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Abstract: This article examines the optimal stock-out risk for a component used by
alternative modules mounted on several assembly lines. The studied context is a supply
chain dedicated to the mass production of highly diversified products, which is common
in the automotive industry. The material requirement planning (MRP) approach is
adapted to monitor this chain, however, the distance between the production units leads
to a mix between production to stock and production to order for the component of
interest. To prevent stock-out propagation along the downstream part of the supply chain,
the requirement for an emergency supply is triggered prior to the latter’s occurrence. The
definition of the optimal safety stock and its associated optimal stock-out risk are based
on a mono-period model that considers the cost of a safety stock and the costs incurred
by the emergency supply (transportation and production). The analytical solutions
dependent on these costs are illustrated.

Keywords: Stock-out risk, Emergency supplies, Safety stock, Supply Chain,
Customized mass production

1. Introduction

In this article, we define the optimal stock-out risk for an order-up-to-level supply
policy. We examine the particular context of the mass production of highly diversified
products in which component requirements are supplied for the use of alternative and
optional modules on final assembly lines; the products’ overall production is deemed
stable and predictable.

Supply chains (SCs) dedicated to the mass production of highly diversified
products are characterized by a certain geographic dispersion of production facilities
that is well-known in the automotive industry. In this context, the production is driven
by several assembly lines that are geographically remote. Diversity is mainly ensured by
alternative modules (AM, e.g., engines and gearboxes) mounted on several workstations
in a final assembly line. Each workstation is dedicated to a different set of alternative
modules (AMS), of which one AM must be mounted on the finished product that passes
through this workstation. An alternative module can be used by many assembly lines
and belongs to several alternative sets of modules, each set being specific to an
assembly line. Because a fictitious module can be introduced as an AM, optional
modules (e.g., sunroof) are considered particular AM that belongs to an AMS, with this
fictitious AM. Production levels of final assembly lines are stable in the short term or
their evolutions are known.

With a known daily production over several weeks for each line, the demand of
systematically mounted components and of the components that they use is certain. In
the absence of uncertainty with respect to quality, lead-times and production, the
management of this component type is not difficult and is beyond the scope of our
study.

The supply and production management of alternative modules — and the
components they use—is more complex. We consider the classic scenario in which
orders are delivered with similar periodicity. This operating mode is that of the MRP
when the lot-for-lot policy is used. In this approach, a specified quantity (to supply or to
produce) of a given reference of the bill of materials (BOM) is calculated periodically to
ensure compliance with the requirements of the master production schedule (MPS),
which derives the production of all productive units of the SC.

Giard and Sali (2012) and Sali (2012) proposed an adaptation of the MRP
approach to control the production of components for mass customization in upstream
SCs. In that context, the requirements of the MPS, which is used for pulling the
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production of components and alternative modules along the SC, are specified at the
BOM level corresponding to the alternative modules known as the Planning BOM
(PBOM). Over the frozen horizon, these requirements are uncertain and can be
represented by random variables that are used to determine, for each alternative module
and component, an order-up-to-level that integrates a safety stock. In these two studies,
the chosen stock-out risk is not issued from an economic trade-off, and no rule specifies
its level. This risk was arbitrarily fixed to a low level, assuming that it is preferable to
prevent, as much as possible, a stockout, given its potential consequences for the
downstream part of the supply chain. In real life, an emergency supply, which generates
extra costs compared with the classical supply, is used to avoid shortages. Thus, it is
relevant to consider the problem of the optimal stock-out risk calculation issued from a
tradeoff between a shortage cost (emergency supply) and a holding cost (safety stock).

This study addresses the economic analysis that should be used to determine the
optimal stock-out risk when an emergency supply is triggered systematically to prevent
the propagation of a stock-out along the downstream part of a SC. We describe how the
problem of the emergency supply can be characterized in the studied context. In the
third section, we model the problem and provide the resulting analytical solutions
before illustrating them through examples. A list of used parameters and variables
appears in appendix 1.

2. Problem positioning

In mass customization, product diversity is too high, necessitating that the MPS be
defined at the BOM level of alternative modules, which are limited in number. The
requirements of systematically used components are certain when the total periodic
production is known in advance. Thus, these components are beyond the scope of our
study.

