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Abstract

This paper studies an extension of bi-semiorders in which a “frontier”
is added between the various relations used. This extension is motivated
by the study of additive representations of ordered partitions and coverings
defined on product sets of two components.
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1 Introduction

Let T be a relation between two sets A and Z, i.e., a subset of A x Z. Biorders
are relations between two sets that were introduced in the literature by Ducamp
and Falmagne (1969) and later studied in Doignon, Ducamp, and Falmagne (1984,
1987) and Nakamura (2002). They lead to a numerical representation in which
there are real-valued functions f on A and g on Z such that, for all a € A and all
pEZ,

aTp< fla) > g(p)

Biorders are an important tool to study various classes of binary relations, most no-
tably interval orders and semiorders (Aleskerov, Bouyssou, and Monjardet, 2007,
Fishburn, 1985, Pirlot and Vincke, 1992). Indeed, when A = Z, an irreflexive
biorder is nothing but an interval order, as defined in Fishburn (1970). Adding
semitransitivity to irreflexivity leads to semiorders (Luce, 1956, Scott and Suppes,
1958).
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In Bouyssou and Marchant (2011) (henceforth, BM11), we have studied an
extension of biorders in which there are two relations 7 and F between the sets A
and Z, leading to what we called biorders with frontier. They lead to a numerical
representation in which there are real-valued functions f on A and g on Z such
that, for alla € A and all p € Z,

aT p< fla)>g(p),
aFp<e fla)=g(p)

With bi-semiorders, we have two relations 7 and P between the sets A and
Z. The numerical representation involves a real-valued function f on A and a
real-valued function g on Z such that, for all a € A and p € Z,

aPpe fla)> g(p) +1,
aTps fla)>g(p)
Necessary and sufficient conditions for the above model were given in Ducamp and
Falmagne (1969, Th. 5) when both A and Z are finite sets (note that the term
bi-semiorder is unfortunately used in Fishburn, 1997, with a different meaning).
Bi-semiorders with frontiers will use four relations P, J, T and F between

the sets A and Z. The numerical representation involves a real-valued function f
on A and a real-valued function g on Z such that, for all a € A and p € Z,

aPps fla)>g(p) +1,

aJpe fla)=gp)+1,

aT pe fla)>g(p),

aFp<s fla)=yg(p)
The purpose of this paper is to present and give necessary and sufficient conditions
for the above model when both A and Z are finite sets.

The paper is organized as follows. Section 2 briefly presents our initial motiva-

tion for studying structures with frontiers. Section 3 presents our setting. Results
on biorders, biorders with frontier and bi-semiorders are recalled in Section 4.

Section 5 presents our results on bi-semiorders with frontiers that are proved in
Section 6.

2 Relation to conjoint measurement

2.1 Additive representations of ordered coverings

Our initial motivation for studying biorders and bi-semiorders with frontiers is
linked to the following problem. Let X = X; x X5 x --- x X, be a set of objects
evaluated on n attributes.



Suppose that we are given an ordered covering (C',C?,... C") of the set of
objects. In such a setting, we know that objects belonging to C**! are better
than objects belonging to C* but we have no information on the way two objects
belonging to the same category compare in terms of preference. The category C*
can have a nonempty intersection with C**1 and C*~1. Its intersection with other
categories is always empty, reflecting the ordered nature of the covering.

Consider first an ordered partition (C*,C? ... ,C"). In this case, we are in-
terested in finding real-valued functions u; on X; such that, for all z € X and all
ke{l,2,...,r},

n
reCfeo < Zul(xz) <", (1)

=1
with the convention that o = —00, 0" = 400 and where o', 02,...,0" ! are real
numbers such that o' < 0% < --- < ¢"7!. In the case of an ordered covering

(C',C?% ...,C"), the model becomes

reCteot !l < ZUZ(%) <", (2)

=1

so that, if Y1 u;(x;) = 0" 1, the object = belongs at the same time to C*~! and
to C*, i.e., is at the frontier between these two categories.

The analysis of the above models in the general case requires the use of conjoint
measurement techniques (see Bouyssou and Marchant, 2009, 2010, following initial
results by Fishburn, Lagarias, Reeds, and Shepp, 1991 and Vind, 1991, 2003).

However, as suggested by the results of Levine (1970), there are some particular
cases that can be dealt with in a simpler way. Biorders are useful to study the
case of a product set with two components and an ordered partition with two
categories. Biorders with frontiers are useful to deal with the case of a product set
with two components and an ordered covering with two categories. We mentioned
in BM11, Sect. 7, that the case of three ordered categories and a product set with
two components was also quite particular. When the three ordered categories
partition the product set, we can indeed use the results on bi-semiorders presented
in Ducamp and Falmagne (1969, Sect. IV) (see also Ducamp, 1978). The results
presented in this paper allows us to deal with the case in which the three ordered
categories are a covering, instead of a partition, of the product set.

2.2 Particular cases with two attributes

Consider first the case of ordered partitions of X = X; x Xos.
When there are only two attributes and two categories, the additive represen-
tation (1) relates more to ordinal than to conjoint measurement. Indeed, in such



a case, the problem clearly reduces to finding real-valued functions u; on X; and
ug on Xy such that, for all x = (21, 29) € X,

r € C? & uy(x)) + ug(x2) > 0. (3)

It is easy to see that it is not restrictive to suppose that o = 0. Define the relation
T between the sets X; and X5 letting, for all z; € X; and all x5 € X,

11 T 29 & (21,25) € C2.

It is clear that asking for a representation in model (3) is equivalent to asking for
the existence of two functions f on X; and g on X, such that

11 T w3 & f(21) > g(x2).

This explains the link with biorders.

