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Abstract: This article examines the optimal stock-out risk for a component used by 

alternative modules mounted on several assembly lines. The studied context is a supply 

chain dedicated to the mass production of highly diversified products, which is common 

in the automotive industry. The material requirement planning (MRP) approach is 

adapted to monitor this chain; however, the distance between the production units leads 

to a mix between production to stock and production to order for the component of 

interest. To prevent stock-out propagation along the downstream part of the supply chain, 

the requirement for an emergency supply is triggered prior to the latter’s occurrence. The 

definition of the optimal safety stock and its associated optimal stock-out risk are based 

on a mono-period model that considers the cost of a safety stock and the costs incurred 

by the emergency supply (transportation and production). The analytical solutions 

dependent on these costs are illustrated.

Keywords: Stock-out risk, Emergency supplies, Safety stock, Supply Chain, 

Customized mass production

1. Introduction

In this article, we define the optimal stock-out risk for an order-up-to-level supply 

policy. We examine the particular context of the mass production of highly diversified 

products in which component requirements are supplied for the use of alternative and 

optional modules on final assembly lines; the products’ overall production is deemed 

stable and predictable.

Supply chains (SCs) dedicated to the mass production of highly diversified 

products are characterized by a certain geographic dispersion of production facilities 

that is well-known in the automotive industry. In this context, the production is driven 

by several assembly lines that are geographically remote. Diversity is mainly ensured by 

alternative modules (AM, e.g., engines and gearboxes) mounted on several workstations 

in a final assembly line. Each workstation is dedicated to a different set of alternative 

modules (AMS), of which one AM must be mounted on the finished product that passes 

through this workstation. An alternative module can be used by many assembly lines 

and belongs to several alternative sets of modules, each set being specific to an 

assembly line. Because a fictitious module can be introduced as an AM, optional 

modules (e.g., sunroof) are considered particular AM that belongs to an AMS, with this 

fictitious AM. Production levels of final assembly lines are stable in the short term or 

their evolutions are known.

With a known daily production over several weeks for each line, the demand of 

systematically mounted components and of the components that they use is certain. In 

the absence of uncertainty with respect to quality, lead-times and production, the 

management of this component type is not difficult and is beyond the scope of our 

study.

The supply and production management of alternative modules and the 

components they use is more complex. We consider the classic scenario in which 

orders are delivered with similar periodicity. This operating mode is that of the MRP

when the lot-for-lot policy is used. In this approach, a specified quantity (to supply or to 

produce) of a given reference of the bill of materials (BOM) is calculated periodically to 

ensure compliance with the requirements of the master production schedule (MPS),

which derives the production of all productive units of the SC.

Giard and Sali (2012) and Sali (2012) proposed an adaptation of the MRP 

approach to control the production of components for mass customization in upstream

SCs. In that context, the requirements of the MPS, which is used for pulling the 
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production of components and alternative modules along the SC, are specified at the 

BOM level corresponding to the alternative modules known as the Planning BOM

(PBOM). Over the frozen horizon, these requirements are uncertain and can be 

represented by random variables that are used to determine, for each alternative module 

and component, an order-up-to-level that integrates a safety stock. In these two studies,

the chosen stock-out risk is not issued from an economic trade-off, and no rule specifies

its level. This risk was arbitrarily fixed to a low level, assuming that it is preferable to 

prevent, as much as possible, a stockout, given its potential consequences for the 

downstream part of the supply chain. In real life, an emergency supply, which generates 

extra costs compared with the classical supply, is used to avoid shortages. Thus, it is 

relevant to consider the problem of the optimal stock-out risk calculation issued from a 

tradeoff between a shortage cost (emergency supply) and a holding cost (safety stock).

This study addresses the economic analysis that should be used to determine the 

optimal stock-out risk when an emergency supply is triggered systematically to prevent 

the propagation of a stock-out along the downstream part of a SC. We describe how the 

problem of the emergency supply can be characterized in the studied context. In the 

third section, we model the problem and provide the resulting analytical solutions

before illustrating them through examples. A list of used parameters and variables 

appears in appendix 1.

2. Problem positioning

In mass customization, product diversity is too high, necessitating that the MPS be 

defined at the BOM level of alternative modules, which are limited in number. The 

requirements of systematically used components are certain when the total periodic 

production is known in advance. Thus, these components are beyond the scope of our 

study.

