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Abstract

This note discusses the properties of the asymmetric part of an outrank-
ing relation a la ELECTRE. Such relations have been used in the pseudo-
disjunctive version of ELECTRE TRI-B. We show that they have properties
that are somewhat different from the ones of outranking relations. Indeed,
contrary to outranking relations, they allow to have at the same time veto
and bonus effects. We suggest that this explains the difficulty in analyz-
ing the properties of the pseudo-disjunctive version of ELECTRE TRI-B
and the complexity of the elicitation methods of its parameters. We give
conditions that characterize such relations.
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1 Introduction

Most outranking methods, including the well known ELECTRE methods (Roy,
1968; Roy and Bertier, 1973), compare alternatives evaluated on several attributes
using the concordance |/ non-discordance principle. It leads to accepting the propo-
sition that an alternative is “superior” to another if the coalition of attributes
supporting it is “sufficiently important” (concordance condition) and there is no
attribute that “strongly rejects” it (non-discordance condition). The fact that an
alternative is “superior” to another means at least two different things. In the
ELECTRE methods, superior means “not worse”. Such methods aim at build-
ing a reflerive preference relation that is interpreted as an “at least as good as”
relation. In other methods, like the TACTIC method (Vansnick, 1986), superior
means “strictly better than”. Such methods build an asymmetric relation that is
interpreted as strict preference.

We have studied, from an axiomatic point of view, both reflexive outranking
relations (Bouyssou and Pirlot, 2005a, 2007, 2009) and asymmetric outranking
relations (Bouyssou and Pirlot, 2002b, 2012). We have also recently unified and
generalized the analysis of both cases in Bouyssou and Pirlot (2013). For other ap-
proaches, we refer to Greco, Matarazzo, and Stowinski (2001) and Dubois, Fargier,
Perny, and Prade (2003).

These works leave the following problem open. What are the properties of the
asymmetric part of a reflexive outranking relation? This question is not only of
theoretical interest. Indeed, the pseudo-disjunctive version (also known as “op-
timistic”, we use here the terminology of Almeida-Dias, Figueira, and Roy, 2010
and Roy, 2002) of ELECTRE TRI-B (Roy and Bouyssou, 1993, Ch. 6) makes
use of such a relation, contrary to the pseudo-conjunctive version (also known as
“pessimistic”) that uses a reflexive outranking relation. We will show that the
asymmetric part of a reflexive outranking relation is a more complex object than
an outranking relation since it allows both veto and bonus effects. The idea of
veto is classical in outranking methods and refers to a deleted preference due to an
excessively large negative difference of performance on some criterion. The idea
of bonus is more uncommon. It refers to a preference induced by a large positive
difference of performance on some criterion. This idea was already introduced
in Bouyssou and Pirlot (2013). We will use it here in a slightly different manner:
while the bonus effects in Bouyssou and Pirlot (2013) were unconditional, the ones
used here will only occur in specific cases.

The rest of the paper is organized as follows. Section 2 introduces our notation
and definitions concerning binary relations, product sets and outranking relations.
Section 3 presents background material on traces and our previous characteriza-
tions of outranking relations. Section 4 presents our main results. A final section
concludes and discusses our findings.



2 Definitions and notation

2.1 Binary relations

A preference relation on a set X is in general denoted by R. Omitting obvious
quantifications, we say that a binary relation R on X is reflexive if a R a. It is
complete if a R b or b R a. It is antisymmetric if [a R b and bR a] = a =10b. It is
asymmetric if a R b = Not[b R a]. It is transitive if [a Rband bR ] = a R c.
It is Ferrers if [a R band ¢ R d] = [a R dor ¢ R b]. It is semi-transitive if
[aRband bR ¢]=[aR dor dR ¢|.

A weak order is a complete transitive relation. A semiorder is a reflexive, Fer-
rers and semi-transitive relation. As first observed by Luce (1956), any semiorder
R on X induces a weak order T(R) on X that is defined, for all a,b € X,

aTR)bifVee X, [bRc=aRc] and [c R a= cRb|. (1)

Conversely, if R is reflexive and there is a weak order 7" such that, for all a,b € X,
aTb=Vee X,[bRc=aRc and [¢c R a = ¢ R b, then R is a semiorder.

The asymmetric (resp. symmetric) part of R is the binary relation R® (resp.
R7) such that, for all a,b € X a R* b if [a R b and Not[b R a]] (resp. a R? b if
l[aRband bR al).

2.2 Product sets

The set of alternatives will be denoted by X. As is usual in conjoint measurement
this set will be identified with the Cartesian product [[;_, X; of n > 2 sets X;. The
set X; gathers all possible evaluations that an alternative can have on attribute .
The sets X; are not assumed to be sets of numbers, not even to be ordered sets.
The set {1,2,...,n} of all attributes will be denoted by N.

For any nonempty subset J of the set of attributes N, we denote by X
(resp. X_;) the set [[,c; Xi (vesp. [];cp s Xi). With customary abuse of no-
tation, (xs,y_s) will denote the element w € X such that w; = z; if i € J and
w; = y; otherwise. We sometimes omit braces around sets. For instance, when
J = {i} we write X_; and (z;,y_;).

If R is a binary relation on X, we say that attribute ¢« € N is influential
for R if there are z;,y;, z;,w; € X; and z_;,y_; € X_; such that (z;,z_;) R
(yi,y—i) and Not[(z;,z—;) R (w;,y—;)] and degenerate otherwise. A degenerate
attribute has no influence whatsoever on the comparison of the elements of X
and may be suppressed from N. As in Bouyssou and Pirlot (2005a), in order to
avoid unnecessary minor complications, we suppose henceforth that all attributes
in N are influential for R. Our results in Section 4 will use the slightly stronger



hypothesis stating that all attributes are influential for the asymmetric part of R
(see Remark 26).

2.3 Outranking relations

The following definition of an outranking relation is taken from Bouyssou and
Pirlot (2013). Notice that it is silent about the fact that the relation R is reflexive
or asymmetric.

Definition 1 (Concordance-discordance relations)
Let R be a binary relation on X = [[;_, X;. We say that R is a concordance-
discordance relation (CDR) if there are:

1. a complete binary relation S; on each X; (i =1,2,...,n) (with asymmetric
part P; and symmetric part I;),

2. an asymmetric binary relation V; on each X; (i = 1,2,...,n) such that
Vi C P,

3. a binary relation > between subsets of N having N for union that is mono-
tonic w.r.t. inclusion, i.e., for all A,B,C;,D C N with AUB = N and
CuD =N,

[A>B,CD>ABDOD|=CP>D, (2)

such that, for all z,y € X,
t Ry [Sx,yl > Sy,z] and V [y, z] = 2], (3)

where S [x,yl ={i € N :2; S; y;} and V]x,yl ={i € N : x; V; y;}. We say that
(>, 5;, Vi) is a representation of R as a CDR.

A concordance relation (CR) is a CDR having a representation in which all
relations V; are empty.

A CDR with attribute transitivity (CDR-AT) is a CDR for which, for alli € N,
e S; is a semiorder
o V, is the asymmetric part of a semiorder U;

e (S;,U;) form a homogeneous chain of semiorders, i.e., there is a weak order
T; on X; such that:

v Ty yi = Vo € X, [y Si 2z = 3 Si 2] and [z S5 2 = 2 S; yi), and
Z; E Y; = VZZ' € Xi, [’yl U,L 2 = I U,L Zi] and [Zi Ul T; = Z; Ul yl]

(4)



The asymmetric (resp. symmetric) part of > will be denoted by > (resp. ).
It is easy to show that if I> satisfies (2), the same is true for .

Remark 2
For the case of asymmetric outranking relations Bouyssou and Pirlot (2012) have
introduced the following definition!. Instead of (3) they have stated that

rRy< [Plr,y] > Ply,z] and V [y, z] = 2],

with P; an asymmetric binary relation on X; and >’ a relation between disjoint
subsets of N. This definition is clearly equivalent to the one used above. This is
obvious letting A >’ B < (N '\ B) > (N \ A) and observing that if >’ satisfies (2)
then > also satisfies (2) (and vice versa). .

Remark 3

Observe that, when S; and U; are complete, the existence of a weak order T;
satisfying (4) implies that both S; and U; are semiorders. The above definition
could therefore omit to specify that S; and U; are semiorders. Moreover, it is not
difficult to check that, when S; and U; are complete, the first part of (4) may
equivalently be written as

v Ty = V2 € Xi,[yi Pz = ; Py z) and [ P, v, = 2 Py,
and the second part as
v Ty =Vz € Xy [yi Vizo = Vi z] and [z V; 2, = 2 Vi yil,

where, as before, P; (resp. V;) is the asymmetric part of S; (resp. U;). This will be
useful later. °

The following proposition shows that the above definition is flexible enough to
cover both the case of a reflexive outranking relation a la ELECTRE and the case
of an asymmetric outranking relation a la TACTIC.

Proposition 4 (Bouyssou and Pirlot, 2013, Proposition 8)
If R is a CDR with representation (>, S;,V;), then

1. R is either reflexive or irreflexive. R is reflexive iff N > N. Otherwise, R
1s irreflexive,

2. R is asymmetric iff > is asymmetric.

1 As noted in Bouyssou and Pirlot (2013), this definition also applies to reflexive outranking
relations.



Let us illustrate the flexibility of Definition 1 with two well-known examples.

Example 5 (ELECTRE I, Roy, 1968)

Outranking relations in ELECTRE I are built as follows. Using a real-valued
function u; defined on X;, and a pair of non-negative thresholds pt; and vt;, with
pt; < vt;, we define the semiorders S;" and U;' letting:

z; iy & ui(x) > wiy;) — pti,
z; Uy & wizy) > wi(y;) — vt

(5)

The relation V;' is the asymmetric part of U/, ie., z; Vi’ y; & [x; U y; and
Notly; U/ z]] € wi(x;) > ui(y;) + vty

In ELECTRE I, the outranking relation R is determined using positive weights
w; attached to each attribute and a threshold s (with 1/2 < s < 1), such that, for
all v,y € X,

ZZGS/[Q? y}
ZjeN wj
where S'[x,y] ={i € N : z; S’ y;}, and V'[z,y] = {i € N : z; V' y; }.