Similarly, when there are only two attributes and three categories, building an
additive representation (1) reduces to finding real-valued functions u; on X; and
s on Xs such that, for all z € X,

€ C® e\ <u(r) + uy(wy),
r€CPUC? < p<u(r) + ug(xs),

(4)
where p, A\ are two thresholds such that p < A. As detailed in Ducamp and
Falmagne (1969), it is not restrictive to suppose that p =0 and A = 1.

Define the relations P and T between the sets X; and X5 letting, for all x1 € X,
and all zo € Xo,

11 P a3y & (11, 79) € C°.
11 T 29 & (21, 29) € CPUCP.

It is clear that asking for a representation in model (4) is equivalent to asking for
the existence of two functions f on X; and g on X5 such that

11 P ay & fry) > g(ag) + 1,
11 T w2 & f(21) > g(22).

This explains the links with bi-semiorders.

We now turn to the case of ordered coverings of X = X; x Xo.

Suppose first that there are only two categories C? and C'. Allowing for an
hesitation between C? and C! leads to model in which it is no more true that
C?NC! = @. Objects belonging to C2 N C*' are at the frontier between C? and
C'. Define C2 = C?\ C*.



The additive representation (2) can be written as

S Ci =4 U1($1) + UQ(SCQ) > 0,
x € 02 N Cl = ul(xl) + U2($2) =0,

(5)

for all z € X. As before, it is not restrictive to suppose that o = 0.
Define the relations 7 and F between the sets X; and X5 letting, for all x1 € X,
and all zo € Xo,

1 TLUQ = (;Ul,l’g) € Ci,
x1 F 19 < (21,29) € CPNCL

It is clear that asking for a representation in model (5) is equivalent to asking
for the existence of two functions f on X; and g on X, such that

21 T @z & f(21) > g(2),
x1 F 2o & f(21) = g(22).
This explains the link with biorders with frontier.

Suppose finally that there are three ordered categories C3, C? and C' and that

we allow hesitations between two consecutive categories. Define C2 = C*\ C* and
C2 = 2\ CL.
The additive representation (2) can be written as

z € C2 & uy(z1) + ug(wa) < A,
€ CPNC? & up(rr) + uz(x2) = .

z € C2 & p<u(ry) + us(ma) < A,
reC’nNcCt e u1 (1) + ug(w2) = p,

(6)

for all x € X, where p, A\ are two thresholds such that p < A. Again, it is not
restrictive to suppose that p =0 and A = 1.

Define the relations P, J, 7 and F between the sets X; and X5 letting, for
all z1 € X; and all x5 € X5,

x1 P 29 & (11,79) € C2,

x1 J 19 & (11,12) € C°NC?,
x1 T 29 < (21,25) € CPU C’i,
x1 F 19 & (21,20) € CPNCY,

It is clear that asking for a representation in model (6) is equivalent to asking
for the existence of two functions f on X; and g on X5 such that



This explains the link with bi-semiorders with frontiers, which are the subject of
this paper.

3 Definitions and Notation

We follow the definitions and notation presented in BM11.

3.1 Binary relations between two sets

Let A = {a,b,...} and Z = {p,q,...} be two sets. Following Ducamp and
Falmagne (1969), we define a binary relation V between A and Z to be a subset
of A x Z. We often write a V p instead of (a,p) € V. A binary relation on a set
X is a binary relation between X and X.

Let V be a relation between A and Z. Define the left trace of V as the binary
relation ¢, on A defined letting, for all a,b € A,

azybe bVp=aVp, foralpec 7.
Similarly, define the right trace of V as the binary relation 7}, on Z defined letting,
for all p,q € Z,

prLqgelaVp=aVyq, forall a e Al

By construction, the relations =%, and =%, are reflexive and transitive.
A binary relation V between A and Z is said to be a biorder if it is Ferrers,
i.e., for all a,b € A and all p,q € Z, we have:

[aVpand bV g =[aVqgorbV pl.

A simple check shows that V is Ferrers if and only if (iff) ==}, is complete iff 23,
is complete (see Doignon et al., 1984, Proposition 2, p. 78).

Let V be a relation between A and Z. Its complement is the relation V¢
between A and Z such that for all a € A and p € Z, a V° p < Notla V p|. The
dual of V is the relation V? between Z and A such that, for alla € A and p € Z,
pV¥a < aVp. Its codual YV is the relation between Z and A such that, for all
a€Aand pe Z, pV®a < NotlaV p|. It is easy to check that if V is Ferrers iff



Ved (or Ve, or V) is Ferrers. The traces generated by V on A and Z coincide with
the ones generated by V.

Suppose that V is a relation between A and Z and that W is a binary relation
between Z and K. We define the product of V and W as the binary relation VW
between A and K such that, for all @ € A and all k € K, a VW kiff [a V p
and p W k, for some p € Z]. The Ferrers property can therefore be expressed
compactly as YYY C V.

For our purposes, when studying a relation between A and Z, it is not restrictive
to suppose that the sets A and Z are disjoint: if they are not, we may build a
disjoint duplication of these sets as done in Doignon et al. (1984, Definition 4,
p. 79). We will suppose so, without explicit mention, whenever needed.

3.2 Binary relations on a set

Let V be a binary relation! on X.

The asymmetric part (resp. symmetric part, symmetric complement) of V is
the binary relation V¢ (resp. V¥, V*¢) on X that is equal to V N V¢ (resp.
V N Ve ven Ve, For instance, we have z V* y < [z V° y and z V4 y] &
[Not[z V y| and Not[y V x]].

Whenever we use the symbol 77 to denote a binary relation on a set X, it will be
understood that > (resp. ~) denotes its asymmetric part (resp. symmetric part).
The same convention will hold if - is subscripted and/or superscripted.

A binary relation that is complete (for all z,y € X, z V y or y V x) and
transitive is said to be a weak order. If V and W are two weak orders on X, we
say that V' refines W it V. C W. This implies V* C W* and W* C V.