The requirements of alternative modules for periods covered by the frozen 

horizon l
FH of an assembly line l are known. The frozen horizon delimits what can be 

produced to order in the upstream part of the SC. The remoteness of the production 

units in global SCs and the heterogeneity of the frozen horizons associated with the 

assembly lines prompt an adaption of the MRP approach that can mix make-to-order 

(MTO) and make-to-stock (MTS) productions. Such an adaptation of the MRP is 

proposed by Giard and Sali (2012); we summarize their analytical results in this paper 

(§ 2.1). In this proposal, for each component and alternative module, the authors define

a reorder-up-to-level, used to address demand uncertainty, using an arbitrarily stock-out 

risk. The determination of the stock-out risk may result from an economic trade-off 

between the cost of triggering emergency supplies and the cost of holding safety stock. 

The data used for this trade-off are detailed (§ 2.2) to facilitate, in section 3, a general 

modeling of the problem.

2.1. Procurements in a revisited MRP by mixing MTO and MTS

We refer to the results obtained in (Giard and Sali, 2012) and generalized in (Sali, 

2012).

The application in cascade of the BOM explosion leads to find ika units of 

component i , which belongs to level n of the BOM included in an alternative module k
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belonging to the set E l
i . E l

i is the set of exclusive alternative modules that require 

component i to be used in the assembly line l .

Moreover, in the MPS, the application in cascade of the lead-time offset 

generates a lag ik between the period t of the production launch of reference unit i

and the period ikt of the requirements of the module k in the MPS. Thus, the gross 

requirements ( itGR ) of reference i (level n of the BOM) at period t is linked to the 

requirements '
l
ktMPS of module k (level 1 of the BOM) mounted on the assembly line 

l at period t t . This link is distinct from the classical link that binds the gross 

requirements of component i with the planned orders of the references of level 1n of 

the BOM that use this component.

When the demand is certain, the stocks are useless and, if the lot-for-lot rule is 

followed, itGR equals the net requirements ( itNR ) and the planned order ( , ii t LPO ), 

where iL is the lead-time of component i . The assumption of the lot-for-lot rule in this 

paper is justified by the generalization of the lean management and by the low 

reliability of forecasts for distant periods. These values are related to the MPS 

requirements of the final assembly lines by equation (1).

, , ,i i ik
l

i

l
it i t L i t L ik k t

l k

PO NR GR a MPS

E

(1)

Beyond the frozen horizon l
FH of assembly line l, demand is uncertain and 

characterized only through its structure as recorded in the PBOMs. In this case, the 

coefficient l
kc of a PBOM represents the average usage rate of the alternative module k

among the set of alternative modules assembled on a workstation of the line l and is

considered as the probability of assembling k on a product passing through this 

workstation.

The requirements of the MPS of assembly line l for the alternative module
1 k

in the period l
Ft H becomes a random variable ,

l
k tX . This variable follows a binomial 

distribution in which the number of events corresponds to the number of finished units 

of product that are assembled on line l during a review period T, and the probability of 

the event occurrence is the coefficient l
kc of the PBOM.

, , ,
| |

[ ]
i ik ik

l l l l
i ik F i ik F

l l
i t L ik ikk t k t

l H H

GR a MPS a X

E E

(2)

1
If component i is required by several alternative modules on the workstation with the 

same coefficient ika and for the same period, a fictitious module k , which regroups that 

subset of alternative modules, is required. The coefficient of planning BOM for this 

fictitious module is the sum of the coefficients of modules included in this subset. This 

module allows our approach to be generalized by considering the commonality of 

components used by several alternative modules in the same assembly line.



Optimal stock-out risk for a component mounted on several assembly lines in the case of emergency supplies 4

This generalization is essential to plan the production of remote assembly lines 

dedicated to the mass production of diversified products with an MRP approach. The 

planned order itPO calculated at the beginning of period t and delivered at the 

beginning of period it L equals the sum of a specific requirement for that period it L

generated by the part of the MPS within the frozen horizon 
,

( )
ik

l
i

l
ik k t

l k

a MPS

E

and the difference between an order-up-to level , ii t LR and the projected available 

inventory during decision-making (cf. equation (3)). The projected available inventory 

equals the one-hand balance itOHB , which is the physical stock at the beginning of

period t , increased by the planning orders that will be delivered before the end of the 

lead-time period

1

,
0

i

i

h L

i t L h
h

PO and decreased by the requirements

1

,
0 |

i

ik
l l

i ik G

h L
l

ik k t h
h H h

a MPS

E

to deliver before the end of this period.

,,
[

iik
l

i

l
it ik i t L itk t

l k

PO a MPS R OHB

E

1 1

, ,
0 0 |

]
i i

i ik
l l

i ik G

h L h L
l

i t L h ik k t h
h h H h

PO a MPS

E

(3)

The order-up-to-level , ii t LR is the fractile associated with a predefined stock-

out risk for the random variable , ii t LY that corresponds to a weighted sum of random 

variables following a binomial distribution (cf. equation (4)).

