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1 Introduction and Notation

Preferences are a central concept of decision making and have extensively
been studied in disciplines such as economy, operations research, psychology,
and philosophy. As preferences are fundamental for the analysis of human
choice behaviour, they are becoming of increasing importance for computa-
tional fields such as artificial intelligence, data bases, and human-computer
interaction. Preference models are needed in decision-support systems such
as web-based recommender systems, in automated problem solvers such as
configurators, in autonomous systems such as mars rovers. Nearly all areas
of artificial intelligence deal with choice situations and can thus benefit from
computational methods for handling preferences. Moreover, recommender
systems, personal assistants, and other interactive systems need to elicit and
satisfy the user’s preferences in order to be able to give truly satisfactory
recommendations. Social choice methods are also becoming of importance
in computational domains such as multi-agent systems.

The field of “preferences” became an emerging area of scientific inves-
tigation for several research groups in computer science and in the recent
years we assist to a number of workshops, conferences and editorial initia-
tives aiming at promoting this area at the edge of fields such as decision
analysis, artificial intelligence, social choice and economics (see for instance
[223]). We mention:
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• the special issue (vol. 20) of the journal Computational Intelligence in
2004, (see for instance [85]),

• the Dagstuhl seminar1 (04271) on “Preferences: Specification, Infer-
ence, Applications” in 2004, starting from which a number of semi-
nars and workshops have been organised every year since (notably the
MPREF series of Multidisciplinary Workshops on Advances in Prefer-
ence Handling)

• the tutorial appeared in AI Magazine in 2008 (see [56]);

• the special issue of the journal Annals of Operations Research (vol.
163) in 2008 (see [224]);

• the Algorithmic Decision Theory conferences held in 2009, 2011 and
2013 (see [226], [57], [206]),

• the special issue (vol. 175) of the journal Artificial Intelligence in 2011,
(see [84]),

• the Dagstuhl seminar2 (14101) on “Preference Learning” in 2014, and

• the establishment of the EURO Working Group on Preference Han-
dling which groups the international community concerned by this
subject.3

This article makes an overview of the recent advances in this area. The
reader only needs to be acquainted with basic notions of discrete mathemat-
ics and logic.

Traditionally preferences have always been modelled as binary relations
applied to a set which we will denote as A. For the purpose of this article
we will only consider finite or enumerable infinite sets which can be of three
types:
- enumeration of objects;
- subsets of vector spaces (typically S ⊆ R);
- subsets of the product space of n attributes Xi (S ⊆ Πn

i Xi).
The use of binary relations includes the case where preferences are expressed
not as binary comparisons of objects among them (relative comparison),
but as binary comparisons of objects to “norms” or “standards” (absolute
comparison), see [75].

Basic references on this issue can be considered: [102], [161], [222], [103],
[230], [152], [247], [251], [209], [105], [4], [199]. In this article we adopt

1http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=04271
2http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=14101
3The reader is invited to check the website http://preferencehandling.free.fr for an

account of all the activities related to this domain.
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the notation introduced in [230]. The usual definitions of (a)symmetric,
(ir)reflexive, transitive, Ferrers etc. relations apply. We use a generic pref-
erence relation (being just reflexive) denoted � to be read “at least as good
as”, from which we can get an asymmetric part, denoted ≻ (and usually
called strict preference) and a symmetric one denoted ∼. The symmetric
part can be distinguished in indifference (denoted ≈) and incomparability
(denoted ⊲⊳). In Section 7 we will see that also the asymmetric part can be
further decomposed in several relations. Besides using an explicit represen-
tation (in terms of sets), preferences are usually represented using graphs,
directly representing the binary relation, matrices (a non graphical repre-
sentation of a graph) and, under precise conditions, numerically (so that the
ordering resulting on the set A can be substituted by the natural ordering
of numbers).

We adopt the term “preference structure” in order to denote collections
of preference relations which establish a partition of A and fulfill a num-
ber of properties. Such preference structures are named as “weak orders”,
“interval orders”, “PQI interval orders”, etc. (for definitions see [199]).
Preference structures can be “characterised”: showing the necessary and
sufficient conditions for which actual preferences upon a set A happen to be
one of these structures. Such representation theorems can be of three types:
- direct conditions upon the binary relations and their combinations;
- forbidden configurations of the associated graph structure;
- specific conditions admitting numerical presentations.
A typical example is the interval order preference structure. The first type
of characterisation states that � is an interval order iff ∀x, y, z, w ∈ A x ≻
y ∧ y ∼ z ∧ z ≻ w → x ≻ w. The second type of characteriation states
that � is an interval order iff whenever there is an arc between x and y and
between z and w there should be an arc between x and w or between z and
y. The third type of characterisation states that � is an interval order iff
∃l, r : A 7→ R l(x) < r(x) : x ≻ y ↔ l(x) > r(y).

We have already introduced the difference between “relative” and “ab-
solute” comparisons (or preferences). In the first case � ⊆ A × A. In the
second case � ⊆ A×N ∪N × A where N is the set of norms or standards
to which elements of A have to compare in order to make an assessment
(for instance when we say that x ∈ A is “good” we assume that x ≻ y,
y ∈ N being the norm or standard of “good”). Another difference can be
established between “direct” and “extended” preferences. The first ones are
as usual represented by �⊆ A × A. The second ones are represented by
<⊆ 2A × 2A. Generally a certain coherence between � and < is expected
when they concern the same set A. In other terms extended preferences
concern the comparison of whole subsets of A among them and not just
among single elements (the reader can see [24], [192], [191] for the multiple
semantics of this type of preferences). A third distinction can be introduced
between “first” and “second” order preferences. First order preferences are
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the usual orderings upon a set A. Second order preferences instead concern
any potential order among the orderings of the set A. Consider the case
where we have n orderings �j upon a set A representing preferences holding
under different scenarios (let’s call J the set of scenarios). The existence of
an ordering relation D⊆ J × J represents a second order preference among
the orderings obtained for each single scenario. Typical cases are likelihood
comparisons (scenario i is likely to occur not less than scenario j) or impor-
tance comparisons (the order according dimension i is at least as important
as the order according dimension j: �iD�2). The reader should note that
in most cases second order preferences are not independent from first order
preferences (cfr. [177], [48]) and that despite their intuitive appealing they
do not constitute “primitive information” for the construction of decision
models (see [75]).

The types of preferences we discussed until now introduce purely ordinal
information. In the case such preferences admit a numerical representation
this is not unique: all monotonic non decreasing transformations are admis-
sible. The values we can associate to these preferences convey only ordinal
information and do not admit any “quantitative” interpretation. Should
we be interested in more “quantitative” information we need to be able to
model “differences of preferences”: the difference of preference between x
and y is at least as large as the difference of preference between z and w
(xy % zw). The reader can see more in [48] and [52].

Preferences are conveyed through “preference statements”: I like x, y
is better than z, I do not like w, x combined to y is worst to z combined
to w etc. As such they can also be modeled as logical sentences (using
some appropriate language). For this purpose we will make reference to
some basic logical notation (for a basic reference see [261]). Moreover we
draw the attention of the reader to issues related to the semantics of logical
inference (model theory) since preferences can and have been used in order
to extend reasoning (for an introduction see [85]).

The article is organized as follows. Section 2 reviews the literature about
the use of preferences in extending reasoning models. Section 3 presents the
use of preferences in argumentation theory. Section 4 discusses deontic logic,
an approach to model preference statements in specially tailored languages.
Section 5 discusses the problem of compact (in computational terms) repre-
sentations of preferences. Section 6 presents the literature about preference
learning. Section 7 reviews non conventional preference models, mainly es-
tablished using logical approaches.

2 Preferences in reasoning

I have an appointment for the first time with Björn, a Swedish man. When
I arrive, I am introduced to a short man with dark hair and dark eyes. He is
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Björn. My surprise (and maybe yours as well) is due to the fact that the pro-
totypical Swedish person is tall, blonde and blue-eyed. Everyday we reason
with incomplete information, we assume the world is as normal as possible
and jump to conclusions, that may be later given up upon learning new
information. Such kind of reasoning is called nonmonotonic, to distinguish
it from the traditional deductive inference in which the set of conclusions
grows proportionally to the set of available information. So, following a fa-
mous syllogisms, from “All men are mortal” and “Socrates is a man”, we can
derive that “Socrates is mortal” and this conclusion will remain no matter
what other information we may add later. In other words, in classical logic,
we cannot retract a previously obtained conclusion. If something was deriv-
able at some point, it will still be derivable if we add more premises. This
can be expressed formally by the Monotonicity property for the classical
consequence relation:

If Γ ⊢ α, then Γ ∪ β ⊢ α (1)

where Γ is a finite set of formulas and α and β are formulas of a propo-
sitional language L4, built up from a finite set P of propositional symbols
and the usual connectives (¬,∧,∨,→,↔). An interpretation is a total func-
tion P → {0, 1} that assigns a truth value (0 or 1 or, equivalently, false or
true) to any propositional letter. An interpretation w is said to be a model
of a formula α (denoted by w |= α) if and only if w makes α true in the
usual truth functional way. The notion of model captures the semantics of
the logical connectives. The syntactic counterpart Γ ⊢ α means that α is
deducible from Γ (where Γ may be empty).

Our everyday reasoning does not satisfy monotonicity. The most famous
bird in computer science is Tweety: If I know that Tweety is a bird, I
will assume that Tweety flies. However, upon learning that Tweety is a
penguin, I will withdraw the previous conclusion. So, we have that Γ ⊢ α,
but Γ ∪ β 0 α, where β is the information that Tweety is a penguin.