The trace of a binary relation V' on X is the binary relation 77, on X that is
equal to =%, N 7. The relations ~y, ~% and ~7, are clearly reflexive, symmetric
and transitive, i.e., are equivalences. Whenever E is an equivalence on a set X,
we denote by X/FE the set of equivalence classes of X under E.

A binary relation V' on X is said to be semitransitive if, for all x,y, z,w € X,

[z VyandyVz]=[zVworwV z|,

which can be written more compactly as V<V V C V (or, equivalently, as V'V V¢ C
V).

A simple check shows that the trace 27y of a relation V' is complete iff V' is Fer-
rers and semitransitive. In this case the left and right traces are not contradictory,
i.e., it is never true that x =%, y and y =7, x, for some z,y € X (for more details,

'We use the following typographic convention. Relations between two sets will be denoted
using a calligraphic symbol. Relations on a set will be denoted using a non-calligraphic symbol.



see, e.g., Fishburn, 1985, Monjardet, 1978, Pirlot and Vincke, 1997, or Suppes,
Krantz, Luce, and Tversky, 1989, Ch. 16).

A binary relation V' on X is an interval order if it is irreflexive and Ferrers. A
semiorder is a semitransitive interval order.

4 Biorders and Bi-semiorders

This section recalls a number of useful results on the numerical representation
of biorders, biorders with frontier, and bi-semiorders. We follow Ducamp and
Falmagne (1969), Doignon et al. (1984) (for biorders), BM11 (for biorders with
frontier), and Ducamp and Falmagne (1969) (for bi-semiorders).

4.1 Biorders

The main result on the numerical representation of biorders is the following.

Proposition 1 (Prop. 4, p. 79 in Doignon et al., 1984)
Let A and Z be finite sets and T be a relation between A and Z. The following
statements are equivalent.

1. T is Ferrers.

2. There are a real-valued function f on A and a real-valued function g on Z
such that, for alla € A and p € Z,

aTp< fla)>g(p)

3. There are a real-valued function f on A and a real-valued function g on Z
such that, for alla € A and p € Z,

aT p< fla) > g(p)

Furthermore, the functions f and g used in statements 2 or 3 above can always be
chosen in such a way that, for all a,b € A and p,q € Z,

a i be fla) > f(b),
p 2T q<9(p) > 9(q).

This result holds, without modification, when both A and Z are countably
infinite. Doignon et al. (1984) and Nakamura (2002) have presented necessary
order-denseness conditions allowing to extend the result to the general case.



4.2 Biorders with frontier

Consider now two disjoint relations 7 and F between the sets A and Z. Let
R =T UF. We investigate below the conditions on 7 and F such that there are
a real-valued function f on A and a real-valued function g on Z such that, for all
a€ Aandpe 7,

aT p< fla)>g(p), (7a)
aFp<e fla)=gp). (7b)

As above, let 2% (resp. =%) be the trace of 7 on A (resp. on Z). Similarly, let
=& (resp. %) be the trace of R on A (resp. on Z). Define

Ze=Z7NZr and T =2ZrN0 2k

The relations =%, =%, =%, =4, =k, =0 are always reflexive and transitive. We
know that =% is complete iff =7 is complete iff 7 is a biorder. Similarly, =% is
complete iff 7% is complete iff R is a biorder.

It is clear that (7) implies that both 7 and R are biorders. The next two
conditions capture the fact that the relation F is “thin” in model (7). Indeed,
suppose that a F p and b F p. this implies f(a) = g(p) and f(b) = g(p), so that
f(a) = f(b). Hence, for all g € Z, we havea F g bFqgandaT q< b T g.

We say that the pair of relations 7 and F is left thin if, for all a,b € A and
pEZ,

[a Fpand b F p] = a~Lb.

Similarly, we say that the pair of relations T and F is right thin if, for alla € A
and p,q € Z,
[a Fpand aF q]=p~,q.

Observe that left thinness (resp. right thinness) may be formulated as FF¢ C ~¢
(resp. F4F C ~7). We say that thinness holds if left and right thinness are
satisfied.

The central result on the numerical representation of biorders with frontier is
as follows.

Proposition 2 (Prop. 11 in BM11)

Let A and Z be finite sets and let T and F be a pair of disjoint relations between

A and Z. There are real-valued functions f on A and g on Z such that (7) holds

if and only if T is a biorder, R =T U F is a biorder and thinness holds.
Furthermore, the functions f and g can always be chosen in such a way that,

forall a,b € A and p,q € Z,

aZibs fla) >
pZiqgeglp) >

(o),
N ®)



BM11 have shown that the conditions used in the above result are independent.
As with biorders, the result holds without modification for countably infinite sets.
Adding appropriate order-denseness conditions, it can be extended to cover the
general case (see BM11).

4.3 Bi-semiorders

Let 7 and P be two relations between the sets A and Z. We consider a model in
which there are a real-valued function f on A and a real-valued function g on Z,
such that, for alla € A and p € Z,

aPp fla)>glp) +1, (9a)
aT p< fla)>g(p). (9b)

Pairs of relations 7 and P admitting such a representation are called bi-semiorders
in Ducamp and Falmagne (1969), who consider the case in which both A and Z
are finite.

An obvious necessary condition for (9) is that P C T. As before, the trace
of T on A (resp. Z) is denoted by =% (resp. 7Z%). Similarly the trace of P on A
(resp. Z) is denoted by =4 (resp. Z4). Define =2 = =-N=A and =2 = =h-N o4,
By construction, the six relations =%, =%, =8, =%, = and =7 are reflexive
and transitive. We know that imposing that 7 and P are Ferrers will imply the
completeness of =%, =%, =4 and =4 It remains to impose conditions that will
ensure that =% and =9 (resp. 2% and =%) are compatible.

