = aq or a_; = bp and b_; = bqg. We now distinguish two
cases regarding (z;, w;):

1. if (z;,w;) # (z,2x), the third conclusion is always satisfied because of the
second premise and the fact that (z;,w;) =1 (v, x),

2. if (z;,w;) = (2,2) and a_1 = ap and b_1 = aq or a_; = bp and b_; = bq, the
second conclusion is satisfied because we have zap R xaq and zbp R xbq.

The case in which (y1,x) = (z, ) is dealt with similarly. Consequently, R satisfies
M21, MMQl, M31 and MM31

For establishing that Maj2; does not hold, we consider the case in which
(y1,2) = (y,z) and use the notation of (22) in Definition 29. In the previous
analysis we only need to reconsider the case in which the second conclusion of
M?2; was used, i.e., when (z;,w;) = (z,z) and a_; = ap and b_y = aq or a_y = bp
and b_; = bg. We have xap R yaq, Not[yap R xaq|, zap R zaq, yap R xbp and
Not[zap R xbp], which means that Maj2; does not hold. Since (z, ) is no veto (as
we have, e.g., zap R waq), the latter also shows that R does not satisfy Maj3;. &

Example 80 (Not[AC1;, AC2;])
This is Example 36 in BP05a. Also used in Example 21 in BPO7.
Let X ={a,b,c,d} x {z,y}. We build R as the CR in which:

[ a]lb,aPlc,alld,bllc,bPldvclld,
L] ngy,
o {12} o, {1,2} 2 {2}, {1,2} 2 {1}, {2} = {1}.

Therefore, R links any two elements of X except that we have: (a,z) R (c,y)
but Not[(c,y) R (a,z)] and (b,z) R (d,y) but Not[(d,y) R (b,z)]. Hence R is
a complete relation. Since it is a CR, it satisfies RC'1, RC2, UC, LC, M1, M2,
Majl, Maj2, MM1, MM2, M3, Maj3, MM3 and DMM3.
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It is easy to see that AC3 and AC'1, as well as AC2, hold. AC'1; is violated
since (d,y) R (a,z) and (c,y) R (b, z) but neither (¢,y) R (a,z) nor (d,y) R (b, z).
AC?2, is also violated (Part 1 of Lemma 27 in BP05a). &

Example 81 (Not[AC3;])
This is Example 35 in BP05a. Also used as Example 20 in BPO7.
Let X ={a,b,c,d} x {z,y}. We build the CR in which:

eaP balic,aPd,blyc,bP d,cld,
o v Py,

o {12} o, {12} 2 {2}, {1,2} = {1}, {2} = {1}.

Therefore, R links any two elements of X except that we have: (a,z) R (b,y) but
Not[(b,y) R (a,x)], (b,x) R (d,y) but Not|(d,y) R (b,z)] and (a,x) R (d,y) but
Not[(d,y) R (a,z)]. Hence R is a complete relation. Since it is a CR, it satisfies
RC1, RC2, UC, LC, M1, M2, Majl, Maj2, MM1, MM2, M3, Maj3, MM3 and
DMM3.

It is easy to see that AC1 holds and, hence, AC2 (by Part 1 of Lemma 27
in BP05a). One verifies that AC3, holds. AC3; is violated since (¢,y) R (a,z),
(d,y) R (¢, z) but neither (b,y) R (a,z) nor (d,y) R (b, x). &

Remark.  The co-dual of this relation is an asymmetric relation that satisfies
all axioms of a CR-AT except AC3;. In particular, it satisfies M3 and Maj3 since
it satisfies M2 and Maj2.

Example 82 (Not[LC;, M2;, Maj2;, MM2;, M 3;, Maj3;, MM3;])
This is Example 38 in BP09a. It is used in Remark 16 in BP09b (but erroneously
referred to as Example 39 in BP(09a).