As Robert Koons notes [159], defeasible reasoning has been object of
philosophical investigations since Aristotle’s Topics and Posterior Analytic,
but the subject received particular interest from researchers in artificial in-
telligence during the last forty years. The need to investigate and formal-
ize nonmonotonicity emerged in the 1970s, when artificial intelligence re-
searchers were facing knowledge representation problems [218, 180]. To John
McCarthy, nonmonotonicity is what characterizes common sense reasoning.
The 1980s saw a great development of formalisms to capture nonmonotonic
reasoning: circumscription [180, 181, 171], default logics [219, 99], modal
nonmonotonic logics [183, 184], an epistemic reformulation of McDermott’s

4For simplicity here we consider classical propositional logic.
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logic, i.e. autoepistemic logic [190] which was in its turn modified and in-
vestigated by Halpern and Moses in [134], and extended logic programming
[118, 119], a fragment of Reiter’s default logic. One may view all major for-
malisms for non monotonic reasoning as different approaches to the problem
of identifying belief sets preferred for reasoning, once the world is assumed
to be as normal as possible [60].

Yoav Shoham [239, 238, 240] observed that, despite of the differences be-
tween the various formalisms for nonmonotonic reasoning, it is possible to
provide a unifying semantical framework for nonmonotonic logics by general-
izing the notion of minimal models introduced in circumscription.5 Shoham
considers any standard logic L, that is, any logic with the usual model-
theoretic semantics, such as propositional logic, first-order predicate logic,
and modal logic. A preference logic is obtained by associating L with a
strict partial preference order ≻ on interpretations. If in classical logic the
meaning of a formula is the set of models that satisfy it, Shoham shows that
nonmonotonic logics are obtained by adding a preference ordering, which
allows to focus only on a subset of these interpretations. This captures the
idea behind all nonmonotonic logics, that is to assume the world is as nor-
mal as possible and use this assumption to identify those models that are
‘preferable’ in a certain respect. So, when waiting for Björn, I’m justified to
expect a blond, tall and blue-eyed man as the prototypical Swedish person
is blond, tall and with blue eyes. An inference in the preferential framework
can be seen as a selection of those conclusions that hold in all maximally
preferred interpretations. Thus, from having that ∆ |= α if α is true in all
models of ∆ (as in classical logic), we now have that ∆ |= α if α is true in
all preferred models of ∆. Also, from the previous it does not automatically
follow that ∆∪β |= α. This is so because the set of preferred models of ∆∪β
may not be a subset of the set of preferred models of ∆. Shoham needs to
modify the usual notions of satisfaction and entailment to take the ordering
on interpretations into account. In [238] he defines a preferred model and
preferential entailment as follows:

Definition 1 (Preferred model) An interpretationm preferentially satis-
fies α (written m |=≻ α) iff m satisfies α and there is no other interpretation
m′ (with m′ ≻ m) such that m′ satisfies α. Then, m is said to be a preferred
model of α.

Definition 2 (Preferential entailment) α preferentially entails β (writ-
ten α |=≻ β) iff the models of β are a superset of the preferred models of
α.

Shoham claims that some nonmonotonic logics are special cases of his
general framework while the connections to others is not clear. The sys-
tem that is closest to Shoham’s framework is the family of logics based on

5A similar but less general proposal was made by Bossu and Siegel [42].
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circumscription. In general terms, circumscribing a predicate is reducing
the individuals that satisfy that predicate in the theory to only those that
are necessary in view of the theory. Thus, circumscription means preferring
those models of the theory that have minimal extensions of the predicates
in question. Circumscription can then be captured by Shoham’s preferential
model semantics. That is not surprising since, as Shoham himself acknowl-
edges, “the notion of preferred models was implicit in McCarthy’s work from
the start” [238, p. 237].

Unlike circumscription and the minimal knowledge logic of Halpern and
Moses, the relation of Reiter’s default logic with Shoham’s framework is
less clear. Default logics are consistency-based logics as they privilege the
syntactic approach in the definition of nonmonotonic inference. A default
theory is a first-order classical logic theory to which nonmonotonic inference
rules are added. These are default rules and have the form:

α : β1, ..., βn/γ (2)

where α, β1, ..., βn and γ are closed predicate logic formulae. The mean-
ing of 2 is the following: If α is known, and if it consistent to assume
β1, ..., βn, then infer γ. The crucial notion of default logics is that of ex-
tensions (conclusion sets), which are obtained by applying as many default
rules as possible without running into an inconsistency. A default theory
can have one, several or no extensions. Shoham translates default theories
into a modal one and adds a preference relation on the Kripke structures.
He then considers examples where the default theory and its translation into
a modal theory have a different number of extensions. Introducing a pref-
erence criterion does not lead to capture Reiter’s definition of extensions.
Shoham, then, concludes that more work needs to be done to cast light on
that relationship. This was finally achieved by David Makinson [175], who
showed that Reiter’s default logic cannot be captured by the preferential
entailment framework. The reason is that, unlike preferential logics, default
logics are not cumulative.6

The variety of nonmonotonic formalisms raised the question of whether
it was possible to provide a systematic approach that could classify, distin-
guish and clarify the relations between each formalism. Dov Gabbay was
the first to suggest to study the different consequence relations defined by
the different nonmonotonic systems [113]. The step undertaken was not an
obvious one, as not all nonmonotonic formalisms assumed a consequence
relation [138, 139]. In his seminal paper, Gabbay worked on Gentzen-style
consequence relations to single out the minimal conditions a nonmonotonic
consequence relation ∼| should satisfy in order to represent a nonmonotonic

6For the same reason, Reiter’s default logic does not satisfy Cautious Monotonicity (5).
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logic. In addition to Monotonicity (1), a classical consequence relation sat-
isfies other two properties, Reflexivity :

Γ ∪ α ⊢ α (3)

and Cut :

If Γ ⊢ α and Γ ∪ α ⊢ β, then Γ ⊢ β (4)

Assuming that α and β are formulas, α ∼| β should be read as “β is a
plausible consequence of α”. If we substitute ∼| to the classical consequence
relation, we obtain the defeasible versions of Reflexivity (α ∼| α) and Cut,
to which Gabbay added a weak version of Monotonicity (which obviously
cannot hold in a nonmonotonic system), called Cautious Monotony :

If Γ ∼| α and Γ ∼| β, then Γ ∪ α ∼| β (5)

Cautious Monotony is the converse of Cut, and it is also called Cumula-
tive Monotony because it says that it is safe to draw consequences and then
use them as additional premises.

If Gabbay did not provide a semantics for his properties, five years
later, Kraus, Lehmann and Magidor [162] developed Gabbay’s and Shoham’s
works and characterized nonmonotonic consequence relations both proof-
theoretically and semantically:

[N]one of the nonmonotonic systems defined so far in the litera-
ture [...] may represent all nonmonotonic inference systems that
may be defined by preferential models. The framework of prefer-
ential models, therefore, has an expressive power that cannot be
captured by negation as failure, circumscription, default logic or
autoepistemic logic. [...] The main point of this work, therefore,
is to characterize the consequence relations that can be defined
by models similar to Shoham’s in terms of proof-theoretic prop-
erties. To this end, Gabbay’s conditions have to be augmented.
[162, p. 168-169]

The weakest logical system introduced by Kraus, Lehmann and Magi-
dor, system C (for cumulative), adds to the properties of Reflexivity, Cut
and Cautious Monotonicity proposed by Gabbay, the inference rules of Left
Logical Equivalence:

If |= α↔ β and α ∼| γ, then β ∼| γ (6)
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and Right Weakening :

If |= α→ β and γ ∼| α, then γ ∼| β (7)

Among the rules that can be derived in C, we should mention the And
rule:

If α ∼| β and α ∼| γ, then α ∼| β ∧ γ (8)

This rule guarantees that plausible consequences can be accumulated
via conjunction, and so can be seen as a principle of cumulativity that all
basic nonmonotonic logics satisfy. Kraus, Lehmann and Magidor develop a
semantic account for C, and provide a representation theorem.

Even though system C satisfies the minimal requirement for a nonmono-
tonic logic, Kraus, Lehmann and Magidor consider it to be too weak. A
stronger and best fitted for nonmonotonic inference systems is system P
(for preferential), which generalizes Shoham’s preferential semantics and so
it is of particular interest here. This system is equivalent to the one pro-
posed by Ernest Adams in the context of conditional logic [2] and to the
‘conservative core’ of Judea Pearl and Hector Geffner’ probabilistic system
for default reasoning [202]. The system P consists of all the rules of C with
the addition of the Or rule:

If α ∼| γ and β ∼| γ, then α ∨ β ∼| γ (9)

An important derived rule of P is D, originally suggested by Makinson
in a personal communication to the authors:

If α ∧ ¬β ∼| γ and α ∧ β ∼| γ, then α ∼| γ (10)

The relevance of D resides in the fact that it allows the principle of rea-
soning by cases, which is a problem in nonmonotonic reasoning, as Pearl’s
famous example [200] shows. Suppose that we know that male birds fly
and, as a separate default rule, that female birds fly. The default theory in
which, in addition to the previous two default rules, we know that Tweety is
a bird (without having information about its gender) has as only extension
the original information that Tweety is a bird. This is so because the prereq-
uisites of the two rules cannot be verified. This means that the conclusion
that Tweety flies is not obtained, even though it is an intuitively desirable
conclusion.

The semantics of P is based on the notion of preferential model. Pref-
erential models are cumulative ordered models in which the agent has a
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preference over worlds (instead of set of worlds, as in Shoham’s version).
The preference relation ≻ is a strict partial order (it was a well-order in
Shoham’s framework), satisfying the smoothness condition, a technical con-
dition ensuring the existence of a minimal element when we deal with infinite
sets of formulas.

Frameworks for preferential reasoning have not been limited to the propo-
sitional context [162, 169]. Among the proposals to capture defeasible rea-
soning in logics other than propositional one, we recall Lehmann and Magi-
dor’ extension to preferential predicate logics [168], defeasible deontic logics
[194] (cf. Section 4), preferential extensions of description logics [63, 122, 66],
and semantics for preferential reasoning in modal logics [64].