In order to do so, Ducamp and Falmagne (1969) introduce the following pair

of conditions, for all a,b € A and all p,q € Z,

aPp bPp
and = or (10)
bT q aT q.
aPp aPq
and = or (11)
bT q bT p.

It is easy to check that (9) implies that the pair of relations 7 and P satisfies (10)
and (11). Moreover, when 7 and P are Ferrers and (10) and (11) hold, the two
relations =4 and =% are complete.

Ducamp and Falmagne (1969, p. 377) have given examples showing that the
following four conditions are independent: 7T is a biorder, P is a biorder, (10)
and (11). This leads to the central result on the numerical representation of bi-
semiorders.



Proposition 3 (Th. 5, p. 377 in Ducamp and Falmagne, 1969)

Let A and Z be finite sets. Let T and P be two relations between A and Z. There

are real-valued functions f on A and g on Z such that (9) holds if and only if P

and T are biorders satisfying conditions (10) and (11) and such that P C T.
Moreover, the functions f and g can always be chosen in such a way that, for

all a,b € A and p,q € Z,

azdbs fla) > f(b),
pZZqs g(p) > glq).

Our results below for bi-semiorders with frontiers will heavily rely on the
method of proof used by Ducamp and Falmagne (1969).

(12)

5 Bi-semiorders with frontiers

5.1 Definitions

Consider now four relations P, J, 7 and F between the sets A and Z. Let
S=PUJ,R=TUFand R¢ = [A x Z]\ R. We suppose throughout that
PNT =0, TNF=3, JNF=,and S C T. Hence wehave PC S CT C R.
The interpretation is that 7 is at the frontier between P and 7. Similarly, F
is at the frontier between 7 and R¢.
We define the relation =4 on A letting, for all a,b € A,

&
bPr=aPr,
bSr=aSr,
bTr=aTr,
bRr=aRr,

azldbe for all r € Z,

Similarly, we define the relation =Z on A letting, for all p,q € Z,

cPp=cPuyg,
cSp=cSq,
cTp=cTaq,
cRp=cRuq,

prZqgs for all c € A,

By construction, both =# and =7 are reflexive and transitive.
We are interested in a model in which there are a real-valued function f on A
and a real-valued function g on Z such that, for alla € A and p € Z,

aPpe fla)>g(p) +1, (13a)
aJpe fla)=yg(p) +1, (13b)
aT ps fla)>g(p), (13¢)
a Fp < fla) = g(p) (13d)



5.2 Traces

It is clear that (13) implies that that P, S, T, and R must be biorders. As above,
we also have to impose conditions that ensure that the various traces of these
relations are compatible, so that both =% on A and =Z on Z are complete. We

have to suppose that, for all a,b € A and all p,q € Z,

aPp bPp aPp aPq
and = or (14) and = or (15)
bSq as q, bSq bS p,
aTp bT p aTp aT q
and = or (16) and » = or (17)
bR q aR q, bR q bR p,
aPp bPp aPp aPq
and » = or (18) and » = or (19)
bT q aT q, bT q bT p,
aPp bPp aPp aPq
and = or (20) and = or (21)
bR q aRq, bR q bR p,
aSp bSp aSp aSq
and » = or (22) and » = or (23)
bT q aT q, bT q bT p,
aSp bSp aSp asq
and = or (24) and = or (25)
bR q aR q, bR q bR p.

We summarize the consequences of the conditions introduced so far in the
following:

Lemma 4
1. Suppose that there are a real-valued function f on A and a real-valued func-
tion g on Z such that (13) holds. Then conditions (14-25) hold.

2. Suppose that the four relations P, J, T and F are such that, PN J = &,
TNF=9, INF =9, and S C T. Suppose furthermore that P, S, T,
and R are biorders. If conditions (14), (16), (18), (20), (22), and (24) hold,
then the relation =2 is a weak order.

~<O

11



3. Suppose that the four relations P, J, T and F are such that, PN J = O,
TNF=9, INF =0, and S C T. Suppose furthermore that P, S, T,
and R are biorders. If conditions (15), (17), (19), (21), (23), and (25) hold,
then the relation =% is a weak order.

~<O

PROOF
Part 1 is easily shown. Let us prove Part 2, the proof of Part 3 being similar.
Suppose that Not[a 72 b]. This implies that, for some p € Z, we have:

b P p and Notl[a P p| or (26a)
b S p and Notl[a S p] or (26b)
bT p and Not[a T p] or (26¢)
bR p and Notla R p). (26d)

Similarly, Not[b =2 a] imply that, for some ¢ € Z, we have:

a P q and Not[b P ¢| or (26e)
aS q and Not[b S ¢| or (26f)
aT q and Not[b T ¢| or (26g)
aR q and Not[b R q. (26h)

There are 16 cases to examine. It is clear that (26a) and (26e) violates the fact
that P is a biorder. Similarly, (26b) and (26f) violates the fact that S is a biorder,
(26¢) and (26g) violates the fact that T is a biorder, and (26d) and (26h) violates
the fact that R is a biorder.

This leaves 12 cases. The cases [(26a) and (26f)] and [(26b) and (26e)] are the
same and violate (14). The cases [(26a) and (26g)] and [(26¢) and (26¢)] are the
same and violate (18). The cases [(26a) and (26h)] and [(26d) and (26e)] are the
same and violate (20). The cases [(26b) and (26g)] and [(26¢) and (26f)] are the
same and violate (22). The cases [(26b) and (26h)] and [(26d) and (26f)] are the
same and violate (24). The cases [(26¢) and (26h)] and [(26d) and (26g)] are the
same and violate (16). O

Because we are now manipulating four relations, we need a notion of thinness
that is stronger than the one used above for biorders with frontier.
We say that strong thinness for F holds on A if, for all a,b € A and p,q € Z,

[a Fpand b F p] = a ~2 b.
Similarly, we say strong thinness for F holds on Z if, for all a,b € A and p,q € Z,

[a Fpand a F q] = p~Z q.

