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Abstract. In this paper, we study the k edge-connected L-hop-constrained network design
problem. Given a weighted graph G = (V,E), a set D of pairs of nodes, two integers L ≥ 2 and
k ≥ 2, the problem consists in finding a minimum weight subgraph of G containing at least k
edge-disjoint paths of length at most L between every pairs {s, t} ∈ D.
We consider the problem in the case where L = 2, 3 and |D| ≥ 2. We first discuss integer program-
ming formulations introduced in the literature. Then, we introduce new integer programming
formulations for the problem that are based on the transformation of the initial undirected
graph into directed layered graphs. We present a theoretical compararison of these formulations
in terms of LP-bound. Finally, these formulations are tested using CPLEX and compared in a
computational study for the case k = 3.

Keywords. Survivable network, edge-disjoint paths, flow, hop-constrained path, integer pro-
gramming formulation.

1 Introduction

Let G = (V,E) be an undirected graph and D ⊆ V ×V , a set of pairs of nodes, called demands.
If a pair {s, t} is a demand in D, we call s and t demand nodes or terminal nodes. Let L ≥ 2 be
a fixed integer. If s and t are two nodes of V , an L-st-path in G is a path between s and t of
length at most L, where the length is the number of edges (also called hops).
Given a weight function c : E → R, which associates the weight c(e) to each edge e ∈ E and
an integer k ≥ 1, the k-edge-connected L-hop-constrained network design problem (kHNDP for
short) consists in finding a minimum cost subgraph of G having at least k edge-disjoint L-st-
paths between each demand {s, t} ∈ D.

The kHNDP has applications in the design of survivable telecommunication networks where
bounded-length paths are required. Survivable networks must satisfy some connectivity require-
ments that is, networks that are still functional after the failure of certain links. As pointed out
in [34] (see also [32]), the topology that seems to be very efficient (and needed in practice) is the
uniform topology, that is to say that corresponding to networks that survive after the failure of
k − 1 or fewer edges, for some k ≥ 2. However, this requirement is often insufficient regarding
the reliability of a telecommunications network. In fact, the alternative paths could be too long
to guarantee an effective routing. In data networks, such as Internet, the elongation of the route
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of the information could cause a strong loss in the transfer speed. For other networks, the signal
itself could be degraded by a longer routing. In such cases, the L-path requirement guaranties
exactly the needed quality of the alternative routes. Moreover, in a telecommunication networks,
usually several commodities have to be routed in the network between pairs of terminals. In or-
der to guaranty an effective routing, there must exist a sufficient number of hop constrained
paths between each pair of terminals.

The kHNDP has been extensively investigated when there is only one demand in the network. In
particular, the associated polytope has recieved a special attention. In [31], Huygens et al. study
the kHNDP for |D| = 1, k = 2 and L = 2, 3. They give an integer programming formulation for
the problem and show that the linear programming relaxation of this formulation completely
describes the associated polytope. From this, they obtain a minimal linear description of that
polytope. They also show that this formulation is no longer valid when L ≥ 4. In [13], Dahl et
al. study the kHNDP when |D| = 1, L = 2 and k ≥ 2. They give a complete description of the
associated polytope in this case and show that it can be solved in polynomial time using linear
programming. In [10], Dahl considers the kHNDP for |D| = 1, k = 1 and L = 3. He gives a
complete description of the dominant of the associated polytope Dahl and Gouveia [11] consider
the directed hop-constrained path problem. They describe valid inequalities and characterize the
associated polytope when L ≤ 3. Huygens and Mahjoub [30] study the kHNDP when |D| = 1,
k = 2 and L ≥ 4. They also study the variant of the problem where k node-disjoint paths
of length at most L are required between two terminals. They give an integer programming
formulation for these two problems when L = 4.
In [7], Coullard et al. investigate the structure of the polyhedron associated with the st-walks of
length L of a graph, where a walk is a path that may go through the same node more than once.
They presented an extended formulation of the problem, and, using projection, they give a linear
description of the associated polyhedron. They also discuss classes of facets of that polyhedron.

The kHNDP has also been studied in the case when |D| ≥ 2. In [12], Dahl and Johannessen
consider the case where k = 1 and L = 2. They introduce valid inequalities and develop a
Branch-and-Cut algorithm. The problem of finding a minimum cost spanning tree with hop-
constraints is also considered in [20], [21] and [25]. Here, the hop-constraints limit to a positive
integer H the number of links between the root and any terminal in the network. Dahl [9] study
the problem where H = 2 from a polyhedral point of view and give a complete description of
the associated polytope when the graph is a wheel. Finally, Huygens et al. [29] consider the
problem of finding a minimum cost subgraph with at least two edge-disjoint L-hop-constrained
paths between each given pair of terminal nodes. They give an integer programming formulation
of that problem for L = 2, 3 and present several classes of valid inequalities. They also devise
separation routines. Using these, they propose a Branch-and-Cut algorithm and discuss some
computational results.

Besides hop-constraints, another reliability condition, which is used in order to limit the length
of the routing, requires that each link of the network belongs to a ring (cycle) of bounded length.
In [19], Fortz et al. consider the 2-node connected subgraph problem with bounded rings. This
problem consists in finding a minimum cost 2-node connected subgraph (V, F ) such that each
edge of F belongs to a cycle of length at most L. They describe several classes of facet defining
inequalities for the associated polytope and devise a Branch-and-Cut algorithm for the problem.
In [18], Fortz et al. study the edge version of that problem. They give an integer programming
formulation for the problem in the space of the natural design variables and describe different
classes of valid inequalities. They study the separation problem of these inequalities and discuss
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Branch-and-Cut algorithms.
The related k-edge-connected subgraph problem and its associated polytope have also been the
subject of extensive research in the past years. Grötschel and Monma [26] and Grötschel et
al. [27, 28] study the k-edge-connected subgraph problem within the framework of a general
survivable model. They discuss polyhedral aspects and devise cutting plane algorithms. Didi
Biha and Mahjoub [15] study that problem and give a complete description of the associated
polytope when the graph is series-parallel. In [16], Didi Biha and Mahjoub study the Steiner
version of that problem and characterize the polytope when k is even. Chopra in [6] studies the
dominant of that problem and introduces a class of valid inequalities for its polyhedron. Bara-
hona and Mahjoub [2] characterize the polytope for the class of Halin graphs. In [17], Fonlupt
and Mahjoub study the fractional extreme points of the linear programming relaxation of the
2-edge connected subgraph polytope. They introduce an ordering on these extreme points and
characterize the minimal extreme points with respect to that ordering. As a consequence, they
obtain a characterization of the graphs for which the linear programming relaxation of that
problem is integral. Didi Biha and Mahjoub [14], extend the results of Fonlupt and Mahjoub
[17] to the case k ≥ 3 and introduce some graph reduction operations. Kerivin et al. [33] study
that problem in the more general case where each node of the graph has a specific connectivity
requirement. They present different classes of facets of the associated polytope when the con-
nectivity requirement of each node is at most 2 and devise a Branch-and-Cut algorithm for the
problem in this case. In [3], Bendali et al. study the k-edge connected subgraph problem for
the case k ≥ 3. They introduce several classes of valid inequalities and discuss the separation
algorithm for these inequalities. They [3] devise a Branch-and-Cut algorithm using the reduction
operations of [14] and give some computational results for k = 3, 4, 5. A complete survey on the
k-edge connected subgraph problem can be found in [32].

In this work, we introduce four new integer programming formulations for the kHNDP when L =
2, 3 and k ≥ 2. The paper is organized as follows. In Section 2, we present integer programming
formulations introduced in the literature and which are defined on the original graph.
Then, in Sections 3 and 4, we propose two new approaches for the problem that are based on
directed layered graphs, when L = 2, 3 and k ≥ 1. One approach (called ”separated” approach)
uses a layered graph for each hop-constrained subproblem and the other (called ”aggregated”
approach) uses a single layered graph for the whole problem. These new approaches yield new
integer programming formulations for the problem when L = 2, 3. In Section 5, we compare the
different formulations in terms of linear programming relaxation. Finally, in the last section, we
test these formulations using CPLEX and present some computational results.

We denote by G = (V,E) an undirected graph with node set V and edge set E. An edge e ∈ E
with endnodes u and v is denoted by uv. Given two node subsets W and W ′, we denote by
[W,W ′] the set of edges having one endnode in W and the other in W ′. If W = {u}, we then
write [u,W ′] for [{u},W ′]. We also denote by W the node set V \W . The set of edges having
only one node in W is called a cut and denoted by δ(W ). We will write δ(u) for δ({u}). Given
two nodes s, t ∈ V , a cut δ(W ) such that s ∈ W and t ∈ W is called an st-cut.
We will also denote by H = (U,A) a directed graph. An arc a with origin u and destination v
will be denoted by (u, v). Given two node subsets W and W ′ of U , we will denote by [W,W ′]
the set of arcs whose origin are in W and destination are in W ′. As before, we will write [u,W ′]
for [{u},W ′] and W will denote the node set U \W . The set of arcs having their origin in W
and their destination in W is called a cut or dicut in H and is denoted by δ+(W ). We will also
write δ+(u) for δ+({u}) with u ∈ U . If s and t are two nodes of H such that s ∈ W and t ∈ W ,
then δ+(W ) will be called an st-cut or st-dicut in H.
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Given an undirected graph G = (V,E) (resp. a directed graph H = (U,A)) and an edge subset
F ⊆ E (resp. an arc subset B ⊆ A), we let xF ∈ R

E (resp. yB ∈ R
A) be the incidence vector of

F (resp. B), that is the 0− 1 vector such that xF (e) = 1 if e ∈ F (resp. yB(a) = 1 if a ∈ B) and
0 otherwise.

2 Original graph-based formulations

In this section, we present three integer programming formulations for the kHNDP. The first
one is the so-called natural formulation which uses only the design variables. The two other
formulations use paths and flows variables in the original space.