Let X = X x Xy x X3 with Xy = {z,y, 2}, Xo = {a,b} and X5 = {p,q}. Let
us consider the relation R such that:

3
tRy< Y pilz,y) >0,
i=1
the functions p; being such that:
pi(2,y) = pile, 2) = pi(y, 2) = pu(@, 2) = pr(y, y) = pi(z,2) = 4,
Py, x) = pi(z,y) = —Lpi(z,2) = —4,

Pz(a, b) = 2>P2(aa@) = Pz(ba b) = 07292(57 a) = -2,
p3(a,b) = 2,ps(p, p) = p3(q,q) = 0,p3(q, p) = —2.
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This is a complete relation. Indeed if Y7 | pi(x;, %) < 0, then py(z,y1) < 4.
This implies that p;(y1, ) = 4, hence 37, p; (ys, ;) > 0.
It is easily checked that we have (with (o, «) standing for (z,x), (y,y) and

(z,2)):

[(z,y) ~1 (2, 2) ~1 (y,2) ~] (@, )] =1 [(y,2) ~7 (2,9)] =1 (2,2),
-ty -T2,
(a,b) =5 [(a,a) ~5 (b,b)] =5 (b, a),
a >§[ b,
(p,a) =3 [(p,p) ~3 (¢,9)] =5 (g, p),
P73 q.

This shows that RC1, RC2, AC1, AC2 and AC3 are satisfied. Using Parts 1 of
Lemma 8 and Lemma 11 in BPO7

shows that UC and M1 hold. Similarly, using Parts 2 of Lemma 8 and
Lemma 11 in BP0O7

shows that R satisfies UCy, UC3, M2, and M23, which implies that M3, and
M35 hold. Condition M3 is violated since (x,b,q) R (y,a,p), (y,a,q) R (x,b,q)
and (z,a,p) R (x,b,q)

while Not[(y,b,q) R (z,a,p)], Not[(z,b,q) R (z,a,p)] and Not[(z,a,q) R
(2,b,q)].

Hence M2, is violated too. Lemma 11, Part 2, in BP07 implies that LC' is also
violated. Using Lemmas 33, 41 and 55, we obtain that R satisfies Majl, MM1,
MCL]QQ, MCLng, MMZQ, MM23, MCLjSQ, Maj33, MMSQ, MM33 but neither M(lj21
nor Maj3;. In view of Lemmas 55, MM3, is also violated as well as MM2,. Since
R satisfies M1, it fulfills DMM 3. &

Example 83 (Asymmetric, Not[LC;, M2;, M3;, Maj2;, Maj3;, MM?2;, MM 3;])
This is Example 5 in BP06.

Let X = {x,y,2} x {a,b} x {p,q} and R on X be be as described in Table 3:

It is easy to check that R is asymmetric. It is not difficult to see that we have,
abusing notation,

o [(z,), (7,2),(y,2)] =1 [(=,2), (y,9), (2,2), (y,2), (z,9)] =1 (2, 2),
o (a,b) >3 [(a,a),(b,b)] =5 (b,a), and
e (p,q9) =3 [(p,p), (¢,0)] =3 (¢, p)-

This shows that RC'1, RC2 and Majl hold. It is easy to see that Maj2; and Maj2;
hold so that Maj3, and Maj3s are satisfied. Condition Maj3, is violated since
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S
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o
Q
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<
N
Q
<
<
S
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0
2
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e
Q
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<
S
Y
<
<

xTap
xaq
xbp
xzbg

A

yap
yaq
ybp
ybg

o
o
IR A
o
TR A
1 RAA| AR

TR T AI T RA
Al TR TRATA
JAA| 1 RA [ RAIA

AR IA| AR
A | AR | IAIA

zap
zagq
zbp
zbg - - -

Table 3: Relation R in Example 83.

(z,a,p) R (y,a,p), (x,a,p) R (z,a,p), (y,a,p) R (x,b,p) and (z,a,p) R (,b,q)
but neither (y,a,p) R (z,a,p) nor (z,a,p) R (x,b,p).

Since RC'1 and RC?2 hold, Lemma 33 implies that R satisfies M1, M2y, M23
but not M2,. M3, and M 33 hold while M3, is violated (Lemma 55). By Lemma 11
in BP07, R satisfies UC, LC5, LC'3 but not LC. By Lemmas 41 and 55, we know
that MM2, and MM3; are violated. MM2; and MM3; are satisfied for j = 2, 3.
R satisfies MM1 so that it also satisfies DMM3.

From relations 7~ described above, we infer the following:

N ikt
a3 b,
+
p>—3Q7

which implies that R satisfies AC1, AC2 and ACS3. <&

Example 84 (Not[AC1;, M2;, Maj2;, MM2;, LC;])
This is Example 36 in BP09a.