1

, ,
0 |

i

i ik
l l

i ik F

h L
l

i t L ik k t h
l h H h

Y a X

E

(4)

In the steady state, as characterized by the stability of the PBOMs, the , ii t LY

variable becomes iY , and , ii t LR is replaced becomes iR .

1

0 |

i

l l
i ik F

h L
l

i ik k
l h H h

Y a X

E

(5)

Subsequently, we conduct our investigation under steady state conditions to 

simplify the formulation. In all cases, this random variable, which serves as a reference 

to determine the order-up-to-level, is a weighted sum of binomial random variables 
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whose distribution function is straightforward to determine using the Monte Carlo 

method. Expression (6) offers a generic formulation
2

of the random variable iY .

( , )i j j j
j

Y w n pB (6)

When the conditions of approximation by a normal distribution are satisfied for 

each binomial distribution, the random variable iY can be approximated by a normal 

distribution.

, (1 )i i j j j i j j j j

j j

Y n p n p pw wN (7) 

In the case of mass production, this approximation is generally possible for 

describing the MPS stochastic requirement of an alternative module beyond the frozen 

horizon, thereby allowing a normal approximation for the stochastic requirement of 

component i pulled by the stochastic requirements of alternative modules.

2.2. Costs to consider for the determination of an optimal stock-out risk in the 

context of emergency supplies

In the studied context, a stock-out at any plant of the SC triggers an emergency 

procedure that prevents production stoppages. The emergency procedure assumes that 

the supplier can mobilize additional resources to promptly produce the missing units 

and that the lead-time can be shortened to deliver the missing quantities more rapidly 

than a normal delivery. Mobilizing an emergency procedure at a given level of the SC 

prevents stock-out propagation downstream in the SC.

Emergency supplies of the missing units can be analyzed in the context of an 

order-up-to-level policy that is characterized by an order-up-to-level iR designed to 

cope with random demand according to a stock-out probability i . This policy generates 

two types of costs: costs directly incurred by the emergency supply to avoid stoppages 

and costs incurred by the unused units when the order is delivered that result from using 

safety stock.

Emergency supply costs: an emergency supply may or may not generate a fixed cost 

iFc that is independent of the number of missing units. This cost may correspond to 

the payment of a special transport (charter a plane, for example) and/or the launch of 

exceptional production (set-up cost). It is possible to introduce a capacity W,

expressed as the maximum number of components i to carry in an emergency

transport, to yield the possibility of requesting additional emergency transports to 

satisfy an abnormally important shortage; the same fixed cost is assumed to be 

supported, although this hypothesis may be changed easily. An emergency supply 

2
The notations used in this formulation have no physical significance. They are used to 

obtain a generic mathematical expression for iY .
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can also generate an additional variable cost 
iVc per missing unit. This cost can be 

the unit transportation cost of a logistics provider that specializes in rapid transit

and/or an increase in the direct variable production cost of a missing unit (because 

of overtime, for example).

Holding costs: if no stock-out occurs at the end of the review period and prior to the 

receipt of a new delivery, the residual stock generates a holding cost. Each 

component unit i held during the review period T generates a periodic holding cost

ip , which is the multiplication of an annual unitary holding cost i by the duration 

T in years.

The amount of these charges depends on the order-up-to level iR . The 

minimization of the global cost of the procurement policy independently for each 

component i defines the optimal order-up-to level *
iR associated with the optimal 

stock-out probability * *P( )i iX R . The optimal stock-out risk is not necessarily

identical for all of the components.

This type of inventory problem can be considered a variant of the newsvendor 

problem, which introduces, in addition to the “traditional” shortage cost, a lump-sum 

cost independent of the importance of the shortage in the case of a stock-out. This 

problem was approached by Wagner (1975) with a restrictive formulation (no 

proportional shortage cost). Hill et al. (1989) are interested in the management of spare 

parts for equipment that reach the end of their life cycle with a mono-period model that 

includes only a lump-sum cost.

The multi-period supplying policies "S, s", based on an order-up-to level S and 

an order point s, incorporate an ordering cost in addition to the holding and stock-out 

costs in the economic function to minimize. Such models are often based on a stochastic 

dynamic programming to define optimal policies in the steady state (Naddor, 1966) or 

within a given horizon. In the context of these models, Bel and Hamidi-Noori (1982) 

use an approximate formulation to resolve the periodic problem of the supply of foreign 

currencies in a banking agency. Aneja and Noori (1987) propose an "S, s" supply model 

by considering a single product multi-period inventory problem for which the penalty 

cost is twofold: a lump-sum portion independent of the shortage size and a portion 

which is linearly proportional to the shortage size. This approach was generalized by 

Benkherouf and Sethi (2010).