After this short excursus, we may ask ourselves whether a universal logic
of nonmonotonic reasoning possible. Doyle and Wellman [86] answered neg-
atively to this question. Each formalism for nonmonotonic reasoning can
be seen as a special theory of preferential or rational inference (i.e. how to
select the maximally preferred states). If one could combine the different
rational choices made by the several nonmonotonic formalisms into a single
choice, then one could claim that a universal logic of nonmonotonic reason-
ing exists. Yet, by adapting the framework for the aggregation of individual
preferences of social choice theory, they show that a negative result simi-
lar to Arrow’s impossibility theorem [20] can be obtained for preferential
nonmonotonic logics.

3 Preferences in argumentation theory

An argumentation system contains alternative arguments for or against some
conclusions. Argument-based systems were mostly developed within artifi-
cial intelligence to study defeasible reasoning [210, 211, 173, 193, 213, 40].7

The nonmonotonicity lies in the fact that an argument may be defeated by
another argument, which in turns may support the opposite claim. For-
mal argumentation can thus be seen as a generalized way of nonmono-
tonic reasoning [39], and indeed several nonmonotonic formalisms including
Nute’s Defeasible Logic [128], Simari’s DeLP [115], logic programming De-
fault Logic [97] have been shown to conform to the standard semantics of
argumentation theory.

Abstract argumentation theory studies the positions that a rational
agent can take in presence of a given set of arguments, where some ar-
guments are in conflict with others. Arguments and the conflict relations
are considered as generally as possible. Arguments are abstract entities,
i.e. their internal structure is disregarded. Likewise, the conflict relation is

7However, John L. Pollock’s work, who developed Roderick Chisholm’s ideas [73, 74]
into a theory of prima facie reasons and their defeaters, was rather motivated by episte-
mological questions in philosophy of science.
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Figure 1: An argumentation framework.

left unspecified. If two arguments are in conflict, this roughly means that
they cannot both hold. Abstracting away from the internal structure of the
arguments and from the precise meaning of the conflict relation allows to
study how to reason in presence of a conflicting set of arguments in the most
general way. Some approaches assume a particular logic [215] while others
do not specify the underlying logic [40, 97].

Argumentation theory is central within artificial intelligence [27] as it
provides a logic-based formalism for the treatment of defeasible reasoning
and conflict resolution [241, 6, 154, 188, 33], negotiation [245, 163, 11], and
argumentation-based dialogues [13, 214, 158].

An argumentation framework is simply a set of arguments and a binary
relation among them. Dung (who can be considered to be the father of ab-
stract argumentation) identified the binary relation with an attack relation
[97]. Given an argumentation framework, aim of argumentation theory is
to identify and characterize the sets of arguments (extensions) that can rea-
sonably survive the conflicts expressed in the framework. In general, given
an argumentation framework, there are several possible extensions [97].

In order to simplify the discussion, we only consider finite argumentation
frameworks.

Definition 3 (Argumentation framework) An argumentation frame-
work AF is a tuple (Ar ,R), where Ar is a set of arguments and R is a
binary relation on Ar (i.e., R ⊆ Ar × Ar). An argument A attacks an
argument B iff (A,B) ∈ R.

An argumentation framework can be represented as a directed graph in
which the arguments are represented as nodes and the attack relations as
arrows. For instance, the argumentation framework (Ar ,R) where Ar =
{A,B,C,D} and R = {(A,B), (B,A), (A,C), (B,C), (C,D)} is represented
in Figure 1. There we have that A and B attack each other, both A and B
attack C, and C attacks D.

Different semantics have been proposed to define the acceptability of
arguments in an argumentation framework. In Dung’s original extension
approach [97], an extension is a subset of Ar that represents the set of
arguments that can be accepted. Dung’s semantics are based on the notion
of conflict-freeness, namely a set should not be self-contradictory nor include
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arguments that attack each other [97]. This ensures that no extension will
support contradictory conclusions.

Definition 4 (Conflict-free / defence) Let (Ar ,R) be an argumentation
framework. The set S ⊆ Ar is conflict-free if and only if there are no
A,B ∈ S such that (A,B) ∈ R.

We also say that S defends A (or, the argument A is acceptable with
respect to S) if, ∀B ∈ Ar such that (B,A) ∈ R, ∃C ∈ S such that (C,B) ∈
R.

As we have seen, conflict-freeness is the minimal requirement for an
extension. The most common acceptability semantics used in the literature
are the following:

Definition 5 (Acceptability semantics) Let (Ar ,R) be an argumenta-
tion framework and set S ⊆ Ar .

• S is an admissible extension if and only if it is conflict-free and defends
all its elements.

• S is a complete extension if and only if it is conflict-free and contains
precisely all the elements it defends, i.e., S = {A | S defends A}.

• S is a grounded extension if and only if S is the smallest (w.r.t. set
inclusion) complete extension of AF .

• S is a preferred extension if and only if S is maximal (w.r.t. set
inclusion) among admissible extensions of AF .

• S is a stable extension if and only if S is conflict-free and ∀B /∈ S, ∃A ∈
S such that (A,B) ∈ R.

It is known that for every argumentation framework, there exists at least
one admissible set (the empty set), exactly one grounded extension, one or
more complete extensions, one or more preferred extensions, and zero or
more stable extensions.

The admissible extensions of the argumentation framework in Figure 1
are ∅, {A}, {B}{A,D} and {B,D}. The preferred and stable extensions are
{A,D} and {B,D}, the complete extensions are ∅, {A,D} and {B,D} and,
finally, the grounded extension is ∅.

Though the generality of the framework we have briefly reviewed is part
of its attractiveness, it has been argued that arguments do not have the same
strengths [241, 29, 68]. Preferences can be added and taken into account
in order to evaluate arguments [10, 215, 7, 12, 189]. Consider the following
example due to Amgoud and Cayrol.

Example 1 ([9]). Let (Ar ,R) be an argumentation framework with Ar =
{A,B,C} and R = {(B,A), (C,B)}. The set of acceptable arguments is
{(A,C)}. However, suppose that argument B is preferred to A and to C.
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How can the preference over arguments and the attack relation be combined
when deciding which arguments to accept? One natural way is to say that,
since B is preferred to C, it can defend itself from the attack of C. This
would lead to accept B and reject A.

Adding preference relations allows for more expressivity. Not only we can
express that some arguments are in conflict, but also that some arguments
are preferable to others, for example, because they express more probable
beliefs or promote more important values [28]. Dung’s framework has then
been extended by introducing preference relations into argumentation sys-
tems [10, 215, 7, 8, 189].

Simari and Loui [241] introduced preferences over arguments, and [29]
considered arguments from prioritised beliefs in inconsistent knowledge bases.
A natural domain of application of argument-based systems has been the
modelling of legal disagreement [212, 235, 127]. Indeed, one of the first ex-
tensions of Dung’s argumentation framework was inspired by legal reasoning
[215]. In order to increase the potential for implementation and following
[96], arguments were expressed in a logic-programming language and their
conflicts decided with the help of (defeasible) priorities over rules.

A more direct extension of Dung’s framework is the one proposed in [9],
where a preference ordering enriches Dung’s framework. In the literature on
preference-based argumentation, the attack relation in a preference-based
argumentation framework is called defeat, and is denoted by Def .

Definition 6 (Preference-based argumentation framework (PAF ))
A preference-based argumentation framework (PAF ) is a triplet (Ar , Def,�
), where Ar is a set of arguments, Def is the defeat binary relation on Ar ,
and � is a (partial or total) preorder defined on Ar × Ar .

Thus, A � B means that argument A is at least as preferred as B and
the relation ≻ is the strict counterpart of �. As illustrated in Example 1,
one idea to combine preference and attack relations is that if an argument
B is preferred to its attacker A, then A’s attack against B is not successful
and B is accepted. Informally, the idea in [9] is to remove those attacks
that conflict with preferences and calculate Dung’s classical semantics on
the resulting argumentation framework. So, what is the relation between
the two frameworks? [149] show that a preference-based argumentation
framework can represent an argumentation framework:

Definition 7 (PAF representing an AF ) A preference-based argumenta-
tion framework (Ar , Def,�) represents an argumentation framework (Ar ,R)
iff ∀A,B ∈ Ar , it is the case that (A,B) ∈ R iff (A,B) ∈ Def and it is not
the case that B ≻ A.

It should be easy to see that each preference-based argumentation frame-
work represents one argumentation framework, whereas each argumentation
framework can be represented by various preference-based argumentation
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frameworks [149].
Inspired by Perelman’s work on persuasion [205, 204], Bench-Capon

[28] extends standard argumentation framework to take into account values
promoted by arguments and defines value-based argumentation frameworks
(V AF ). The idea is that in practical reasoning, two individuals may agree
on the fact that an argument attacks another argument, but may disagree
on whether that attack is successful because the two arguments promote dif-
ferent values and the two individuals disagree on the preference over those
values. So, preferences over arguments are determined by the values those
arguments support, like human life, world security and good world rela-
tions can be values promoted by some arguments in a political debate over
whether invading Iraq or not [21]. Dung’s framework is thus enriched by
adding a non-empty set of values V, a function val that assigns a value to
each argument, and a partial order > over values. The idea is that an argu-
ment A defeats (successfully attacks) an argument B iff (A,B) ∈ R and the
value promoted by B is not more important than the value promoted by A
(i.e. not val(B) > val(A)).