The requirements of alternative modules for periods covered by the frozen

horizon Hf: of an assembly line / are known. The frozen horizon delimits what can be

produced to order in the upstream part of the SC. The remoteness of the production
units in global SCs and the heterogeneity of the frozen horizons associated with the
assembly lines prompt an adaption of the MRP approach that can mix make-to-order
(MTO) and make-to-stock (MTS) productions. Such an adaptation of the MRP is
proposed by Giard and Sali (2012); we summarize their analytical results in this paper
(§ 2.1). In this proposal, for each component and alternative module, the authors define
a reorder-up-to-level, used to address demand uncertainty, using an arbitrarily stock-out
risk. The determination of the stock-out risk may result from an economic trade-off
between the cost of triggering emergency supplies and the cost of holding safety stock.
The data used for this trade-off are detailed (§ 2.2) to facilitate, in section 3, a general
modeling of the problem.

2.1. Procurements in a revisited MRP by mixing MTO and MTS

We refer to the results obtained in (Giard and Sali, 2012) and generalized in (Sali,
2012).

The application in cascade of the BOM explosion leads to find a; units of
componenti, which belongs to level n of the BOM included in an alternative module &
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belonging to the set ’r;l . ?;l is the set of exclusive alternative modules that require

component i to be used in the assembly line /.
Moreover, in the MPS, the application in cascade of the lead-time offset

generates a lag A;, between the period tof the production launch of reference unit i
and the period ¢+ A;;, of the requirements of the module k£ in the MPS. Thus, the gross

requirements ( GR;; ) of reference i (level n of the BOM) at period ¢ is linked to the

requirements MPS,lq. of module k£ (level 1 of the BOM) mounted on the assembly line

[ at period t>¢". This link is distinct from the classical link that binds the gross
requirements of component i with the planned orders of the references of level n—1 of
the BOM that use this component.

When the demand is certain, the stocks are useless and, if the lot-for-lot rule is

followed, GR;, equals the net requirements ( NR;;) and the planned order (PO, ,_ L ),
where L; is the lead-time of componenti. The assumption of the lot-for-lot rule in this

paper is justified by the generalization of the lean management and by the low
reliability of forecasts for distant periods. These values are related to the MPS
requirements of the final assembly lines by equation (1).

I
POy =NR; 1y, =GR; 1, =D > ayxMP Ay Ay (1)
/ ke/lfl

Beyond the frozen horizon H fp of assembly line /, demand is uncertain and
characterized only through its structure as recorded in the PBOMs. In this case, the
coefficient c,l( of a PBOM represents the average usage rate of the alternative module &

among the set of alternative modules assembled on a workstation of the line / and is
considered as the probability of assembling k& on a product passing through this
workstation.

The requirements of the MPS of assembly line / for the alternative module' &

in the period #'>H Il? becomes a random variable X ,lc’f . This variable follows a binomial

distribution in which the number of events corresponds to the number of finished units
of product that are assembled on line / during a review period 7, and the probability of

the event occurrence is the coefficient c,lc of the PBOM.

_ / I
GRi ;o =D [ ,Z laik-MPSkM[kJr lz Iaik'Xk,Hi[k] )
Iy <Hp i MpzHp

If component i is required by several alternative modules on the workstation with the
same coefficient a; and for the same period, a fictitious module k', which regroups that
subset of alternative modules, is required. The coefficient of planning BOM for this
fictitious module is the sum of the coefficients of modules included in this subset. This

module allows our approach to be generalized by considering the commonality of
components used by several alternative modules in the same assembly line.
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This generalization is essential to plan the production of remote assembly lines
dedicated to the mass production of diversified products with an MRP approach. The
planned order PO, calculated at the beginning of period ¢ and delivered at the

beginning of period ¢+ L; equals the sum of a specific requirement for that period ¢+ L;

generated by the part of the MPS within the frozen horizon (Z Z a, xMPS]l( b0y )
I ke !

and the difference between an order-up-to level R;,.; and the projected available

inventory during decision-making (cf. equation (3)). The projected available inventory
equals the one-hand balance OHB;,, which is the physical stock at the beginning of

period ¢, increased by the planning orders that will be delivered before the end of the
h=L;-1
lead-time  period Z PO;; y+y and  decreased by the requirements
h=0

h=L,—1
Z Z ag, - -MPS! kg dy—h O deliver before the end of this period.
h=0 /!4, <HL+h

PO;=> > akxMPSkM +R; (41, ~[OHB;,
l kE/
h=L;-1 h=L;-1

+Z Oprpen= 2, 2, awMPS,,, ;1 @)

h=0 ! ay<H+h

The order-up-to-level R;,,; is the fractile associated with a predefined stock-

out risk for the random variable Y;,,; that corresponds to a weighted sum of random

variables following a binomial distribution (cf. equation (4)).