The problem studied here is characterized by a periodic decision, independent 

from those conducted previously. Stochastic dynamic programming is inappropriate for 

modeling that issue. Our bibliographic investigations did not enable us to find models 

addressing emergency supply close to the type of emergency supply that concerns us.

The available formulations differ in particular respects from the formulation suggested 

in this article.

3. Determination and implementation of the optimal emergency supply policy

After reviewing the analytical formulation of the problem and highlighting the 

relationship that characterizes the optimal policy in different cost contexts (§ 3.1), we 

introduce the condition of dominance of an emergency policy based on fixed shortage 

cost versus an emergency policy based on proportional shortage cost (§ 3.2). This issue 

is encountered when decision makers must choose between these alternatives. We end 

this section with numerical examples that applies the found analytical solution (§ 3.3).
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3.1. Emergency supply model and optimal solution

The cost function to minimize C( )iR , defined over the review period T , is the sum of a 

mathematical expectation of the holding cost CH( )iR and a mathematical expectation 

of a stock-out cost CS( )iR . We use a discrete formulation of the problem (equations 9

to 11) followed by a continuous formulation.

C( ) CH( ) CS( )i i iR R R (8)

The first term CH( )iR is the product of the periodic holding cost of one unit of 

component i that is held during one review period and the mathematical expectation of 

the remaining stock at the end of this period. The remaining stock level depends on the

order-up-to level iR and the random demand iY of component i .

1
CH( ) ( ) P( )

i i
i i i i i iy R

R p R y Y y (9)

The second term CS( )iR in equation (8) depends on the order-up-to level iR and the 

random demand iY . It involves the fixed and variable costs identified previously. The 

formulation CS( )iR is given by equation (10).

1 0
CS( ) ( ) P( ) P( 1 )

i ii i
i V i i i i F i iy R u

R c y R Y y c Y R u W (10)

The first part of this cost, i.e.,
1
( ) P( )

i i i
V i i i iy R

c y R Y y , corresponds to the 

mathematical expectation of the additional variable costs generated by the expected 

stock-out amount.

The second part of this cost, i.e.,
0
P( 1 )

iF i iu
c Y R u W , is the mathematical 

expectation of a fixed cost. The capacity constraint of the emergency transport 

makes this cost dependent on the number of missing units. If the unit transportation

capacity W is important (compared with the average demand), then the probability 

P( 1)i iY R W of the requirement for a second emergency transport can be 

neglected. If W is low, and the probability P( 1)i iY R of using an emergency 

transport is low, then the probability P( 1)i iY R W is lower and may be 

neglected. Thereafter, we will privilege the case in which the possibility of requiring

more than one emergency transport at the end of any review period is highly 

improbable; then, the second part of this shortage cost becomes P( 1)
iF i ic Y R .

The cost function to minimize is thus given by equation (11).

1 1
C( ) ( ) P( ) ( ) P( )

ii i i i
i i i i i i V i i i iy R y R

R p R y Y y c y R Y y

0
P( 1 )

iF i iu
c Y R u W (11)

In the continuous case, (9) to (11) becomes (12) to (14).
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0

CH( ) ( ) ( )
iR

i i i i i iR p R y f y dy (12)

0
CS( ) ( ) ( ) P( 1 )

i i

i

i V i i i i F i iu
R

R c y R f y dy c Y R u W (13)

0
0

C( ) ( ) ( ) ( ) ( ) P( 1 )
i

i i

i

R

i i i i i i V i i i i F i iu
R

R p R y f y dy c y R f y dy c Y R u W (14)

We seek to determine the stock-out risk *
i associated with the order-up-to level 

*
iR that minimizes the expected total cost C( )iR .

In the discrete case, the two cost functions are monotone (increasing for CP( )iR

and decreasing for CS( ))iR , with *
iR satisfying the system of inequalities (15).

* *

* *

C( ) C( 1) 0

C( ) C( 1) 0

i i

i i

R R

R R
(15)

The determination of *
iR and thus of *

i is achieved through the study of the 

function C( ) C( 1)i iR R . After development and replacement, we obtain relation (16)

if more than one emergency transport is possible, and we obtain relation (17) otherwise.

1
C( ) C( 1) ( ) P( 1) P( 1 )

i ii i i V i i i F i iu
R R p c p Y R c Y R u W (16)

C( ) C( 1) ( ) P( 1) P( 1)
i ii i i V i i i F i iR R p c p Y R c Y R (17)

In the continuous case, the optimum is defined by
C( ) / 0i id R dR

. Then, if the 

use of more than one emergency transport capacity is considered, we obtain the relation

(18). If this situation is regarded as highly improbable, then the relation (19) must be 

considered.