Let X = X7 x Xy with X; = {z,y, z,w} and X5 = {a,b}. We build a CDR on
X with:

e :Px, 2Py, z2Pw, x Prw,x Iy, y I, w,

e the relation V) is empty except that z V; y,

e bPa,

e the relation V5 is empty,

o {1,2} >, {1,2} £ {2}, {1,2} & {1} and {1} = {2}.

By construction, R is a CDR. Hence, it satisfies RC'1, RC2, M1, Majl, MM1,
M3, Maj3 and MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies M2,
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Maj25, MM25, but not M2; (due to the veto on X7), not Maj2; (by Lemma 33)

and not MM2; (by Lemma 41). Since R satisfies M1 it also fulfills DMM3. Using

Lemma 11 in BP07, we get that UC' and LC5 are satisfied but LC'; is violated.
The relation R contains all pairs in X x X except the following ones:

e Not[(z,b) R (z,a)], Not|(y,b) R (z,a)], Not[(w,b) R (z,a)], Not[(w,b) R
(x,a)], due to the fact that Not[@ > {1,2}], and

a)
e Not[(y,a) R (z,a)], Not[(y,b) R (2,b)], Not[(y,b) R (z,a)], Not[(y,a) R
(2,b)], due to the fact that z V; .

One pair is common to these two series of four pairs, so that R is equal to X x X
minus the seven distinct pairs in the lists above. It is a complete relation.

On Xs, it is easy to check that we have b >—§E a, so that AC1,, AC25 and AC3,
hold.

On X3, it is easy to check that 7= is complete. We indeed have that:

z =1 x>y [y ~] w].

The relation >1 1s not complete. We have 2z =1 z, x =] y and z =] w but neither
y =7 wnor w =T ysince (y,b) R (z,a) but Not[(w, b) R (z,a)] and (w,a) R (z,a)
but Not[(y,a) R (z,a)]. This shows that AC1; is violated. Condition AC3; holds
since 1 and Z=] are not incompatible. &

Example 85 (Not[AC2;, M2;, Maj2;, MM2;, LC;])
This is Example 35 in BP09a. It is a slight variation on Example 84 obtained by
reversing all relations S; and V.

Let X = X; x Xy with X; = {z,y, z,w} and X5 = {a,b}. We build a CDR on
X with:

e wPiz,x Pz,yP z, wP x ylw vyl z (and all I; loops),
e 1/ is empty except that y V) z

e a P, b (and all I; loops) and the relation V5 is empty,

o {1,2} > o, {1,2} £ {2}, {1,2} = {1} and {1} = {2}.

Observe that S is a semiorder (the weak order it induces ranks the elements
of X7 in the following order: w,y,z, z). The relation V] is a strict semiorder that
is included in P;. But (S7,U;) is not an homogeneous chain of semiorders on X;
since the weak order induced by U; ranks y before w, while the weak order induced
by S; does the opposite.

By construction, R is a CDR. Hence, it satisfies RC1, RC2, M1, Majl, MM1,
M3, Maj3 and MM3 (Theorem57 and Lemmas 41 and 55). It satisfies M2,
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Maj25, MM25, but not M2; (due to the veto on X7), not Maj2; (by Lemma 33)

and not MM2; (by Lemma 41). Since R satisfies M1 it also fulfills DMM3. Using

Lemma 11 in BP07, we get that UC' and LC5 are satisfied but LC'; is violated.
The relation R contains all pairs in X x X except the following ones:

e Not[(z,b) R (w,a)], Not[(z,b) R (x,a)], Not[(z,b) R (y,a)], Not[(z,b) R
(w,a)], due to the fact that Not[@ > {1,2}], and

e Not[(z,a) R (y,a)], Not[(z,a) R (y,b)], Not[(z,b) R (y,a)], Not[(z,0) R
(y,b)], due to the fact that y 1} z

One pair is common to these two series of four pairs, so that R is equal to X x X
minus the seven distinct pairs in the lists above. It is clear that R is complete.
On Xy, it is easy to check that we have a >-§t b, so that AC1,, AC25 and AC3,
hold.
On X, it is easy to check that =7 is complete. We indeed have that:

ly ~T w1 - 2

The relation 77 is not complete. We have w > z, y =] v and x >] z but neither
y 727 wnor w 27 ysince (z,a) R (w,a) but Not[(z,a) R (y,a)] and (z,b) R (y,a)
but Not[(z,b) R (w,a)]. This shows that AC2; is violated. Condition AC3; holds
since =1 and =] are not incompatible. <&

Example 86 (Asymmetric, Not[UC;, M1;, Majl;, MM1;])
This is Example 3 in BP06.