h=L;~1

lt+L Z Z Z aik'Xllc,t+/1,~k+h (4)

h=0 '\ >HL~h

In the steady state, as characterized by the stability of the PBOMs, the Y, L

L,

variable becomes ¥;, and R;;,; is replaced becomes R; .

h=L;—1

ZZ > ap- X 5)

ol
h=0 <!3, >HL~h

Subsequently, we conduct our investigation under steady state conditions to
simplify the formulation. In all cases, this random variable, which serves as a reference
to determine the order-up-to-level, is a weighted sum of binomial random variables
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whose distribution function is straightforward to determine using the Monte Carlo
method. Expression (6) offers a generic formulation” of the random variable Y.

K-—)ijx,///(nj,pj) (6)
J

When the conditions of approximation by a normal distribution are satisfied for
each binomial distribution, the random variable Y; can be approximated by a normal

distribution.

Y,—>. /" lui:ijxnjxpj,ai=\/Z|:wj><nj><pj><(l—pj):| (7)
J

J

In the case of mass production, this approximation is generally possible for
describing the MPS stochastic requirement of an alternative module beyond the frozen
horizon, thereby allowing a normal approximation for the stochastic requirement of
component i pulled by the stochastic requirements of alternative modules.

2.2. Costs to consider for the determination of an optimal stock-out risk in the
context of emergency supplies

In the studied context, a stock-out at any plant of the SC triggers an emergency
procedure that prevents production stoppages. The emergency procedure assumes that
the supplier can mobilize additional resources to promptly produce the missing units
and that the lead-time can be shortened to deliver the missing quantities more rapidly
than a normal delivery. Mobilizing an emergency procedure at a given level of the SC
prevents stock-out propagation downstream in the SC.

Emergency supplies of the missing units can be analyzed in the context of an
order-up-to-level policy that is characterized by an order-up-to-level R; designed to

cope with random demand according to a stock-out probability ¢; . This policy generates

two types of costs: costs directly incurred by the emergency supply to avoid stoppages
and costs incurred by the unused units when the order is delivered that result from using
safety stock.

e Emergency supply costs: an emergency supply may or may not generate a fixed cost
cr. that is independent of the number of missing units. This cost may correspond to

the payment of a special transport (charter a plane, for example) and/or the launch of
exceptional production (set-up cost). It is possible to introduce a capacity W,
expressed as the maximum number of components i to carry in an emergency
transport, to yield the possibility of requesting additional emergency transports to
satisfy an abnormally important shortage; the same fixed cost is assumed to be
supported, although this hypothesis may be changed easily. An emergency supply

The notations used in this formulation have no physical significance. They are used to

obtain a generic mathematical expression for Y; .
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can also generate an additional variable cost ¢, per missing unit. This cost can be
1

the unit transportation cost of a logistics provider that specializes in rapid transit
and/or an increase in the direct variable production cost of a missing unit (because
of overtime, for example).

e Holding costs: if no stock-out occurs at the end of the review period and prior to the
receipt of a new delivery, the residual stock generates a holding cost. Each
component unit ; held during the review period 7 generates a periodic holding cost
p;» which is the multiplication of an annual unitary holding cost 7; by the duration

T in years.

The amount of these charges depends on the order-up-to level R;. The
minimization of the global cost of the procurement policy independently for each

component i defines the optimal order-up-to level R; associated with the optimal

stock-out probability al-* =P(X >RlTk ). The optimal stock-out risk is not necessarily

identical for all of the components.

This type of inventory problem can be considered a variant of the newsvendor
problem, which introduces, in addition to the “traditional” shortage cost, a lump-sum
cost independent of the importance of the shortage in the case of a stock-out. This
problem was approached by Wagner (1975) with a restrictive formulation (no
proportional shortage cost). Hill et al. (1989) are interested in the management of spare
parts for equipment that reach the end of their life cycle with a mono-period model that
includes only a lump-sum cost.

The multi-period supplying policies "S, s", based on an order-up-to level S and
an order point s, incorporate an ordering cost in addition to the holding and stock-out
costs in the economic function to minimize. Such models are often based on a stochastic
dynamic programming to define optimal policies in the steady state (Naddor, 1966) or
within a given horizon. In the context of these models, Bel and Hamidi-Noori (1982)
use an approximate formulation to resolve the periodic problem of the supply of foreign
currencies in a banking agency. Aneja and Noori (1987) propose an "S, s" supply model
by considering a single product multi-period inventory problem for which the penalty
cost is twofold: a lump-sum portion independent of the shortage size and a portion
which is linearly proportional to the shortage size. This approach was generalized by
Benkherouf and Sethi (2010).