* * *

0
P( ) P( ) ( ) 0

i ii i i V i i F iu
p Y R c Y R c f R u W (18)

* * *P( ) P( ) ( ) 0
i ii i i V i i F ip Y R c Y R c f R (19)

Equations 16 and 18 may be used to calculate the optimal solution for any 

problem, provided that the distribution of iY
is known. Thereafter, we will use 

equations (17) and (19), considering that the possibility of requiring more than one 

emergency transport capacity is highly improbable (for the reasons listed above). We

now distinguish three cases according to the values assumed by
iFc and iVc .
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3.1.1 Case 1: variable emergency supply cost ( 0)
iFc

The use of equations 17 and 19 leads to the classical formulation of the newsvendor 

problem in which the optimal stock-out risk value is given by (20) in the discrete case 

and (21) in the continuous case.

P 1 P

i

i
i i i i

V i

p
Y R Y R

c p
(20)

* 1

( / ) 1
i i

i
i

V i V i

p

c p c p
(21)

With a unit purchase cost
iuc , the holding cost i ip cu T depends on the

parameters and T that are shared by the other part of the supply. Then, the optimal 

stock-out probability *
i depends primarily on the relative cost structure /

i iV uc c , as

illustrated by Figure 1 (this figure and the following ones are drawn to illustrate a

numerical example). The order-up-to level *
iR is the fractile associated with *

i . The 

inverse functions of the major probability distributions are available in spreadsheet 

applications for continuous and discrete distributions.

Figure 1 : *
i as a function of 

i iV uc c , with 0
iFc , weekT 1 and 15%

3.1.2 Case 2: fixed emergency supply cost ( 0)
iVc

In this case, (17) is replaced by (22).

C( ) C( 1) P( 1) P( 1)
ii i F i i i i iR R c Y R p Y R (22)
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The optimality is reached when the relation (23) is satisfied.

* *

* *

P( 1) P( )

P( ) P( 1)
i

i i i i i

Fi i i i

Y R p Y R

cY R Y R
(23)

In the continuous case (equation (19)), we obtain the relation (24) in which f is 

the probability density function of the random variable representing the demand. We

observe that if the density function is symmetrical, then the first member of equation 

(24) corresponds to a hazard function
3
.

* *( ) P( )
ii i i i Ff R Y R p c (24)

Whether we are in a discrete case or in a continuous case of a normal 

distribution, the numerical determination of the optimal solution is relatively simple.

When the demand iY is a weighted sum of binomial distributions, the solution can be 

obtained using the Monte Carlo method. When a normal approximation of iY is 

possible, then the resolution becomes considerably simpler with an abacus using a

standardized normal distribution. With ( , )
i ii Y YY N and

/ (0,1)
i ii i Y YU Y N , the relation (24) can be replaced by the equation (25), 

after a permutation of numerator and denominator in which *
iu equals *( )

i ii Y YR ,

and is the cumulative distribution function of the standardized normal distribution.

*

*

( ) 1 1
. .

. . . .( )

i i i

i i i

F F Fi

i Y i Y i Yi

c c cu

p T cu Tf u
(25)

The second member of equation (25) decomposes the factors that influence the 

optimal solution. The tabulation of the hazard function allows the finding of *
iu and *

i .

For given values of and T, the abacus of Figure 2 yields *
i for different values of 

i iu Fc c and 
iY .

3
If the density function is symmetrical to the mean, as it is for the Normal Distribution, 

P( ) P( 2 )i i i iiY R Y Y R , then ( ) 2( )i iif R Y Rf , and ( ) / P( )i i if R Y R

(2 ) / P( 2 )i i i iif Y R Y Y R , which is the definition of the hazard distribution.
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Figure 2 : *
i as a function of 

i iF uc c , with 0
iVc , weekT 1 and 15% .

3.1.3. Case 3: variable and fixed emergency costs ( 0 0
i iV Fc and c )

In the discrete case, the equation (17) cannot be simplified. The optimal solution can be 

reached quickly using a dichotomy approach.

In the continuous case, the solution given by equation (19) can be simplified if 

an approximation of the demand iY by a normal distribution is possible. Then, the 

optimal solution is given by equation (26).

* *

* *

( ) ( )
( )

1 ( ) 1 ( )

i

i

i i

Vi i i
Y

F Fi i

cf u cu u
T

c cu u
(26)

For given values of , T and
iY , areas representing *

i as a function of
i iF uc c and 

i iF Vc c can be drawn, as shown by Figure 3.
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Figure 3: *
i as a function of 

i iF uc c and 
i iF Vc c , with weekT 1 , 15% and 

123.84
iY .