Let X = {a,b} x {x,y,2z} and R on X be identical to the strict linear order
(abusing notation in an obvious way):

(a,2) R (b,x) R (a,y) R (b,y) R (a,z) R (b, 2),

except that we have also (a,y) R (b, x).
It is easy to see that R is asymmetric. We have, abusing notation:

e (a,b) ~7 [(a,a),(b,b)] =7 (b,a), and

o [(z,2), (y,2)] =5 (w,y) =5 [(z,2), (y,9), (2, 2)] =5 [(y,2), (2, 2), (2,9)].

Using Lemma 22, it is easy to check that R satisfies RC'1 and RC?2.

It is clear that UCY, LCy and LC5 hold. This implies that M2, Maj2, MM?2,
M3, Maj3, MM3 hold as well as M1;, Majl, and MM1,.

Magjl, is violated since (a,z) R (a,y), (a,x) R (a, 2), (b,z) R (a, z) but neither
(a,y) R (a,z) nor (b,x) R (a,y). As a consequence, UC] is also violated. Since
RC1 and RCZ hold, Lemmas 33 and 41 imply that M1, and MM1, are violated.
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Since M1; holds, DMM 3, holds too. We show that DMM 35 also holds. Assume
the contrary. Taking RC'1s into account, this implies that there are a,b, zo, ws €
Xy such that (z9,ws) =3 (a,b) =5 (b,a). Hence (z9,ws) can only be (z,z) or
(y,z). The fourth conclusion of DMM3, is always true since (u,z) R (v, z) and
(u,y) R (v, 2) for all u,v € X; = {a,b}.

Using Lemma 46, we have:

e a =i band
° 1y yLE 2
Hence AC1, AC2 and AC3 hold. &

Example 87 (Asymmetric, Not[AC1;, M2;, Maj2;, MM?2;, LC;])
This example is an asymmetric variant of Example 84.

Let X = X x Xy with X; = {z,y, z,w} and X, = {a,b}. We build a CDR on
X with:

o 2 PP, 2Py, 2 PYw, x PP w,y Pl w,

the relation V;° is empty except that z V{° y,

b Py a,

the relation V3 is empty,

(1} >° @, {2} &° {1}, {1,2) >° 2.

By construction, R is an asymmetric CDR. Hence, it satisfies RC'1, RC2, M1,
Majl, MM1, M3, Maj3, MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies
M2, but not M2; (due to the veto on X3), not Maj2; (by Lemma 41) and not
MM?2, (by Lemma 41). Using Lemma 11 in BP0O7, we get that UC and LC, are
satisfied but LC is violated®.

Since R satisfies M1 it verifies DMM 3.

The relation R contains the following pairs in X x X:

e (r,a) R (w,a), (x,b) R (x,a), (x,b) R (y,a), (x,b) R (z,a), (x,b) R (w,a),

e (y,a) R (w,a), (y,b) R (x,a), (y,0) R (y,a), (y,0) R (w,a) (but, due to
2V y, Not[(y,b) R (z,a)]),

e (2,a) R (z,a), (2,a) R (y,a), (z2,a) R (w,a), (2,b) R (z,a), (2,a) R (z,b),
(2,0) R (y,a), (2,0) R (y,0), (2,0) R (2,a), (2,b) R (w,a), (2,0) R (w,b)

8This lemma was stated for reflexive relations but its proof does not depend on the reflexivity
hypothesis. It is also valid for irreflexive, and a fortiori asymmetric, relations.
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e (w,b) R (z,a), (w,b) R (y,a), (w,b) R (z,a), (w,b) R (w,a).

On X,, it is easy to check that we have b =3 a, so that AC1,, AC2, and AC3,
hold.
On X3, it is easy to check that 7= is complete. We indeed have that:

21 X Y w.

The relation =7 is not complete. We have z =1 z, z =] y and =] w but neither
y =7 wnor w =} y since (y,a) R (w,a) but Not[(w,a) R (w,a)] and (w,b) R
(z,a) but Not[(y,b) R (z,a)]. This shows that AC1, is violated. Condition AC3,
holds since =7 and =7 are not incompatible.