2.1 Natural Formulation

Let G = (V,E) be an undirected graph, D ⊆ V × V be a demand set, and two integers k ≥ 2
and L ∈ {2, 3}. Given an edge subset F ⊆ E which induces a solution of the kHNDP, that is
the subgraph (V, F ) contains k-edge-disjoint L-st-paths for every {s, t} ∈ D, then, clearly, its
incidence vector xF satisfies the following inequalities.

x(δ(W )) ≥ k for all st-cut, {s, t} ∈ D, (2.1)

x(e) ≥ 0 for all e ∈ E, (2.2)

x(e) ≤ 1 for all e ∈ E. (2.3)

In [10], Dahl considers the problem of finding a minimum cost path between two given terminal
nodes s and t of length at most L. He studied the polyhedron (the L-path polyhedron) associated
with that problem and introduced a class of inequalities as follows.
Let {s, t} ∈ D and a partition (V0, V1, ..., VL+1) of V such that s ∈ V0 and t ∈ VL+1, and Vi 6= ∅
for all i = 1, ..., L. Let T be the set of edges e = uv, where u ∈ Vi, v ∈ Vj , and |i− j| > 1. Then
the inequality

x(T ) ≥ 1

is valid for the L-path polyhedron.
Using the same partition, this inequality can be generalized in a straightforward way to the
kHNDP polytope as

x(T ) ≥ k. (2.4)

The set T is called an L-st-path-cut, and a constraint of type (2.4) is called an L-st-path-cut
inequality. See Figure 1 for an example of a L-st-path-cut inequality with L = 3 and, V0 = {s}
and VL+1 = {t}.
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Figure 1 – Support graph of a L-st-path-cut with L = 3, V0 = {s}, VL+1 = {t} and T formed
by the solid edges

Note that T intersects every L-st-path in at least one edge and each st-cut δ(W ) intersects every
st-path.

Huygens et al. [29] showed that the kHNDP can be formulated as an integer program using the
design variables when L = 2, 3.

Theorem 2.1 [29] Let G = (V,E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then the kHNDP is
equivalent to the following integer program

min{cx; subject to (2.1) − (2.4), x ∈ Z
E}. (2.5)

Formulation (2.5) is called natural formulation and is denoted by kHNDPNat. In [29], Huygens
et al. studied the polytope associated with this formulation and introduced some facet-defining
inequalities for the problem. They also develop a Branch-and-Cut algorithms for the kHNDP
when k = 2 and L = 2, 3.

In [4], Bendali et al. studied the kHNDP in the case where k ≥ 2, L = 2, 3 and |D| = 1. They
studied the polyhedral structure of that formulation and gave necessary and sufficient conditions
under which the L-st-path-cut inequalities (2.4) define facets. In particular, they showed that
an L-st-path-cut inequality induced by a partition (V0, ..., VL+1), with s ∈ V0 and t ∈ VL+1, is
facet-defining only if |V0| = |VL+1| = 1. One can easily see that this condition also holds even
when |D| ≥ 2. Thus, we have the following theorem.

Theorem 2.2 Let {s, t} ∈ D and let π = (V0, ..., VL+1) be a partition of V with s ∈ V0 and
t ∈ VL+1. The L-st-path-cut inequality (2.4) induced by π defines a facet of the kHNDP only if
|V0| = |VL+1| = 1.

Theorem 2.2 points out the fact that an L-st-path-cut inequality induced by a partition (V0, ..., VL+1)
such that |V0| ≥ 2 or |VL+1| ≥ 2, is redundant with respect to those L-st-path-cut inequalities
induced by partitions (V ′

0 , V
′
1 , ..., V

′
L, V

′
L+1) with V0 = {s} and VL+1 = {t}. Therefore, in the re-

main of the paper, the only L-st-path-cut that we will consider are those induced by partitions
of the form ({s}, V1, ..., VL, {t}).

2.2 Undirected path-based formulation

In [35], Orlowski and Wessaly studied the survivable network design problem with hop constraint
and where the paths must satisify some addiditional constraints. These constraints are related
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to the protection scheme used to make the network survivable. Every solution of the problem
can be seen as a collection of feasible hop-constrained st-paths in the graph G, for every demand
{s, t} ∈ D. Here feasible means that these paths are consistent with respect to the protection
scheme.

In [35], the authors considered as protection scheme the case where a given amount of flow must
be routed between the terminals of every demand, using hop-constrained paths. They presented
an integer programming formulation for this problem which uses path variables.

This formulation can be easily extended to the kHNDP. In fact, a solution of the kHNDP can
be modelled by a collection of L-st-paths of G, for all {s, t} ∈ D. Using the remark above, one
can model the kHNDP using path variables in the graph G as follows.

Let Pst be the set of L-st-paths of G. Given an edge subset F ⊆ E, we let µst
F (P ), {s, t} ∈ D,

be the 0− 1-variable which equals to 1 if the path P ∈ Pst is in the graph induced by F and 0
otherwise.
If F induces a solution of the kHNDP, then the following inequalities are satisified by its incidence
vector xF and µst

F (P ), P ∈ Pst, {s, t} ∈ D.

∑

P∈Pst

µst(P ) = k, for all {s, t} ∈ D, (2.6)

∑

P∈Pst, e∈P

µst(P ) ≤ x(e), for all e ∈ E, {s, t} ∈ D, (2.7)

x(e) ≤ 1, for all edge e ∈ E, (2.8)

µst(P ) ≥ 0, for all P ∈ Pst, {s, t} ∈ D, (2.9)

where µst ∈ R
Pst and x ∈ R

E .

Inequalities (2.6) state that a solution of the problem contains at least k st-paths of G, for all
{s, t} ∈ D, while inequalities (2.7) and (2.8) ensure that theses st-paths are edge-disjoint.

We have the following theorem which follows from the above remark.

Theorem 2.3 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.6) − (2.9), x ∈ Z
E
+, µ

st ∈ Z
Pst

+ ,

for all {s, t} ∈ D}. (2.10)

Formulation (3.12) is called Undirected Path Formulation and denoted by kHNDPU
Path. Note

that, in many combinatorial optimization problems, path-based formulations imply an exponen-
tial number of variables, since the number of paths in a graph is, in general, exponential. This
leads to use appropriate methods like column generation to solve the linear relaxation of the
problem. However, for the kHNDP, the number of L-st-paths is bounded by |V |L−1, for each
{s, t} ∈ D. Hence, the number of variables of kHNDPU

Path is polynomial and its linear relaxation
can be solved by enumerating all the paths L-st-paths in a single linear program.

2.3 Undirected flow-based formulation

In this section, we introduce a flow-based model for the problem using flow variables in the
graph G. A similar formulation has been proposed by Dahl and Gouveia [11] for the kHNDP

6



with k = 1 and |D| = 1, and, to the best of our knowledge, this is the first time that such a
formulation is given for when k ≥ 2 and |D| ≥ 2. The formulation is described as follows.

Let G′ = (V,A) be the directed graph obtained from G by replacing each edge uv ∈ E by
two arcs (u, v) and (v, u). Let F ⊆ E be a subgraph of G Given a demand {s, t} ∈ D, we let
f st ∈ R

A be a flow vector on G′ between s and t of value k. Thus, for all {s, t} ∈ D, f st satisfies
the following constraints.

∑

a∈δ+(u)

f st(a)−
∑

a∈δ−(u)

f st(a) =





k if u = s,
0 if u ∈ V \ {s, t},

−k if u = t,



 ,

for all u ∈ V, (2.11)

∑

(u,v)∈A,u 6=s

f st(u, v) ≤
∑

(v,t)∈A

f st(v, t), for all v ∈ V \ {t}, (2.12)

f st(u, s) = 0, for every arc (s, u) ∈ A, u 6= s, for all {s, t} ∈ D, (2.13)

f st(t, v) = 0, for every arc (v, t) ∈ A, v 6= t, for all {s, t} ∈ D, (2.14)

f st(u, v) + f st(v, u) ≤ x(uv), for all uv ∈ E, (2.15)

f st(u, v)
f st(v, u)

}
≥ 0, for all {s, t} ∈ D, uv ∈ E, (2.16)

x(uv) ≤ 1, for all uv ∈ E. (2.17)

Note that Constraints (2.13) and (2.14) remove the flow variables for every arc entering node s
and leaving node t, for all {s, t} ∈ D. In fact, it is not hard to see that these arcs will never be
used in an optimal solution of the problem. Thus the corresponding flow variables are set to 0.
Also Inequalities (2.15) are the linking inequalities which state that if an edge is not taken in the
solution, then the two corresponding arcs have a flow equal to 0. They also indicate that for a
given demand {s, t} and an edge uv with u, v 6= s, t, if edge uv is taken in the solution, then only
one of the arcs (u, v) and (v, u) can be used by the flow. This comes from the fact that in an op-
timal solution, the edge uv may be used in an st-path either from u to v (this arc (u, v)) or from
v to u (this is arc (v, u)). In fact, if both arcs (u, v) and (v, u) are used in the solution, then the
solution in the original graph contains two 3-st-paths of the form (s, u, v, t) and (s, v, u, t) which
share the edge uv. However, by removing the edge uv, these two st-paths are replaced by the
two st-paths (s, u, t) and (s, v, t), of length 2, with lower cost. An illustration is given in Figure 2.

Inequalities (2.12) indicate, for a node v 6= t, if no flow goes from v to t, then no st-path going
through v is used. This implies the existence of L-st-paths in the solution.
It can be easily seen that when L = 2 and L = 3, inequalities (2.11)-(2.17), together with
integrality constraints on variables x and f st completely describes the solution set of the kHNDP.
Thus, we have the following compact formulation for the problem.

Theorem 2.4 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (2.11) − (2.17), x ∈ Z
E
+, f

st ∈ Z
A
+,

for all {s, t} ∈ D}. (2.18)

This formulation will be called Undirected Flow Formulation and denoted by kHNDPU
F low.
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Figure 2 – Illustration of the linking inequalities for an edge uv with u, v 6= s, t.

3 Demand decomposition based formulations

Let G = (V,E) be an undirected graph, L ∈ {2, 3}, k ≥ 2, two integers, and D a set of demands.
In this section, we introduce three integer programming formulations for the kHNDP where we
use a directed layered graph to model each hop-constrained subproblem. These formulation will
be called separated formulations.
As we shall show, in these directed graphs, every path has at most 3 hops. The idea of replacing
hop-constrained path subproblems in the original graph by unconstrained path subproblems in
an adequate graph has been first suggested in Gouveia [21] and subsequently used in other related
papers (eg. [5] and [23]) for more general hop-constrained newtork design problems. However,
the directed graphs proposed here are different from the ones suggested in [21] when L = 3.