3.2. The choice between emergency supply systems

Of the three cases of emergency supply, the last one is the least common. Most often, a 

company must select one of the first two policies.

In the variable cost policy ( 0
iFc ), an agreement is settled with a company 

specializing in international express freight, with a guarantee of a short delivery 

time and a constant transportation cost 
iVc per component to deliver.

In the fixed cost policy ( 0
iVc ), a mean of emergency freight transportation (plane, 

truck), which is entirely dedicated to emergency transportation, is used. Its cost 
iFc

does not depend on the number of transported units, if the unit transportation

capacity is sufficiently large or the shortage risk is low (as discussed previously).

We propose a simple rule to help managers determine the best option when 

confronted with these two possibilities for emergency supply.

We suppose that the unit purchase cost icu of the component, the annual 

holding rate , and the duration T of the review period are known. For a given order-

up-to level iR , the expectation of the periodic holding cost CH( )iR is identical for both

policies. Let us reformulate the expected periodic cost.
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The expected periodic cost 1C ( , )
ii VR c of the variable cost policy depends on the 

variable cost 
iVc and can be derived from equation (17) and (19), with 0

iFc (cf. 

equation (27)).

1 1C ( , ) CH( ) CS ( , )

CH( ) ( ) P( ) discrete case

CH( ) ( ) ( ) continuous case

i i

i i i

i
i

i V i i V

i V i i i iy R

i V i i i iR

R c R R c

R c y R Y y

R c y R f y dy

(27)

Note that 1 1C ( , ) C ( , )
i i i iV V i V i Vc c R c R c .

Similarly, the expected periodic cost 2C ( , )
ii FR c of the fixed cost policy depends on

the fixed and is given by equation (28).

2 2C ( , ) CH( ) CS ( , ) CH( ) P( )
i i ii F i i F i F i iR c R R c R c Y R (28)

Note that 1 1C ( , ) C ( , )
i i i iF F i F i Fc c R c R c .

Two sufficient conditions of dominance can be proved. The conditions permit

choosing between the two emergency policies, in most situations, assuming that such a

choice is possible.

Let us start with the optimal policy found for the fixed cost policy (case 2) 

characterized by *
2 .iR We introduce 

iVc the variable cost that yields, in case 1, an 

identical stock-out cost *
1 2CS ( ,iR

*
2 2) CS ( , )

i iV i Fc R c and thus an identical periodic 

total cost for the two policies, thus yielding *
2

*
2( ) ( )

i
i

V i i i iR
c y R f y dy

*
2P( )

iF i ic Y R , with a unique positive value 
iVc . Then,

*
2

* *
2 2P( ) / ( ) ( )

i i
i

V F i i i i i iR
c c Y R y R f y dy . If iY is normally distributed, with 

* *
2 2( )

i ii i Y Yu R , and knowing that

( ) ( ) ( ) ( )
i

i i i i i i i iR
y R f y dy f u u P u u according to Hadley & Whitin 

(1961), the definition of 
iVc is given by equation (29).

* * *
2 2 2/ ( ) P( )

i iV F i i i ic c f u U u u (29)

With * *
1 2 2 2C ( , ) C ( , )

i ii V i FR c R c , and 1 1C ( , ) C ( , )
i i i iV V i V i Vc c R c R c , it can 

be deduced that * *
1 2 1 2C ( , ) C ( , )

i i i iV V i V i Vc c R c R c . The variable cost policy

is more efficient than the fixed cost policy if 
i iV Vc c . A curve, linking all 

possible values of 
iFc with the corresponding values 

iVc , can be drawn for 



Optimal stock-out risk for a component mounted on several assembly lines in the case of emergency supplies 14

decision-making. This curve delimits the range of 
iVc for which the variable 

cost policy is preferred to the fixed cost policy.