It is easy to see that a relation R built with ELECTRE I is a reflexive CDR
(i.e., an R-CDR) with attribute transitivity (i.e., an R-CDR-AT) according to
Definition 1. Indeed, it suffices to take, for all i € N, S; = S;’, V; = V;/, and, for
all A, B € 2V with AUB = N, A> B & (3, wi)/ (X cnwj) > 5. O

Example 6 (TACTIC, Vansnick, 1986)

Outranking relations in TACTIC are built as follows. Using a real-valued function
u; defined on X, and a pair of non-negative thresholds pt; and vt;, with pt; < vt;,
we define the semiorders S; and U;" as in (5). The relation P is defined as the
asymmetric part of S;', i.e., we have z; P y; & [2; Si y; and Not[y; Si’ x;]] &
ui(w;) > u;(y;) +vt;. The relation V;' is the asymmetric part of U/, i.e., x; Vi y; &
[z; U’ y; and Notly; U;' x;]] & ui(z;) > wi(y;) + vt

An outranking relation R is defined letting, for all z,y € X,

TRy<& >sandV[y, x] =@,

TRy & Z w; > p Z wj+ ¢ and V'y,z] = &,

1€EP [z,y] JEP![y,x]

where w; is a positive weight assigned to attribute 7, p is a multiplicative threshold
with p > 1, € is a nonnegative additive threshold, P'[z,y] = {i € N : z; B/ y;}
and V'[x,y] ={i € N : z; V{ y;}.

It is easy to see that a relation R built with TACTIC is an asymmetric CDR
(i.e., an A-CDR) with attribute transitivity (i.e., an A-CDR-AT) according to
Definition 1. Indeed, it suffices to take, for all i € N, S; = S;’, V; = Vi/, and, for
all A, B € 2V such that AUB =N, A> B & Y\ pWi>pY jepay+ € O



3 Background

3.1 Traces

We first recall a few structural definitions taken from Bouyssou and Pirlot (2002a,
2004a,b).

3.1.1 Traces on differences

Our first definition gives conditions under which it is possible to define complete
traces on differences.

Definition 7

We say that R satisfies

(zi,a-3) R (yi,b-4) (zi,c-i) R (yi, d—s)
RC1; if and = or

(Zi, C,Z') R (wi, d,Z) (Z,L', CL,,i) R (U)i, b,i),

(zi;a—i) R (yi,bs) (zi;a—;) R (w3, by)
RC?2; if and = or

(Y, c—i) R (xi,d) (wiy c—i) R (2i,d-i),

for all x;,y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;.
We say that R satisfies RC1 (resp. RC2) if it satisfies RC1; (resp. RC2;) for
alli € N.

Condition RC1; amounts to say that all preference differences (z;,y;) on X;
can be weakly ordered. Condition RC2; establishes a link between opposite dif-
ferences of preferences such as (x;,y;) and (y;,z;). Note that RC2 entails that
R is independent (i.e., that, for all ¢ € N all z;,y; € X; and all a_;,b_; € X_,,
(xiya—;) R (z4,0-;) < (Yisa—i) R (yi, b—;)). Since they will be useful in the sequel,
we recall the precise definition of the weak orders induced on each attribute X; as
well as the main properties linking them to conditions RC'1 and RC2. It is easy
to check that all CDR satisfy conditions RC'1 and RC2.

Definition 8
Let R be a binary relation on a set X =[], X;. We define the binary relations
=% and =t on X? letting, for all x;,v;, z;, w; € X;,

~Il

(zi,y:) Zi (20, w;) &
Va_;,b_; € X_i, [(zi,a—) R (wi,b_;) = (z5,a-;) R (yi,b_:)],

(i, y5) 277 (zi,wi) & [(w5,95) 27 (20, wi) and (wi, 25) 227 (i, 06)] -



These relations allow to give a precise meaning to the comparison of preference
differences on each attribute (see Bouyssou and Pirlot, 2002a, for more detail). By
construction, both relations 7—f and 7 are transitive. The impact of RC'1; and

~Jl ~J1l

RC?2; is to ensure their completeness, as shown below.

Lemma 9 (Bouyssou and Pirlot, 2002a, Lemma 1)
1. RC1; < [ZF is complete],

[for all x;,y;, 2z, w; € X;, Not[(xs,y:) 227 (2, wi)] = (yir ) 225 (wi, 23)],
3. [RC1; and RC2;| < [ is complete].

(2

Traces on differences are well-behaved, as detailed below.

Lemma 10 (Bouyssou and Pirlot, 2005b, Lemma 3.7)
For all x,y € X and all z;,w; € X;,

[(zi,w;) ~F (z4,9;) for alli € N = [z Ry < 2z R w),
[z Ry and (zi,w;) ZF (zi, vi)] = (zi,25) R (wi, y—i),
[z R y and (2, w) 27" (xi,4:)] = (25, 2-) R (wi, y—),
T Ry< 2R w
[(zi,w;) ~* (x4,y;) for all i € N] = < and
[z Ry & 2z R™ w.

3.1.2 Traces on levels

The next definition gives conditions under which it is possible to define complete
traces on the elements of each attribute.

Definition 11

We say that R satisfies

(%', a—i) R (yi, b—i) (Zi, Cl—z‘) R (yu b—i)
ACY; if and = or

(Zia C*i) R (wia d*l) (‘T:ia C*i) R (w’i7 d*i))

(961', CLz') R (yz-, bfi) (xiu af*i) R (wu b*i)
AC2; of and = or

(Ziv C—i) R (wz‘, d—i) (Zi, C—i) R (yi, d—i),

(ZEz‘, a—i) R (?/i, b—i) (5% a—i) R (Zi, b—i)
ACS3; if and = or

(?/i, sz') R (wh dfi) (Zi, sz') R (wi> dfi),



for all x;,y;, zi,w; € X;, all a_;,b_;,c_;,d_; € X_;.

We say that R satisfies AC1 (resp. AC2, AC3) if it satisfies AC1; (resp.
AC2;, AC3;) for alli € N.

These conditions are related to the existence of linear arrangements of the el-
ements of X;. AC1; suggests that the elements of X; can be ordered relatively to
“upward dominance”: if x; “upward dominates” z;, then (z;,c¢_;) R (w;,d_;) en-
tails (z;,c_;) R (w;,d_;). AC2; has a similar interpretation regarding “downward
dominance”. AC3; ensures that the upward and downward dominance orders are
not incompatible. It is easy to check that all CDR-AT satisfy conditions AC1,
AC2, and ACS.

The following gives a precise definition of the upward and downward dominance
relations.

Definition 12
Let R be a binary relation on a set X = [[_, X;. We define the binary relations
=+t >~ and i;t on X; letting, for all x;,y; € X;,

~1 )~

x; tj_ Y; < Va_i - X—iu b e X, [(ym CL_Z‘> Rb= (l’z’, a_i) R b], (6)
Z; i; Y; &= Va € X, b_; € X,i, [CL R (Q?i, b,Z) =aR (yl, b,i)], (7)
w mE oy e x o g and 1 7 v (8)

By definition, =, = and Ej are transitive relations. Conditions AC1;, AC2;

Y~ ) AT

and AC3; ensure that they are complete, as shown below.

Lemma 13 (Bouyssou and Pirlot, 2004a, Lemma 3)
Let R be a binary relation on a set X = [[;_, X;. R satisfies:

1. AC1; & =} is complete,

; 1is complete,

8. AC3; & [Not[z; 2 yil = vi Z; @i & [Notlz; 7 vl = yi 2 @il
4. [AC1;, AC2; and AC3;]| & =F is complete.

~Jl

Traces on levels are also well-behaved, as detailed below.

Lemma 14 (Bouyssou and Pirlot, 2005b, Lemma 3.5)
For allv e N and x,y,z,w € X:

[z Ry, 2 T ] = (z,2-) Ry,
[t Ry, vy Z; wi] = xR (wi,y—i),

8



[z 23 oy T wi] = Ry = (2,2-) R (wi,y-i), and
z R® y= (Zi’x*i) R” (wivyfi%

xRy 2R w, and

+ + ; =
T s ~T ws N
(2~ @iy 7 wi, for alli € N {xRay@zRaw

3.1.3 Relations between traces

Traces on differences and on levels will be of central importance in what follows.
We summarize below the main links between the relations »2F, =3*, »=F, = and
=; below.

Lemma 15 (Bouyssou and Pirlot, 2005b, Lemma 3.8)
For allv € N and all x;,y; € X;,

1oz =F v e [(z,wi) 28 (yi, wsi), for all w; € X3,

2. x i?; Yi < [(wluyl) Nf (wuxz’), for all w; € Xi];

3 x mFy e [(ws,ws) 5 (s, ws), for all w; € X,

4. 6 aiand (2, i) 227 (2i,wi)] = (G, i) 27 (20 wi),
. Wy Zi bioand (i, y:) Z7 (20, wi)] = (3, 45) Z7 (20, wi),
6. [z i 4 and (24, y:) 5 (zi,wi)] = (@i,90) 25 (G wi),
716z wioand (i, ys) 77 (2 wi)] = (2i,y:) Z7 (20,6,
8. i~ 2z and yi ~7 wi] = (i, 1) ~f (21, w3),

9. [x; ~F 2z and yi ~F wi] = (zi,y:) ~5* (2, w5).

Bouyssou and Pirlot (2002a, 2004a,b) have shown how the conditions intro-
duced so far enable to obtain various numerical representations of R even though
it may not be complete or transitive.



3.2 Characterization of outranking relations

3.2.1 Concordance relations

The strategy of Bouyssou and Pirlot (2002b, 2005a, 2007, 2009), first presented
in Bouyssou, Pirlot, and Vincke (1997) and Bouyssou and Pirlot (1999), to char-
acterize outranking relations is to introduce conditions limiting the number of
equivalence classes of 27— and 777*. Indeed, it is easy to see that an outranking
relation generates a relation 7ZF that has at most four equivalence classes. The
first one corresponds to a strict preference. The second one to an indifference.
The third one to a reverse strict preference that is not a veto. The fourth one to a
reverse strict preference that is veto. When this relation is a concordance relation,
the fourth class must be empty. This is the intuition behind the following two
conditions.

Definition 16
We say that R satisfies

(zi,a_;) R (yi, b_i) ) ( (yi,a—i) R (wi,b_;)

and or
MMlz Zf (ZZ', a,i) R (wi, b,Z) = (wi, G,Z’) R (Zi, bfl)
and or

(zi;ci) R (wi, d—y) ) L (i, c-i) R (yi, d-s),

(ri;a_;) R (yi,b_i) ) ( (yi,a_i) R (z5,b_;)

and or
MM2; if (wi,a—;) R (zi,b=) ¢ = (25,0-) R (wi, b_y)
and or

(Yi, c—i) R (w5,d ) ) L (zi,ci) R (wiyd—y),

for all z;,y;, z;,w; € X; and all a_;,b_;,c_;,d_; € X_;.

We say that MM1 (resp. MM2) holds if MM1; (resp. MM?2;) holds for all
1€ N.

MM1; without its second premise s called M1;. MM1; without its second
conclusion is called Majl;. MM1; without both its second premise and its second
conclusion s called UC;.

MM?2; without its second premise is called M2;. MM?2; without its second
conclusion is called Maj2;. MM ?2; without both its second premise and its second
conclusion is called LC;.