Each of Py and V{° is the asymmetric part of some semiorder but these semior-
ders do not form an homogeneous chain of semiorders (the weak order induced by
Pp imposes that w is placed in the last position while that induced by V}° imposes

the last position to y). &

Example 88 (Asymmetric, Not[AC2;, M2;, Maj2;, LC;])
This example is an asymmetric variant of Example 85

Let X = X3 x Xy with X; = {x,y, z,w} and X, = {a,b}. We build a CDR on
X with:

o wPy whP’z xPz yP;z,

the relation V° is empty except that y V° z,

a P; b,

the relation V5’ is empty,

{1} >° @, {2} >° {1}.

By construction, R is an asymmetric CDR. Hence, it satisfies RC'1, RC2, M1,
Majl, MM1, M3, Maj3, MM3 (Theorem 57 and Lemmas 41 and 55). It satisfies
M2, but not M2; (due to the veto on X;), not Maj2; (by Lemma 41) and not
MM2; (by Lemma 41). Using Lemma 11 in BP07, we get that UC and LC, are
satisfied but LC is violated”.

Since R satisfies M1 it verifies DMM 3.

The relation R contains the following pairs in X x X:

o (x,a) R (x,b), (r,a) R (y,b), (z,a) R (z,a), (zr,a) R (2,b), (z,a) R (w,b),
(x,0) R (z,b),

9This lemma was stated for reflexive relations but its proof does not depend on the reflexivity
hypothesis. It is also valid for irreflexive, and a fortiori asymmetric, relations.
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e (y,a) R((%bb)% (y,a) R (y,b), (y,a) R (z,a), (y,a) R (2,b), (y,a) R (w,b),

e (z,a) R (x,b), (z,a) R (2,b), (z,a) R (w,b) (but Not[(z,a) R (y,b)], due to

~—~

=

=
&

<

=o
N

S—

(w,a) R (z,0), (w,a) R (y,a), (w,a) R (y,b), (w,a) R (z,a), (w,a) R (2,b),
(w,a) R (w,b), (w,b) R (y,b), (w,b) R (z,b).

On X, it is easy to check that we have a >§t b, so that AC1,, AC25 and AC3,
hold.
On X, it is easy to check that =7 is complete. We indeed have that:

w >1i [x ~T y] =T 2.

The relation 777 is not complete. We have w > =, w > y, x > z and y =1 z
but neither # 227 y nor y 727 x since (z,a) R (x,b) but Not[(z,a) R (y,b)]
and (w,a) R (y,a) but Not[(w,a) R (x,a)]. This shows that AC2; is violated.
Condition AC3; holds since = and = are not incompatible.

Each of Py and V{ is the asymmetric part of some semiorder but these semior-
ders do not form an homogeneous chain of semiorders (the weak order induced by
Pp imposes that w is placed in the first position while that induced by V;° imposes
the first position to y). &

Example 89 (Asymmetric Not[RC1;, M2;, Maj2;, MM2;, Maj3;])
This example was not published before.

Let X = {z,y,z,w} x {a,b} x {p,q} and R consist of the set of pairs listed in
Table 4.

zap zaq zbp zbgq yap yaq ybp ybg zap zaq zbp zbg wap wagq wbp wbq
zap — R R R — R — R — R R R - R R R
raq — — — R — — — — — — — R — — - R
xzbp — — — R — — — R — — — R — — - R
xbg — - - — — — — - — — - - - — - -
yap - R R R - R R R - R R R - R R R
yaq - - - R - - - R - - - R - - - R
ybp - - - R - - - R - - - R - - - R
ybg — - - — — — — - — — - - - — - -
zap - R R R - - - - - R R R - - R R
zaq — — - R — — — — — — — R — — — R
zbp - - - R - - - - - - - R - - - -
zbq - - - - - - - - - - - - - - - -
wap - R R R - R R R - R R R - R R R
waq - - - R - - - R - - - R - - - R
wbp - - - R - - - R - - - R - - - R
wbq - - - - - - - - - - - - - - - -

Table 4: Relation R in Example 89.
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It is easy to see that R is an asymmetric relation.
As for the comparison of preference differences on each attribute, we have,

for all (o, ) € I' = {(z,2), (y, 1), (2, 2), (w,w), (x,2), (z,w), (y,2),(y,2), (y,w),
(z.x),(w, z), (w,y), (w, 2)]},

o (,f) 1 (z,y) 1 (2,y) and (@ 5) h (z,w) -1 (2,), while (z,y) and
(z,w) are incomparable in terms of -

* (a,0) 5 [(a,a), (b,0)] -5 (b,a),

e (p.0) =5 (p,0), (¢, 0] =5 (¢, p)-

The upward and downward dominance relations are as follows:
o y>—{“w>—fcx>fz,
® >2i b,
° i q.