3.1 Graph transformation

Let {s, t} ∈ D and G̃st = (Ṽst, Ãst) be the directed graph obtained from G using the following
procedure.
Let Nst = V \{s, t}, N ′

st be a copy of Nst and Ṽst = Nst∪N ′
st∪{s, t}. The copy in N ′

st of a node
u ∈ Nst will be denoted by u′. To each edge e = st ∈ E, we associate an arc (s, t) in G̃st with
capacity 1. With each edge su ∈ E (resp. vt ∈ E), we associate in G̃st the arc (s, u), u ∈ Nst

(resp. (v′, t), v′ ∈ N ′
st) with capacity 1. With each node u ∈ V \ {s, t}, we associate in G̃st k

arc (u, u′) with an infinit capacity. Finally, if L = 3 we associate with each edge uv ∈ E \ {s, t},
two arcs (u, v′) and (v, u′), with u, v ∈ Nst and u′, v′ ∈ N ′

st with capacity 1 (see Figure 3 for an
illustration with L = 3).

Graph G̃s1,t2
Graph G̃s1,t2

Graph G̃s3,t3

s1 t1

t2s3

u t3

Graph G

t3

s3

t2

u u
′

t
′

2

s
′

3

t
′

3

t1
s1

t1

t3

u

s3 s
′

3

t
′

1

t
′

3

u
′

s1 t2

s1

t1

u

t2

t
′

1

s
′

1

u
′

t
′

2

s3 t3

Figure 3 – Construction of graphs G̃st with D = {{s1, t1}, {s1, t2}, {s3, t3}} for L = 3
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Note that each graph G̃st contains |Ṽst| = 2|V | − 2 (= |Nst ∪ N ′
st ∪ {s, t}|) nodes and |Ãst| =

|δ(s)|+ |δ(t)| − |[s, t]|+ |V | − 2 arcs if L = 2 and |Ãst| = 2|E| − |δ(s)| − |δ(t)| + |[s, t]|+ |V | − 2
arcs if L = 3, for all {s, t} ∈ D.
Given a demand {s, t}, the associated graph G̃st = (Ṽst, Ãst), and for an edge e ∈ E, we denote
by Ãst(e) the set of arcs of G̃st corresponding to the edge e.
It is not hard to see that G̃st does not contain any circuit. Also, observe that any st-dipath in
G̃st is of length no more than 3. Moreover each L-st-path in G corresponds to an st-dipath in
G̃st and conversely. In fact, if L ∈ {2, 3}, every 3-st-path (s, u, v, t), with u 6= v, u, v ∈ V \ {s, t},
corresponds to an st-dipath in G̃st of the form (s, u, v′, t) with u ∈ Nst and v′ ∈ N ′

st. Every
2-st-path (s, u, t), u ∈ V \ {s, t}, corresponds to an st-dipath in G̃st of the form (s, u, u′, t).
We have the following lemma.

Lemma 3.1 Let L ∈ {2, 3} and {s, t} ∈ D.

i) If two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths in G̃st are arc-
disjoint.

ii) If two st-dipaths of G̃st are arc-disjoint, then the corresponding st-paths in G contain two
edge-disjoint L-st-paths.

Proof. We will suppose, w.l.o.g., that L = 3. The proof is similar for L = 2.
i) Let P1 and P2 be two edge-disjoint 3-st-paths of G. Let P̃1 and P̃2 be the two st-dipaths of G̃st

corresponding to P1 and P2, respectively. We will show that P̃1 and P̃2 are arc-disjoint. Let us
assume that this is not the case. Then P̃1 and P̃2 intersect on an arc a of the form either (s, t),
(s, u), (v′, t), (u, v′) or (u, u′), with u ∈ Nst and v′ ∈ N ′

st. If a is of the form (s, t), (s, u), (v′, t)
or (u, v′), then it corresponds to an edge e of G of the form either st, su, vt or uv. This implies
that P1 and P2 contain both the edge e, a contradiction. Thus, P̃1 and P̃2 intersect on an arc of
the form (u, u′), with u ∈ Nst. As the st-dipaths of G̃st contain at most 3 arcs, P̃1 and P̃2 are of
the form (s, u, u′, t). But this implies that P1 and P2 contain simulataneously the edges su and
ut, a contradiction.
ii) Now consider two arc-disjoint st-dipaths P̃1 and P̃2 of G̃st and let P1 and P2 be the corre-
sponding 3-st-paths of G. Suppose that P1 ∩ P2 6= ∅. If P1 and P2 intersect on an edge e = st,
then P̃1 and P̃2 also contain the arc (s, t), a contradiction. If P1 and P2 intersect on an edge of
the form su, u ∈ V \ {s, t} (resp. vt, v ∈ V \ {s, t}), then, as before, both P̃1 and P̃2 contain the
arc (s, u) (resp. (v′, t)), yielding a contradiction. Now if P1 and P2 intersect on an edge of the
form uv, u, v ∈ V \ {s, t}, then P̃1 and P̃2 contain the arcs (u, v′) and (v, u′) of G̃st. Since P̃1

and P̃2 are arc-disjoint, P̃1 contains say (u, v′) and P̃2 (v, u′). Thus P̃1 and P̃2 are respectively
of the form (s, u, v′, t) and (s, v, u′, t). This implies that P1 = (su, uv, vt) and P2 = (sv, vu, ut).
Let P ′

1 = (su, ut) and P ′
2 = (sv, vt). Clearly P ′

1 and P ′
2 are edge-disjoint and of length 2. Thus,

we associate P̃1 and P̃2 with them, respectively, which ends the proof of the lemma. �

As a consequence of Lemma 3.1, for L ∈ {2, 3} and every demand {s, t} ∈ D, a set of k edge-
disjoint L-st-paths of G corresponds to a set of k arc-disjoint st-dipaths of G̃st, and k arc-disjoint
st-dipaths of G̃st correspond to k edge-disjoint L-st-paths of G. Therefore we have the following
corollary.

Corollary 3.1 Let H be a subgraph of G and H̃st, {s, t} ∈ D, the subgraph of G̃st obtained by
considering all the arcs of G̃st corresponding to an edge of H, plus the arcs of the form (u, u′),
u ∈ V \{s, t}. Then H induces a solution of the kHNDP if H̃st contains k arc-disjoint st-dipaths,
for every {s, t} ∈ D. Conversely, given a set of subgraphs H̃st of G̃st, {s, t} ∈ D, if H is the
subgraph of G obtained by considering all the edges of G associated with at least one arc in
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a subgraph H̃st, then H induces a solution of the kHNDP only if H̃st contains k arc-disjoint
st-dipaths, for every {s, t} ∈ D.

3.2 Separated Flow Formulation

Corollary 3.1 suggests at once the following flow-based formulation.

Let F ⊆ E be a subgraph of G. Given a demand {s, t}, we let f st ∈ R
Ãst be a flow vector on G̃st

of value k between s and t. Then f st satisfies the flow conservation constraints (3.1), given by

∑

a∈δ+(u)

f st
a −

∑

a∈δ−(u)

f st
a =





k if u = s,

0 if u ∈ Ṽst \ {s, t},
−k if u = t,



 ,

for all u ∈ Ṽst, (3.1)

and

f st
a ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E. (3.2)

f st
a ≤ 1, for all a = (u, u′), u ∈ V \ {s, t}, {s, t} ∈ D. (3.3)

f st
a ≥ 0, for all a ∈ Ãst, {s, t} ∈ D. (3.4)

Also xF satisfies the following inequalities

x(e) ≤ 1, for all edge e ∈ E. (3.5)

Inequalities (3.2) are also called linking inequalities. They indicate that if an edge e ∈ E is not in
the solution, then the flow capacity on every arc corresponding to e is 0. Inequalities (3.4)-(3.5)
are called trivial inequalities.
We have the following theorem which will be given without proof.

Theorem 3.1 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (3.1) − (3.5), x ∈ Z
E
+, f st ∈ Z

Ãst

+ ,

for all {s, t} ∈ D}. (3.6)

Formulation (3.6) will be called separated flow formulation and will be denoted by kHNDPSep
F low.

3.3 Separated Path Formulation

Since the well known work by Rardin and Choe [36], it is known that flows can also be modelled
by paths. Every solution of the problem can hence be represented by directed st-paths in graphs
G̃st, for all {s, t} ∈ D.

Let {s, t} ∈ D and Pst be the set of st-dipaths in G̃st. Given a directed path P̃ ∈ Pst, we denote
by Γst

P̃
= (γst

P̃ ,a
)
a∈Ãst

the incidence vector of P̃ that is the vector given by γst
P̃ ,a

= 1 if a ∈ P̃ and

γst
P̃ ,a

= 0 otherwise. Given a subgraph H of G and a set of subgraphs H̃st of G̃st, {s, t} ∈ D, we

let µst

H̃st

∈ R
Pst be the 0-1 vector such that µst

H̃st

(P̃ ) = 1 if P̃ ∈ Pst is in H̃st and µst

H̃st

(P̃ ) = 0

otherwise.

10



If H induces a solution of the kHNDP, then xH and (µst

H̃st

){s,t}∈D satisfy the following inequali-

ties.
∑

P̃∈Pst

µst(P̃ ) ≥ k, for all {s, t} ∈ D, (3.7)

∑

P̃∈Pst

γst
P̃ ,a

µst(P̃ ) ≤ x(e), for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E, (3.8)

∑

P̃∈Pst

γst
P̃ ,a

µst(P̃ ) ≤ 1, for all a = (u, u′), u ∈ V \ {s, t}, {s, t} ∈ D, e ∈ E, (3.9)

x(e) ≤ 1, for all edge e ∈ E, (3.10)

µst(P̃ ) ≥ 0, for every P̃ ∈ Pst, {s, t} ∈ D, (3.11)

where µst ∈ R
Pst and x ∈ R

E .
Inequalities (3.7) express the fact that the subgraph H̃st must contain at least k st-dipaths.
Inequalities (3.8) and (3.9) indicate that these st-dipaths are arc-disjoint.