MM1; is clearly a weaker condition than both M1; and Majl;. Both M1; and
Maj1; are implied by UC;. Similarly, MM?2; is clearly a weaker condition than
both M2; and Maj2;. Both M2; and Maj2; are implied by LC;.

10



It is not difficult to check that a concordance relation (CR) satisfies UC' and
LC. The need for the weaker conditions introduced above is to ensure that all
conditions remain independent from the conditions used to impose the existence
of complete traces. We have:

Lemma 17 (Bouyssou and Pirlot, 2013, Lemma 41)
The following implications hold, for alli € N:

1. MM1; and RC1; entail M1;,

2. MM1; and RC?2; entail Maj1;,

3. MM?2; and RC2; entail M2;,

4. MM2; and RC1; entail Maj2;.
Under RC1; and RC?2;, we have:

1. MM1; & M1; & Majl; < UC,,

2. MM2;, & M2, & Ma2;, & LC,;.

Moreover we have:

Lemma 18 (Bouyssou and Pirlot, 2013, Lemma 24)
1. If R satisfies RC2;, then R satisfies M 1; <
[for all @, yi, 2, wi € Xy, Not[(yi, i) 27 (s, yi)] = (%4, vi)

~1

2. If R satisfies RC'1;, then R satisfies M2; <
[for all xs,y;, 2, wi € Xy, Not[(ys, x:) Z7 (w5,9:)] = (26, wi) 27 (9, 24)]-

27 (2, wi)],

~1

~J
The above two lemmas show that, in presence of RC'1 and RC2, conditions
MM1 and MM?2 imply that there are only one type of positive differences (corre-
sponding to strict preference) and one type of negative differences (corresponding
to reverse strict preference). This is a characteristic of outranking relations in
which there is no veto, i.e., of concordance relations. We have:

Theorem 19 (Bouyssou and Pirlot, 2013, Theorems 43 & 52)
Let R be a reflexive binary relation on X = [[;_; X;.

1. R is a concordance relation (CR) iff it satisfies RC'1, RC2, MM1 and MM?2.

2. R is a concordance relation with attribute transitivity (CR-AT) iff it satisfies
RC1, RC2, AC1, AC3, MM1, MM?2.

3. In the class of reflexive relations and in the class of asymmetric relations,
conditions RC'1, RC2, AC1, AC3, MM1, MM?2 are independent.

The above result generalizes the ones obtained in Bouyssou and Pirlot (2005a,
2007, 2012).

11



3.2.2 Outranking relations

When veto effect are allowed, there can be two types of negative differences: neg-
ative difference corresponding to a “normal” reverse preference and negative dif-
ferences corresponding to a “large” reverse preference, i.e., a negative difference
acting as a veto. Taking veto effect into account implies relaxing condition MM 2.
This motivates the condition below.

Definition 20
We say that R satisfies

(zi,a—i) R (yi,0-3) )
and (Yiya—i) R (z4,b-;)
(wi,a—;) R (z;,b_;) or
MM 3; Zf and = (Zl’, a,i) R (wi, b,Z) (9)
(Yi,c—i) R (wi,d_;) or
and (ziyc—i) R (wi,d—;),
(zi;e—i) R (wi, f-i) )

for all x;,y;, zi,w; € X; and all a_;,b_;,c_;, d_; , e_;, f_i € X_;.
We say that R satisfies MM 3 if it satisfies MM 3;, for all v € N.

M3, is the same condition as MM3; except that the second premise has been
removed. Maj3; is the same condition as MM 3; except that the second conclusion
has been removed.

Let us observe that MM3; only differs from MM?2; by the adjunction of a
premise, implying that MM 3; is a weakening of MM 2;.

Let us interpret condition M 3;, under the hypothesis that RC'1; holds. As-
suming RC'1; amounts to say that 7} is complete. Hence if the first two premises
of M3; hold and neither the first nor the third conclusion do, then we have
(i, yi) =7 (yi, ;) =1 (2, w;). In these circumstances, the second conclusion can-
not be true, since this would imply that (z;,w;) =I (y;,z;), a contradiction with
(yi, zi) >=7 (zi,w;). Hence, none of the three conclusions holds and M3; can only
be satisfied if it never happens that (z;,e_;) R (w;, f—;). This means that the
ordered pair (z;, w;) represents an unacceptable preference difference, leading to a
veto. We have:

Lemma 21 (Bouyssou and Pirlot, 2013, Lemma 55)
The following implications hold:

1. MM3; and RC2; entail M3;,
2. MM3; and RC1; entail Maj3;,
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3. M3; and RC1; entail Maj3;,

4. Maj3; and RC?2; entail M3;.

Under RC1; and RC?2;, we have:
MM3;, & M3; & Maj3,.

The conditions introduced so far are all what we need to characterize outrank-
ing relations.

Theorem 22 (Bouyssou and Pirlot, 2013, Theorems 57 & 61)
Let R be a binary relation on X = [[;_, X;.

1. The relation R is a CDR iff it satisfies RC'1, RC2, AC1, MM1 and MM 3.

2. The relation R is a CDR-AT iff it satisfies RC1, RC2, AC1, AC2, AC3,
MM1 and MM3.

3. Conditions RC1, RC2, AC1, AC2, AC3, MM1 and MM3 are indepen-
dent in the class of reflexive relations as well as in the class of asymmetric
relations.

The above result generalizes the ones obtained in Bouyssou and Pirlot (2009,
2012).

We now have all the necessary background to study the properties of the asym-
metric part of a reflexive CDR-AT (i.e., is an R-CDR-AT). Indeed, if the CDR-AT
is already asymmetric (i.e., is an A-CDR-AT), there is little point studying its
asymmetric part.

4 The asymmetric part of an outranking relation

4.1 Introduction

Let R be a reflexive CDR (i.e., an R-CDR) with representation (>, S;,V;). Using
the definition of an R-CDR, its asymmetric part, denoted by R?, is such that, for
all z,y € X,

xRy < [r R yand Notly R x|

[S [z, y] & Sly,2] and V [y, ] = 2]
& and
[Not[S [y, z] & S|z, y]] or V [z, y] # 2].
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Such a relation R® is the asymmetric part of an R-CDR. We say that R® is an
AP-R-CDR. If, furthermore, the relation R is an R-CDR-AT, we say that R® is
an AP-R-CDR-AT.

It is easy to see that the above definition can equivalently be written as:

xRy <
[Sx,y] > Sy,z] and V [y, z] = &] or (10)
Slr,y] £ S[y,z] and V[y,2] = @ and V [z,y] # @] . (11)

The first of these conditions is similar to the one defining a CDR. The second
one is more complex. In the asymmetric part of an R-CDR, the relation V; may
play the role of a veto (discarding a pair belonging to the asymmetric part of the
concordance relation) or, on the contrary, play the role of a bonus (transforming
an indifference, w.r.t. the concordance relation, into a strict preference). Note
that the “bonus effect” just described is different from the one at work in the
concordance relations with bonus studied in Bouyssou and Pirlot (2013, Section
4.7). In the latter, a bonus effect shows up and results in a preference as soon
as there is a large enough difference of preference on a single attribute. In the
present case, the bonus effect is conditional: it only shows up in case a pair of
alternatives are indifferent w.r.t. the concordance relation and there is no veto
against preference.

Remark 23

The relations we study in this paper have been defined in an indirect way, namely,
as the asymmetric part of a concordance-discordance relation. A direct definition
of such relations can easily be obtained from Definition 1. We just have to specify

that the relation R is asymmetric and to substitute the condition (3), for having
x Ry, by conditions (10) and (11). o

Remark 24
It is easy to see that there are two simple cases in which the asymmetric part of a
reflexive CDR-AT is an asymmetric CDR-AT.

The first case is trivial: if the reflexive CDR-AT is antisymmetric, i.e., when
the relation £ is empty, except that N £ N, the asymmetric part of R is identical
to R except for loops. It is then easy to check that the asymmetric part of R is
an asymmetric CDR-AT.

The second case is also trivial. When the relation R is a reflexive CDR-AT has
a representation in which all relations V; are empty (i.e., is a CR-AT), it is easy
to see that the asymmetric part of R is an asymmetric CDR-AT (that is also a
CR-AT). °

Indeed, in general, the asymmetric part of a reflexive CDR-AT is not an asym-
metric CDR-AT. This is illustrated below.
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Example 25
Let N ={1,2,3,4} and X = {z1,y1, 21} X {x2, y2} X {x3,y3} X {x4,y4}. Let R on
X be such that

r Ry |S[zyl| =[Sy, 2] and V [y, 2] = &,
where S [z,y| ={i e N:x; S;y;} and V [z,y] ={i € N : x; V; y;} with:

1 Pryn Py,

Ty Py y2,x3 P3 y3, 24 Py ya,
Vi=0, fori € {2,3,4} and z; V} z;.

(where P; denotes the asymmetric part of the complete relation S;).
By construction, R is a reflexive CDR-AT. Denoting by R* the asymmetric
part of R, it is easy to check that we have:

(1.17~T27$37y4) R" (21,$2,$3,x4) and NOt[(x17$2>$37y4) R <y1,$2,$3,$4)],

($1,l’2,$3,$4) Ra (ylayQam37I4) a’nd NOt[(y17x2am37$4) ROc (xlnyax37x4)]-

The first line implies that, w.r.t. R®, the difference (z1, z1) is strictly larger (w.r.t.
~%) than the difference (z1,y1). The second line shows that the difference (z1,y;)
is strictly larger (w.r.t. 2Z}) than its opposite (y1,21). It is easy to see that this is
impossible in a CDR (see Bouyssou and Pirlot, 2012, Lemma 9.1, for details). <

The problem we would like to study is the following. Suppose that we are
given an asymmetric relation P on X. Under what conditions is there a reflexive
CDR-AT R on X such that R® = P ? In other words, under what conditions can
we be sure that P is the asymmetric part of a reflexive CDR-AT?

Some of the conditions characterizing an R-CDR-AT also hold for an AP-R-
CDR-AT. Others will have to be weakened.

In the rest of this section, in order to avoid the superscript «, we use P to
denote an asymmetric relation. When P is an AP-R-CDR-AT, the R-CDR-AT of
which P is the asymmetric part will be denoted by S. In the rest of this section,
unless otherwise specified, the relations =¥, =¥, >=F >~ and =¥ always refer to
the relation P.

Remark 26

For an AP-R-CDR P that is the asymmetric part of an R-CDR §, assuming that
all attributes are influential for & is in general insufficient for guaranteeing the
corresponding property for S*. It is clear that if an attribute is influent for S
it must be influent for S. Indeed the influence of ¢ € N for &% implies that
there are x;,y;, z;,w; € X; and z_;,y_; € X_; such that (x;,z_;) S* (y;,y—;) and
Not[(z;,x_;) 8% (w;,y_;)]. Hence we have (x;,x_;) S (y;,y—;) and Not[(y;,y_;) S
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(xi, x_;)] together with either Not[(z;,z_;) S (w;,y—i)] or (wi,y—;) S (zi,2—;). In
either case we easily conclude that ¢ € N is influential for S.