Kaci and van der Torre [149] extend Bench-Capon’s value-based argu-
mentation frameworks in two directions. They take into account the pos-
sibility that arguments support multiple values, and consider various types
of preferences over values. In [28], if values v1 is preferred to value v2, then
each argument supporting v1 is preferred to each argument supporting v2.
Kaci and van der Torre claim that real-world situations are more complex
and consider two additional preferences: that v1 is preferred to value v2 if
and only if at least one argument supporting v1 is preferred to each argu-
ment supporting v2, and that v1 is preferred to value v2 if and only if each
argument supporting v1 is preferred to at least one argument supporting
v2. Similarly as for the relation between PAF and AF , Kaci and van der
Torre show that a V AF represents a PAF if and only if, for any two ar-
guments A,B, it is the case that A � B if and only if val(A) > val(B) or
val(A) = val(B).

Instead of having a pre-specified preference relation among arguments or
values, one may consider the case in which arguments can express preferences
between other arguments. This is the route explored by Modgil with the in-
troduction of extended argumentation framework (EAF) [189]. Suppose, for
example, that the BBC and the CNN disagree on today’s weather forecast
in London and that argument C says that BBC are more trustworthy than
CNN. Argument C is expressing a preference for the argument that today
it will be dry in London since BBC said so (argument A) over argument B
which claims the opposite as CNN forecasted a rainy day. Dung’s argumen-
tation framework is then extended by adding a second attack relation D to
Ar and the standard binary attack relation R. D ranges from an argument
to an element of R: if A attacks (B,C) (denoted by (A, (B,C))), then A
claims that C is preferred to B. In an extended argumentation framework,
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the notion of defeat is as follows: A defeats B iff (A,B) ∈ R and ∄C ∈ S
such that (C, (A,B)) ∈ D, where S ⊆ Ar .

In [189] and [15] it was observed that ignoring those attacks where the
attacked argument is stronger than the attacker does not always give intu-
itive results. It can happen that the resulting extension violates the basic
condition imposed on acceptability semantics, namely the conflict-freeness
of extensions. This is problematic as, in turns, may lead to violate the
rationality postulates put forward in [65].

Example 2. Suppose that an argumentation framework contains only two
arguments A and B, and that A attacks B. Assume also that B ≻ A.
Preference-based argumentation frameworks run into troubles because, since
B is preferred to A, the attack against B fails, i.e. no defeat relation holds
between the two arguments. The problem is that, by removing an attack, we
remove an important piece of information from the graph, namely that there
is a conflict between two arguments. By doing so, the two arguments may
end up in the same acceptable extension, violating the basic requirement of
conflict-freeness that grounds the idea of Dung’s extensions as representing
coherent positions.

Amgoud and Vesic [15, 16] propose a new preference-based argumen-
tation framework that guarantees conflict-free extensions to deal with the
above problem. However, according to [150, 147, 148], the source of the prob-
lem concerning removing attacks resides in a misunderstanding of Dung’s
framework. The abstract nature of Dung’s framework imposes a careful
instantiation of it and, in particular, a suitable choice of the appropriate
defeat relation. A preference-based argumentation framework with a sym-
metric conflict relation guarantees to prevent the undesirable result [147].
The preference relation is then used to decide the direction of the defeat
relation between two arguments.

4 Deontic logics

The Swedish man we encountered in Section 2 is in fact a serial killer and
my life is now in danger. I know that nobody should kill. However, in order
to save my own life, I have to consider the possibility of killing Björn. If
I have the choice between a bloody murder and a bloodless one, I should
go for the second option. Philosophers, logicians and computer scientists
have reasoned about such a situation, which is one of the many paradoxes
(or puzzles) arising in deontic logic, a logic to reason about concepts like
obligations and permissions. The gentle murderer paradox says that one
should not kill but, if one does, he has the obligation to kill gently [110].
The paradox arises from the fact that in one of the most familiar systems
of deontic logic, the so-called Standard Deontic Logic (SDL), from those
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premises one can derive that it is obligatory to kill tout court, a hardly
defendable conclusion.

Deontic logic studies concepts that have a clear practical relevance for
law, ethics, human and artificial institutions, security systems etc. But, as
it happened for modal logic (which strongly influenced deontic logic [185]8),
contributions have also been made on a more theoretical level. Even though
the first natural applications were to formalise legal reasoning [243], deontic
logic has been increasingly used in computer applications. As observed by
McCarthy [182], one of the primary applications of deontic logic is to detect
a violation of an obligation and to trigger the appropriate sanction to such
violation.

The use of deontic logic is especially useful as a knowledge representa-
tion language in all those situations in which a system designer wants to
take into account the violation of some obligations and the appropriate ac-
tion [144, 145]. The study of logical systems of deontic logic, the formal
analysis of normative systems, the formal representation of legal knowledge,
the specification of aspects of norm-governed multi-agent systems and au-
tonomous agents, as well as normative aspects of protocols for communica-
tion, negotiation and multi-agent decision making are all among the topics
of DEON, a biennal international conference on deontic logic in computer
science. Recently, an extension of multi-agent systems with concepts tra-
ditionally studied in deontic logic gave rise to a new area called Normative
Multi-agent Systems [38] with the satellite NorMAS workshops9.

The beginning of deontic logic can be traced back to the Thirties, when
the Danish philosopher Jø rgensen discussed the logical character of imper-
atives [146]:

[A]ccording to a generally accepted definition of logical inference
only sentences which are capable of being true or false can func-
tion as premises or conclusions in an inference; nevertheless it
seems evident that a conclusion in the imperative mood may be
drawn from two premises one of which or both of which are in
the imperative mood. [146, p. 290]

The point is that imperatives, legal statutes, moral standards etc. are
usually not viewed as being true or false. Expressions like “Mark, leave the

8An exception was the work by Ernst Mally [176], an early pioneer of deontic logic and
the first one to have used the term Deontik. His work was not influenced by modal logic
but his impact on the discipline was undermined by technical problems [108].

9According to the definition of the first workshop on normative multiagent systems in
2005, “Normative Multi-Agent Systems are multi-agent systems with normative systems
in which agents can decide whether to follow the explicitly represented norms, and the
normative systems specify how and in which extent the agents can modify the norms”
[38].
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room!” command a specific behaviour and are not descriptive. Being nonde-
scriptive, they cannot be termed true or false. Thus, they cannot be premise
or conclusion of a logical inference. The Jørgensen’s dilemma expresses the
fact that, though there certainly exists a logical study of normative con-
cepts, it seems difficult to have a logic of normative concepts. The logic
of imperatives is tightly connected to deontic logic [135], and some authors
claim they are essentially the same discipline.

The discussion of whether norms have truth values continued, but the
first formal system of deontic logic was given only in 1951 by the Finnish
philosopher Georg Henrik von Wright [269, 268]. It is consensus to fix in
von Wright’s work the beginning of deontic logic. Subsequent deontic logic
systems built on his work, though essentially any aspect of von Wright’s
logic has been criticised and von Wright himself proposed several systems
to overcome difficulties he encountered.

Many deontic logic systems have been proposed in the literature, like
Standard Deontic Logic (SDL), von Wright’s Old System (OS) [268], Chel-
las’ Minimal Deontic Logic (MDL) [70], Hansson’s Preference-based Deontic
Logic (PDL) [136] and variants of these logics. If we take obligation to be
the primary concept and represent it by the operator O (so Oα reads as “It
is obligatory that α”)10, those logics can be classified on the basis of the
following three properties [249]:

(Weakening) O(α ∧ β)→ Oα

(And) (Oα ∧Oβ)→ O(α ∧ β)

(Violations) wff: α ∧O¬α

The first two properties should be clear. The third property gives the
well-formed formulas (wff) to express violations in the language, by saying
that it may happen that ¬α was obligatory and nevertheless we have that
α is the case. SDL is the only logic that satisfies all three properties. OS
satisfies Weakening and And, MDL satisfies Weakening and Violations. Fi-
nally, PDL is the only system in which Weakening does not hold11, but it
satisfies And and Violations.

We give here the syntax and the semantic of the most cited of such
systems, that is Standard Deontic Logic (SDL), a monadic deontic logic
that builds upon propositional logic.

Definition 8 (SDL) Let L be the language built upon a denumerable set P
of propositional variables, the usual connectives ¬ and → and the operator
O. Axioms of SDL are the following:

10Taking O as the primary concept means that other notions, like permissible, can be
defined from O. So, for example, if we denote ‘permissible’ by P , we have that Pα ↔

¬O¬α.
11For explanations of why Weakening cannot hold in preference-based deontic logics,

see [140, 123, 124, 136].
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(Taut) All tautologies of L.

(K) O(α→ β)→ (Oα→ Oβ)

(D) ¬O⊥

SDL is closed under the following rules of inference:

(Modus Ponens) If ⊢ α and ⊢ α→ β, then ⊢ β

(Necessitation) If ⊢ α then ⊢ Oα

To the reader familiar with modal logic, it will be clear that SDL is just
the normal modal logic KD with a reinterpretation of the � symbol as O for
obligation. Since its birth deontic logic was seen as a branch of modal logic,
thanks to the similarities between modal notions of necessity and possibility
and deontic notions of obligations and permissions. Dissimilarities between
the two fields were, however, noticed by von Wright [271].

The semantics of SDL is a possible worlds (Kripke) semantics.

Definition 9 (Kripke semantics) A possible world (Kripke) model for
a deontic theory in SDL is a tuple M =< W,R, V > that consists of a
nonempty set of worlds W , a binary serial accessibility relation R between
worlds12. A formula Oα is true in w in M (denoted M,w |=SDL Oα) iff for
all accessible worlds w′ (i.e. R(w,w′)), it is true that M,w′ |=SDL α.

Intuitively, R(w,w′) means that world w′ is an ideal alternative to the
actual world w and that in w′ it holds everything obligatory in world w.

A particular class of obligations that was highly relevant for the de-
velopment of formal deontic logic systems are contrary-to-duty ones. A
contrary-to-duty obligation expresses what one should do when obligations
have been violated, like my violation of the obligation to abstain from killing
or, to take a less prosaic example, what Saint Paul said in the first letter to
the Corinthians:

It is good for a man not to touch a woman. But if they cannot
contain, let them marry: for it is better to marry than to burn.
(Cited in [263].)