The problem studied here is characterized by a periodic decision, independent
from those conducted previously. Stochastic dynamic programming is inappropriate for
modeling that issue. Our bibliographic investigations did not enable us to find models
addressing emergency supply close to the type of emergency supply that concerns us.
The available formulations differ in particular respects from the formulation suggested
in this article.

3. Determination and implementation of the optimal emergency supply policy

After reviewing the analytical formulation of the problem and highlighting the
relationship that characterizes the optimal policy in different cost contexts (§ 3.1), we
introduce the condition of dominance of an emergency policy based on fixed shortage
cost versus an emergency policy based on proportional shortage cost (§ 3.2). This issue
is encountered when decision makers must choose between these alternatives. We end
this section with numerical examples that applies the found analytical solution (§ 3.3).
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3.1. Emergency supply model and optimal solution

The cost function to minimize C(R;), defined over the review period T, is the sum of a
mathematical expectation of the holding cost CH(R;) and a mathematical expectation
of a stock-out cost CS(R;). We use a discrete formulation of the problem (equations 9
to 11) followed by a continuous formulation.

C(R;)=CH(R;)+CS(R;) )

The first term CH(R;) is the product of the periodic holding cost of one unit of

component / that is held during one review period and the mathematical expectation of
the remaining stock at the end of this period. The remaining stock level depends on the

order-up-to level R;and the random demand Y; of component i.

CH(R)=p; 2 _p (R =) P =) 9)

The second term CS(R;) in equation (8) depends on the order-up-to level R;and the
random demand Y; . It involves the fixed and variable costs identified previously. The

formulation CS(R;) is given by equation (10).
CS(R)=cy - Z R+1 —R)-P(Y;=y;)+cp - Z oPG 2R +1+u-W) (10)

e The first part of this cost, i.e., cy, - Z R;))-P(Y;=y;), corresponds to the

Vi R+1(yl

mathematical expectation of the additional variable costs generated by the expected
stock-out amount.

e The second part of this cost, i.e., CF, -ZfZOP(Yi >R; +1+u-W), is the mathematical

expectation of a fixed cost. The capacity constraint of the emergency transport
makes this cost dependent on the number of missing units. If the unit transportation
capacity W is important (compared with the average demand), then the probability
P(Y; 2R, +W +1) of the requirement for a second emergency transport can be

neglected. If W is low, and the probability P(¥;>R;+1) of using an emergency
transport is low, then the probability P(Y;>R;+W +1) is lower and may be
neglected. Thereafter, we will privilege the case in which the possibility of requiring

more than one emergency transport at the end of any review period is highly
improbable; then, the second part of this shortage cost becomes ¢ F ‘P(Y;2R; +1).
The cost function to minimize is thus given by equation (11).
CR)=p; 2, g o Ri=y) POr=y)+ey 200 o (= R)-P(Y =)
+cFi-zu:0P(Yl- >R +1+u-W) (11)

In the continuous case, (9) to (11) becomes (12) to (14).
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R;
CH(R) = p; [ (R;=y) f ()dly; (12)
0
CS(R;)=cy, T(J’i —R)f i)y +ep - (P2 Ri+14u-W) (13)
R;
Ri o0
CR)=p;i I (Ri =) f (v)dy;+cy, f Gi=R)f ) dy;+ep D, (PR A+ +u-W) - (14)
0 R,

We seek to determine the stock-out risk a: associated with the order-up-to level

R; that minimizes the expected total cost C(R;).

In the discrete case, the two cost functions are monotone (increasing for CP(R;)

and decreasing for CS(R;)), with R;k satisfying the system of inequalities (15).

C(R)-C(R +1)<0

* * (15)
C(R; )-C(R; -1)<0
The determination of R; and thus of a; is achieved through the study of the
function C(R;)—C(R; +1). After development and replacement, we obtain relation (16)
if more than one emergency transport is possible, and we obtain relation (17) otherwise.

C(R)=C(R;+D)==p; +(cy, +p)-P; = Ri+D)+cp - > PV =R +1+u-W) (16)

In the continuous case, the optimum is defined by dC(R;)/ dR; :0. Then, if the
use of more than one emergency transport capacity is considered, we obtain the relation
(18). If this situation is regarded as highly improbable, then the relation (19) must be
considered.