The converse is not true. Indeed, an attribute which only impact would be to
transform some pairs belonging to the symmetric part S of S into pairs that are
incomparable w.r.t. S, is influential for § but is degenerate for S*.

The condition that all attributes are influential for S is therefore slightly
stronger than the one stating that all attributes are influential for §. Our results
on AP-R-CDR-AT will use this slightly stronger hypothesis. °

4.2 Properties of an AP-R-CDR-AT

The main difference between an AP-R-CDR-AT and an R-CR-AT is that with an
AP-R-CDR-AT there may exist bonus effects as well as veto effects. Bonus effects
amount to creating a new class of positive preference differences. Hence it should
not be a surprise that we have to relax condition MM 1. However, as shown in the

next lemma, all other conditions needed to characterize R-CDR-AT also hold for
AP-R-CDR-AT.

Lemma 27
If P is an AP-R-CDR-AT, then

1. P satisfies RC'1 and RC2,
2. P satisfies AC1, AC2, and AC3,
3. P satisfies Maj3 and, hence, MM3.

PRrOOF

The fact that P is an AP-R-CDR means that there is an R-CDR, S, with repre-
sentation (B>, 5;, V;) such that P is the asymmetric part of S. Alternatively, one
may use the definition introduced in Remark 23.

Part 1. [RC1] Suppose that (z;,a_;) P (yi,b_;), (zi,¢c-i) P (w;,d—;). We know
that Not[y; V; ;] and Not[w; V; z]. If x; V; y;, since (z;, c_;) P (w;,d_;), we must
have (z;,c_;) P (y;,d—;). Similarly, if z; V; w;, since (z;,a—;) P (y;,b_;), we must
have (z;,a_;) P (w;, b_;). If neither z; V; y; nor z; V; w;, the desired conclusion
easily follows from the monotonicity of >.

[RC?2] Suppose that (x;,a_;) P (yi,b—), (yi,c—;) P (z;,d_;). This implies that
neither x; V; y; nor y; V; x;. If z; V; w;, since (x;,a_;) P (y;,b_;), we must have
(ziya_;) P (w;,b_;). Similarly if w; V; z;, since (y;,c_;) P (z;,d_;), we must have
(wi,c—;) P (2,d_;). If neither z; V; w; nor w; V; z;, the desired conclusion easily
follows from the completeness of S; and the monotonicity of >.
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Part 2. By hypothesis, there is a weak order T; on X; such that

Let us show that, if z; T; x;, then (x;,a_;) P (vy;,b_;) implies (2;, a—;) P (yi, b—;).

By hypothesis, we have S [(z;, a—;), (i, b_;)] 2 S [(;1:1, )y (Wi b20)], S [(yi, 0—4), (zi,a-4)]
S [(yia b—i>7 (mia a—i)]7 14 [(yia b_ ) (ZM Z)] cVv [( )7 (ZE“ a—i)L 4 [(Zla ) (yw b_ Z)] 2
V {(@i,b-4), (21, a-4)].

By hypothesis, (x;,a_;) P (y;, b—;) means that (z;,a_;) S (y;,b_;) and Not[(y;,b_;) S
(xi,a—;)]. Hence, using the monotonicity of &>, because (z;,a—;) S (v;,b_;), we
know that (z;,a Z) S (yi,b_;). Suppose now that (y;,b_;) S (z;,a_;). Using the
monotonicity of >, we conclude that (y;,b_;) S (z;,a—;), a contradiction. Hence,
we have (z;,a_;) P (yi, b—;).

Similarly, it is easy to show that, if y; T; w;, then (z;,a_;) P (y;,b_;) implies
(iﬁi, a—i) P (wu b—i)-

Using these two facts and the completeness of T;, it is easy to check that ACT,
AC?2, and AC3 hold.

Part 3. Suppose that (z;,a_;) P (yi, b—:), (wi,a—;) P (zi,0-3), (yi,c—i) P (x;,d_;),
and (z;,e_;) P (wy, f—;). This implies that it is impossible to have z; V; v;, y; Vi @,
z; Vi w; and w; V; z;. The desired conclusion easily follows from the monotonicity
of >>. O

The following lemma gives a simple interpretation of Maj3. It is also useful for
checking whether Maj3 holds.

Lemma 28

Let P be a binary relation on X = [[_, X; satisfying RC1 and RC2. Then
P satisfies Maj3 iff, for all i € N, for all x;,y;, zi, wi, i, 8 € Xy, [(w4,9:) =7

(yi,x:) =5 (ziswy)] = (ri,8:) ZF (zi,w;) and Not[(z,e—;) P (wy, f-i)], for all
ei, [ € Xy

PROOF
Part [=]. Suppose that, for some x;,y;, z;, w;, ri, 8; € X;, we have (a:z,yz) —7
(yi,zi) =1 (zi,w;) and (2, w;) =5 (r4,s;). This implies (z;,a—;) P (yi, b—i),
Not[(yi,a—;) P (xi,b-3)], (yi, c—i) P (x;,d—;), Not|(zi,c—;) P (wy,d_;)] and (25, e—_;) P
(wy, f—i), for some a_;,b_;,c_i,d_;, ey, fi € X

Since this implies Not[(z;, w;) 2ZF (yi, x;)], we have, using RC2 and Lemma 9.2,
that (w;, z;) 25 (24,9:) so that (w;,a_;) P (z,b_;). Using Maj3;, (z;,a—;) P
(yhb—i)) (wiwa—i) P (Zi’b—i)’ (ym —l) P (Ii’d—i)v and (ZZ,G_Z) P (w'wf—i> 1mply
(yiya—;) P (x;,b;) or (2;,¢—;) P (w;,d_;), a contradiction. Note that the contra-
diction is obtained as soon as (z;,e_;) P (w;, f—;), for some e_;, f; € X_;. This
proves the second part of the assertion.
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Part [«<]. To prove Maj3;, we assume that the first three premises in Maj3;
are true and the two conclusions are false. Maj3; will result if we prove that the
fourth premise must be false. Using RC'l;, the first premise of Maj3; and the
negation of the first conclusion imply (x;,y;) >=F (v;,x;). Using RC1; again, the
third premise and the negation of the second conclusion imply (y;, z;) =5 (2, w;).
Since by hypothesis [(z;, y;) =7 (i, z:) =7 (21, wi)] = Not[(z;, e-;) P (ws, f-;)], for
all e_;, f_; € X_;, Maj3; is established. O

4.3 Additional properties of an AP-R-CDR-AT

The following two conditions are clearly weaker than MM1. They shape the way
bonus effects can occur in an AP-R-CDR-AT. The first condition amounts to
saying that the inverse of a bonus must be a veto. The second one implies that
there is only one type of bonus.

Definition 29
We say that P satisfies

(i, a-3) P (yi,b-i) )
and (Yi, a-i) P (wi,b-;)
(ziya_;) P (wi, b_;) or
MM41 Zf and = (Z’i, C_i) P (yz-, d_z) (12)
(zi,¢—3) P (wy, d_;) or
and (wi,a_;) P (zi,b_),
(wise—i) P (2, f-i) )

[ (Yi,a—i) P (i,b-5)
(z5,a_3) P (yi,b_s) ) or

and (xi,c—i) P (yi,d—y),
(Zi, C,i> 7) (wi, d71> or

]M]M5Z Zf and = (l’i, €_Z') P (yi, f_z'>7 (13)

(ziya_;) P (wi, b_;) or

and (zi,e-i) P (wi, f-i),
(rise—i) P (i, f-i) ) or

(U}i, a,i) P (Zi, b,Z)

\

We say that MM4 (resp. MM5) holds if MM4; (resp. MM5;) holds for all
1€ N.

MM4; without its third conclusion is called Maj4;. MMD5; without its fifth
conclusion is called Magh;.
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The above two conditions clearly weaken condition MM1. Let us note the
following relations between our conditions.

Lemma 30
We have

1. Majd; = MM4,,
MM1; = MMA4;,
MM4; and RC2; = Maj4;,
Maj5; = MMS5;,
MM1; = MMS5;,

S v o e

PRroOOF

The first two points are obvious. Indeed, MM4; adds to Maj4; an additional
possible conclusions. Similarly, MM4; adds to MM 1, an additional premise. We
prove the third point. Suppose that (z;,a—;) P (yi,0_;), (zi,a—;) P (w;,b_;),
(ziyc—i) P (wi,d_y), (wi,e—;) P (2, f-i). If Not[(w;,a—;) P (2,b-;)], then one of
the two possible conclusions of Maj4; holds. If (w;,a_;) P (2;,b_;), using (z;, c_;) P
(w;, d_;) and RC2;, we have either (y;,a_;) P (z;,b_;) or (x;,c—;) P (y;, d—;), which
are the two possible conclusions of Maj4;.

The fourth and fifth points are obvious. Indeed, MM5; adds to Majh; an
additional premise and an additional possible conclusion. Similarly, MM5; adds
to MM1; an additional premise and two possible conclusions. We prove the sixth
point. Suppose that (z;,a—;) P (yi, b—:), (zi,¢—;) P (wi,d—;), (zi,a—;) P (w;, b_;),
(rise—i) P (siy f=i)-

If Not[(w;,a—;) P (z,b_;)], we must have one of the four possible conclusions
of Majh;. If (w;,a_;) P (2i,b_;), then (z;,c_;) P (w;,d_;) and RC?2; imply either
(yi,a—;) P (xi,b_;) or (z;,c—;) P (yi,d—;). Hence, one of the possible conclusions
of Majh; holds. O

As shown below, conditions MM4 and MMY5 are satisfied by an AP-R-CDR-
AT.

Lemma 31
If P is an AP-R-CDR then

1. it satisfies Maj4 and, hence, MM4,

2. it satisfies Majd and, hence, MM5.
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PRrooFr

Part 1. Suppose that (x;,a_;) P (yi,b—s), (zi,a—;) P (w;, b_;), (zi,c—;) P (w;,d—;),
and (w;,e_;) P (zi, f—i). This implies that it is impossible to have: y; Vi z;,
w; Vi 2z, and z; Vi w;. Iz Vi oy, since (z,c;) P (w;,d_;), we must have
(i, c—3) P (yi,d_;). If Not[z; V; y;], the desired conclusion easily follows from the
monotonicity of >.