The following theorem gives an integer programming formulation for the kHNDP using the
path-based model described above.

Theorem 3.2 The kHNDP for L = 2, 3 is equivalent to the following inter program

min{cx; subject to (3.8) − (3.11), x ∈ Z
E
+, µ

st ∈ Z
Pst

+ ,

for all {s, t} ∈ D}. (3.12)

Formulation (3.12) is called separated path formulation and denoted by kHNDPSep
Path. Remark

that for a each demand {s, t} ∈ D, the number of st-paths in the graph G̃st is bounded by
|V |L−1, which is polynomial for L = 2, 3. Thus, this formulation contains a polynomial number
of variables while the number of non trivial inequalities is

∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]| − d(n− 3)

if L = 2 and
2d|E| −

∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]| − d(n − 3)

if L = 3, which is polynomial.
Hence, as for the undirected path-based formulation kHNDPU

Path, its linear relaxation can hence
be solved in polynomial time using linear programming and by enumerating all the variables
and constraints of the problem.

Still using Rardin and Choe [36], it can be shown that the separated flow and path formulations
(3.6) and (3.12) provide the same LP bound.

Also, one can easily observe that Formulation (3.12) is equivalent to Formulation (2.10), since
L-st-paths in the original graph G corresponds to st-dipaths in the directed graphs G̃st, for all
{s, t} ∈ D, and vice versa. Thus, these formulations also produce the same LP-bound.

Proposition 3.1 Formulation (3.12) and Formulation (2.10) are equivalent and produce the
same LP-bound.
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3.4 Separated Cut Formulation

The previous two models include constraints guaranteeing that for each demand {s, t} ∈ D,
there exists a flow of value of k under the arc capacities given by x. By the Max flow-Min cut
Theorem, this flow exists if and only if the capacity of any st-dicut, in each graph G̃st, is at
least k. This observation leads at once to the following formulation which provides the same LP
bound as the previous separated flow and path formulations.

By Corollary 3.1, if a subgraph H of G induces a solution of the kHNDP, then the subgraph
H̃st contains at least k arc-disjoint st-dipaths, for all {s, t} ∈ D, and conversely. Thus, for any

solution H of the kHNDP, the following inequalities are satisfied by yH̃st

st , for all {s, t} ∈ D,

yst(δ
+(W̃ )) ≥ k, for all st-dicut δ+(W̃ ) of G̃st, for all {s, t} ∈ D, (3.13)

yst(a) ≤ x(e), for all a ∈ Ã(e), {s, t} ∈ D, uv ∈ E, (3.14)

yst(a) ≤ 1, for all a = (u, u′), for all u ∈ V \ {s, t}, {s, t} ∈ D, (3.15)

yst(a) ≥ 0, for all a ∈ Ãst, {s, t} ∈ D, (3.16)

x(e) ≤ 1, for all e ∈ E. (3.17)

where yst ∈ R
Ãst for all {s, t} ∈ D and x ∈ R

E.

Inequalities (3.13) will be called directed st-cut inequalities or st-dicut inequalities and inequal-
ities (3.14) linking inequalities. Inequalities (3.14) indicate that an arc a ∈ Ãst corresponding
to an edge e is not in H̃st if e is not taken in H. Inequalities (3.15)-(3.17) are called trivial
inequalities.

We have the following result which is given without proof since it easily follows from the above
results.

Theorem 3.3 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (3.13) − (3.17), x ∈ Z
E
+, yst ∈ Z

Ãst

+ ,

for all {s, t} ∈ D}. (3.18)

This formulation is called separated cut formulation and denoted by kHNDPSep
Cut. It contains

|E|+
∑

{s,t}∈D

|Ãst| = |E|+ d(n − 2) +
∑

{s,t}∈D

|δ(s)| +
∑

{s,t}∈D

|δ(t)| −
∑

{s,t}∈D

|[s, t]|

variables if L = 2 and

|E|+
∑

{s,t}∈D

|Ãst| = |E|+ 2d|E| + d(n− 2)−
∑

{s,t}∈D

|δ(s)| −
∑

{s,t}∈D

|δ(t)| +
∑

{s,t}∈D

|[s, t]|

variables if L = 3 (remind that d = |D|).
However, the number of constraints is exponential since the directed st-cuts are in exponential
number in G̃st, for all {s, t} ∈ D. As it will turn out in Section 6, its linear programming relax-
ation can be solved in polynomial time using a cutting plane algorithm.

In the next section, we introduce another formulation for the kHNDP also based on directed
graphs. However, unlike the separated formulations, this formulation is supported by only one
directed graph.
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4 Aggregated Formulation for the kHNDP

Let G = (V,E) be an undirected graph, L ∈ {2, 3}, k ≥ 2 two integers, and D the demand set.
We denote by SD and TD respectively the sets of source and destination nodes of D. In the case
where two demands {s1, t1} and {s2, t2} are such that s1 = t2 = s, we keep a copy of s in both
SD and TD.
In this section, we will introduce a new formulation for the kHNDP which is supported by
a directed graph G̃ = (Ṽ , Ã) obtained from G as follows. Let N ′ and N ′′ be two copies of
V . We denote by u′ and u′′ the nodes of N ′ and N ′′ corresponding to a node u ∈ V . Let
Ṽ = SD ∪N ′ ∪N ′′ ∪ TD. For every node u ∈ V , we add in G̃ k arc (u′, u′′). For each {s, t} ∈ D,
with s ∈ SD and t ∈ TD, we apply the following procedure.

i) For an edge e = st, we add in G̃ an arc (s, t′) and k arc (t′, t) ;

ii) For an edge su ∈ E, u ∈ V \ {s, t}, we add an arc (s, u′) in G̃ ;

iii) For an edge vt ∈ E, v ∈ V \ {s, t}, we add an arc (v′′, t).

If L = 3, for each edge e = uv ∈ E, we also add two arcs (u′, v′′) and (v′, u′′) (see Figures 4 and
5 for examples with L = 2 and L = 3).

s
′

1

s
′

3

u
′

t
′

3

t
′

1

t
′

2

s
′′

1

s
′′

3

u
′′

t
′′

1

t
′′

2

t
′′

3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph G̃

Graph G

Figure 4 – Construction of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 2.
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1
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′

3

u
′

t
′

3

t
′

1

t
′

2

s
′′

1

s
′′

3

u
′′

t
′′

1

t
′′

2

t
′′

3

s1

t1

s1 t1

t2s3

u t3

t3

t2

s3

Graph G̃

Graph G

Figure 5 – Construction of graph G̃ with D = {{s1, t1}, {s1, t2}, {s3, t3}} and L = 3.

G̃ contains |Ṽ | = 2|V |+ |S|+ |T | nodes and |Ã| = |V |+
∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| arcs if L = 2 and

|Ã| = 2|E| + |V |+
∑

s∈S

|δ(s)| +
∑

t∈T

|δ(t)| arcs if L = 3.

If G̃ = (Ṽ , Ã) is the graph associated with G, then for an edge e ∈ E, we denote by Ã(e) the set
of arcs of G̃ corresponding to e.
Observe that G̃ is acyclic. Also note that for a given demand {s, t} ∈ D, every st-dipath in G̃
contains at most 3 arcs. An L-st-path P = (s, u, v, t) of G, where u and v may be the same,
corresponds to an st-dipath P̃ = (s, u′, v′′, t) in G̃. Conversely, every st-dipath P̃ = (s, u′, v′′, t)
of G̃, where u′ and v′′ may correspond to the same node of V , correponds to an L-st-path
P = (s, u, v, t), where u and v may be the same. Moreover G̃ does not contain any arc of the
form (s, s′) and (t′′, t), for every s ∈ SD and t ∈ TD. If a node t ∈ TD appears in exactly one
demand {s, t}, then [s′′, t] = ∅. In the remain of this section we will suppose w.l.o.g. that each
node of TD is involved, as destination, in only one demand. In fact, in general, if a node t ∈ TD

is involved, as destination, in more than one demand, say {s1, t}, ..., {sp, t}, with p ≥ 2, then one
may replace in TD t by p nodes t1, ..., tp and in D each demand {si, t} by {si, ti}, i = 1, ..., p.
We have the following result.

Lemma 4.1 Let L ∈ {2, 3}. If each node t ∈ TD appears in exacly one demand, then for every
{s, t} ∈ D,

i) if two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths of G̃ are arc-
disjoint.

ii) if two st-dipaths of G̃ are arc-disjoint, then the corresponding st-paths in G contain two
edge-disjoint L-st-paths.

Proof. The proof will be given for L = 3. It follows the same lines for L = 2.
i) Let {s, t} ∈ D, P1 and P2 be two edge-disjoint 3-st-paths and P̃1 and P̃2 be the two st-dipaths
of G̃ corresponding to P1 and P2. We will show that P̃1 and P̃2 are arc-disjoint. Suppose the
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contrary that is P̃1 and P̃2 intersect on an arc a ∈ Ã of the form either (s, t′), (s, u′), (v′′, t),
(u′, v′′) or (u′, u′′), with u′ ∈ N ′ and v′′ ∈ N ′′. If a is of the form (s, t′), (s, u′), (v′′, t) or (u′, v′′),
then it corresponds to an edge e of G of the form either st, su, vt or uv. It then follows that
P1 and P2 both contain edge e, a contradiction. If P̃1 and P̃2 intersect on an arc of the form
(u′, u′′), then they also contain arcs of the form (s, u′) and (u′′, t). Thus, P1 and P2 also contain
simultaneously the edges su and ut, a contradiction. Thus, P̃1 and P̃2 are arc-disjoint.
ii) Let P̃1 and P̃2 be two arc-disjoint st-dipaths of G̃ and suppose that P1 and P2, the 3-st-paths
of G corresponding to P̃1 and P̃2, are not edge-disjoint. Thus P1 and P2 intersect on edges of
the form either st, su, vt or uv, with u, v 6= s, t.
If both P1 and P2 contain edge st, then each path P̃1 and P̃2 contains at least one arc among
those corresponding to st in G̃, that is (s, t′), (s′, t′′) or (t′, s′′). If P̃1 and P̃2 contain (s′, t′′), then
they should also contain arc (s, s′). Since [s, s′] = ∅, this is impossible. In a similar way, we show
that P̃1 and P̃2 cannot contain (t′, s′′). Hence, P̃1 and P̃2 both contain arc (s, t′), a contradiction.
If P1 and P2 intersect on su, then each path P̃1 and P̃2 contains either (s, u′), (s′, u′′) or (u′, s′′).
Since [s, s′] = ∅ = [s′′, t], P̃1 and P̃2 should both use arc (s, u′), a contradiction.
If P1 and P2 intersect on vt, then P̃1 and P̃2 contain either (v′, t′′), (t′, v′′) or (v′′, t). As [t′′, t] = ∅,
P̃1 and P̃2 cannot use arc (v′, t′′). Moreover, if P̃1 or P̃2 contains (t′, v′′), then it also contains
arc (v′′, t). Hence, P̃1 and P̃2 both contain arc (v′′, t), a contradiction.
In consequence, P1 ∩ P2 = {uv}, u, v 6= s, t. This implies that P̃1 and P̃2 are respectively of
the form (su′, u′v′′, v′′t) and (sv′, v′u′′, u′′t), and P1 = (su, uv, vt) and P2 = (su, vu, ut). Let
P ′
1 = (su, ut) and P ′