Many of the deontic logic paradoxes are related to contrary-to-duty para-
doxes. Probably the most famous one is the gentle murderer paradox [110],
which we informally encountered at the beginning of this section.

Example 3 (The gentle murderer paradox). Suppose that the following are
wff’s in a SDL theory:

12An accessibility relation is serial if, for every world w, there is at least one world acces-
sible to w), and a valuation function V that assigns a truth value to atomic propositions
in each world w ∈ W .
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1. Gabriella should not kill Björn: O¬k

2. If Gabriella kills Björn, then she should do it gently: k → O(k ∧ g)

3. Gabriella kills Björn: k

k → O(k ∧ g) is a contrary-to-duty obligation of O¬k, as it says what
one should do if one violates an obligation. The problem with the gentle
murderer is that in a SDL theory with these sentences, one can derive Ok.
By applying Modus Ponens to (2) and (3) we obtain O(k ∧ g), thus Ok by
Weakening. Our theory is thus inconsistent as it contains both Ok and O¬k.

As we have seen in Section 2, default logic formalises the reasoning
based on default assumptions. The world is assumed as normal as possi-
ble (Swedish men are assumed to be tall, blond and with blue eyes, birds
are assumed to be able to fly etc.) unless evidence to the contrary. If this is
the case, previously obtained conclusions may be not any longer derivable.
The idea behind Shoham’s proposal was to add preferences to nonmono-
tonic logics, where preferences represent different degrees of normality. In
the most normal case, Swedish men are tall and blond.

Deontic logic can also be a preference-based logic. As preferences served
to represent and treat exceptions in a preference-based nonmonotonic logic,
so they can be used to represent and treat violations in a preference-based
deontic logic. In other words, similar to degrees of normality in preference-
based default logics, preferences can be seen as degrees of ideality in a logic
for normative reasoning. Indeed, many preference-based deontic logics are
default logics (see also Nute’s collection on defeasible deontic logic [194]).

This was the way taken by Bengt Hansson [135] to treat paradoxes in
deontic logic. He realised that paradoxes arose because the semantics used
in deontic logic was too rigid. As seen in Definition 9, the truth condition
for deontic statements is defined by considering only the actual world and
the worlds that are accessible from the actual one (in which everything that
is obligatory in the actual world holds):

In SDL, norms are assumed to refer exclusively to what obtains
in the best possible alternatives. [. . . ] In SDL, only what is
compatible with the best is not wrong. [136, p. 83]

So, for example, the gentle murderer leads to a paradox because we ob-
tain two conflicting obligations, Ok and O¬k. No world can possibly satisfy
both. The solution prospected by Hansson was to move from the “best
possible alternatives” to a hierarchy of alternatives by defining a preference
ordering � over alternative worlds. Depending on the properties of �, differ-
ent logics can be obtained. Hansson, for example, at the beginning assumed
only reflexivity though in general, the preference ordering over the worlds
is any partial pre-order. The gentle murderer paradox can be solved by dis-
tinguishing accessible worlds in which ¬k is true (and k is false) and worlds
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in which k is true (and ¬k is false) and say that the first kind of worlds are
better than the second one.

A dyadic deontic logic (or logic of conditional obligation) is a logic in
which an obligation is relative to some circumstances. An obligation O(α|β)
means that “α is obligatory, if β is the case”. Clearly, monadic obligations
of type Oα are a special kind of dyadic obligations where the antecedent is
a tautology O(α|⊤).

Hansson gave a semantics of dyadic obligations in which an “ideality
ordering” � over possible worlds is added [135]. When a preference relation
over worlds is added, the intuition is that O(α|β) means that worlds in
which α ∧ β is true are preferred to those in which ¬α ∧ β is true. Dyadic
deontic logics with a preference ordering were also proposed by Danielsson
[79], though it is Hansson’s work that is the most cited since it is the most
easily accessible [1].

Properties like Weakening and And can be reformulated for dyadic logics:

(Weakening) O(α1 ∧ α2|β)→ O(α1|β)

(And) O(α1|β) ∧O(α2|β)→ O(α1 ∧ α2|β)

Deontic logics in a dyadic forms were previously introduced by von
Wright [268] and Rescher [220]. Among the several dyadic logics that have
been proposed in the literature we recall those by Chellas [70], Alchourrón
[3], Lewis [170] (an extension of Hansson’s [135]), Føllesdal and Hilpinen
[108], and van Fraassen [262]. One difference is that, unlike [170, 135, 108,
262], the logics of [70, 3] satisfy the property called strengthening of the
antecedent:

(Strengthening of the Antecedent) O(α|β1)→ O(α|β1 ∧ β2)

van der Torre [249] shows that logics that satisfy strengthening of the an-
tecedent cannot formalise contrary-to-duty reasoning because strengthening
of the antecedent is one of the key properties that lead to contrary-to-duty
paradoxes. On the other hand, logics that do not have strengthening of
the antecedent can formalise the contrary-to-duty paradoxes. However, Al-
chourrón [3], Castañeda [67], and Tan and van der Torre [246] criticise the
lack of strengthening of the antecedent as - in the words of Castañeda - it
is a “negative solution that looks like overkill” (though such criticism is not
undisputed - see, for example, van Benthem et al [31]). A solution to this
problem proposed by van der Torre is a two-phase deontic logic [249]. The
idea is to have a logic that allows the combination of two desirable proper-
ties for a dyadic deontic logic, that is strengthening of the antecedent and
weakening of the consequent, by forbidding the application of strengthening
of the antecedent after weakening of the consequent, a sequence that leads
to paradoxical results.
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5 Compact representations of preferences

As already mentioned in the introduction, preferences are traditionally viewed
as binary relations applied to a set A, such that �⊆ A × A. If the size of
A is reasonable then an explicit representation of � is feasible both from
a cognitive (human agent) and a computational (artificial agent) point of
view.

Consider now the case of choosing a digital camera out of an on-line
catalog. Digital cameras are described by tens of features (each with different
possible values: size of the memory, type of the lens, batteries, brand, price
etc.). If we denote by Xi each possible attribute the whole space of possible
digital cameras is a large subset of

∏
iXi. Considering only binary attributes

is easy to see that the size of A approaches rapidly 2n, n being the number of
attributes. There is no way to handle such a set for several different reasons:

• a human agent cannot compare the 2n potential options in order to
compile his preferences;

• there is no space in the memory of many artificial agents allowing to
store such a set;

• supposing that we manage to get the whole set of comparisons and
that we managed to store it somewhere, there is no way to compute
something operational out of it, such as verifying if it is at least par-
tially ordered and (if this is the case) identifying the maximal elements
of A (Max(A)={x : ¬∃y ∈ A : y � x}).

Problems of the same type arise when the set A on which preferences
are expected to apply results from other combinatorial manipulations such
as being constructed as a the power set of some set Ω of elementary actions
(A ⊆ 2Ω). It is the case when a “portfolio” of actions (or candidates) needs
to be choses out of a list of alternatives.

An “obvious” solution to this problem could be to use some numerical
representation for the different attributes and/or elementary actions and
then aggregate them appropriately. The typical case is where to each at-
tribute is associated a value function (ui) and then these are summed to an
overall value (U). However, there are several problems:

1. Suppose we have �i⊆ Xi×Xi. The conditions under which ∃ui : Xi 7→
R such that x �i y ⇔ ui(x) ≥ ui(y) are restrictive (�i needs to be a
weak order) and do not hold a priori (see also [47]).

2. Suppose that the conditions for having such value functions are satis-
fied. The conditions under which ∃U : A 7→ R such that U =

∑
i ui

are even more restrictive:

21



• ui need to be more than ordinal measures;

• ui need to be commensurable among them;

• �i (and thus ui) need to be preferentially independent among
them.

Once again such conditions are not naturally met! (see [47]).

Generally speaking we are looking how to compare vectors of the Xn
i

space among them (and then possibly find an appropriate way to “mea-
sure” such vectors in some appropriate value scale). Under a conjoint mea-
surement theory perspective, given two vectors (from the vector space Xn

i )
x1 = 〈x

1
1 · · ·x

n
1 〉 and x2 = 〈x

1
2 · · ·x

n
2 〉, the most general model representing a

global preference should be

∃F : X2n
i 7→ R such that F (x11 · · ·x

n
1 , x

1
2 · · ·x

n
2 ) ≥ 0

The function F is characterisable in many different ways: decomposable,
transitive, skew symmetric, additive etc. (for more details see [161], [222],
[49], [51], [50], [48]).

However, this is of little practical interest since it does not tell us how to
handle the cases where the simple additive model does not hold (as in the
case of preferential dependencies). The basic idea, developed in the recent
years has been to develop appropriate languages for compact representations
(see [167]). Before presenting some of such languages we should mention that
these are classified in the literature according to a number of criteria:

• expressiveness;

• concision;

• cognitive relevance;

• computational complexity.

For a discussion about these issues the reader can see [71], [179], [277].
Compact representations of preference models have been considered mainly

in order to take into account preferential dependencies and conditioning
which imped the use of simple additive conjoint measurement functions.
The two main languages developed for this purpose are CP-nets (account-
ing for conditional preference statements) and GAI-networks (accounting for
generalised additivity). We will also briefly discuss the approach consisting
in directly modelling preference statements as logical sentences. We will
not discuss the problem of choosing a “portfolio” of actions out of a set of
alternatives, since there is no specific language developed for this purpose
(although the reader can have a look at [166]). The literature rather focusses
on how to “extend” preferences expressed upon a set Ω to the power set 2Ω
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and how to handle efficiently the optimisation problems deriving from such
an operation. The reader can see more details in [24], [192], [233], [259].