Part 2. Suppose that (x;,a_;) P (yi,b—;), (zi,c—;) P (wi,d—;), (zi,a—;) P (w;, b_;),
and (r;,e_;) P (s;, f—;). This implies that it is impossible to have: y; V; x;, w; V; z;,
and s; V; ;. If 2; V; y;, since (z;,¢—;) P (w;, d—;), we must have (z;,c_;) P (y;, d_;).
Similarly, if z; V; w;, since (r;,e_;) P (s, f—i), we must have (z;,e_;) P (w;, f—;).
If neither z; V; y; nor z; V; w;, the desired conclusion easily follows from the
monotonicity of I>. O

It is clear that UC,; implies M1;. Hence, UC; implies MM 1, and, therefore,
MM4; and MM5;. This will be useful for checking that MM4; and MM5; hold.
The following two lemmas give an interpretation of Maj4 and Majh in terms of

the relations 7ZF. They can also be useful to check that these conditions hold.

Lemma 32

Let P be a binary relation on X = [}, X;, which satisfies RC'1. Then P satisfies
Maj4 if and only if, for all i € N, for all x;,y;, zi,wi,riy 80 € Xy, [(zi,w;) =1
(xisyi) =5 (yi,x)] = (ri,8:) ZF (wi,z) and Notl[(wg,e_;) P (z, f-i)], for all
€_i, f,i S X*i-

PROOF

Part [=]. Suppose that (z;,w;) = (@i, v:) >F (yi,2;). This implies (z;,¢c_;) P
(wj,d_;) and Not[(z;,c—;) P (yi,d—)], (xi,a—;) P (yi,b—;) and Not[(yi;,a—;) P
(x;,b_;)], for some a_;,b_;,c_;,d_; € X_;. Suppose furthermore that (w;,e_;) P
(zi, f—i), forsomee_;, f; € X_;. Because RC'1 holds, we know that 2Z¥ is complete.
Hence (x;,a_;) P (y;,b_;) implies (z;,a_;) P (w;,b_;). Applying now Maj4; leads
to either (z;,c_;) P (yi,d—;) or (y;,a—;) P (x;,b_;), a contradiction.

Part [«<]. To prove Maj4;, we assume that the first three premises of Maj4;
are true and the two conclusions are false. Maj4; will result if we prove that the
fourth premise must be false. Using RC'l;, the first premise of Maj4; and the
negation of the first conclusion imply (x;,y;) =¥ (y;,x;). Using RC1; again, the
third premise and the negation of the second conclusion imply (z;, w;) =7 (s, y;)-
Since by hypothesis [(z;, w;) =7 (i, 4:) =] (4, 2:)] = Not[(ws, e—) P (2, f-i)], for
all e_;, f; € X_;, Maj4; is established. O

Lemma 33

Let P be a binary relation on X =[]}, X; satisfying RC1. Then P satisfies Majh
iff, for alli € N, for all x;,y;, zi, wi, 143, 80 € X, [(zi,wi) =5 (v, y5) =7 (yi, ;)] =
(zi,w;) =8 (riy8:), for all ry, s, € X
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PROOF

Part [=]. Suppose that (z;,w;) = (@i, v:) >=F (yi,x;). This implies (z;,¢_;) P
(wz,d ;) and Not[(zi,c—;) P (yi,d—i)], (zi,a—;) P (yi,b—;) and Not[(y;,a_;) P
(x;,b_;)], for some a_;,b_;,¢_;,;d_; € X_;. Suppose furthermore that (r;,e_;) P
(si, f—i), for some 7;,8; € X; and e_;, f; € X_;. We must show that we have
(z0e0) P (1w, ).

Because RC'1 is assumed, we have (z;, w;) 7=F (x;,y;), hence, (z;,a_;) P (w;, b_;).
We have (z;,a—;) P (yi, b—i), (zi,c—;) P (ws, d—;), (zi,a—;) P (w;,b_;), and (r;,e—;) P
(siy f—i), while Not[(y;,a—;) P (x;,b_;)] and Not[(x;, c—;) P (yi,d—;)]. Using Maj5;,
we obtain either (z;,e—;) P (yi, f—i) or (zi,e—;) P (wy, f—;). Since (z;,w;) ZF
(x;,9;), the former consequence implies the latter, yielding the desired conclusion.

Part [«]. To prove Majh;, we assume that the four premises of Majb; are
true and the first three conclusions are false. Majbh; will result if we prove that
the fourth conclusion must be true. Using RC'1;, the first premise of Mayjh;
and the negation of the first conclusion imply (z;,v;) >=F (y;,x;). Using RC1;
again, the second premise together with the negation of the second conclusion
imply (2;,w;) =7 (i, ¥:). Since by hypothesis [(z;, w;) =7 (v5,9:) =7 (vi,xi)] =
[(zi,w;) =5 (14, 8;)] for all r;, s; € X;, the fourth conclusion in Maj5; is true, hence
May5; is established. O

Our last condition (the “bonus condition”) requires that the effect of one bonus
is not altered by adding a second bonus on another attribute.

Definition 34
Let i,5 € N with 1 # j. We say that P satisfies

(wi,a_3) P (ys,b-4) ) ( (x5, a-3) P (y;,b-3)
and or

(z},c-i) P (y;,d—) (Y, c—i) P (w,d )
and or

BCi; if (zj,e—5) P (wy, f—5) = (2f,e—5) P (w), f-5)
and or

(25, 9-4) P (w), h—y) (W}, 9-5) P (2, h—j)
and or

(3, 25, —ij) P (ys, wy, B—ij) ) L (75, 25, aig) P (yi, wy, Boig),

or all x;, by, y, € X;, all z;, 2, w;,w'. € X5, all a_;,b_;,c_;,d_; € X_;, all
ir Yis Y; jr “5y Wi, W J
€_j, f—j;g—jyh—j € X_j and all a—ij;ﬁ—ij S X—ij-

We say that BC' holds if BC;; holds for alli,j € N with i # j.

Condition BC ensures that the combination of bonuses has no different effect
from that of a single bonus. In order to motivate this condition, suppose that
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all the premises of the condition hold. Suppose furthermore that the first four
conclusions are false. This implies that the differences (z;,v;) and (z;,w;) both
act as bonuses, as we shall see in Lemma 38. The last conclusion therefore implies
that, replacing a bonus on both 7,5 € N by a bonus on only one of these two
attributes has no effect since at least one bonus is present.

The following lemma shows that BC' holds for an AP-R-CDR.

Lemma 35
If P is an AP-R-CDR then it satisfies BC.

Proor

Let (>>,S;,V;) be a representation of P. Suppose that all the premises of BC;

hold and that the first four conclusions do not hold. Using the direct definition

of an AP-R-CDR (Remark 23), it is readily seen that the above imply: = P; y.,
Notlx; Vi yil, »i Py yi, v Vi yi, 25 Py wj, Not[z) Vi wil, 2 Py wy, 2z V; w;.

Let A = S|[(z, 25, a—ij), (Yi, wj, B—ij)] and B = S [(yi, wy, B—ij), (s, 2, —sj)]. It is
clear that A = S'[(2}, zj, a—ij), (v}, w;, B—ij)] and B = S [(y}, wj, B—i;), (2}, z;, a_i;)].
Because (z;, zj, a—i;) P (yi, wj, f—i;), we have A > B. If A > B, we must have

(2}, 25, a_ij) P (yl,w;j, B_ij). Suppose that A £ B. Since V [(z, 2, a_ij), (v}, wj, B_i;)] #
@, we have (2}, z;, a_;;) P (yi, w;, B_ij). O

The following three lemmas will help checking that BC' holds.

Lemma 36
If P satisfies UC,; then, for all j # i it satisfies BC;.

PROOF

Suppose that (z;,a_;) P (y;,b_;) and (2}, c_;) P (yl,d_;). If the second con-
clusion of BC;; is not verified, we have Not[(y},c_;) P (2},d_;)]. This implies
Not[((y,z}) =¥ («},yi)] and UC; implies (a},y.) 2=F (a;,b;), for all a;,b; € X;.
Hence, we have (z},a_;) P (yi,b_;), so that the first conclusion of BC; holds. O
Lemma 37

If P satisfies RC1;, RC2;, and MM1; then, for all j # 1, it satisfies BC';.

PRrROOF
The proof follows from combining Lemma 36 with Lemma 17. O

Lemma 38
Let i,5 € N with i # j. Let P be a relation satisfying RC1; and RC1;. Then P
satisfies BCy; if and only if, for all vy, x7, yi, yi € Xy, and, for all z;, 25, wj, w; € Xj,
we have that

(zj,wy) =5 (), wh) =5 (W), 25) ¢ = (2, 25, i) P (Y}, w5, Bij)- (14)

(i, 2, i) P (yi, w5, Bij)
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PROOF

Conditionally on the fact that = and 2Z*

J

are complete relations (a consequence of

RC1; and RC1;), the conjunction of the five premises of BC;; and the negation
of the first four consequences is logically equivalent with the premises of (14).
Applying BC;; yields the consequence of (14). Conversely, using (14) yields the

fifth consequence of BC);.

O

An easy consequence of RC'1 and BC' is the following property saying that a
bonus on attribute ¢ has the same effect as a bonus on attribute j.

Lemma 39

Let P be a relation satisfying RC1 and BC. Then, for all i,57 € N with i # j, we

have:

(xi, @fi) P (y’ia b*i) ) (35;, (Lz‘) P (?J;, b7i>
and or

(ZE{“ C—i) P (yia d—z) (ygu C—i) 7) (l’;, d—z)
and or

(zj,e—5) P (wy, f—5) = (), e—5) P (w), f5) (15)
and or

(Z;Wg*j) P (w;> h*j) (w§'>g—j) P (237 h—j)
and or

(‘riaz‘;aa*ij) P (th}vﬁfij) ) \ (‘/E;azjaafij) P (yz{awjaﬁf’ij%

for all @i, xi,yi,y; € Xi, all 2, 25wy, wi € Xj, all ay,by,cdy € Xy, all
e—jaf—j7g—j7 h_j € X_j, and all Oé_z‘j7ﬁ—ij7 S X—ij'

Assuming RC1, property (15) is equivalent with

(2, w5) =7 (25, w}) =7 (wj, 2%)
(%‘;Z;'»Oé—ij) P (yiuw;'a —2])

= (@3, 25, a—ij) P (i, wj, Bij). (16)

PRrROOF
Assume that the five premises of (15) are satisfied and none of the first four
conclusions are. Using RC1;, we infer that (z;,w;) =7 (z},w}). Hence, from the
fifth premise in (15), we deduce that (x;,z;,a_;;) P (yi, w;, f—i;), which is the
fifth premise of BC. Applying BC' we get (2}, zj,a—i;) P (yi, wj, f—i;), which
establishes property (15).