2 = (sv, vt). Clearly P ′
1 and P ′

2 are edge-disjoint. Since they are of length 2,

we simply associate P̃1 and P̃2 with them, which ends the proof of the lemma. �

As a consequence of Lemma 4.1, the graph G contains k edge-disjoint L-st-paths for a demand
{s, t} if and only if G̃ contains at least k arc-disjoint st-dipaths. Thus we have the following
corrollary.

Corollary 4.1 Let H be a subgraph of G and H̃ the subgraph of G̃ obtained by considering all
the arcs of G̃ corresponding to the edges of H toghether with the arcs of the form (u′, u′′), u ∈ V ,
and (t′, t), for every t ∈ TD. Then H induces a solution of the kHNDP if H̃ is a solution of
the Survivable Directed Network Design Problem (kDNDP). Conversely, if H̃ is a subgraph of
G̃ and H is the subgraph of G obtained by considering all the edges which correspond to at least
one arc of H̃, then H induces a solution of the kHNDP only if H̃ is a solution of the kDNDP.

By Menger’s Theorem, G̃ contains k arc-disjoint st-dipaths if and only if every st-dicut of G̃

contains at least k arcs. Let x ∈ R
E and y ∈ R

Ã. If F̃ ⊆ Ã induces a solution of the kDNDP

and F ⊆ E is the set of edges of G corresponding to the arcs of F̃ , then xF and yF̃ satisfy the
following inequalities

y(δ+(W̃ )) ≥ k, for all st-dicut δ+(W̃ ), {s, t} ∈ D, (4.1)

y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, (4.2)

y(a) ≥ 0, for all a ∈ Ã, (4.3)

x(e) ≤ 1, for all e ∈ E. (4.4)

We have the following theorem, which easily follows from Corollary 4.1.

Theorem 4.1 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (4.1) − (4.4), x ∈ Z
E
+, y ∈ Z

Ã
+}. (4.5)
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Formulation (4.5) will be called aggregated formulation and denoted by kHNDPAg. Inequalities
(4.1) will be called directed st-cut inequalities or st-dicut inequalities and (4.2) will be called
linking inequalities. The latter inequalities indicate that an arc a, corresponding to an edge e, is
not in H̃ if e is not taken in H.
This formulation contains |E| + |Ã| = |E|+ |V |+

∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 2 and

|E| + |Ã| = 3|E|+ |V |+
∑

s∈SD

|δ(s)| +
∑

t∈TD

|δ(t)| variables if L = 3. The number of constraints

is exponential since the st-dicuts are in exponential number. But, as it will turn out, the sep-
aration problem for inequalities (4.1) can be solved in polynomial time and hence, the linear
programming relaxation of (4.5) so is.
In the next section, we present a comparitive study of different formulations presented in the last
section. In particular, we will show that the linear programming relaxation of these formulations
are as strong as the linear programming relaxation of the natural Formulation.

5 Comparison study between the different formulations

In this section, we compare the different formulations we have introduced before. We first focus
on the number of variables of the different extended formulations. As noticed before, the undi-
rected flow and separated flow formulations are compact and hence have a polynomial number
of variables and constraints, while the undirected and separated path formulations have an ex-
ponential number of variables. However, the aggregated graph contains less arcs than the union
of the separated graphs. Thus, the aggregated formulation contains less variables than the sep-
arated formulations, in particular, the separated cut and flow formulations.

Now, we compare the formulations in terms of LP-bound. In fact, we will show that the extended
formulations (undirected flow and path, separated and aggregated formulations) produce the
same LP-bound, and this LP-bound is the same as that of the natural formulation.

First, we compare the separated formulations between them. In fact, as mentionned in Section
3.2, by Max flow-Min cut Theorem, the separated flow and cut formulations produce the same
LP-bound. Also, by Rardin and Choe [36], the separated flow and path formulations are equiv-
alent, and hence give the same LP-bound. Moreover, as explained in Section 3.3, Formulations
(3.12) and (2.10) are equivalent and hence give the same LP-bound. Therefore, we have the
following theorem.

Theorem 5.1 The linear programming relaxations of Formulations (3.6), (3.12), (3.18) and
(2.10) have the same optimal value.

Now we compare the undirected flow and path formulations. In fact, we show that the undirected
flow formulation can be obtained by projecting the undirected path formulation.

Theorem 5.2 The undirected flow formulation can be obtained by projection of the undirected
path formulation.

Proof. To prove the result, we use the same argument as [11] (see proof of Proposition 2.2). We
first augment the undirected path formulation by additonnal flow variables and then show that
the projection of Formulation (2.10) of these extra variables is defined by constraints (2.11)-
(2.17). W.o.l.g, we will suppose that L = 3.
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First, let G′ = (V,A) be the directed graph obtained from G by replacing every edge uv by two
arcs (u, v) and (v, u). Let f st ∈ R

A, be a 0 − 1 vector, for a given demand {s, t} ∈ D. For all
{s, t} ∈ D, we let f st(a) = 0 for every arc a entering s and leaving t. For a given arc (i, j) ∈ A,
with i, j 6= s, t, a 3-st-path containing (i, j) is of the form (s, i, j, t). We will denote by µst

ij , the
path variable corresponding to that path. For an arc (s, i), i ∈ V \ {s, t}, a 3-st-path containing
the arc (s, i) is of the form (s, i, t) and the path variable corresponding to that path will be
denoted by µst

i . Finally, the path (s, t) corresponding to the arc between s and t, will be denoted
by µst

st. We let µst
ij = f st

ij for all arc (i, j) ∈ A. It is not hard to see that the undirected path
formulation can be augmented by f st variables in the following way.

∑

P∈Pst

µst(P ) = k, for all {s, t} ∈ D (5.1)

∑

P∈Pst, a∈P

µst(P ) = f st
a , for all a ∈ [s, u] ∪ [v, t], {s, t} ∈ D, (5.2)

∑

P∈Pst, uv∈P

µst(P ) = f st
uv + f st

vu, for all edge uv ∈ E, with u, v 6= s, t, {s, t} ∈ D, (5.3)

f st
uv + f st

vu ≤ x(uv), for all edge uv ∈ E, (5.4)

x(uv) ≤ 1, for all edge uv ∈ E, (5.5)

µst(P ) ≥ 0, for every P ∈ Pst, {s, t} ∈ D. (5.6)

With the new notations, Inequalities (5.1) and (5.2) become

µst
st = f st

st , for all {s, t} ∈ D, (5.7)

µst
ij + µst

ji = f st
ij + f st

ji , for all (i, j) ∈ A, i, j 6= s, t, {s, t} ∈ D, (5.8)

µst
st +

∑

i∈V \{s,t}

µst
i +

∑

(i, j) ∈ A
i, j 6= s, t

µst
ij = k, for all {s, t} ∈ D, (5.9)

µst
i +

∑

(i, j) ∈ A
i, j 6= s, t

µst
ij = f st

si , for all i ∈ V \ {s, t}, {s, t} ∈ D, (5.10)

µst
j +

∑

(j, i) ∈ A
i, j 6= s, t

µst
ji = f st

jt , for all j ∈ V \ {s, t}, {s, t} ∈ D. (5.11)

By combining (5.7), (5.8) and (5.10), we obtain

µst
i = f st

si −
∑

(i, j) ∈ A
i, j 6= s, t

µst
ij , for all i ∈ V \ {s, t}, {s, t} ∈ D. (5.12)

By substituting µst
i by (5.12) in (5.11), we get the flow conservation constraint (2.11) for every

node i 6= s, t, for all {s, t} ∈ D. Similarly, by combining (5.12) and (5.9), we obtain the flow
conservation constraint (2.11) associated with node t, and by combining (5.11) and (5.9), we get
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the flow conservation constraint associated with node s.

Now, by combining µst
j ≥ 0 with (5.11), we get Inequalities (2.12).

Thus, together with Inequalities (5.4)-(5.6), we obtain the undirected flow formulation (2.18),
and the result holds. �

Theorem 5.2 implies that the linear programming relaxation of Formulations (2.18) and (2.10)
have the same optimal value, and hence, produce the same LP-bound for the kHNDP when
L = 2, 3.

Now we turn our attention to the natural formulation (2.5). We are going to show that the linear
programming relaxation of the natural formulation has the same value as that of the separated
cut formulation. To this end, we first introduce a procedure which permits to associate with
every st-cut and L-st-path-cut of G an st-dicut of G̃st, for every demand {s, t} ∈ D. This pro-
cedure, called Procedure A, produces, from an edge set C ⊆ E and a demand {s, t} ∈ D, an arc
subset C̃ of G̃st obtained as follows.

Procedure A :

i) For an edge st ∈ C, add the arc (s, t) in C̃ ;

ii) for an edge su ∈ C, add the arc (s, u) in C̃, u ∈ Nst ;

iii) for an edge vt ∈ C, add the arc (v′, t) in C̃, v′ ∈ N ′
st ;

iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},

iv.a) if su ∈ C or vt ∈ C, then add (v, u′) in C̃, with v ∈ Nst and u′ ∈ N ′
st ;

iv.b) if su /∈ C and vt /∈ C, then add the arc (u, v′) in C̃.