RC1, does not hold since the pairs (z,y) and (z,w) are not comparable w.r.t.
71, but RC1, and RC13 hold true. For j € {1,2,3}, RC2;, AC1;, AC2;, AC3;
are clearly satisfied. For j = 2 and j = 3, using Lemma 24, we see that R
fulfills M1; and M2; hence it satisfies UC; and LC; (by Lemma 11 in BP07),
Majl; and Maj2; ( by Lemma33), UC; and LC; (by Lemma 11 in BP07), M3;,
Maj3;, MM1;, MM2; and MM3; (since each of the latter is implied by one of the
previously established properties of R ).

R satisfies M1;. Assume to the contrary that there are s,t,u,v € X; and
S, T,U,V € X_ysuchthat: (1) (s,5) R (¢,T), (2) (u,U) R (v, V), (3) Not[(t,S) R
(s,7)], (4) Not[(s,U) R (t,V)], (5) Not[(v,S) R (u,T)]. Using (1), (3) and
Lemma 22.2, we deduce that (s,¢) can only be one of the pairs (y,x), (y,z) or
(w, z). In all three cases, (2) and (4) cannot both hold true since (s,t) 227 (u,v),
for all u,v € X1, a contradiction.

R satisfies Majl,. Assume to the contrary that there are s,t,u,v € X; and
S,T,U,V € X_q such that: (1) (s,5) R (t,7), (2) (v,5) R (v,T), (3) (v,U) R
(v, V), (4) Not[(t,S) R (s,T)], ( ) Not[(s,U) R (t,V)]. Using (1), (4) and
Lemma 22.2, we deduce that (s,?) can only be one of the pairs (y,z), (y,2) or
(w, z). In all three cases, (3) and (5) cannot both hold true since (s,t) 227 (u,v),
a contradiction.

R satisfies M3;. Assume to the contrary that there are s,t,u,v € X; and
S,T,U,V,Q,R € X_;suchthat: (1) (s,S) R (t,T),(2) (t,U) R (s,V), (3) (u,Q) R
(v, R), (4) Not[(t,S) R (s,T)], (5) Not[(u,S) R (v,T)], (6) Not[(u,U) R (v,V)].
Using (1), (4) and Lemma 22.2, we deduce that (s,¢) can only be one of the pairs
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L), ( z) or (w,z). If (s,t) = (y, 2), (2) never holds true. In case (s,t) = (y, ),
) an ( ) imply [S = ap and T" = bp| or [S = ag and T' = bq]. Contradicting
), we have (u,S) R (v,T) for all u,v € X; except for (u,v) = (z,y), for which
) does not hold. The case in which (s,t) = (w, z) is dealt with similarly. As a
conclusion, M3; holds for R .

R violates M2;. M2, does not hold if we can find s,t,u,v € X;and S, T, U,V €
X_1 such that: (1) (s,5) R (¢t,T7), (2) (t,U) R (s,V), (3) Not[(t,S) R (s,T)],
(4) Not[(u,S) R (v,T)], (5) Not[(u,U) R (v,V)]. These 5 conditions can be
simultaneously fulfilled by setting: s = y,t = x,u = z,v =y and S = ap,T =
bp,U = ap,V = aq. Since MM2; and RC?2; entail M2; (Lemma 41.3), R violates
MM?2;.

R violates Maj3,. Maj3; does not hold if we can find s,t,u,v € X; and
S,T,U,V,Q,R € X_qsuchthat: (1) (s,5) R (¢t,7), (2) (v,5) R (u,T), (3) (t,U) R
(s,V), (4) (u,Q) R (v, R), (5) Not[(t,S) R (s,T)], (6) Not[(u,U) R (v,V)]. These
6 conditions can be simultaneously fulfilled by setting: s =y, t =x,u=2,v=w
and S =ap, T = bp, U = ap,V = aq,Q = ap, R = bq. Since Maj2; entails Maj3;,
R also violates Maj2;.

Since R satisfies M1y (resp. M3,) it satisfies MM 1, (resp. MM3;).
Since R satisfies MM 1, it satisfies DMM3, (by Lemma 65). O
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