PP <R)=cy P> R)—cp -3 f(R] +u-W)=0 (18)
i P(Y; < R)=cy -P(Y; > R —cp - f(R;)=0 (19)

Equations 16 and 18 may be used to calculate the optimal solution for any

problem, provided that the distribution of Y is known. Thereafter, we will use

equations (17) and (19), considering that the possibility of requiring more than one
emergency transport capacity is highly improbable (for the reasons listed above). We

C . c
now distinguish three cases according to the values assumed by ¢y and Vi
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3.1.1 Case 1: variable emergency supply cost (CFi =0)

The use of equations 17 and 19 leads to the classical formulation of the newsvendor
problem in which the optimal stock-out risk value is given by (20) in the discrete case
and (21) in the continuous case.

Pi
P(Y, >R +1 P(Y. > R; 20
(l>l+)<cVi+pi< (l l) ( )

cy+p; (ep/p)+l

With a unit purchase cost Cy, > the holding cost p;=cu;-z-T depends on the
parameters 7 and 7 that are shared by the other part of the supply. Then, the optimal
stock-out probability a: depends primarily on the relative cost structure cy, / Cy, » aS
illustrated by Figure 1 (this figure and the following ones are drawn to illustrate a
numerical example). The order-up-to level R;k is the fractile associated with a; . The

inverse functions of the major probability distributions are available in spreadsheet
applications for continuous and discrete distributions.

1.0%
0.9%
0.8%
0.7%
0.6% {4
0.5%
04% ™
0.3%
0.2%

0.1% . r ":'ijf'u

0.0% i — ety . .
- g 10 15 20

k2
L
Lad
[ =]

Figure 1 : a; as a function of % /cui , with CF, =0, T=1week and 7=15%

3.1.2 Case 2: fixed emergency supply cost (CV;_ =0)

In this case, (17) is replaced by (22).

C(R)-C(R; +1):cFi xP(Y; =R; +1)+ p; xP(Y; <R; +1) (22)
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The optimality is reached when the relation (23) is satisfied.

P(Y; =R :1)<ﬁ< P(Y':fi) (23)
P(;<R) ¢ P(T;<R -1)
In the continuous case (equation (19)), we obtain the relation (24) in which 1 is

the probability density function of the random variable representing the demand. We
observe that if the density function is symmetrical, then the first member of equation
(24) corresponds to a hazard function®.

SR)[POG<R))=p; e (24)

Whether we are in a discrete case or in a continuous case of a normal
distribution, the numerical determination of the optimal solution is relatively simple.
When the demand Y; is a weighted sum of binomial distributions, the solution can be

obtained using the Monte Carlo method. When a normal approximation of Y, is

possible, then the resolution becomes considerably simpler with an abacus using a
standardized normal distribution. With Y —>. / (uy,oy) and

U, :(Yl — uyl_)/ oy, >/ '(0,1), the relation (24) can be replaced by the equation (25),

after a permutation of numerator and denominator in which ul* equals (Ri* -y ) / Oy ,
and @ is the cumulative distribution function of the standardized normal distribution.
Ow;)_ °H _ °h _Ch 1 1

PN - e (25)

The second member of equation (25) decomposes the factors that influence the

optimal solution. The tabulation of the hazard function allows the finding of ul* and a: .

For given values of 7 and 7, the abacus of Figure 2 yields a: for different values of

¢, [cF, and oy

. If the density function is symmetrical to the mean, as it is for the Normal Distribution,

P(Y, <R,)=P(Y,>2Y,—R,), then f(R)=f(2Y;-R,), and f(R;)/P(Y; <R;)=

f(2Y;=R;)/P(Y, >2Y; —R,), which is the definition of the hazard distribution.
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Figure 2 : o; as a function of CF,-/cui , with ¢y =0, T'=1week and 7=15%.

3.1.3. Case 3: variable and fixed emergency costs (cV,- #0and Cp # 0)

In the discrete case, the equation (17) cannot be simplified. The optimal solution can be
reached quickly using a dichotomy approach.

In the continuous case, the solution given by equation (19) can be simplified if
an approximation of the demand Y;by a normal distribution is possible. Then, the

optimal solution is given by equation (26).

MZO’Y (T.T).%. _Pw) | (26)

-0G;) cr, \1-0(;)) cr,

For given values of 7, T and oy , areas representing «; as a function of cg / ¢, and
L L 1

CF, / cy, can be drawn, as shown by Figure 3.
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Figure 3: «; as a function of CF,-/CM,- and CF,./CVi , with T=Iweek, 7=15% and
oy, =123.84.