Note that each arc of C̃ corresponds to a unique edge of C and vice-versa.
Also, observe that the arc set C̃ does not contain any arc of the form (u, u′) with u ∈ Nst and
u′ ∈ N ′

st. Also note that C̃ does not contain at the same time two arcs (u, v′) and (v, u′), for an
edge uv ∈ E with u, v ∈ V \ {s, t}.
Conversely, an arc subset C̃ of Ãst can be obtained from an edge set C ⊆ E, using Procedure
A, if C̃ does not contain simultaneously two arcs (u, v′) and (v, u′), u, v ∈ Nst, u

′, v′ ∈ N ′
st, and

does not contain any arc of the form (u, u′) with u ∈ Nst, u
′ ∈ N ′

st.

Before going further, we give the following two lemmas whose proof can be found in [4].

Lemma 5.1 Let L = 2, 3, {s, t} ∈ D and let C ⊆ E be an edge set of G which is an st-cut or
an L-st-path-cut induced by a partition (V0, ..., VL+1) such that |V0| = |VL+1| = 1. Then, the arc
set obtained from C by Procedure A is an st-dicut of G̃st.

Proof. See proof of Lemma 4.1 in [4]. �

Lemma 5.2 Let x be a solution of the linear programming relaxation of kHNDPNat and, for

all {s, t} ∈ D, let yst ∈ R
Ãst be the vector obtained from x by
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yst(a) =





x(su) if a is of the form (s, u), u ∈ Nst,
x(vt) if a is of the form (v′, t), v′ ∈ N ′

st,
x(uv) if a is of the form (u, v′) or (v′, u),

u, v ∈ Nst, u′, v′ ∈ N ′
st, u 6= v, u′ 6= v′,

x(st) if a is of the form (s, t),
1 if a is of the form (u, u′), u ∈ Nst, u′ ∈ N ′

st.

Given a demand {s, t} ∈ D, let C̃ be an st-dicut of G̃st such that C̃ does not contain an arc of
the form (u, u′), u ∈ V \ {s, t}. Then, there exists an st-cut or an L-st-path-cut C ⊆ E in G
such that x(C) ≤ yst(C̃).

Proof. See proof of Lemma 4.2 in [4]. �

Now we give the following theorem which shows that the linear programming relaxation of the
natural and separated cut formulations have the same values.

Theorem 5.3 Let ZNat and Z
Sep
Cut denote respectively the optimal value of the linear program-

ming relaxation of the natural and separated cut formulations. Then, ZNat = Z
Sep
Cut.

Proof. First, we show that ZNat ≤ Z
Sep
Cut. To do this, we consider an optimal solution Γ =

(x, ys1t1 , ..., ysdtd) of the linear programming relaxation of kHNDPSep
Cut. We are going to show

that x also induces a solution of kHNDPNat. For this, let {s, t} ∈ D and C ⊆ E be an st-cut or
an L-st-path-cut induced by a partition (V0, ..., VL+1), with |V0| = |VL+1| = 1, and let C̃ ⊆ Ãst

be the arc set of G̃st obtained from C and {s, t} by the application of Procedure A. By Lemma
5.1, C̃ is an st-dicut of G̃st. Since each arc of C̃ corresponds to a unique edge of C and vice-
versa, and since yst(a) ≤ x(e), for all a ∈ Ãst(e), e ∈ E, we have that x(C) ≥ y(C̃). As Γ is
solution of the kHNDPSep

Cut and hence yst satisfies the st-dicut inequalities, we get x(C) ≥ k. This
implies that x induces a solution of the linear programming relaxation of kHNDPNat yielding

that ZNat ≤ Z
Sep

Cut.

Now we show that ZNat ≥ Z
Sep

Cut. For this, we consider an optimal solution x of the linear

programming relaxation of kHNDPNat. Let yst be the vector of RÃst described in Lemma 5.2
associated with x, for all {s, t} ∈ D. We will show in the following that Γ = (x, ys1t1 , ..., ysdtd)

induces a solution of kHNDPSep
Cut. To do this, we consider an st-dicut C̃ of G̃st, for a given demand

{s, t} ∈ D. We distinguish two cases. First, if C̃ contains an arc of the form (u, u′), u ∈ V \{s, t},
then, since |[u, u′]| ≥ k and yst(a) = 1, for all a ∈ [u, u′], we have that yst(C) ≥ k.
Now if C̃ does not contain any arc of the form (u, u′), then by Lemma 5.2, one can obtain an
st-cut or an L-st-path-cut C of G with x(C) ≤ yst(C̃). Clearly, since x is solution of kHNDPNat

and hence satisfies all the st-cut and L-st-path-cut inequalities, we have that yst(C̃) ≥ k. Also, it
is not hard to see that Γ satisfies inequalities (3.14) and (3.15), and thus, induces a solution of the

linear programming relaxation of kHNDPSep
Cut with cost ZNat. Therefore, we get ZNat ≥ Z

Sep

Cut,
which ends the proof of the theorem. �

Next, we compare the linear programming relaxation of the aggregated formulation (4.5) and
the natural formulation (3.18). But before, we introduce a procedure, that we will call Procedure
B, which transforms an edge set C ⊆ E to an arc set C̃ of G̃. Let C ⊆ E and {s, t} ∈ D, and let
C̃ be the arc set of G̃ obtained as follows.

i) For an edge st ∈ C, add the arc (s, t′) in C̃ ;
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ii) for an edge su ∈ C, add the arc (s, u′) in C̃, u′ ∈ N ′ ;

iii) for an edge vt ∈ C, add the arc (v′′, t) in C̃, v′′ ∈ N ′′ ;

iv) for an edge uv ∈ C, u 6= v, u, v ∈ V \ {s, t},

iv.a) if su ∈ C or vt ∈ C, then add (v′, u′′) in C̃, with v′ ∈ N ′ and u′′ ∈ N ′′ ;

iv.b) if su /∈ C and vt /∈ C, then add the arc (u′, v′′) in C̃.

Observe that C̃ does not contain any arc neither of the form (u′, u′′) with u′ ∈ N ′ and u′′ ∈ N ′′,
nor of the form (t′, t) for t ∈ TD. Also note that C̃ does not contain at the same time two arcs
corresponding to the same edge of G.
Conversely, an arc subset C̃ of Ã can be obtained by Procedure B from an edge set C ⊆ E if C̃
does not contain simultaneously two arcs corresponding to the same edge of G, and any arc of
the form (u′, u′′) with u′ ∈ N ′, u′′ ∈ N ′′ or (t′, t), t ∈ TD.
We have the following two lemmas.

Lemma 5.3 Let (x, y) be a solution of the linear programming relaxation of Formulation (4.5).
Let C ⊆ E be an edge set of G which is an st-cut or a L-st-path-cut induced by a partition
(V0, ..., VL+1) such that |V0| = |VL+1| = 1, with L ∈ {2, 3}. Then the arc set obtained from C
and {s, t} by Procedure B is an st-dicut of G̃.

Proof. See proof of Lemma 4.1 in [4]. �

Lemma 5.4 Let x be a solution of the linear programming relaxation of kHNDPNat and let

y ∈ R
Ã be the vector obtained from x by

y(a) =





x(e) if a ∈ Ã(e), for all e ∈ E,
1 if a is of the form (u, u′), u ∈ N ′, u′ ∈ N ′′,

or of the form (t′, t), for all t ∈ TD.

Given a demand {s, t} ∈ D, let C̃ be an st-dicut of G̃ such that C̃ does not contain any arc
of the form (u′, u′′), u ∈ V , or of the form (t′, t), t ∈ TD. Then, there exists an st-cut or an
L-st-path-cut C ⊆ E in G such that x(C) ≤ y(C̃).

Proof. The proof is similar to that of Lemma 4.2 in [4]. �

Also, we compare the aggregated formulation with the natural formulation, in terms of linear
programming relaxation. We show their linear programming relaxation also have the same value.

Theorem 5.4 Let ZNat and ZAg denote respectively the optimal values of the linear program-
ming relaxation of the natural and aggregated formulations. Then, ZNat = ZAg.

Proof. We will show first that ZAg ≥ ZNat. For this, we will consider an optimal solution (x, y)
of the linear programming relaxation of the kHNDPAg and show that x induces a solution of
the linear programming relaxation of the kHNDPNat. Let {s, t} ∈ D, and let C ⊆ E be an
st-cut or an L-st-path-cut of G induced by a partition (V0, ..., VL+1), with |V0| = |VL+1| = 1.
Also let C̃ be the arc set obtained from C and {s, t} by application of Procedure B. By Lemma
5.3, the arc set C̃ induces an st-dicut of G̃. Since each arc of C̃ corresponds to a unique edge
of C and vice versa, and since y(a) ≤ x(e), for all a ∈ Ã(e), e ∈ E, we have that x(C) ≥ y(C̃).
Moreover, y satisfies all the st-dicut inequalities. Thus, we have that x(C) ≥ y(C̃) ≥ k, and x
induces a solution of the linear programming relaxation of kHNDPNat, yielding that ZAg ≥ ZNat.
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Now, we are going to show that ZNat ≥ ZAg. To do this, we will show that an optimal solution x
of the linear programming relaxation of kHNDPNat induces a solution of the linear programming
relaxation of the kHNDPAg with cost ZNat, implying that ZNat ≥ ZAg. Let y be the vector of

R
Ã obtained from x as described in Lemma 5.4, and let Γ = (x, y). We claim that y satisfies

all the st-dicut inequalities (4.1). To prove it, we consider an st-dicut C̃ = δ+(W̃ ) of G̃ and

distinguish three cases. W.l.o.g, we will suppose that W̃ ∩ S = {s} and (Ṽ \ W̃ ) ∩ T = {t}.
Otherwise, one can easily observe that the st-dicut inequality induced by C̃ is redundant with
respect to that induced by the node set (W̃ \ (S \ {s})) ∪ (T \ {t}).

Case 1.