CP-nets CP-nets have been conceived in order to allow the represen-
tation (and efficient computation) of situations where somebody wants to
claim that xt � yz, but yz � xw (the preference between x and y depends
on what comes together to x and to y). Consider the usual two vectors
x1 and x2 within the vector space Xn

i . Then we can distinguish between
unconditional “Ceteris Paribus” preferences along some of the attributes
of X (for instance x31 � x32 all other things being the same: x

3
1 �CP x32)

and conditional preferences where preferences along a certain attribute (let
us say attribute k) are conditioned by preferences expressed on another at-
tribute (let us say attribute l). Technically speaking, a CP-net is represented
through a directed graph among the variables (attributes), where the maxi-
mal elements of the graph are the ones where preferences are unconditioned.
It is easy to see that when the graph is acyclic, computing within a CP-net
is very efficient (while it is not the case otherwise). The reader can see
more about CP-nets in [45], [55], [83], [275]. CP-nets have been extended to
TCP-nets (see [54], [53]) in order to take into account the “relative impor-
tance” that some attributes may have with respect to other ones and from
that to more general CP-theories (see [276]), and to UCP-nets (see [44])
in order to consider conditional utilities). The case of multiple agents has
been discussed in [227]. CP-nets have been applied in several configuration
problems as well as in planning.

GAI-networks The intuition behind additive utility (such that U(x) =∑
j u(x

j)) is that the contribution of each attribute to the overall utility
is independent from all other attributes (and subsets of attributes). How-
ever, decomposable and additive conjoint measurement functions hold only
under very strong conditions. Under less restrictive conditions (see [22],
[102]) we can instead have utility functions based on a “generalised additive
independence” such that:

U(x) =

k∑

i

u(xCi)

where:

• Ci are subsets of the set of attributes X;

• DCi
=

∏
j∈Ci

Xj ;

• ∃ui : DCi
7→ R.

Such generalised additivity incudes many of the existing utility aggregation
procedures (additive, k-additive etc.). However, what is important with such
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functions is the possibility to represent them in suitable graphical models,
named GAI networks allowing for nice compact representations and efficient
computation even for rather complex dependencies. The reader can see more
details in [95], [125], [126].

Logical representations The basic idea here is to work directly on a set
of sentences (which express preferences, values, desires and their opposite)
instead of the binary relations. We can distinguish two approaches.

The first one consists in associating to each sentence ϕ ∈ L (where L is a
set of preferential sentences) a numerical value representing the contribution
of ϕ (when logically satisfied) to the overall utility of the agent owing L.
Such values can also represent priorities in satisfying sentences or “distances”
from some “target state of the agent” (see for instance [29], [59], [165],
[201]). It is easy to show that in most cases such an approach boils down
to use possibility theory (and possibility logic) as representation language
(see for instance [30], [98]). A slightly different approach has been developed
starting from a Constraint Satisfaction Programming perspective: the idea
here is to see preference statements as compact constraints and use the
power of constraint programming in order to solve preference aggregation
and recommendation problems. The reader can see more in [225], [228],
[229], [117]. For other approaches the reader can also see [61], [41].

The second approach consists in establishing a “logic of preferences”,
an idea going back to the 60s ([270], [272]). We have discussed several
aspects of this approach in Section 4. We just recall here that the principle
consists in elaborating a language allowing to express sentences of the type
ϕ ∧ ¬ψ ✄ ¬ϕ ∧ ψ: it is preferred a situation where ϕ holds and ψ does not
hold to one where ϕ does not hold and ψ holds. For more details the reader
can see [34], [151], [260].

6 Analytics of preferences: learning and eliciting

The topic of preference learning or eliciting has recently raised substantial
interest in the communities of operations research and artificial intelligence.
Note that in the former, the term preference elicitation is more frequent,
while in the latter (especially in the subfield of machine learning) the term
preference learning is common (due to different emphasis on the process
for the former and on the data for the latter). Indeed there is a conver-
gence between these communities in addressing these problems; a stream
on preference learning has been organized at the European conference on
Operations Research (EURO) for a number of years; recent initiatives such
as the workshop From Multi-criteria Decision Aid to Preference Learning
(DA2PL). In order to emphasize this convergence we propose to adopt the
term of preference analytics as more general term.
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Learning or eliciting preferences means to acquire preference informa-
tion in either direct or indirect way, from preference statements, critiques to
examples, observations of user’s clicking behaviour, etc. The study of the as-
sessment of the preferences of a decision maker goes back to several decades;
particular emphasis has been given to the elicitation of utility functions for
multi-attribute and multi-criteria settings [156]. Classic approaches for util-
ity elicitation focus on high risk decision and aim at assessing the decision
maker’s utility very precisely. The decision maker is asked a number of
questions in order to assess precisely the parameters of the utility function,
with the exact questions to be asked depending on the adopted protocol.

Decision makers are asked questions that can be local, focusing on at-
tributes in isolation, or global, aimed at comparing complete outcomes. In
particular, standard gamble queries (SGQ) ask the following: “Choose be-
tween option x0 for sure or a lottery < x⊤, l, x⊥, 1− l >” (where the best
option x⊤ is obtained with probability l, the worst option x⊥ is obtained
with probability 1−l). As the expected utility of the lottery < x⊤, l, x⊥, 1−l >
is l; assuming, without loss of generality that u(x⊤)=1 and u(x⊤)=0, then
an answer to a SGQ gives a constraint on utility of x0. Consider, for in-
stance, the standard elicitation procedure for additive models. The decision
analyst would typically ask to consider an attribute (for example, color),
ask for the best (say, red) and worst value (gray). He will then ask local
standard gamble queries for each remaining color to assess it local utility
value (value function). The subsequent problem is that of refining the in-
tervals on local utility values, that can be done with the so-called bound
queries. The next step is then of assessing the “scaling” factors that relate
the weighting attributes to each other. In order to do this, a “reference”
outcome is fixed and typical questions are based on the notion of indifference
swaps (asking the decision maker to assess the required changes to make two
alternatives equally preferred) in order to assess the relative importance of
different features or criteria.

The classic approach to elicitation suffers from a number of drawbacks.
Gamble queries (and similar questions) are difficult to respond. The pre-
cision attained with classical elicitation methods is often unnecessary and
the cognitive cost might just not be worth the effort. While classic elici-
tation protocols are well-founded, and can lead to being able to rank al-
ternatives from the best to the worst, their applicability has been ques-
tioned. Starting from a couple of decades ago, in the operations research
community, several researchers[141, 76] started to deal with the problem of
eliciting an utility function when only incomplete information is available.
Instead of fully eliciting an utility function, indirect elicitation methods as-
sess an utility function from assignment examples (for instance, examples
are assigned to classes). More recently, researchers in artificial intelligence
[43, 69, 274, 46, 264, 265] have developed elicitation techniques for utility
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elicitation, with the goal of mitigating the cognitive cost for the user. Indeed
in AI, the aim is that of developing agents that act regionally on behalf of
the user; eliciting the preferences of the user in an effective way is therefore
crucial.

Preference disaggregation methods The UTA method [141] is an
assessment procedure for a set of utility functions based on linear program-
ming. Local utilities are piecewise linear; the interval is divided in subinter-
vals and linear interpolation is used to approximate the utility contribution
of a given feature. Pairwise preferences are expressed with linear inequal-
ities; slack variables are added to allow inconsistencies in the preference
information. Since several utility functions may in general be feasible, a
typical approach is the minimization of the sum of such slack variables,
yielding an utility function that fits as good as possible the available pref-
erence information. An alternative method is MACBETH13 [76], also based
on a system of linear inequalities, that asks the user to give some reference
levels for each feature/criterion and information about the difference of sat-
isfaction between the values of a given feature. Utility elicitation methods
goes beyond additive models; several researchers have considered models
based on the Choquet integral; for instance the TOMASO decision support
system [178] and the MYRIAD software tools [164]. A review of methods for
preference disaggregation (the general term for this kind of assessment; this
is in contrast to preference aggregation that combines preference information
given a specified model) can be found in [142].

The idea that, when presented with limited information about the user
preferences, there is not just one but many consistent utility functions, gives
rise to robustness concerns. Let us assume that at a given point in the
interaction P represents the set of preference statements available and UP
the set of possible overall utility functions consistent with those. In robust
ordinal regression [131], a choice x is necessarily preferred to y, written
�N , if, for all feasible utility functions, it holds that u(y) ≥ u(x) (with
strict necessary preference x ≻N y if u(y) > u(x) for all feasible utility
functions); x is possibly preferred to y, written �P , if there exists at least
one utility function such that u(x) ≥ u(y) with u ∈ UP . The properties
of the necessary preference �N and of possible preference relation �N are
analyzed: it is easy to see that �N⊆�P (if something is necessary, it is
also possible); moreover it holds that if something is necessarily preferred
to something else, the latter cannot be possibly preferred to the former14:
if x ≻N y then it cannot hold y ≻P x. The method UTAGMS provides
linear programming formulations in order to compute necessary and possible
rankings; notice that when additional preference statements are added, �P

13Measuring Attractiveness by a Categorical Based Evaluation TecHnique.
14There is a obvious similarity to approaches using modal logic, however no formal

logical treatment is made in robust ordinal regression.
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might only decreases and �N increases. The method UTADISGMS15 is
the analogous for sorting problems[132] (alternatives need to be assigned
to classes, that are ordered from the most to the worst preferred), given a
set of example of assignments and assuming an underlying additive model,
the method provides to each alternative the set of necessary and possible
assignments.