3.2. The choice between emergency supply systems

Of the three cases of emergency supply, the last one is the least common. Most often, a
company must select one of the first two policies.

o In the variable cost policy (CF,- =0), an agreement is settled with a company

specializing in international express freight, with a guarantee of a short delivery
time and a constant transportation cost ¢;; per component to deliver.

e In the fixed cost policy (CV,- =0), a mean of emergency freight transportation (plane,

truck), which is entirely dedicated to emergency transportation, is used. Its cost cp

does not depend on the number of transported units, if the unit transportation
capacity is sufficiently large or the shortage risk is low (as discussed previously).

We propose a simple rule to help managers determine the best option when
confronted with these two possibilities for emergency supply.

We suppose that the unit purchase cost cu; of the component, the annual
holding rate 7, and the duration 7' of the review period are known. For a given order-
up-to level R;, the expectation of the periodic holding cost CH(R;) is identical for both
policies. Let us reformulate the expected periodic cost.
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e The expected periodic cost C, (Rl-,cVi ) of the variable cost policy depends on the

variable cost cy, and can be derived from equation (17) and (19), with CF, =0 (cf.
equation (27)).
Cl (Ri’CVi )= CH(RI) +CSI (Ri’CVI- )

CH(R;)+cy, 'Zyi>Ri (y; —R;)-P(Y; = ;) discrete case @7)

CH(R;)+ cy, -'[:O( vi—R;) - f(y;)dy; continuous case
Note that Vey, <cp = Ci(R;,cp) <Ci(Ri,cp ).

Similarly, the expected periodic cost C,(R;,c Fi) of the fixed cost policy depends on
the fixed and is given by equation (28).
Co(R;,cp ) =CH(R;) +CSy(R; ¢ )= CH(R;) +cp -P(Y; > R;) (28)

Note that Ve <cp = Ci(R;,cr) <Ci(Rj.cr).

Two sufficient conditions of dominance can be proved. The conditions permit

choosing between the two emergency policies, in most situations, assuming that such a
choice is possible.

Let us start with the optimal policy found for the fixed cost policy (case 2)
characterized by R;l-. We introduce ¢j; the variable cost that yields, in case 1, an

identical stock-out cost CS, (R;i, cy)=CS, (R;i’CF,- ) and thus an identical periodic
total cost for the two policies, thus yielding 5V,- J.;;( Vi— R;l.)- S (ydy; =
F, -P(Y; > R;l-) , with a unique positive value 5Vi . Then,
&, =cp -P(Y;> Ry;)/ j;;o( y;—Ry))- f(y;)dy; . If Y, is normally distributed, with
”Zi = (R;l- —ty) / oy, and knowing that
J;w(yi -R)- f(y;)dy; =0; [f(ul-)—ui -P(u >”i)] according to Hadley & Whitin

i

(1961), the definition of EV,- is given by equation (29).
&y =cr /{a,. (res/pw >u;l~))—u;l~:|} (29)

With Cy(Ry;.6)=Cy(Ry.cr) . and Vefy <y =Cy(Ry.cf, ) <Ci(Ry,cyr) . it can
be deduced that V¢, <¢y = Cl(R;i’CVI- )<C (R;i>51/l- ). The variable cost policy
is more efficient than the fixed cost policy if cy, <5Vi . A curve, linking all

possible values of CE, with the corresponding values 5V,~ , can be drawn for



Optimal stock-out risk for a component mounted on several assembly lines in the case of emergency supplies 14

decision-making. This curve delimits the range of cy, for which the variable

cost policy is preferred to the fixed cost policy.

Now, let us start from the optimal policy of the variable cost policy (case 1)
characterized by Rl*i- We introduce 5Fi as the fixed cost that yields, in case 2, an

identical stock-out cost CS, (Rl*l-, EE):CSI(R;,cVi ) and thus an identical periodic

total cost for the two policies, thus yielding EFi -P(Y; >R1*l-):
+00

2 (yl-—Rl*i)- f(y)dy;, with a unique positive value cg. Then,
i !