12



We say that strong thinness for J holds on A if, for all a,b € A and p,q € Z,
[a J pand b J p] = a~2b.

Similarly, we say strong thinness for J holds on Z if, for all a,b € A and p,q € Z,
[a JpandaJq=p~Zq.

The main consequences of these conditions are summarized in the following:

Lemma 5

1. The ezistence of a representation (13) implies that strong thinness for both
J and F holds on both A and Z.

2. If P, S, T, and R are biorders and strong thinness for F and J holds on Z
then (14) and (16) hold.

3. IfP,S, T, and R are biorders and strong thinness for F and J holds on A
then (15) and (17) hold.

4. If strong thinness for F and J holds on A then, for all a,b,c € A and all

pEZ,
la Fpandb=2al=bT p, (27a)
[a T pandb=2al = bPp, (27b)
[a F p and a =2 ¢] = Notlc R p), (27¢)
[a T p and a =2 ¢] = Not[c S p). (27d)

5. If strong thinness for F and J holds on Z then, for all a € A and all

pg;r €2,
aFpandp=Zq=aTq, (28a)
a T pandp =2 ql=aPq, (28b)
[a F p and r =Z p] = Notla R 7], (28¢)
[a T p and r =Z p] = Not[a S r]. (28d)

6. In the set of all relations P, J, T and F between the sets A and Z such
that PN T =2, TNF =2, TNF =3, and S C T, the following 16
conditions are independent: P is Ferrers, S is Ferrers, T is Ferrers, R is
Ferrers, strong thinness for J holds on A, strong thinness for J holds on
Z, strong thinness for F holds on A, strong thinness for F holds on Z, and

(18) to (25).
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PRrooOF

Part 1 is easily shown. Let us first prove Part 2, the proof of Part 3 being similar.
Suppose that condition (16) is violated, so that, a T p, b R ¢, Not[b T p| and
Notla R q], for some a,b € A and some p,q € Z. Because R is a biorder and
T C R, we know that we must have b R p. Since Not[b T p|, this implies b F p.
If b F q, then a T p and Not[a R ¢| violates strong thinness on Z. Therefore, we
must have b T ¢, so that, using the fact that 7 is a biorder, we have either b T p
or a T ¢, a contradiction.

Similarly, suppose that condition (14) is violated, so that, a P p, b S q,
Not[b P p| and Not[a S ¢, for some a,b € A and some p,q € Z. Because S is
a biorder and P C S, we know that we must have b S p. Since Not[b P p|, this
implies b J p. If b J ¢, then a P p and Not[a P q] violates strong thinness on Z.
Therefore, we must have b P ¢, so that, using the fact that P is a biorder, we have
either b P p or a P ¢, a contradiction.

Let us now prove Part 4, the proof of Part 5 being similar. Let us show that
(27a) holds. Suppose that a F p and b =2 a. Since b =2 a implies b =2 a, we
know that b R p. Suppose that b F p. Using strong thinness on A, it is easy to see
that @ F p and b F p imply b ~2 a, a contradiction. Hence, we must have b T p.

Let us now show that (27b) holds. Suppose that @ J p and b =2 a. Since
b =2 a implies b =% a, we know that b S p. Suppose that b J p. Using strong
thinness on A, it is easy to see that a J p and b J p imply b ~2 a, a contradiction.
Hence, we must have b P p. The proof of (27c¢) and (27d) is similar.

Part 6. We provide below the required 16 examples. We indicate, for each
example, which condition among the set of 16 conditions is the only one to be
violated. In each of the matrices below, we only indicate the weakest relation that
is satisfied.

P biorder S biorder T biorder ‘R biorder
b q b q P q b q
a P T a P T a T F a F —
b J P b T J b F T b — F
F thin on Z F thinon A J thin on Z J thin on A
P q b q P q p q
a F F a F T a J J a J T
b — T b F - b — T b J —
(18) (19) (22) (23)
b q p q P q P q
a T T a P T a T T a J T
b F P b F T b F J b F T

14



(24) (25) (20) (21)

W =
RPN

Aviks!
N Qe

5.3 Results

Our main result is the following.

Theorem 6
Let A and Z be finite sets. Let P, J, T, and F be four relations between the sets
Aand Z such that PN T =9, TNF =0, INF=Z,and PUTJ =S CT.
There are real-valued functions f on A and g on Z such that (13) holds if and
only if P, S, T, R =T UF are biorders satisfying conditions (18) to (25) and
such that strong thinness holds for both J and F on both A and Z.
Furthermore, these conditions are independent and the functions f and g in
(13) can always be chosen so that, for all a,b € A and p,q € Z,

a2 be fla) > f(b),
pZZ qe g(p) > gq).

Theorem 6 is proved in Section 6.

An important limitation of the above result is that it only covers the case
of finite sets A and Z. Extending them to possibly countably infinite sets and to
possibly uncountable sets is an important open problem. The recent breakthrough
on the constant threshold representation of semiorders on general sets (Candeal
and Indurain, 2010) gives some hope to obtain interpretable results. This will
however require a proof strategy that is quite different from the one used here.

(29)

6 Proof of Theorem 6

6.1 Lemmas on semiorders and semiorders with frontier

We begin by a simple lemma on semiorders.

Lemma 7
Let T be a binary relation on a set X.

1. If there is a weak order = on X such that, for all z,y,z € X,

xTyandyrzz=zT z,
xzyandyT z=zT z,

then T' is Ferrers and semitransitive and 77, refines 2.
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2. If T is irreflexive and there is a weak order - on X such that (30) holds,
then, when X 1is finite, there are a real-valued function u on X such that,
forall z,y € X,

zTyeulx)>uly) +1,

r 2y < u(r) > u(y).