Analytical hierarchical process (AHP) A number of methods base
the evaluation of alternatives under conflicting criteria by asking the decision
maker to compare the preferential judgement of subjective values [172]. The
most famous approach of this family is the Analytical hierarchical process
(AHP) [232], a widely used method for decision aid. The decision maker
provides pairwise information about the intensity of the different criteria
that are mapped in a numerical scale, constructing an evaluation matrix.
The principal eigenvector of the matrix is used as a weighting vector. The
items are also evaluated in a pairwise fashion with respect to each of the
criteria; then, item evaluations are multiplied by the weighting vector in
order to assess the ranking. Despite its popularity, AHP has been criticized
by several authors. In particular, [77] criticizes the method with respect to
the semantics of the priority vector derived from the principal eigenvalue
method, as the method derived violates a condition of order preservation.
Moreover, the construction of the comparison matrices involves asking the
decision maker a number of questions that are quadratic in the number of
constraints and features; therefore this method can only be applied to de-
cision problems involving a small number of items and features. Indeed,
consider the problem of choosing a camera out of n possible choices and m
criteria (quality of lens, memory, software,...), the user will be required to
answer m2 + mn2 questions (for example, if there are 20 different models
of cameras and 10 criteria, the user will be asked to answer 520 questions,
something considered unacceptable in typical electronic commerce applica-
tions).

Reasoning about similar decision problems Departing from tradi-
tional axiomatic approaches in economics, [120] analyzes (from a formal ap-
proach) the situation of a decision maker who makes use of previous choices
in memory in order to estimate the utility of a choice in a new problem.
This is similar to what happens in case-based reasoning (a subfield of arti-
ficial intelligence) where solutions to previous similar problems are adapted
in order to solve the problem at hand. This idea has been also considered
in preference-based systems, in particular in approaches to recommendation
based on case-based reasoning [186, 244].

Adaptive Utility Elicitation Ideally, a system for automated elici-
tation and recommendation will only consider cognitive plausible forms of

15UTilités Additives DIScriminantes.
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interactions, focusing on the available alternatives of the current decision
problem. A number of researchers [43, 69, 274, 46, 264] have proposed the
idea of an interactive utility-based recommender systems. It is assumed that
the user has a latent utility function that dictates his preferences; the system
maintains a “belief” (whose nature will be clearer in a moment) about such
utility function u. The general schema is as follows:

1. Some initial user preferences P0 are given; initialize belief

2. Repeat until the belief meets some termination condition

(a) Ask user a query q

(b) Observe the user response r

(c) Update the belief given r

3. Recommend the item optimal according to the current belief

A number of alternative proposals have been made with respect to 1)
how preference uncertainty is represented in a belief, 2) which criterion is
used to make a recommendation, and 3) how to select the question that is
asked next.

A possibility for representing the current belief about the utility is to
encode user responses with constraints (as in UTA) and reason about all
possible consistent utility functions (as in robust ordinal regression) making
use of a robust decision criterion to select the item to recommend. While
maximin is a possibility [266], Boutilier et al. [46] suggest to adopt minimax
regret, that is a less conservative robust criterion for decision making under
uncertainty [236, 160]. The intuition behind the approach of minimax regret
is that of an adversarial game; the recommender selects the item reducing
the “regret” with respect to the “best” item when the uninown parameters
are chosen by the adversary. As before, P represents the set of preference
statements available and UP the set of possible overall utility functions con-
sistent with those. The max regret of an option x is the maximum difference
between the utility of the best item and the utility of x when an adversary
is choosing the utility function u ∈ UP :

MR(x;UP) = max
y∈X

max
u∈UP

u(y)−u(x) (11)

with X being the set of possible choices. The minimax regret MMR(W )
of UP and the minimax optimal item x∗P are then found by finding the item
associated with the smallest maximum regret: MMR(UP) = min

x∈X
MR(x,UP)

and x∗P = argmin
x∈X

MR(x,UP). The advantages of regret-based approach are

threefold: i) it is easy to update our knowledge about the user: whenever a
query is answered, we treat the answer r as a new preferences and derive a
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new set UP∪r (polytope in case of a linear utility model), ii) simple “priors”
can be encoded with constraints on UP and iii) there are efficient heuristics
that directly use the computation of minimax regret to choose the queries
to ask next to the user: the current solution strategy [274, 46] asks the
user to compare x∗P and its adversarial choice y∗P associated with maximum
regret. The approach comes with limitations too, as it cannot deal with
noisy responses and the formulation of the optimization depends on the
assumption about the utility.

A principled idea is that of asking queries with high (a posteriori) im-
provement in decision quality. Assuming a query q that can have R re-
sponses, for each response r ∈ R we can consider the updated utility space
UP∪r assuming that the answer to q is r; the associated minimax regret
is MMR(UP∪r) (that can only be lower or equal to MMR(UP)). A good
query will significantly reduce minimax regret in each of the scenarios. A
(non probabilistic) notion of myopic value of information [264] can be de-
fined considering the worst-case regret reduction of query q when the utility
function must lie in UP :

RR(q;UP) = min
r∈R

[MMR(UP)−MMR(UP∪r)]. (12)

The “best” query according to this measure is then q∗=argmaxq RR(q;UP).
Notice that a query can have significantly different RR values depending
on the UP (the currently known preferences may have a strong impact on
the value of the query). The straightforward approach for query selection
would be to consider all candidate queries, evaluate RR and pick the one
with highest value; however this is impractical for large outcomes spaces.
Practical methods for framing query selection as an optimization problems
for comparison queries (and choice queries, that extend comparison queries
to a set of elements) are thoroughly discussed in [264].

Alternatively, one could assume a Bayesian standpoint: this has the
advantage of handling noisy information, can exploit prior information (if
available) and can be used with different assumption about the choice model
of the user. We assume distributional information about the parameters in-
volved in the user’s utility function; the belief θ(w) is a probability distribu-
tion over the parameters of the utility function that encodes the knowledge
of the system about the user’s preferences; expected utility of a given item
x is given by EUθ(x) =

∫
u(x;w) θ(w) dw. The recommendation x∗θ is the

one associated with maximal expected utility under the current probabilis-
tic belief: EU∗

θ = maxx∈AEU(x);x
∗
θ = argmaxx∈AEUθ(x). When a new

preference is acquired (for instance, the user states that he prefers apples
over orange), the distribution is updated according to Bayes, using Monte
Carlo methods, or inference scheme based on expectation-propagation [187],
in particular Trueskill [137] can be adapted to preference elicitation [133].

The problem of deciding which questions to ask could be formulated as
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a Partially Observable Markov Decision Process (POMDP) [43], however it
is impractical to solve for non trivial cases. A more tractable approach is
to consider (myopic) Expected Value Of Information (EVOI), the difference
between the expected posterior utility (of the best recommendation in the
updated belief) EPU∗

θ(q) associated to a query q and the current EU
∗
θ:

EVOIθ(q) = EPU∗
θ(q)− EU∗

θ =
∑

r∈R

Pθ(r) EU
∗
θ|r −EU

∗
θ (13)

where R is the set of possible responses (answers), θ is the current belief
distribution, θ|r the posterior and Pθ(r) the probability of a given response
according to θ, whose value depends on the assumptions made about the
choice model. We then ask query q∗ = argmaxEV OIθ(q) with highest
EVOI. For choice queries (“Among the following options, which one do you
prefer?”), Viappiani and Boutilier [265] showed that the problem of finding
the optimal query is tightly connected to problem of finding an optimal
recommendation set (the generation of shortlisted alternatives from which
the user makes a selection [216], as in the display of search engine results) and
near-optimal queries can be computed efficiently with worst-case guarantees
.

Learning preferences from data A number of methods in the ma-
chine learning community have been developed in order to assess a set of
parameters consistent with what is known about the user; these include
methods based on support vector machines, such as SVM-rank [143]. The
common ground of these approaches is that they fit an assumed model us-
ing the available data, and use the learned model to make predictions. For
the problem of learning an utility function, this can mean that each user’s
preference is viewed as a constraint (an hyperplane in case of linear models)
on the parameter space, and max-margin learners aim at identifying the set
of parameters that maximize the minimum distance from the nearest hyper-
plane. These methods are “pointwise” in the sense that a single best guess
of the user’s utility function is provided as output. While these methods
work well for tasks such as prediction (as this is the setting they were de-
signed to), they are not readily apt for interactive system, when one needs
to assess which question the system should ask next (the focus of machine
learning is most often of learning from available data).

Some approaches do not make the assumption that a latent numeric
utility function exists. These include models from ranking, such as Mallows
models [78]; for an approach for learning Mallows models see for instance Lu
and Boutilier [174]. At the extreme model-free approaches do not make any
specific model assumption at all, but rely on local estimation techniques.
Common approaches are based on clustering and on using the information
about the nearest neighbors in order to make estimations about the prefer-
ences of the user (implicitly there is an assumption of regularity, meaning
that preferences of neighbors are similar). These approaches are popular for
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label ranking (a type of preference problem where the input data is based on
preference rankings that are assigned to a specific label), in particular for
the problem of predicting preferences based on demographic information,
where the notion of similarity between user is defined naturally. A case-
based nearest neighbors approach is proposed by Brinker and Hullermeier
[62], while Yu, Wan and Le [279] propose a method based on decision trees.

If one knows specific information about the underlying preference model,
it is advantageous to exploit this information. A number of works focused
on algorithms for learning preferences under specific model assumptions. In
particular efforts have been made to learn lexicographic models [278] (the
lexicographic assumption greatly simplifies the learning task, as only very
few rankings are consistent with a lexicographic model) and preferences
over sets [273]. As mentioned before in Section 5, CP-nets are a compact
language representation for preferences in multi-attribute domains. If we
know that a user has preferences that are consistent with a CP net, what is
the best way to learn them? Chevaleyre et al. [72] address this problem for a
theoretical point of view, providing learnability results. If we want to reason
about possible CP networks consistent with current information, one may
use Probabilistic CP networks (PCP-nets) [35], a compact representation of
a probabilistic distribution over CP networks; PCP-nets can be used for
learning by conditioning on available information. Finally, [41] describes
how to learn conditionally lexicographic preference relations.