If C̃ does not contains any arc of the form (u,′ u′′), u ∈ V , or of the form (t′, t), t ∈ TD, and does
not contain simultaneously two arcs corresponding to the same edge, then C̃ can be obtained
by application of Procedure B for an edge set C ⊆ E. From Lemma 5.4, the edge set C is either
an st-cut or an L-st-path-cut, and x(C) ≤ y(C). Since x is a solution of kHNDPNat and hence,
x(C) ≥ k, we also have that y(C̃) ≥ k.

Case 2.

If C̃ contains an arc of the form (u′, u′′), for some u ∈ V , or of the form (t′, t), for some t ∈ TD,
then it contains k arcs of the form (u′, u′′) or (t′, t). Since y(a) = 1, for all a ∈ [u′, u′′]∪ [t′, t], we
have that y(C̃) ≥ k.

Case 3.

If C̃ does not contain any arc of the form (u′, u′′), u ∈ V , or of the form (t′, t), t ∈ TD, but
contains two arcs corresponding to the same edge. Since C̃ is an st-dicut, these two arcs are
either (s, u′) and (s′, u′′) or (v′, t′′) and (v′′, t), for some edge su or vt, with u, v ∈ V \{s, t}. If C̃

contains two arcs (s, u′) and (s′, u′′), then {s, s′} ⊆ W̃ , and W̃ ′ = W̃ \ {s′} induces an st-dicut.

As by construction of G̃, [s, s′] = ∅, we have that δ+(W̃ ′) = C̃ \ {(s′, u′′)}. If C̃ contains two

arcs (v′, t′′) and (v′′, t), then, {v′, v′′} ⊆ W̃ and t′′ /∈ W̃ . As before, the node set W̃ ′′ = W̃ ∪ {t′′}

induces st-dicut, and since [t′′, t] = ∅, we have that δ+(W̃ ′′) = C̃ \ {(v′, t′′)}. By repeating this
procedure for every pair of arcs of C̃ corresponding to the same edge, we obtain a minimal arc
set C̃ ′ ⊂ C̃, which does not contain any arc of the form (u′, u′′), u ∈ V or of the form (t′, t),
t ∈ TD, and which does not contain two arcs corresponding to the same edge of G. Thus, based
on Case 1, we have that y(C̃ ′) ≥ k. Since C̃ ′ ⊂ C̃, we have that y(C̃) ≥ y(C̃ ′) and get y(C̃) ≥ k.

Therefore, y satisfies every st-dicut inequality (4.1) and, since y(a) = x(e), if a ∈ Ã(e), for
all e ∈ E, and y(a) = 1, otherwise, (x, y) is solution of the linear programming relaxation of
kHNDPAg, with cost ZNat. Thus, ZNat ≥ ZAg, which ends the proof of the theorem. �

One may notice that Theorems 5.3 and 5.4 point out the fact that the separated and aggregated
formulations produce the same LP-bound as the natural formulation. Also, by Theorems 5.1 and
5.2, the Undirected Path and Flow formulations produce the same LP-bound as the separated
formulation.
As a consequence, the Undirected formulations, the separated and aggregated formulations pro-
duce the same LP-bound as the natural formulation, and all the formulations produce the same
LP-bound. This results is summurized in Corollary 5.1 and in Figure 6.

Corollary 5.1 Formulations (2.5), (2.10), (2.18), (3.6), (3.12), (3.18) and (4.5) produce the
same LP-bound for the kHNDP.
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Figure 6 – Comparison of LP-bounds of the all the formulations

6 computational results

In this section we present a computational study of the different formulations introduced in the
paper. The main objective is to check their efficiency for solving the problem for large scale
instances, and compare them to each other from a computational point of view.

We solve the problem for each formulation by using CPLEX 12.2 and Concert Technology, im-
plemented in C++, on a DELL Workstation T3500 with an Intel Xeon Quad-Core 2.26GHz and
3Go of RAM. For our instances, we use graphs from TSPLIB [37] (euclidean complete graphs)
with randomly generated demand sets. We consider single-source multi-destination instances
and multi-source multi-destination instances. The number of nodes of the graphs varies from 21
up to 52. The number of demands, in turn, varies from 15 to 50, for the rooted case and from
10 to 26 for the arbitrary case.

The following tables give computational results for the separated flow and path formulations, the
aggregated formulation and natural formultation. We do not give the results for the separated
cut formulation. We will discuss this formulation later.

Note that the linear programming relaxations of the separated flow and path formulations are
solved by using a linear program, since they contain a polynomial number of variables and
constraints. For the aggregated and natural formulations, we use a cutting plane algorithm to
solve their linear programming relaxation, since they both contain an exponential number of
constraints (st-cut (2.1) and L-st-path-cut inequalities (2.4) for the natural formulation, and
st-dicut inequalities (4.1) for the aggregated inequalities). The separation problem associated
with these constraints reduces to a maximum flow problem and can be solved in polynomial
time (see for example [3] and [18]).

The results given in the following tables are obtained for k = 3 and for L = 2 and L = 3.
Each instance is given by the number of nodes of the graph preceded by the type of demand,
indicated by ’r’ for rooted demands and ’a’ for arbitrary demands. The other entries of the
various tables are :
In all the tables, the instances indicated with ”*” are instances for which the algorithm has
reached the maximum CPU time, 5 hours, while instances with ”**” are those for which the
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|V | : number of nodes of the graph ;
|D| : number of demands,
COpt : weight of the best upper bound obtained ;
Gap : the relative error between the best upper bound

(the optimal solution if the problem has been solved
to optimality) and the lower bound obtained at the
root node of the Branch-and-Cut tree ;

NSub : number of subproblems in the Branch-and-Cut tree ;
TT : total CPU time in hours :min :sec.

algorithm runs out of ressources (lack of memory). For all theses instances, we give the best
results obtained at the end of the execution of the algorithm.

The first test is done for the separated flow formulation. Tables 1a and 1b give the results for
this formulation for L = 2 and L = 3, respectively, and with k = 3.

|V | |D| COpt Gap NSub TT
r 21 15 7138 2.52 69 0 :00 :01
r 21 17 7790 5.38 245 0 :00 :01
r 21 20 8762 6.85 818 0 :00 :03
a 21 10 8313 0 1 0 :00 :01
a 21 11 8677 0 1 0 :00 :01
r 30 15 12512 0 1 0 :00 :01
r 30 20 14215 1.81 93 0 :00 :02
r 30 25 15610 2.54 195 0 :00 :04
a 30 10 12124 1.04 122 0 :00 :01
a 30 15 15868 1.74 124 0 :00 :01
r 48 20 21586 2.26 174 0 :00 :03
r 48 30 29326 9.71 14653 0 :00 :32
r 48 40 37458 13.57 1061135 0 :19 :23
a 48 15 32097 1.48 90 0 :00 :01
a 48 20 44400 0.23 105 0 :00 :03
a 48 24 52619 0.16 108 0 :00 :02
r 52 20 14093 1.89 95 0 :00 :01
r 52 30 17643 5.11 2290 0 :00 :20
r 52 40 21041 7.72 97749 0 :02 :53
r 52 50 24619 8.97 547195 0 :23 :38
a 52 20 18480 1.12 482 0 :00 :02
a 52 26 24125 0.15 37 0 :00 :02

(a) Results for L = 2

|V | |D| COpt Gap NSub TT
r 21 15 5472 7.94 3547 0 :01 :48
r 21 17 5864 7.81 4514 0 :02 :36
r 21 20 6466 9.12 35306 0 :17 :16
a 21 10 6675 8.40 22086 0 :05 :33
a 21 11 6770 6.54 5635 0 :02 :48
r 30 15 10109 5.87 2345 0 :00 :01
r 30 20 11182 5.94 35705 3 :40 :59

** r 30 25 12493 9.83 76735 4 :16 :12
a 30 10 10254 4.26 7915 0 :01 :57

** a 30 15 13309 7.07 53410 1 :29 :24
* r 48 20 16684 8.75 94790 5 :00 :00
* r 48 30 21434 15.14 11894 5 :00 :00
* r 48 40 27968 20.88 1715 5 :00 :00

** a 48 15 25416 18.34 9923 2 :31 :12
* a 48 20 33310 19.60 5074 5 :00 :00
* a 48 24 41520 24.30 2094 5 :00 :00
r 52 20 11154 7.99 47581 2 :25 :23

* r 52 30 13818 11.69 11506 5 :00 :00
* r 52 40 16638 15.34 3571 5 :00 :00
* r 52 50 19911 20.21 1243 5 :00 :00

** a 52 20 16012 9.39 6339 3 :54 :03
* a 52 26 21817 17.70 2029 5 :00 :00

(b) Results for L = 3

Table 1 – Results for separated Flow Formulation with k = 3

First, by observing Table 1a, we notice that for L = 2, the problem is solved to optimality by
the separated flow formulation for all the instances. The CPU time is less than 1mn in almost
all cases, and the gap between the LP-root node and the optimal solution is low (less than 5%
for 15 instances over 22, and between 5% and 10% for 6 instances). For L = 3 (Table 2b), the
separated flow formulation solves to optimality only 8 instances. For the remaining instances,
upper bounds are obtained by CPLEX, with a relative gap of at most 24.30%.
The problem seems to be easier for this formulation when L = 2 than when L = 3. The same ob-
servation can be done for the other formulations. More instances are solved to optimality within
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5 hours when L = 2 than when L = 3. This observation confirms the idea that the kHNDP is
easier when L = 2 than when L = 3.