The proof that (15) is equivalent with (16) is similar to that of Lemma 38

(assuming that P satisfies RC1). 0

Condition (15) can be interpreted in the following way. Suppose that all the
premises of the condition hold. Suppose furthermore that the first four conclusions
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are false. This is easily seen to imply that the differences (z;,y;) and (z;, w;) both
act as bonuses. The last conclusion therefore implies that, replacing a bonus on
i € N by a relation P; (that may or not be a bonus) and replacing a relation P,
on j € N (that may or not be a bonus) by a bonus on j has no effect since at
least one bonus is present. Property (15) ensures that bonuses can be exchanged
between attributes. A bonus on ¢ € N has a similar effect to that of a bonus on
JjEeN.

4.4 Vetoes and bonuses

We define on each ¢ € N a relation 5; letting, for all z;,y; € X,
i Si Yi & (i, vi) 27 (Yir ) (17)

The asymmetric (resp. symmetric) part of S; will be denoted by P; (resp. I;). This
is standard definition of S; already used for the study of CDR-AT in Bouyssou
and Pirlot (2009). We have:

Lemma 40

Let P be a binary relation on X = [[;_, X; satisfying RC1;. The relation S; on X;
defined by (17) is complete. Moreover, if RC2; holds and x; I; y; and z; I; w;, then
(i, yi) ~5F (zi,wi) ~F (Yi, i) ~F (wy, z;) ~F (ai,a;), for all a; € X;. The relation
P, is nonempty.

Proor
RC1 implies that 77} is complete. Hence S; is complete.

Using the definition of S;; z; I; y; and z; I; w; is equivalent to (z;, y;) ~F (yi, ;)
and (z;, w;) ~F (wy, z;). The conclusion follows from Lemma 9.2.

If P; is empty, we must have for all x;, v;, z;, w; € X;, x; I; y; and z; I; w;. This
implies (x;,y;) ~F (2, w;), violating the fact that attribute i € N is influential. O

The definition of the relation V; requires more care. Indeed, it includes at
the same time cases of vetoes and cases of bonuses. The relation ¥; will model
vetoes. The relation %; will model bonuses. The necessity to define separately the
relations %; and 9; comes from the fact that one can built degenerate examples
in which %; is nonempty while %; is empty (in that case all negative differences
act as a veto). Similarly there are cases in which %, is empty but ¥; is not (e.g.,
when the relation = only contains N £ N.)

Define the relation 7; on X; letting, for all z;,y; € X;

x; Vi yi & (2, w;) =1 (wi, z;) =5 (yi, ;) for some z;, w; € X;. (18)

We have:
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Lemma 41
Let P be a binary relation on X = [[;_, X; satisfying RC1, RC2, and Maj3. We
have:

1.

A
IN
!

2. [x; Yy and z; Vi wi] = (yi, x;) ~F (wy, 21),
3. [x; Py, zi Py w;, Notlx; ¥; y;] and Notlz; ¥ wi]] = (ys, xi) ~F (wy, 2;).

PROOF

Part 1. Suppose that x; % v;, so that (z;,w;) = (wi,z) =F (v, 2;), for some
zi,w; € X;. Suppose that Notlzx; P; y;] so that (y;,z;) =5 (x;,vy;). Using RC1
and RC2, it is easy to check that (z;,w;) >=! (wy, ;) implies (z;, w;) ZF (a;, a;) 22F
(wy, 2;), for all a; € X;. We therefore obtain (a;, a;) >=F (yi,x;) 2ZF (24,v;). This
contradicts RC?2, using Lemma 9.2.

Part 2. Suppose that z; ¥ y; and z; #; w;. In view of (18), Lemma 28 implies
that (wy, z;) ZF (yi, ;) and (y;, ;) 757 (wy, z;) so that (wy, z;) ~F (yi, ;).

Part 3. By definition, we have (z;,y;) = (yi,x;) and (z;,w;) =5 (w;, 2:).
Suppose that (y;, ;) ! (w;, z;). This would imply (x;,y;) =5 (vi, ;) =5 (wi, 2),
contradicting the fact that Not[z; ¥; w;]. Similarly it is impossible that (w;, ;) >
(yi, z;). Hence, we have (y;, z;) ~F (w;, 2;). O

Remark 42
Assuming RC1, RC2 and Maj3, observe that, if #; is nonempty, then there exists
zi,w; € X; such that z; P, w; and Not[z; ¥; w;].

Indeed, since ¥; is nonempty, we know that there are z;,y; € X; such that
(zi,w;) =¥ (wy, z;) =F (i, ;). Hence, we know that z; P; w;. Suppose now that
zi Vi w;, so that there are r;, s; € X; such that (r,s;) =7 (s;,7;) =1 (w;, z;). This
implies (wy, z;) = (yi, x;), violating Lemma 28. o

Define the relation %; on X; letting, for all z;,y; € X;
x; B yi < (x4, y:) =5 (zi,w;) =5 (wy, ;) for some z;, w; € Xj. (19)

Lemma 43
Let P be a binary relation on X = [[_, X; satisfying RC1, RC2, Maj3, Maj4,
and Majh. We have:

1. B, CP,.
2. z; B w; and x; By yi imply (zi, w;) ~F (2, ;).

3. z; B w; and x; By yi imply (wy, z;) ~F (yi, ;).
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4. 2z P;w;, Notlz; B; wi], v; P;y; and Not[z; B; yi|, imply (z;, w;) ~F (@i, ).
5. 2 B w;, x; Py y;, Notlx; B yi| imply (zi, wi) =7 (24, 95).

PROOF
Part 1. Suppose that x; %; y;, so that (z;,y;) >=F (z;,w;) =5 (wy, 2;), for some
zi,w; € X;. Suppose that Not[z; P, y;] so that (y;,x;) ZF (x;,vy;). Using RC1
and RC2, it is easy to check that (z;,w;) =¥ (wy, ;) implies (z;, w;) ZF (a;, a;) 72F
(wy, 2;), for all a; € X;. We therefore obtain (y;,z;) 2ZF (zi,v:) > (ai,a;). This
contradicts RC2 (Lemma 9.2).

Part 2. Suppose that z; %; w; and z; %; y;. In view of (19), Lemma 33
implies (z;, w;) 2ZF (r4,8:) and (x;,y;) =F (14, 8:), for all r;,s; € X;. This implies

(21, wi) ~; (i, Yi)-

Part 3. Suppose that z; %; w; and z; %; y;. Lemma 32 implies (r4,s;) 2=F
(wy, z;) and (r;, 8;) =5 (i, x;), for all r;, s; € X;. This implies (wy, z;) ~F (y;, ;).

Part 4. Suppose that z; P, w;, Not|z; B; w;], x; P; y; and Not|x; B; y;]. This
implies that (z;,w;) =F (wy, z;) and (z4,v:) =5 (yi, @) U (zi,w;) =5 (@i,v:), we
obtain z; %; w;, a contradiction. Similarly, it is impossible that (z;, ;) =1 (z;, w;).
Hence,we must have (z;,y;) ~F (z;, w;).

Part 5. Suppose that z; B; w;, x; P; y;, Not[z; %, y;|. This implies (z;, w;) =F

(a;, b;) =¥ (b, a;), for some a;,b; € X;, and (x;,y;) =5 (yi, x). U (@i, v:) 755 (ziywy),
we obtain (x;,y;) =¥ (a;, b;) =5 (b;, a;), implying that x; %; y;, a contradiction. O
Remark 44

Observe that if 4; is nonempty then there exist z;, w; € X; such that z; P, w; and
Not|z; B; w).

Assuming that %; is nonempty, we know that there are x;,y; € X; such that
(i, y:) =5 (zi,w;) =7 (w;, z;). Hence, we know that z; P; w;. It is clearly impossible
that z; %; w;, since by Lemma 33, this would imply that (z;, w;) > (74, s;), for all
i, S; € X;, contrary to the fact that (z;,v;) =1 (z;, w;). °

Let us now define the relation V; on X;, letting, for all z;,y; € X;,
Combining Lemma 43.1 with Lemma 41.1 shows that V; C P;.

4.5 The main result

The main result of this note is the following.

Theorem 45 (Characterization of AP-R-CDR)

Let P be a binary relation on X = [, X; and assume that all attributes are
influential for P. Then P is an AP-R-CDR-AT iff P is an asymmetric relation
satisfying RC1, RC2, MM3, MM4, MM5, BC, AC1, AC2, and AC3.
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PROOF
Necessity was shown above. We show sufficiency.

Define the relation S; and V; on X; as above (formulas (17), (18), (19), (20)).
We have shown above that S; is complete, that P; is nonempty and that V; is
included in P,.

Consider any two subsets A, B C N such that AU B = N and let:

A> B &
[ Py, for all z,y € X such that S[z,y] = A, S|y, z] = B, and V [y, 2| = 2].
Similarly, Consider any two subsets A, B C N such that AU B = N and let:
A= B &
[a: P y, Not|z P w], for some z,y, z,w € X such that

Slz,yl=S[z,w]=A,Sy,z] =S[w,z] =B, V[yz]|=V]w,z] =2|.

Let us show that, with the previous definitions of S;, V; and >, (10-11) holds for
P.

Part [=] of (10-11). Suppose that z P y. Using Lemma 28, we know that
it is impossible that y; ¥; z;, for some ¢ € N. Similarly, using Lemma 32, it is
impossible that y; %; x;, for some i € N. In view of (20), this implies V (y, x) = @.
Let A= S[z,y] and B = S [y, r]. We must show that A > B or that [A = B and
V [z, y] # @]. We distinguish two cases.

1. Suppose first that, for all z,w € X, A = S [z,w]|, B= S [w,z] and V [w, 2] =
& implies z P w. By definition, this implies A > B. Hence, in this case, we
have S [z,y] > S|y, x] and V [y, 2] = @.

S [w, z] and

2. Suppose now that, for some z,w € X, A = S|z, w] =
B. Let us show

V [w, z] = @ and Not[z P w]. Since x P y, this implies A
that we must have z; %; y;, for some i € N.

We have A = S|z,y] = S[z,w], B = S[y,z] = S|w,z] and V [y,z] =
Viw,z] = @. We have x; I; y; < z I; w;. For all i € N such that x; I; y;,
we have, using Lemma 40, (x;,y;) ~ (2, w;). We have y; P; x; < w; P; z;.

B
£

)

Because we know that V' [y,z] = V [w, 2] = &, Lemma 40 implies that, for
all i € N such that y; P; z;, we have (x;,y;) ~F (z;,w;). We have z; P, y; &
z; P; w;. Suppose that there is no j € N such that z; %; y;. Using Parts 4
and 5 of Lemma 43, this implies that (z;,w;) =7 (x;,v;), for all i € N such

We have (z;, w;) o7 (24,;), for all i € N. This is contradictory since = P y
and Not[z P w| (see Lemma 10). Hence, we must have z; %; y;, for some
j € N. We therefore have S[z,y] £ S|y, z], V [y, 2] = @ and V [1,y] # @.
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Part [«<] of (10-11). Let A,B C N such that AU B = N. Because P,
is nonempty (since all attributes are influential for P), we know that there are
x,y € X such that A =S [z,y] and B = S [y, x].