7 Non classical preference models

Until now we have always considered preferences as model of “certain in-
formation”. Indeed they have been considered as binary relations and the
language used in order to formalise any theory about them has been (ob-
viously) classic logic (the reader can check this in all basic texts about
preference modelling: [230], [102], [105]).

However, it is reasonable that if asked about a preference between any
two x and y one could reply “I do not know” or more generally hesitate
replying partially and/or ambiguously. The problem of representing values
and uncertainty is not really new: Ramsey ([217] and De Finetti [80] have
addressed the issue already in the 30s and has been formalised in decision
analysis both in prescriptive terms ([267]) and normative ones ([236]). The
problem with these approaches is that they are limited on how uncertainty
and hesitation are modelled: practically only probability (although sub-
jective) is considered along with economically rational preferences ([102]).
Such limitations gave raise to alternative approaches either within the de-
cision theory community (the reader can see at [104], [234], [157], [120]) or
within the artificial intelligence community (see for instance [89]). In the
following we are going to survey the results of this later approach.
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7.1 Fuzzy sets

The basic idea here is the one to create and/or use languages specifically tai-
lored to uncertainty modelling purposes, and more specifically the language
of fuzzy sets. The first attempts to use fuzzy sets for preference modelling
purposes date back to the late 70s (see [195], [196], [231]). The major chal-
lenge was to translate in the new language the theoretical structures already
used in order to characterise and work with preferences: what is a fuzzy par-
tition? How to define a fuzzy transitive binary relation? What should be a
fuzzy preference structure? There is a wide literature in this area (partially
surveyed in [191]) for which we cite some classic references: [90], [107], [129],
[152], [207].

If, on the one hand, fuzzy (or valued as often are called) preference rela-
tions allowed to introduce a more nuanced and realistic preference modelling
language, on the other hand they opened a certain number of problems.

• Preference structures and representation theorems require the intro-
duction of complex logical sentences. For instance the definition of
transitivity (∀x, y, z ∈ A x � y ∧ y � z → x � z) require to translate
the universal quantifier as well as the connectives “and” and “imply”
under form of appropriate functions. This problem has been addressed
through the use of T-norms and conorms ([91], [237]) possibly satisfy-
ing the De Morgan principle (such that T (x, y) = N(S(N(x), N(y))),
where T , S and N are the functions representing T-norms, T-conorms
and negations respectively). It has been soon proved that the system
of functional equations which results when usual preference structures
need to be characterised does not admit a unique solution (see [5],
[107]). This is not surprising knowing the truth functionality problems
of fuzzy reasoning and introduces a degree of freedom which needs to
be managed during the modelling process.

• Most of the times valued preference relations are practically sentences
where preferences are associated to some “measure of uncertainty” (it
is typically the case of expected utility). Under such a perspective
when several different valued preferences need to be aggregated what
practically we get is a problem of aggregating the associated measures
(as in most ordered statistics problems), which in this case are sup-
posed to be fuzzy measures. The problem has been addressed extend-
ing well known aggregation procedures through the introduction of
the Choquet and Sugeno integrals which are the more general ordered
statistics we can conceive (see [130]). The reader should note that
this approach allows to include probability measures above preference
statements. Actually the concept of fuzzy measure is nothing more
than the one of “capacity”: a function f over the power set of a set Ω
(f : 2Ω 7→ [0, 1] such that f(∅) = 0 and A ⊆ B ⊆ Ω rightarrowf(A) ≤
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f(B)). Probabilities are just additive capacities. All that said, such
tools implicitly introduce a commensurability hypothesis among these
different measures, which is far from being true in practice.

• A specific way to address the problem of measuring the uncertainty
associated to preference statements has been the use of possibility
distributions (see [92]): these replace the additive property charac-
terising probabilities (seen as capacities) with a pure ordinal sum
(π(A ∪B) = max(π(A), π(B)), π being a possibility distribution). If
we now consider purely ordinal preference statements and purely ordi-
nal likelihoods (such as described by possibilities) we get a possibilistic
version of “Qualitative Decision Theory” an attempt to establish an
ordinal version of classic Decision Theory (see [93], [88]). The problem
here is that the resulting decision rules are either overconfident or not
decisive and thus operationally of little interest (see [89], [101]).

7.2 Beyond Fuzzy sets

As already mentioned it might be the case that it is not possible to establish
precisely whether a certain relation holds or not. However, hesitation can
be due either to incomplete information (missing values, unknown replies,
unwillingness to reply etc.) or to contradictory information (conflicting eval-
uation dimensions, conflicting reasons for and against the relation, inconsis-
tent replies etc.). More generally speaking while we try to assess the belief
of a sentence or the value of something we may face the, rather common,
situation where both positive information (reasons, values) and negative
information (reasons, values) are available. Typical cases include positive
and negative witnesses, majorities for and vetoes against (a preference or a
statement), arguments for and against, gains and losses etc.. Such situations
have been considered in argumentation theory ([250]), value theory ([221]),
cognitive studies about decision under risk and uncertainty ([153], as well as
in philosophy and formal logic (see [87]), [25] and [26]). The common idea
behind these approaches is that the negative information (reasons, values)
is not just the complement of the positive one, but needs to be considered
explicitly and formalised appropriately. In formal logic this idea has been
further developing multi-valued logics and more precisely four-valued logics
(see in [17], [18], [32], [100], [109], [106], [121], [155], [248], [253]).

In the case of preference modelling, the use of such logics was first sug-
gested in [252] and [82]. Such logics extend the semantics of classical logic
through two hypotheses:
- the complement of a first order formula does not necessarily coincide with
its negation;
- truth values are only partially ordered (in a bilattice), thus allowing the
definition of a boolean algebra on the set of truth values.
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The result is that using such logics, it is possible to formally characterise
different states of hesitation when preferences are modelled (see [255], [256].
Further more, using such a formalism, it becomes possible to generalise the
concordance/discordance principle (used in several decision aiding methods)
as shown in [254] and several characterisation problems can be solved (see for
instance [257]). More recently (see [208], [111], [19], [81], [197], [198], [258])
it has been suggested to use the extension of such logics for continuous
valuations.

Among others, this research allowed to show that such continuous val-
uations correspond to the logical counterpart of the concept of bi-capacity
introduced as measure of “bipolar” preference measurement. The issue of
bi-polarity returned of interest in the recent years (see [94]) through differ-
ent contributions where the presence of clearly distinct positive and negative
reasons are considered in representing preferences and supporting decisions
(see [14], [36], [37]).

8 Conclusions

Preferences are a key element of decision making and a basic concept for sev-
eral research fields such as economics, decision theory, game theory, artificial
intelligence, classification, data bases, etc. This article presented the state
of the art of preferences in artificial intelligence; it introduced techniques for
reasoning about, argumenting, representing and learning preferences. Note
that, due to the width of the topic, we did not cover some important do-
mains where handling preferences have also been considered as planning
[23], personalized user interfaces [114], and the recently very active field of
preference-based reinforcement learning [112].

Preferences play a role in almost all sub-areas of artificial intelligence,
as witnessed by the diversity of the formalisms employed in the different
sections of this article. We prospect that in the future preferences will play
an even increasing role (some prominent research directions are mentioned
in the different sections of this article). Indeed, artificial intelligence aims
at producing computational artifacts that can help humans in a number
of problems acting on their behalf; reasoning, explaining, learning and in
general handling preferences are central issues to be tackled in any non trivial
artificial intelligence system. There are several applications [203] of this
research area, some already deployed in practice, including personalized and
location-aware recommendation systems [58] and interactive personalized
configuration systems [242].

We envision that the research issues covered by this survey will be more
and more interconnected: for instance, we can envision the development of
preference elicitation strategies for non classical preference models, or the
development of richer languages for representation of complex preferences,
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that can then be used for argumentation. A critical point, common to the
related research field of recommender systems [116], is that of providing au-
tonomous algorithms capable of explaining to the user how preferences are
treated (aggregated, assessed,...), in particular the reason behind a particu-
lar action taken in behalf of the user (such as a product recommendation).

Finally, preferences constitute the central element of negotiations and
social choice problems, that arise from the fact that different agents (or or-
ganizations) have conflicting objectives, expressed in terms of preferences.
Voting systems are ways to aggregate the preferences of different users (or
agents) in order to make a collective choice (as in elections); however for
novel application domains, such as internet-based decision support tools for
groups of users, new frameworks need to be developed (for instance, vot-
ing systems with incomplete preference profiles and incremental elicitation
of votes; alternatively autonomous agents might engage in online argumen-
tations in order to choose the best candidate for a job). Computational
social choice is the field that studies algorithmic methods to reason about
collective choices; we expect that our general survey about preferences in
artificial intelligence can be of interest to the researchers of this novel area,
contributing to the development of new research directions.
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[75] Colorni, A., Tsoukiàs, A.: What is a decision problem? preliminary state-
ments. In: Proceedings of ADT’13, LNAI 8176, pp. 139 – 153. Springer
Verlag, Berlin (2013)

[76] Bana e Costa, C.A., Vansnick, J.C.: MACBETH - an interactive path towards
the construction of cardinal value functions. International transactions in
operational Research 1, 489–500 (1994)

39



[77] Bana e Costa, C.A., Vansnick, J.C.: A critical analysis of the eigenvalue
method used to derive priorities in AHP. European Journal of Operational
Research 187, 1422–1428 (2008)

[78] Critchlow, D.E., Fligner, M.A., Verducci, J.S.: Probability models on rank-
ings. Journal of Mathematical Psychology 35, 294 – 318 (1991)

[79] Danielsson, S.: Preference and obligation. Studies in the logic of ethics.
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[254] Tsoukiàs, A., Perny, P., Vincke, P.: From concordance/discordance to the
modelling of positive and negative reasons in decision aiding. In: D. Bouyssou,
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