Nz
Cr =y, ;f(yl- —R;)- f(y;)dy; I P(Y; >R1*l-). If ¥; is normally distributed, then EE’ is

given by equation (30)
éry =y, -0y f )/ P(u>uy) -y | (30)

Given C)(Ry;.ér)=Ci(Ricp), and Vi <cp = Ci(Rinci)<Ci(Rycp)., it
can be deduced that VCE <5Fi = C2(RiocFi)<C2 (Ri,éFi). The fixed cost policy
is more efficient than the variable cost policy if R, <5E . A curve, linking all
possible values of ¢, with the corresponding values of 5F,- , can be drawn for
decision-making. This curve delimits the range of ¢ F, for which the fixed cost

policy is preferred.

Two rules, which address most cases, can be formulated for choosing between

the two emergency transport policies without comparing overall costs:

Rule 1: Policy 1 (variable cost of emergency transport) is better than Policy 2 (fixed
cost of emergency transport) if ¢y, < 5V[ or if cy, / Cy, < 5Vi / Cy, -

Rule 2: Policy 2 (fixed cost of emergency transport) is better than Policy 1 if
Cr <Cp orcp /e, <cplc,.

Two curves are drawn in Figure 4, the first curve with ¢ / cu; as a function of
1

cr /cu; and the second curve with ¢ /cu; as a function of ¢, /cu; . These two curves
F; i F i V: i

are nearly mixed up. Two enlargements are conducted to highlight each curve. Any
point whose coordinates(cx /¢, ,cp /¢, ) are “below” the upper curve respects Rule 1,

not Rule 2. In that case, Policy 1 (variable cost of emergency transport) is better than
Policy 2. Conversely, any point whose coordinates are “above” the lower curves
respects Rule 2, not Rule 1. In that case, Policy 2 (fixed cost of emergency transport) is
better than Policy 1. We can add three comments.

This dominance depends also on the variance of Y;, observing that the review
period T and the holding rate can be considered as determined, once for all.
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Therefore, a 3D representation can be used for analyzing the influence of that last
factor on the relative dominance of those two policies.
e This dominance does not depend on the ratio cp /¢y, as ¢, contributes to the

periodic cost C(R;) through the holding cost CS(R;) .

Cy, ‘ Cu;
3
i
3
2
1
I.-'. 7
0

ZO0OM

Figure 4: Dominance analysis of emergency transport policies: variable cost (Policy 1)
versus fixed cost policy (Policy 2) with cy, =0, T=Iweek, 7=15% and Y, —

./ (6086.4, 123.84)

3.3 Numerical example

Let us now illustrate numerically the calculation of the optimal stock-out risk a;k for a
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component i in the first two cases mentioned above.
We use the numerical example presented in (Giard and Sali, 2012) that considers
the procurement of piston crowns for automotive assembly plants. The application of

the MRP mechanism, as discussed in §2, provides a demand Y; for this component,

following a weighted sum of binomial random variables.
Y, >4x.(960,0.2)+4x. - (1840,0.54)+4x.~(960,0.2)+ 6x.~ (960,0.1)

The normal approximation of Y; yields the formulation (31).
Y, —>. 7 (6086.4,123.84) 31

The costs used here are fictitious: the unit purchase cost is ¢, =10€; the annual

holding rate is 7=15% and a periodic review T of one week lead to a weekly unit
holding cost of p; =0.029 €. The fixed cost for an emergency transport is CR = 1000 €

and the variable cost is ey, =7 €. If emergency transport is triggered, it is assumed that,

a second transport is not needed. Those parameters were used in the establishment of
figures 1 to 4. First, we illustrate the three policies of emergency supply. Then, we
analyze (§3.3.4) the dominance of emergency transport policies.

3.3.1. Case 1: variable emergency supply cost (c F, =0)

When no fixed cost is considered, the calculation of a: using the relation (21) yields an
optimal risk al*l- =0.41%, an order-up to level Rl*i =6413 and a safety stock
SS(RI*Z-) =327 . A simple reading of the abacus of the Figure 1 yields this result.

3.3.2. Case 2: fixed emergency supply cost (CVi =0)

In the second case, the use of the equation (25) yields a risk a;i =0,1115%, which

corresponds to an order-up-to level R;i =6467 and a safety stock SS(R;-) =380.

Figure 2 does not include a curve foraYi =123,84. A linear interpolation
between the curves drawn for oy, =100 and oy, =150 yields a risk whose value is

approximately 0.11%.

3.3.3. Case 3: variable and fixed emergency costs (CV,- #0and Cp # 0)

A dichotomy search using (26) yields a;k =0,01%. This result can be found
approximately by a direct reading of Figure 3.