If A B and V [y, z] = &, we have, by construction, z P y.

Suppose now that A & B, V [y,x] = @ and V [z,y] # @ and Not[z P y]. By
construction, we know that there are z,w € X such that z P w, V |w,z] = &,
A= S[z,w] and B = S [w, z].

If Viz,y] 2 V]z,w], we know that (x;,y;) =5 (z;,w;), for all i € N. Since
Notlz P y| and z P w, this is contradictory (see Lemma 10).

Otherwise, we repeatedly use BC' to build alternatives z’ and w’ such that
A= S[Zw], B= S, 2|, 2P w and V [, 2] contains a single attribute.
Suppose for definiteness that {k} =V [v/, 2].

If £ € V]zr,y], we have (z;,y;) = (2}, w}), for all ¢ € N, contradicting the
fact that Not[x P y] and z P w. If k ¢ V [z, y], we use property (15), defined in
Lemma 39, to build alternatives z” and w” such that A = S[2/,w'], B = S [w/, 2],
2" P w” and {¢} =V [w",2"] C V]z,y]. Hence, we have (z;,v;) =5 (2!, w!), for
all 7 € N, contradicting the fact that Not[z P y] and 2z P w.

This shows that, with our definitions, (10-11) hold.

Let us now show that the relation > = > U £ defined on the set of subsets of
N having N for union is monotonic, i.e., satisfies (2).

Suppose that A > B. It is easy to see that the proof used in Bouyssou and
Pirlot (2012) can be used to show that > is monotonic. Indeed, the set of all
xz,y € X such that V[y,z] = &, A = S[z,y] and B = S|y, 2| must contain
alternatives z,w € X such that V|w,z] = @, A = S[z,w], B = S|w,z], and
Viz,w) = 2.

Suppose that A £ B. By construction, we know that there are z,y € X such
that A = S[z,y|, B = S[y,z|, and x P y. Suppose that C O A, B O D such
that C U D = N. Let us show that there are z,w € X such that C' = S [z, w],
D = Sw, z], and z P w, which will complete the proof.

Let E = C\ A. We have B D E. We build z,w € X with S[z,w] = C >
S [w,z] = B. We know that for all a; € X;, we have a; I; a;. Using such pairs,
define 2/, w’ € X as follows:

A E  B\E
z x; a; z;
w' Yi a; Yi

It is clear that (2], w}) =¥ (z;,v;), for all i € N. Hence, we have 2’ P w'.
Since CUD = N, we have B\ D C C. Let = B\ D. Foralli € N, P, is not
empty so that we can take, for all i € F', any a;,b; € X; such that a; P; b;. Using

such pairs, define 2", w” € X as follows:
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z Z; g Z

/
wy bi W;

It is clear that (2, w!) ¥ (z;, w;), for all i € N. Hence, we have 2" P w”.

~JS

Let us finally show that (.5;, U;) form a homogeneous chain of semiorders. We
already know that both S; and U; are complete and that V; is included in F;. In
view of Remark 3, all we have to show is that there is a weak order T; on X; such
that:

Z; T'Z Y = VZi c Xi, [yz S,L Zi = X Sz Zi] and [Zi S@ Ti = % SZ yz}, and
v Ty ys = Vo € Xo [y Vi 2o = 2 Vi i and [ Vi 2 = 2 Vi ).

Let us show that the weak order T; can be taken to be =i, this relation being a
weak order due to AC1, AC2, and ACS.

Suppose that a; S; b; so that (a;, b;) 7=ZF (b;,a;). Suppose furthermore that
T izi a;. By construction x; ?\f a; implies x; 2§ a;, which is equivalent to saying
that (z;,¢;) ZF (a;, ¢;), for all ¢; € X;. Taking ¢; = b;, we obtain (z;,b;) =5 (a;, b;).
Similarly, x; ,ﬁf a; implies x; 7Z; a;, which is equivalent to saying that (¢;,a;) 22F
(¢iyx;), for all ¢; € X;. Taking ¢; = b;, we obtain (b;,a;) 75 (b;, ;). Hence, we

have (.TZ, bl) i;k (CLZ', bl) i: (bz, al) —* (bl,l'l), so that (xl, bl> i;k (b“fﬂl) and ZT; SZ bz

The proof that b; S; a; and a; ?\‘j x; imply b; S; x; is similar.

Suppose now that a; V; b;, so that either a; ¥ b; or a; %; b;. Suppose that
a; Vi b;, so that (¢;,d;) »F (di,ci) =F (bi,a;), for some ¢;,d; € X;. Suppose
furthermore that z; 2= a;. By construction, z; 2 a; implies x; >, a;, which is
equivalent to saying that (e;, a;) =F (e, x;), for all e; € X;. Taking e; = b;, we
obtain (b;,a;) 2ZF (b;, z;). Hence, we have (¢;,d;) =7 (d;, ;) =5 (b, a;) 225 (bi, ;).
This implies x; #; b;. The proof that b; ¥; a; and qa; ?\f x; imply b; ¥; x; is similar.

Suppose finally that a; %; b;, so that (a;,b;) =7 (¢;,d;) =F (d;, ¢;), for some
¢;,d; € X;. Suppose furthermore that z; ,ﬁf a;. By construction x; ,@i a; implies
x; 7= a;, which is equivalent to saying that (x;,¢;) =F (a;,¢;), for all ¢; € X;.
Taking ¢; = b;, we obtain (x;,b;) =¥ (a;, b;). Hence, we have (z;,0;) 77 (@i, b;) =}

(Ci,di) >;k (dl, Ci); so that ZT; %1 bz The pI‘OOf that bl %z a; and a; i;t xX; 1mply
b; P; x; is similar. This completes the proof. O

Remark 46

An easy corollary of the above result is that P is an AP-R-CDR iff it is asymmetric
and satisfies RC'1, RC2, Maj3, Maj4, Maj5, and BC'. Indeed, in the above proof,
conditions AC1, AC2, and AC3 (via the fact that they imply that =7 is a weak
order) are only used to show that (S;, U;) is a homogeneous chain of semiorders. e
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The above result uses 9 conditions. It would be of minor interest if these 9
conditions were not independent. We show below that this is indeed the case in
the class of asymmetric relations, i.e., the class of relations of interest for the study
of AP-R-CDR-AT.

Proposition 47
In the class of asymmetric relations, conditions RC1, RC2, AC1, AC2, AC3,
MM3, MM4, MM5, and BC are independent.

PROOF
We need 9 examples.

Bouyssou and Pirlot (2013) have shown that conditions RC1, RC2, AC1, AC?2,
AC3, MM1 and MM 3 are independent in the class of asymmetric relations.

We know from Lemma 30 that MM 1 implies MM4 and MM5. Moreover, we
know from Lemma 37 that RC'1, RC2, and MM1 imply BC. Hence, the four
examples in Bouyssou and Pirlot (2013) concerning MM 3, AC1, AC2, AC3 can
be used here. This leaves us with 5 examples. We give them below in Section 4.6. O

4.6 Examples

We give below the 5 examples needed to complete the proof of Proposition 47.
Example 48 (Not[BC])

Let X = [[_, X; with X; = {@,y;, 2}, for i = 1,2 and X; = {z;,y,} for j =

3,4,5. We define P as follows. For all a,b € X, we have a P b if Zle pi(a;, b;) > 0,
where p; is defined in the following table for all pairs (a;, b;) in X; x Xj.

Di X1 X2 Xj forj:3,4,5
21 (.CEQ, ZQ)
11 (361,,21)
10 (z1,51), (Y1,21) (2, 92), (Y2, 22) (5, y5)
0 (a1,a1) (az, az) (aj,a;)
=10 (y1,71), (21,91) (Y2, 72), (22, Y2) (y5, ;)
—100 (z1,21) (22, 22)

It is easy to check that relation P is asymmetric, mainly because the opposite
(z1,71) and (23, x2) of the bonus pairs (z1,21) and (x2, 29) play the role of ve-
toes. Indeed, due to the fact that p;(z1,21) = p2(22, x2) = —100, these pairs are
incompatible with relation P.

For i = 1,2,3,4,5, we have 7—f = 7=* which are the weak orders induced by

the values assigned to p; in the above table. Hence P satisfies RC1 and RC2. It
is easy to check that AC1, AC2, and AC3 hold.
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The only cases of super negative pairs, i.e., pairs (¢;, d;) such that there are
elements a;, b; with (a;,b;) =F (bi,a;) >=F (¢, d;), are again (z1,21) and (22, z2).
These pairs, as already observed, play the role of vetoes. They are therefore
incompatible with relation P, which, in view of Lemma 28, entails that P satisfies
Mayj3.

Since (21, x1) and (22, z5) are the opposite of the only two bonus pairs and are
never involved in preferences, using Lemma 32 shows that P satisfies Maj4. Using
Lemma 33, it is also clear that Maj5 holds. Hence, MM4 and MM5 hold.

In view of Lemma 38, property BC,; is trivially satisfied for all {i,j} #
{1,2}. Using the same lemma, we see that this example violates BC1y since
we have (x1,z1) =7 (z1,71) >7 (y1,21), (@2, 22) =5 (x2,42) >3 (y2,x2), and
(1, 22,93, Y1, Ys) P (21, 20, T3, T4, T5) but Not[(z1, X2, y3,Ya, ys) P (21, Y2, 3, T4, T5)]. O

Example 49 (Not[MM5])

Let X = [[_, X; with X; = {z1,y1, 21} and X; = {z;,y,;} for j = 2,3. The
relation P is defined as follows. For all a,b € X, we have a P b if Z?Zl pi(a;, b;) >
0, where p; is defined in the following table for all pairs (a;, b;) in X; x X;.

Di Xl XQ X3

3 T, <~

2 T,

1 Y, 2 (I2,y2) (133793)

a

S

0 ;
—1 <1, %

1, @1
1
—10 (91,931)7(3175171)

o~ N~~~

The relation P is asymmetric, since the opposite (yi,21) and (z1,21) of the
bonus pairs (z1,y;) and (x1, z1) are never involved in pairs belonging to P.

For all ¢, 7—F is the weak order induced by p; in the above table. For i =
2,3, Zf = ¢ while 77" separates the bottom class of 77} in two classes since
(y1,21) =7* (21,21). Hence P satisfies RC1 and RC2. It is easy to check that
AC1, AC2, and AC'3 hold.

MDM3; is trivially satisfied for ¢ = 2,3 (in view of Lemma 28). For i = 1, the
only super negative pairs are (y;,21) and (z1,2;) and they are never involved in
P. Therefore, using Lemma 28, we have that Maj3; and, hence, MM 3;, hold.