Now, let us start from the optimal policy of the variable cost policy (case 1)

characterized by *
1 .iR We introduce 

iFc as the fixed cost that yields, in case 2, an 

identical stock-out cost *
2 1CS ( ,iR

*
1 1) CS ( , )

i iF i Vc R c and thus an identical periodic 

total cost for the two policies, thus yielding *
1P( )

iF i ic Y R

*
1

*
1( ) ( )

i
i

V i i i iR
c y R f y dy , with a unique positive value 

iFc . Then,

*
1

*
1( ) ( ) / P( )

i i
i

F V i i i i i iR
c c y R f y dy Y R . If iY is normally distributed, then

iFc is 

given by equation (30)

* * *
1 1 1( ) / P( )

i iF V i i i ic c f u u u u (30)

Given * *
2 1 1 1C ( , ) C ( , )

i ii F i VR c R c , and 1 1C ( , ) C ( , )
i i i iF F i F i Fc c R c R c , it 

can be deduced that 2 2C ( , ) C ( , )
i i i iF F i F i Fc c R c R c . The fixed cost policy

is more efficient than the variable cost policy if 
i iF Fc c . A curve, linking all 

possible values of 
iVc with the corresponding values of 

iFc , can be drawn for 

decision-making. This curve delimits the range of 
iFc for which the fixed cost 

policy is preferred. 

Two rules, which address most cases, can be formulated for choosing between 

the two emergency transport policies without comparing overall costs:

Rule 1: Policy 1 (variable cost of emergency transport) is better than Policy 2 (fixed 

cost of emergency transport) if
i iV Vc c or if / /

i i i iV u V uc c c c .

Rule 2: Policy 2 (fixed cost of emergency transport) is better than Policy 1 if

i iF Fc c or / /
i i i iF u F uc c c c .

Two curves are drawn in Figure 4, the first curve with 
iV ic cu as a function of

iF ic cu and the second curve with 
iF ic cu as a function of

iV ic cu . These two curves 

are nearly mixed up. Two enlargements are conducted to highlight each curve. Any 

point whose coordinates ( /
i iF uc c , /

i iV uc c ) are “below” the upper curve respects Rule 1,

not Rule 2. In that case, Policy 1 (variable cost of emergency transport) is better than 

Policy 2. Conversely, any point whose coordinates are “above” the lower curves

respects Rule 2, not Rule 1. In that case, Policy 2 (fixed cost of emergency transport) is 

better than Policy 1. We can add three comments.

This dominance depends also on the variance of iY , observing that the review 

period T and the holding rate can be considered as determined, once for all.
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Therefore, a 3D representation can be used for analyzing the influence of that last 

factor on the relative dominance of those two policies.

This dominance does not depend on the ratio /
i iF Vc c , as 

iuc contributes to the 

periodic cost C( )iR through the holding cost CS( )iR .

Figure 4: Dominance analysis of emergency transport policies: variable cost (Policy 1) 

versus fixed cost policy (Policy 2) with 0
iVc , weekT 1 , 15% and iY

(6086.4, 123.84)N

3.3 Numerical example

Let us now illustrate numerically the calculation of the optimal stock-out risk *
i for a 
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component i in the first two cases mentioned above.

We use the numerical example presented in (Giard and Sali, 2012) that considers 

the procurement of piston crowns for automotive assembly plants. The application of 

the MRP mechanism, as discussed in §2, provides a demand iY for this component,

following a weighted sum of binomial random variables.

4 (960,0.2) 4 (1840,0.54) 4 (960,0.2) 6 (960,0.1)iY B B B B

The normal approximation of iY yields the formulation (31).

(6086.4,123.84)iY N (31)

The costs used here are fictitious: the unit purchase cost is 10 €
iuc ; the annual 

holding rate is 15% and a periodic review T of one week lead to a weekly unit 

holding cost of 0.029 €ip . The fixed cost for an emergency transport is 1000 €
iFc

and the variable cost is 7 €
iVc . If emergency transport is triggered, it is assumed that, 

a second transport is not needed. Those parameters were used in the establishment of 

figures 1 to 4. First, we illustrate the three policies of emergency supply. Then, we

analyze (§3.3.4) the dominance of emergency transport policies.

3.3.1. Case 1: variable emergency supply cost ( 0)
iFc

When no fixed cost is considered, the calculation of *
i using the relation (21) yields an 

optimal risk 
*
1 0.41%i , an order-up to level 

*
1 6413iR and a safety stock 

*
1SS( ) 327iR . A simple reading of the abacus of the Figure 1 yields this result.

3.3.2. Case 2: fixed emergency supply cost ( 0)
iVc

In the second case, the use of the equation (25) yields a risk 
*
2 0,1115%i , which 

corresponds to an order-up-to level 
*
2 6467iR and a safety stock 

*
2SS( ) 380iR .

Figure 2 does not include a curve for 123,84
iY . A linear interpolation 

between the curves drawn for 100
iY and 150

iY yields a risk whose value is 

approximately 0.11%.

3.3.3. Case 3: variable and fixed emergency costs ( 0 0
i iV Fc and c )

A dichotomy search using (26) yields
* 0,01%i . This result can be found 

approximately by a direct reading of Figure 3.