PROOF

Part 1 is straightforward. Part 2 is Ducamp and Falmagne (1969, Lemma 6,
page 380). Let us simply outline the proof. An irreflexive, semitransitive Ferrers
relation is a semiorder. Scott and Suppes (1958) have shown that a semiorder on
a finite set always have a constant threshold representation. The classical proof
(Scott and Suppes, 1958) of the existence of a constant threshold representation
for finite semiorders leads to a function u that represents the weak order - and
is such that it is never true that u(x) — u(y) = 1. Using the fact that X is finite,
we can therefore modify u in such a way that any two elements x and y such
that x ~7 y will be assigned distinct (but close) values in the modified numerical
representation. Since 77 refines Zr, we can modify u in such a way that it will
represent 7. O

The proof of Proposition 3 given in Ducamp and Falmagne (1969) consists,
starting with the relations 7 and P between A and Z, in building two relations
T and 7~ on AU Z such that T and 7 satisfy the conditions of Lemma 7 and the
restriction of T (resp. 27) to A x Z is P (resp. T).

Let us now consider a pair of disjoint relations 7" and F of X. Let R=T U F.
As before, let ==y = =5 N =k and mp = mh Nk Let =y = o N 2R,
We say that F'is strongly upper thin for the pair T" and F' if, for all z,y, z,w €
X,
xTwsyTw
x Fz N rFwesyFw
y Fz wFrswFy
wTreswTly

Similarly, we say that F'is strongly lower thin for the pair T" and F' if, for all
Ty, 2, w € X,
rTwsyTw
zF:c} N rFwsyFuw
z Fy wFrswFy
wTrzswly
We say that strong thinness holds if both if we have both strong lower thinness
and strong upper thinness.
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Lemma 8 (Prop. 19 in BM11)
Let T and F be a pair of disjoint relations on a finite set X. Let R = T U F.
There is a real-valued function u on X such that, for all x,y € X,

rTy<sulz)>uly) +1,

r Fysulz)=uly) +1, (31)

iff T is a semiorder, R is a semiorder, TFR* C T, R*FT C T, and strong
thinness holds. Furthermore the function u can always be chosen so that, for all
r,y € X,

T Ty & ulr) = u(y). (32)

The following lemma generalizes Lemma 7 to cope with a frontier.

Lemma 9
Let T and F be a pair of disjoint irreflexive relations on a set X.

1. If there is a weak order 7~ on X such that, for all z,y,z € X,

xTyandy = z=2T z,
xFyandy»z2=z2T z,
rFyandy~z=2zF z,

) Y (33)
xoyandyT z=2T z,
x-yandy Fz=zT z,

r~yandy Fz=zF z,

then T is a semiorder, R =T UF is a semiorder, TFR** CT, R*“FT CT,
F' 1s strongly upper thin, and F' is strongly lower thin

2. Under the conditions of Part 1, when X 1is finite, there is a real-valued func-
tion u on X such that, for all x,y € X,

z Fysu(r)=uly) +1, (34)

PROOF
Part 1. By hypothesis, we know that 7" and F' are disjoint. Using Lemma 7 and
(33), it is clear that both 7" and R are Ferrers and semitransitive. Since we have
supposed that 7" and F' are irreflexive, both 7" and R are semiorders.

Suppose that a T b, b F ¢ and ¢ R*® d, for some a,b,c,d € X. If b = d,
then a T b and (33) imply a T d. If d > b, then b F' ¢ and (33) imply d T ¢, a
contradiction. Hence, we have TF R*® C T. The proof that R**FT C T is similar.
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Suppose now that a F' ¢ and b F ¢. If a = b then b F' ¢ and (33) imply a T c,
a contradiction. Similarly if b > a, a F' ¢ and (33) imply b T ¢, a contradiction.
Hence, we must have a ~ b, so that strong upper thinness holds. The proof for
strong lower thinness is similar.

Part 2. When X is finite, we may use Proposition 8 to obtain a numerical
representation of the pair 7" and F' in model (34), except that u is a numerical
representation of the weak order 2—,. It remains to show that it is possible to modify
this numerical representation in such a way that u will represent 2~. Observe that
(33) implies that - refines 2Z,. We may therefore use here the same construction
as the one used in Lemma 7, provided that it never happens that [z F' z, y F z
and x = y| or [z F x, z F'y and = > y|. This is implied by (33). O

Our strategy of proof will be as follows. Starting with the four relations P, 7,
T, and F between the sets A and Z, we will build three relations 7', F' and =~ on
AU Z such that T" and 7~ satisfy the conditions of Lemma 9. The restriction of T’
(resp. F, =, ~) to A x Z will be P (resp. J, T, F). This will lead to the desired
representation.

6.2 Lemmas on biorders and biorders with frontier

The first lemma on biorders is taken from BM11.

Lemma 10 (Lemma 1 in BM11)
Suppose that T s a biorder between A and Z. Let ?\jf be a weak order on A and
71 be a weak order on Z. Suppose that, for all o, € A and all 7,0 € Z,

aif@ and BT v=aT 7,
yZadand BT v= 5T

Then:
1. 7=t refines 75,
2. 70 refines ',
3. the binary relation (Q on AU Z that is defined letting , for all o, € AU Z,

acApecA anda il B,
aeZ,peZ and oz B,
acApBeZ anda T B,
a€Z €A and Not[5T al.

a@ b

1s a weak order.
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The following lemma generalizes Lemma 10 to cope with a frontier.