Maj4; is trivially satisfied for ¢+ = 2,3. For ¢ = 1, the only bonus pairs are
(z1,y1) and (x1,21) and their opposite pairs are never involved in P. Therefore,
applying Lemma 32 yields Maj4, and, hence, MM4.

Maj5; and, hence, MM?5; are trivially satisfied for ¢ = 2,3 but this example
violates Majb;. Indeed, we have (x1,y1) =7 (y1,21) =7 (21, 71) but there is a pair
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above (z1,y1) in 22}, namely, (z1,21) >7 (x1,y1). Since, RC1 and RC?2 hold, this
implies a violation of MM5; (Lemma 33).

In view of Lemma 38, property BC;; is trivially satisfied for all i # j since
bonuses occur on the sole attribute Xj. &

Example 50 (Not[MM4))

Let X = [[, X; with X, = {z1,91, 2} and X; = {z;,y;} for j = 2,3. The
relation P is defined as follows. For all a,b € X, we have a P b if Z?:1 pi(ai, b;) >
0, where p; is defined in the following table for all pairs (a;, b;) in X; x Xj.

Di Xl X2 X3
2 (:Clazl>
1 (@1, 91), (41, 21) (®2,92)  (3,3)
0 (a1,a1) (az,a2) (as,as)

—1 (y1, 1), (21,91), (21, 21) (Y2, 72)  (y3,23)

When comparing a and b, provided (z1, 21) is neither (aq,b;) nor (b1, a;), we
have Zg’zl pi(bi,a;) = — Z?:1 pi(a;, b;). Hence, at most one of the pairs (a,b) or
(b, a) belongs to P. If a; = x1 and b; = 21, there is only one case in which we have
b P a, namely (z1,xq,23) P (x1,y2,y3). In this case, we do not have a P b since
Not[(x1,ys,y3) P (21, x2,23)]. Relation P is thus asymmetric.

For all ¢, —F is the weak order induced by function p; defined in the above

)~

table. For i = 2,3, 727 = 7~ while 2Z}* separates the bottom class of 7} in two
classes since [(y1,21) ~* (21,41)] =7 (21,21). Hence P satisfies RC1 and RC?2.
It is easy to check that AC1, AC2, and AC3 hold.

Maj3; and, hence, MM 3; are trivially satisfied for all ¢ since there are no super
negative pairs at all (Lemma 28).

Maj4; and, hence, MM4; are trivially satisfied for ¢ = 2,3. Maj4, is violated
for ¢ = 1. Indeed, we have (x1,21) >7 (21,y1) =7 (y1,21) while (21,29, 23) P
(21, Y2, y3), which, combined with Lemma 32, implies that Maj4, is not true. Since
RC1 and RC?2 hold, this implies a violation of MM4,.

Mayg5; is trivially satisfied for i = 2,3. For i = 1, (x1, 1) is the only bonus and
for all (ry,s1), we have (z1,21) 22} (r1,s1). Therefore, using Lemma 33, we have
established that Maj5; and, hence, MM5; hold.

In view of Lemma 38, property BC'; is trivially satisfied for all ¢ # j since a

bonus occurs on the sole attribute X;. &

Example 51 (Not[RC2])
Let X = X x Xy with X7 = {a,b} and X5 = {z,y}. Let P be empty except that
we have (a,z) P (a,y) and (a,z) P (b,y). The relation is clearly asymmetric.

On attribute 1, we have [(a,a) ~} (a,b)] =7 [(b,a) ~F (b,b)]. This shows that
RC1; holds but that RC?2; is violated. We have a =] b and a = b. Hence, AC1y,
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AC2; and AC3; hold. It is easy to check that UCy and LC' hold so that MM 3,
MM4:1, MM51, and Bclg hold.

On attribute 2, we have (z,y) >3 [(z,z) ~5 (y,x) ~5 (y,y)]. This shows that
RC1, and RC2, hold. We have z =5 y and = =, y. Hence, AC1,y, AC2, and
AC35 hold. Tt is easy to check that UCy and LC5 hold so that MM 3y, MM4,,
MM52, and BCQl hold. &

Example 52 (Not[RC1])

(This is also Example 92 in Bouyssou and Pirlot (2013)). Let X = X; x X3 X
X3 with Xy = {z,y,z,w}, Xo = {a,b} and X3 = {p,q}. Let P be such that
(a,a,p) P (B,a,q), (,a,p) P (B,b,p), (a,a,p) P (8,b,q), (a,a,q) P (B,b,q),
(e, b,p) P (B,b,q), for all (a, B) € Iy = X\ {(z,y), (2,9), (z,w)}.

We add the following pairs: (x,a,p) P (y,b,p), (z,a,p) P (y,b,q), (x,a,q) P
(y,b.9), and (2, a,p) P (w,a,q), (2,a,p) P (w,b,q), (2,b,p) P (w,b,q).

This relation has a total of 71 ordered pairs. It is easy to check that it is
asymmetric.

On attribute 2, we have (a,b) =5 [(a,a) ~3 (b,b)] =5 (b,a). This shows that
RC1, and RC2, hold. We have a =3 b and a =, b. Hence, AC1y, AC2, and
AC35 hold. It is easy to check that UCy and LC5 hold so that MM 3y, MM4,,
MM5,, BCy;, and BCy3 hold.

On attribute 3, we have (p,q) =5 [(p,p) ~4 (¢,¢)] =5 (g,p]. This shows that
RC13 and RC2;3 hold. We have p =3 ¢ and p =5 ¢q. Hence, AC13, AC23 and
AC33 hold. It is easy to check that UC3 and LC5 hold so that MM 33, MM 43,
MM53, BCgl, and BCgQ hold.

On attribute 1, all ordered pairs, except (z,y), (z,y) and (z,w), are in the
same equivalence class of ~% and above these three pairs. The ordered pairs (z,y)
and (z,w) are clearly incomparable w.r.t. -1 and are both above (z,y).

This shows that RC'1; fails but that RC2; holds. It is not difficult to check
that we have [y ~f w] = x =7 z and y =] w =1 [z ~] 2]. Hence, AC1;, AC2,
and AC3; hold. It is easy to see that UC'; holds. Hence, MM4,, MM5,, BC1s,
and B(C'13 hold.

It remains to check that MM 3; holds. Let us check that M 3; holds.

Suppose that (z1,a-1) P (y1,b-1), (y1,¢-1) P (x1,d_1) and (z1,e_1) P (wq, f-1).
We want to show that we have one of the following three relations: (y;,a_1) P
([L’l, b_l), (zl,a_l) P (wl,b_l), (21, C_1) P (wl, d_l).

If (y1,21) € I then the first conclusion always holds. If (y1,21) = (z,y), the
second premise never holds, so that the condition is trivially satisfied. It remains
to deal with the following two cases: (y1,21) = (z,y) and (y1,21) = (z,w). We
deal with the first case, the treatment of the second being entirely similar.

Suppose that (yi,z1) = (z,y). If (z1,w1) # (z,y) and (21, w1) # (z,w), we
have (z1,w1) 227 (x,y), so that the third conclusion always holds. If (z1,w;) =

~Y
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(z,w), the third premise never holds, so that the condition is trivially satisfied. If
(z1,w1) = (z,y), it is easy to check that there are no a_;,b_; € X_; such that
(y1,a-1) P (21,b-1), Not[(x1,a_1) P (y1,b-1)] and Not[(z1,a_1) P (w1,b_1)], so
that no violation of M3, is possible in this case. &

5 Discussion

We have analyzed and characterized binary relations P on product sets that can
be obtained as the asymmetric part of an outranking relation S. We have seen
that these relations are more complex than outranking relations. Indeed, they can
be seen as outranking relations only in degenerate cases.

Consider two alternatives (z;, a_;) and (y;, b_;) that are such that there is no re-
lation V; on the attributes j # . This complexity stems from the fact that y; V; z;
can have two different effects. If S[(x;,a—;), (vi,b—:)] > S[(yi,b-i), (zi,a-4)],
then y; Vi x; acts as a normal veto. It forbids to have (z;,a_;) P (yi,b_;)
because the negative preference difference between y; and x; is “too large”. If
S(ziya—s), (yi,b-5)] & S[(yi,b-i), (¥s,a_;)] then y; V; z; acts as a bonus. It im-
plies that (y;,b;) P (x;,a;), because it forbids to have (z;,a_;) S (y;,b_;). This
makes an AP-R-CDR-AT an object that is far more complex than an outranking
relation.

This is reflected in our analysis by the fact that conditions MM 4, MM5 and BC
are complex conditions, even though it remains possible to interpret them in terms
of the relation 7ZF. This complexity also explains the difference between the pseudo-
disjunctive (also known as “optimistic”) and pseudo-conjunctive (also known as
“pessimistic”) versions of ELECTRE TRI-B. While the latter uses a reflexive out-
ranking relation (i.e., an R-CDR-AT), the former uses an AP-R-CDR-AT. Because
these two objects are different, we should not be surprised by the fact that the theo-
retical analysis of the pseudo-conjunctive version given in Bouyssou and Marchant
(2007a,b) does not carry over to the pseudo-disjunctive version. Similarly, we
should not be surprised by the fact that most of elicitation techniques developed
for the parameters of ELECTRE TRI-B only deal with the pseudo-conjunctive
version (see Cailloux, Meyer, and Mousseau, 2012; Damart, Dias, and Mousseau,
2007; Dias and Climaco, 2000; Dias and Mousseau, 2003, 2006; Dias, Mousseau,
Figueira, and Climaco, 2002; Leroy, Mousseau, and Pirlot, 2011; Mousseau and
Dias, 2004; Mousseau and Stowinski, 1998; Mousseau, Stowinski, and Zielniewicz,
2000; Mousseau, Figueira, and Naux, 2001; Mousseau, Figueira, Dias, da Silva,
and Climaco, 2003; Ngo The and Mousseau, 2002). There has been a number
of recent works proposing elicitation techniques for the pseudo-disjunctive version
(see Zheng, 2012; Zheng, Takougang, Mousseau, and Pirlot, 2012). These excep-
tions do not invalidate the above remark, since these elicitation techniques are far
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more complex than the ones developed for the pseudo-conjunctive version (they
use MILP instead of LP). For more details on this point, we refer to Bouyssou and
Marchant (2013).

A clear limitation of the present work as well as our previous works on outrank-
ing relations is that it only deals with crisp relations. Since there are outranking
methods such as ELECTRE III (Roy, 1978) or PROMETHEE (Brans and Vincke,
1985; Brans, Vincke, and Mareschal, 1986) that use valued relations, an important
direction for future research would be to analyze such relations. Although this will
surely imply the development of a framework different from the ones used here,
this does not seem to be out of reach.
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