3.3.4. Dominance analysis of emergency supplies

With 1000 €
iFc ( / 100

i iF uc c ), we obtain *
2 0,11%i and *

2 6467iR . To obtain 

the same shortage cost in the variable cost policy with the same order-up to level, a 
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variable cost 29,03 €
ivc must be used for the emergency transport. Given

i iV Vc c ,

and * *
1 1 2 2C ( , ) C ( , )

i ii V i FR c R c we obtain * *
1 1 2 2C ( ,7) C ( ,1000)i iR R , which supports the 

economic superiority of the variable cost policy.

If we plot the point of coordinates “ 1000
iFc and 7

iVc ” in Figure 4, we 

observe that it is “above” the lower curves. We conclude that the variable cost policy is 

dominant.

4. Conclusions

We demonstrated how to determine the optimal stock-out risk in the case of an 

emergency supply in the upstream portion of a supply chain dedicated to the mass 

production of highly diversified products. We addressed cases of emergency supply in 

which the stock-out cost is the sum of a fixed cost and a variable cost, depending on the 

amount of components demanded. Analytical solutions were established and illustrated 

with numerical examples using a normal approximation of the demand relevant to the 

studied case. The demonstrated approach can be extended to any supply chain for which

the MPS requirement beyond the frozen horizon can be modeled with probability 

distributions. For an emergency supply, a tactical choice is often possible between a 

solution in which the transportation cost is proportional to the number of carried units 

and a solution characterized by a fixed cost. In this study, the foundations of the 

dominance analysis were established and illustrated.

5 Appendices

5.1 Appendix 1: List of the used parameters and variables

i Index of a component of level n in the BOM

k Index of a component of level 0 in the (all components of level 0 are alternative modules)

t Index of a period used in the MRP

l Index of a final assembly line

l
iE

Subset of alternative modules that use component i in assembly line l

l
FH Frozen horizon of assembly line l

l
PH Planning horizon of assembly line l

ika
Number of units of component i, included in module k that belongs to the subset 

l
iE of 

alternative modules

iL Lead-time of component i

lN Periodic production on line l

l
kc Coefficient of the PBOM associated with the alternative module k mounted on the line l

T Length of the review period used in the MRP

ik Lag between the period t of the production launch of reference unit i and the period ikt of 

the requirements of the module k in the MPS
l
ktMPS Requirement of the module k for the period t t in the Master Production Schedule of the 

assembly line l

,
l
k tX Stochastic requirement of the alternative module k for the period

l
Ft H

itGR Gross Requirement of a reference i (level n of the BOM) at period t



Optimal stock-out risk for a component mounted on several assembly lines in the case of emergency supplies 18

itNR Net Requirement of component i for the period t

itPO Planned Order of component i at the beginning of the period t

, ii t LR Order-up-to level of component i for the period it L

iR Order-up-to level of component i in the steady state

i
Probability of a stock-out of component i, with an order-up-to level iR

, ii t LY Random demand of component i from the period t to the period it L

ip Holding cost of component i between two consecutive deliveries

iuc Unit production cost of component i

i
Annual holding cost of component i

Annual holding rate

C( )iR Expectation of the periodic cost associated with the order-up-to level iR

CH( )iR Expectation of the holding periodic cost associated with the order-up-to level iR

CS( )iR Expectation of the shortage periodic cost associated with the order-up-to level iR

iVc Unit variable cost of an emergency supply of component i

iFc Unit variable cost of an emergency supply of component i

iVc Unit variable emergency cost that yields 1CS ( ,Ri 2) CS ( , )
i i

V Fc R ci

iFc Fixed emergency cost that yields CS ( ,2 Ri ) CS ( , )1
i i

F Vc R ci

W Capacity of the charter used in the emergency transport of component i expressed as the 

number of units of component i

5.2 Appendix 2: Conditions of approximation of a binomial distribution by a 

normal distribution

Several conditions of approximation of the Binomial distribution ( , )n pB by the 

Normal distribution ( , (1 ))n p n p pN are given in statistics textbooks. This 

analysis is based on the condition 
1 1

0,3
1

p p

p p n
from which the relation 

used to draw the limits values of p depending on n can be established, as shown in 

Figure 5. In our case, n is the number of units produced by the assembly line during the 

period used to define the MPS, and p is the probability of using a given alternative 

module in a given station of the line.
2 2

2 2 2 2

2 2
2 2 2 2

2 0 3 2 0 3 4 2 0 3 2 0 3 4

2 2

2 0 3 2 0 3 4 2 0 3 2 0 3 4

1 1
2 2

n n n n

p

n n n n

, , , ,

, , , ,
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Figure 5: Conditions of approximation of a binomial distribution by a normal 

distribution
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