Lemma 11 (Lemma 3 in BM11)
Let T and F be a pair of disjoint relations between A and Z. Let R =T U F

Suppose that tf is a weak order on A and [ is a weak order on Z. Suppose that,
forall a,p € A and all v € Z,

BT v andaifﬁéaT’y,
ﬁfycmdoz>fﬁ:>oz7’fy, (35)
B F v andawfﬁﬁa}"m

Suppose furthermore that, for all o € A and all B,y € Z,

aT Band Bz v=aT 7,
aFBand B=ty=aT, (36)
aF Band B~Ly=aF.

Then =t refines 7mt= 5% N =% and =0 refines 7 = =% N 7. Furthermore, the
binary relation L on AU Z that is defined letting , for all o, € AU Z,

acApcA anda izl B,
aeZ,peZ and oz B,
ac€ A e andaR p,
a€ Z peA and Not[5T al.

alfpfe

1s a weak order.

6.3 Proof of Theorem 6

Necessity follows from Lemmas 4 and 5, together with Proposition 1. The inde-
pendence of the conditions was shown in Lemma 5.6. We show sufficiency. We
know from Lemmas 4 and 5 that =7 is a weak order on A and that =7 is a weak
order on Z.

Step 1.
We define the relation ), on AU Z letting, for all a, 5 € AU Z,

a,feA and a =2 3,
a, B e’ and o =7 B,
aceApfeZ andaRpf,
a€Z BeA and Not[f T al.

a@Q, B
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Using Lemmas 5 and 11, we know that (), is a weak order.

Step 2.
Define the relation H, on AU Z letting for all o, 8 € AU Z,

a,feA and [ J 6,8 F ¢] for some 6 € Z

a,fe” and [y J 5,7 F « for some v € A
aeApeZ anda Jp,

aeZ peA and [fFovT vy Fa]forsomerye AdeZ

aH, &

Since J and F are disjoint, it is easy to see that H, is irreflexive.

Step 3.
Define the relation K, on AU Z letting for all a, 5 € AU Z:

a K, <
a S 0, Not[S R ¢,

a,B € A and or for some § € Z,
a P §, Not[5 T 4],
7S B, Not[y R o,

a, B € Z and or for some v € A,

v P B, Notly T af,
a€ A e Zand aP f,
Not[y R af,v S §, Not[5 T 4],

or
a€ Z e Aand ¢ Not[y T al,y P d, Not[5 T §], p for some~ € A,d € Z.
or

Not[y T o],y S 0, Not[3 R ¢]

Since P C S C T C R, it is easy to see that K, is irreflexive.

Step 4.

Let us show that K, and H, are disjoint.

If « € Aand g € Z, the conclusion follows from the fact that J and P are
disjoint.

If o € Aand € A, a H, § implies that « J ¢ and 8 F 6, for some 6 € Z.
Similarly o K, 8 implies either o S p, Not[5 R p| or a P p, Not[3 T p], for some
p € Z. In the first case, 3 F ¢ and Not[3 R p| implies p =Z 6. Hence, a S p
implies a P d, a contradiction. In the second case, a J § and a P p imply § =Z p.
Hence, 5 F 0 implies 8 T p, a contradiction.

The case o € Z and 3 € Z is dealt with in a similar way.
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Suppose now that o € Z and g € A. By definition, a H, § implies that 5 F 0,
pJ 0, pF «,forsome pe A d e Z.

Similarly o K, 8 implies either Not[w R «], w S 7, Not[3 T 7], or Notlw T «af,
w P T, Not[8 T 7], or Notfw T al, w S 7, Not[3 R 7| for some w € A, 7 € Z.

In the first case, because 8 F ¢ and Not[3 T 7], we must have 7 =7 §. Because
p F a and Not[w R a], we must have p =2 w. Therefore w S 7 implies p P 7 and,
hence, p P §, a contradiction.

In the second case, 3 F § and Not[3 T 7], we must have 7 =Z §. Because
p F a and Not|w T a], we must have p =2 w. Therefore w P 7 implies p P 7 and,
hence, p P ¢, a contradiction.

In the third case, 8 F § and Not[3 R 7], we must have 7 =Z §. Because p F «
and Not[w T al, we must have p =4 w. Therefore w S 7 implies p S 7 and, hence,
p P ¢, a contradiction.

Our plan is now to apply Lemma 9 to the relations K, (playing the role of T')
and H, (playing the role of F') with @, playing the role of 7.

We have already observed that (), is a weak order and that H, and K, are
disjoint and both irreflexive. It remains to show that, for all a, 8,7y € AU Z,

aK,pand Q. 7= a K, -, (37a)
aH,fand Q5 v=aK,, (37b)
a H, fand 5 Q) v= o H, 7, (37¢)
a@Q,Pand f K, v= a K, -, (37d)
aQBand f H, v = a K7, (37e)
a QS pand f H, v= o H, 7, (371)

where Q% (resp. Q%) denotes the asymmetric (resp. symmetric) part of Q..

Step 5.
Let us first prove (37c). Observe first that 3 Q2 ~ means that § ~2 ~ if
ByeA B~ENifByeZ, BFyifBeAyeZandy FRifBe Z e A
Suppose that o H, f and 8 QF . There are eight cases to consider.
1. Suppose that «, 8,7 € A. We have [a J 6,8 F ¢], for some 6 € Z

and 8 ~2 v. We obtain [a J 6,7 F §], so that a H, 7.

2. Suppose that o, 8,7 € Z.

We have [§ J 3,0 F a] for some § € A and 3 ~Z . We have [§ J 7,0 F al,
so that oo H,, .

3. Suppose that o, 5 € A,y € Z. We have [ J 6,8 F 4], for some 6 € Z and
B F ~. This implies v ~Z ¢, so that o J v and o H, 7.
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Suppose that a,v € A, 5 € Z. We have a J  and v F (3, so that o« H,, 7.

Suppose that 8,7 € A, € Z. We have [ F §,p J 6,p F «, for some
pE€ASEZand f~% . Weobtain [y Fd,p J 0, p F al, so that a H, 7.