3.3.4. Dominance analysis of emergency supplies

With ¢ =1000€ (—>c¢f /¢, =100), we obtain a;i =0,11% and R;i =6467 . To obtain

the same shortage cost in the variable cost policy with the same order-up to level, a
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variable cost ¢, =29,03 € must be used for the emergency transport. Given V¢, <¢j ,

and C, (R;,c,/i)<C2(R;l-,cE) we obtain Cl(R;,7)<C2(R;l-,1000), which supports the
economic superiority of the variable cost policy.
If we plot the point of coordinates “cp, =1000 and ey, =17 in Figure 4, we

observe that it is “above” the lower curves. We conclude that the variable cost policy is
dominant.

4. Conclusions

We demonstrated how to determine the optimal stock-out risk in the case of an
emergency supply in the upstream portion of a supply chain dedicated to the mass
production of highly diversified products. We addressed cases of emergency supply in
which the stock-out cost is the sum of a fixed cost and a variable cost, depending on the
amount of components demanded. Analytical solutions were established and illustrated
with numerical examples using a normal approximation of the demand relevant to the
studied case. The demonstrated approach can be extended to any supply chain for which
the MPS requirement beyond the frozen horizon can be modeled with probability
distributions. For an emergency supply, a tactical choice is often possible between a
solution in which the transportation cost is proportional to the number of carried units
and a solution characterized by a fixed cost. In this study, the foundations of the
dominance analysis were established and illustrated.

5 Appendices

5.1 Appendix 1: List of the used parameters and variables

i Index of a component of level 7 in the BOM

k Index of a component of level 0 in the (all components of level 0 are alternative modules)
¢ Index of a period used in the MRP

i Index of a final assembly line

L Subset of alternative modules that use component i in assembly line /

[;;: Frozen horizon of assembly line /

Hfo Planning horizon of assembly line /

ik

Number of units of component i, included in module & that belongs to the subset };.lof
alternative modules

L; Lead-time of component 7

N Periodic production on line /

C/lc Coefficient of the PBOM associated with the alternative module &£ mounted on the line /

T Length of the review period used in the MRP

i Lag between the period ¢ of the production launch of reference unit i and the period ¢+ 4;, of

the requirements of the module £ in the MPS
MPS., Requirement of the module k for the period #'>¢ in the Master Production Schedule of the
kt .
assembly line /

Xy, Stochastic requirement of the alternative module k for the period ¢’ > H 5:
GR;, Gross Requirement of a reference i (Ievel n of the BOM) at period ¢
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NR;, Net Requirement of component i for the period ¢
PO, Planned Order of component i at the beginning of the period ¢

Rt L Order-up-to level of component i for the period ¢+ L;

Order-up-to level of component i in the steady state
a Probability of a stock-out of component i, with an order-up-to level R;

Y +1, ~ Random demand of component i from the period 7 to the period 7+ Z;

Di Holding cost of component i between two consecutive deliveries
Cu, Unit production cost of component i

T Annual holding cost of component i

r Annual holding rate

C(R)) Expectation of the periodic cost associated with the order-up-to level R;
CH(R;) Expectation of the holding periodic cost associated with the order-up-to level R;
CS(R;) Expectation of the shortage periodic cost associated with the order-up-to level R;

Unit variable cost of an emergency supply of component i

(974

cr Unit variable cost of an emergency supply of component i

cy, Unit variable emergency cost that yields CS,(R;, ¢, )=CS, (R;.cg)

¢ : Fixed emergency cost that yields €S, (R, 55 )=CSy(R;.cp)

w Capacity of the charter used in the emergency transport of component i expressed as the

number of units of component i

5.2 Appendix 2: Conditions of approximation of a binomial distribution by a
normal distribution

Several conditions of approximation of the Binomial distribution .~ (n,p)by the
Normal distribution . / (n-p,\/n-p-(1—p)) are given in statistics textbooks. This

analysis is based on the condition [—— / \/1_ <0,3 from which the relation

used to draw the limits values of p dependlng on n can be established, as shown in

Figure 5. In our case, n is the number of units produced by the assembly line during the
period used to define the MPS, and p is the probability of using a given alternative

module in a given station of the line.

2 2
(2+0,32-n)—{(2+0,32-n) —4} (2+0,32-n)+{(2+0,32~n) —4}
. 2 <pP< ’ 2
(2+0,32~n)— (2+0.32.n) 4 (2+0,32-n)+ (2+0,32.n) 4
1+

2 2

1+
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Figure 5: Conditions of approximation of a binomial distribution by a normal
distribution
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