Suppose that o, 5 € Z,v € A. We have [§ J £, F «] for some § € A and
v F B. We obtain [y F 3,0 J 8,0 F «l, so that a H, 7.

Suppose that a,y € Z,8 € A. We have [ F §,p J 6,p F «a, for some
p€ A€ Zand B F . Weobtain v ~Z §. We obtain p J v and p F a, so
that o Hy .

Suppose that 8,7 € Z,a € A. a J B and B ~Z 4. We obtain a J 7, so
that o Hy .

Step 6.
Let us now prove (37b). Observe first that 8 Q? v means that 8 =2 ~ if
B,yeA B=Z~itp,ye Z, BT vif B € A,y e Zand Not|y R Blif 3 € Z,v € A.
Suppose that a H, f and 8 Q2 y. There are eight cases to consider.

1.

Suppose that a, 3,7 € A. We have [ J 0,8 F 4], for some § € Z and
B =24 ~. We obtain Not[y R ¢] and o J §, so that a K, 7.

If a,8,v € Z. We have [§ J 3,0 F a] for some § € A and B =Z v. We
obtain § P v and Not[d T «], so that o K 7.

Suppose that o, € A,y € Z. We have [a J 6,8 F 0], for some 6 € Z and
B T ~. Because 8 F § and 3 T v, we have § =Z ~. Hence, a J § implies
a P v, so that a K, 7.

Suppose that «a,y € A, € Z. We have o J  and Not[y R ]. Hence, we
have a K, 7.

Suppose that 8,7 € A,a € Z. We have [ F §,p J 6,p F «a, for some
p€ A€ Zand =2~ We obtain Not[y R 6], pJ ¢ and p F a, so that
a K, y.

Suppose that o, 5 € Z,v € A. We have [§ J (,d F «] for some § € A and
Not|y R ]. We therefore have Not[o T al, § J 5 and Not[y R (], so that
a K, .

Suppose that a,y € Z,8 € A. We have [ F §,p J 6,p F «a, for some
peAde Zand BT v. Because f F § and 8 T ~, we obtain § =Z v, so
that p P v. Because p F a implies Not[p T al, we obtain a K, 7.
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8. Suppose that 8,7 € Z,a € A. We have a J 8 and 3 =Z v. We obtain
a P v, so that a K, 7.

Step 7.
Let us prove (37a). Suppose that o K, 8 and 5 Q) . There are eight cases to
examine.

1. Suppose that «, 3,7 € A. We have [@ S § and Not[5 R d]], or [ P 4 and
Not[B T 6]], for some d € Z and 3 =2 v. We obtain either a S §, Not[y R 6],
or aw P 9, Not[y T ], so that o K .

2. Suppose that o, € A and v € Z. We have [ S § and Not[S R §]], or
[P and Not[5 T ¢]], for some § € Z and f R ~. In the first case,
Not[8 R 6] and 3 R ~ implies 6 =Z ~. Hence a S § implies a P . In the
second case, Not[3 T 6] and B R « implies § =Z ~. Hence, we obtain a P 7,
so that a K, 7.

3. Suppose that o,y € A and § € Z. We have a P  and Not[y T (], so that
a K, 7.

4. Suppose that a € Z and 8,7 € A. We have [Not[p R al,p S §, Not[8 T §]]
or [Not[p T ], p P 9, Not[3 T 6]] or [Not[p T af,p S 0, Not[ R ¢]] for some
p €A 0 € Z and 8 =2 v Hence, Not[s T §] implies Not[y T §] and
Not[ R 0] implies Not[y R 0]. In either of these three cases, we therefore
have a K, 7.

5. Suppose that a, f € Z andy € A. Wehave [0 S 3, Not[d R ]| or [0 P 8, Not[d T «],

for some § € A, and Not[y T 8]. We have either Not[yT ], 6 S B,
Not[6 R a] or Not[y T B], § P B, Not[d T «f, so that a K 7.

6. Suppose that o,y € Z and 8 € A. We have [Not[p R al,p S §, Not[3 T ¢]],
or [Notlp T al,p P 0, Not[3 T 6]], or [Not[p T «|,p S 9, Not[S R ¢]], for some
peEA e Z and R 7.

In the first two cases, 3 R « and Not[3 T §] imply & ==Z ~. Hence, we have
either Notlp R a], p S v or Notlp T af, p P .

In the third case, 8 R v and Not[3 R 4] imply § =Z ~. Hence, we have
Not[p T o] and p P .

In either case, we therefore have a K, 7.

7. Suppose that 3,7 € Z and o € A. We have a P 8 and 8 =Z ~. This implies
a P v, so that a K, 7.

23



8. Suppose that a, 8,7 € Z. Wehave [0 S 3, Not[0 R «]] or [§ P 3, Not[o T af],
for some v € A, and 8 =Z . We have either § S v, Not[§ R o] or § P 7,
Not[6 T «f, so that a K, 7.

Step 8.
The proof of (37d), (37¢) and (37f) is entirely similar.

Step 9.
We are now in position to apply Lemma 9 to the relations K, (playing the role
of T') and H, (playing the role of F') with @), playing the role of .
Hence, we know that there is a real-valued function F' on AU Z such that, for
all o, 6 € AU Z,
aK, < Fla) > F(B)+ 1,
aH, < Fla)=F()+1
a Qs & F(a) = F(f).
By construction, the restriction of K, to A x Z is P. Similarly, the restriction
of H, to A x Z is J. The restriction of Q¢ to A x Z is T. The restriction of
Q5 to A x Z is F. Hence, defining f as the restriction of F' on A and ¢ as the
restriction of F' on Z leads to a representation in model (13). Finally, in view of
the definition of @Q,, it is clear that (29) holds. The proof is complete. O

Y
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