In the remaining, we focus on the comparison of each formulation to the others in terms of CPU
time and in terms of best solution. The following tables give the results for the separated path,
the aggregated and the natural formulation.

|V | |D| COpt Gap NSub TT
r 21 15 7138 2.73 175 0 :00 :01
r 21 17 7790 5.34 122 0 :00 :01
r 21 20 8762 7.26 669 0 :00 :03
a 21 10 8313 0 1 0 :00 :01
a 21 11 8677 0 1 0 :00 :01
r 30 15 12512 0 1 0 :00 :01
r 30 20 14215 1.31 72 0 :00 :02
r 30 25 15610 2.52 437 0 :00 :04
a 30 10 12124 0 1 0 :00 :01
a 30 15 15868 1.21 85 0 :00 :01
r 48 20 21586 2.92 91 0 :00 :06
r 48 30 29326 9.64 12101 0 :00 :37
r 48 40 37458 13.90 1098180 0 :18 :00
a 48 15 32097 1.33 98 0 :00 :01
a 48 20 44400 0.18 68 0 :00 :02
a 48 24 52619 0.13 45 0 :00 :02
r 52 20 14093 1.09 31 0 :00 :01
r 52 30 17643 5.68 776 0 :00 :18
r 52 40 21041 7.88 60261 0 :02 :14
r 52 50 24619 9.70 607522 0 :20 :30
a 52 20 18480 1.20 511 0 :00 :02
a 52 26 24125 0.27 229 0 :00 :02

(a) Results for L = 2

|V | |D| COpt Gap NSub TT
r 21 15 5472 7.80 2880 0 :01 :03
r 21 17 5864 7.76 4879 0 :01 :56
r 21 20 6466 9.35 22544 0 :07 :44
a 21 10 6675 8.41 20479 0 :04 :31
a 21 11 6770 6.66 9700 0 :03 :26
r 30 15 10109 5.96 1740 0 :01 :45
r 30 20 11182 7.20 23429 2 :04 :54

* r 30 25 12449 9.57 223183 5 :00 :00
a 30 10 10254 5.38 5423 0 :01 :30

** a 30 15 13309 7.44 45591 0 :55 :42
r 48 20 16684 9.39 71705 4 :11 :37

* r 48 30 21407 15.03 14044 5 :00 :00
** r 48 40 27382 19.01 2677 3 :56 :05
** a 48 15 25527 18.69 9933 1 :59 :00
** a 48 20 35608 24.78 6200 4 :48 :26
* a 48 24 42145 25.42 2185 5 :00 :00
r 52 20 11154 8.49 26377 2 :03 :38

* r 52 30 13739 11.14 12257 5 :00 :00
* r 52 40 16339 13.93 5142 5 :00 :00
* r 52 50 19304 17.86 1713 5 :00 :00

** a 52 20 15721 7.64 6385 3 :24 :03
* a 52 26 20952 14.60 2247 5 :00 :00

(b) Results for L = 3

Table 2 – Results for separated path formulation with k = 3
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|V | |D| NCut COpt Gap NSub TT
r 21 15 1020 7138 9.5 81 0 :00 :02
r 21 17 1144 7790 9.34 77 0 :00 :03
r 21 20 1642 8762 11.6 539 0 :00 :09
a 21 10 244 8313 3.55 328 0 :00 :03
a 21 11 278 8677 3.53 115 0 :00 :02
r 30 15 1741 12512 5.56 134 0 :00 :05
r 30 20 2587 14215 6.84 365 0 :00 :14
r 30 25 3002 15610 8.57 666 0 :00 :23
a 30 10 342 12124 5.2 256 0 :00 :05
a 30 15 481 15868 3.68 1145 0 :00 :20
r 48 20 4822 21586 8.16 263 0 :00 :55
r 48 30 36022 29326 15.22 30202 3 :18 :17

** r 48 40 62831 37802 17.48 9530 1 :46 :40
a 48 15 1103 32097 3.08 1391 0 :01 :57

* a 48 20 2501 44466 4.3 155694 5 :00 :00
* a 48 24 3667 52840 4.41 107911 5 :00 :00
r 52 20 6954 14093 6.21 158 0 :01 :09
r 52 30 18864 17643 10.72 3854 0 :16 :16

** r 52 40 55739 21179 13.47 10480 1 :49 :33
** r 52 50 55978 24791 13.94 11449 2 :30 :16

a 52 20 1016 18480 3.43 1960 0 :03 :11
a 52 26 1971 24125 4.11 21210 0 :47 :38

(a) Results for L = 2

|V | |D| NCut COpt Gap NSub TT
r 21 15 9747 5472 8.33 1055 0 :04 :12
r 21 17 17847 5864 8.24 2235 0 :13 :08
r 21 20 42145 6466 9.53 11061 1 :40 :31

* a 21 10 68044 6687 8.76 6151 5 :00 :00
a 21 11 40503 6770 6.8 2828 1 :46 :52
r 30 15 18158 10109 6.86 1070 0 :20 :12
r 30 20 39234 11182 7.97 5795 2 :16 :31

** r 30 25 72053 12546 11.53 8193 4 :23 :26
* a 30 10 40203 10287 6.03 8214 5 :00 :00
* a 30 15 56223 13919 11.68 3202 5 :00 :00
* r 48 20 64330 16847 10.85 1860 5 :00 :00
* r 48 30 72036 22368 18.89 1631 5 :00 :00
* r 48 40 74630 27920 20.74 1675 5 :00 :00
* a 48 15 36092 - - 290 5 :00 :00
* a 48 20 30890 - - 112 5 :00 :00
* a 48 24 27509 - - 28 5 :00 :00
* r 52 20 58898 11439 11.28 2193 5 :00 :00
* r 52 30 75879 14084 13.92 1480 5 :00 :00
* r 52 40 73825 17123 18.22 1685 5 :00 :00
* r 52 50 65427 19783 20.33 2131 5 :00 :00
* a 52 20 36167 - - 256 5 :00 :00
* a 52 26 30049 - - 102 5 :00 :00

(b) Results for L = 3

Table 3 – Results for aggregated formulation with k = 3

|V | |D| NCut COpt Gap NSub TT
r 21 15 914 7138 9.5 128 0 :00 :02
r 21 17 1067 7790 9.34 99 0 :00 :02
r 21 20 1282 8762 11.6 773 0 :00 :08
a 21 10 222 8313 3.55 230 0 :00 :02
a 21 11 296 8677 3.53 297 0 :00 :03
r 30 15 1654 12512 5.56 61 0 :00 :05
r 30 20 2221 14215 6.84 347 0 :00 :09
r 30 25 2705 15610 8.57 626 0 :00 :16
a 30 10 280 12124 5.2 292 0 :00 :05
a 30 15 482 15868 3.68 1111 0 :00 :13
r 48 20 4543 21586 8.16 223 0 :00 :47
r 48 30 47884 29326 15.22 19749 3 :20 :52

** r 48 40 64201 37681 17.21 9321 1 :45 :14
a 48 15 1211 32097 3.08 2009 0 :02 :08

* a 48 20 2999 44495 4.36 178464 5 :00 :00
* a 48 24 3182 52714 4.18 132516 5 :00 :00
r 52 20 6018 14093 6.21 141 0 :00 :54
r 52 30 28506 17643 10.72 4215 0 :29 :14

** r 52 40 48256 21157 13.38 13052 1 :40 :33
** r 52 50 50987 24758 13.83 13131 1 :55 :27

a 52 20 989 18480 3.43 2246 0 :02 :03
a 52 26 1818 24125 4.11 9461 0 :14 :41

(a) Results for L = 2

|V | |D| NCut COpt Gap NSub TT
r 21 15 8114 5472 8.33 1006 0 :01 :37
r 21 17 11193 5864 8.24 1413 0 :03 :12
r 21 20 41111 6466 9.53 12378 1 :02 :42

* a 21 10 70115 6675 8.59 6890 5 :00 :00
a 21 11 57966 6770 6.8 3111 3 :18 :27
r 30 15 16740 10109 6.86 798 0 :08 :34
r 30 20 46730 11182 7.97 11148 3 :06 :47

** r 30 25 73878 12656 12.3 7301 2 :48 :04
a 30 10 44224 10254 5.73 8737 4 :29 :09

* a 30 15 67676 14320 14.16 4315 5 :00 :00
* r 48 20 60109 17096 12.15 3260 5 :00 :00
* r 48 30 83234 22135 18.04 2040 5 :00 :00
* r 48 40 92074 28906 23.44 2364 5 :00 :00
* a 48 15 42729 - - 387 5 :00 :00
* a 48 20 35721 - - 107 5 :00 :00
* a 48 24 28084 - - 39 5 :00 :00
* r 52 20 58132 11272 9.97 3065 5 :00 :00
* r 52 30 87930 14357 15.55 2292 5 :00 :00
* r 52 40 100134 16468 14.97 1827 5 :00 :00
* 52 50 96923 19563 19.43 4102 5 :00 :00

* a 52 20 40251 - - 381 5 :00 :00
* a 52 26 30799 - - 113 5 :00 :00

(b) Results for L = 3

Table 4 – Results for natural formulation with k = 3
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We start the comparison by L = 2. The comparison between Tables 1a, 2a, 3a and 4a shows
first that, for L = 2, the separated flow and path formulations produce quit similar results, and
that they achieve better results than the aggregated and natural formulations. The first two
formulations are able to solve to optimality 100% of the instances, while the aggregated and
natural formulations solve 77.27% of the instances to optimality. Also, for the instances solved
to optimality, the total CPU time for the separated flow and path formulations is better than
for aggregated and natural formulations. This can be explained by the fact that these latter
formulations contain an exponential number of constraints and their linear programming re-
laxation is solved using the cutting plane method. Thus, the difference of CPU time mainly is
the time spent by the algorithm for the separation of the cut constraints (4.1) and (2.1), and (2.4).

Now, we turn our attention to the case where L = 3. As mentioned before, the problem becomes
harder in this case. We compare the different formulations in terms of upper bound. For this
comparison, we choose the results of the separated flow formulation as reference. The following
table gives, for some instances and for each formulation, the difference between the upper bound
achieved for a given formulation and the one achieved by the separated flow formulation, that is
Gi = COPti − COptSF low, where i is SPath, Agg and Nat, standing respectively for separated
path formulation, aggregated and natural formulation.
The instances reported in the table are those for which at least one formulation does not give
the optimal solution.

|V | |D| GSPath GAgg GNat
r 30 25 -44 53 163
a 30 15 0 610 1011
r 48 20 0 163 412
r 48 30 -27 934 701
r 48 40 -586 -48 938
a 48 15 111 ∞ ∞
a 48 20 2298 ∞ ∞
a 48 24 625 ∞ ∞
r 52 30 -79 266 539
r 52 40 -299 485 -170
r 52 50 -607 -128 -348
a 52 20 -291 ∞ ∞
a 52 26 -865 ∞ ∞

Table 5 – Comparison between best upper bounds for L = 3 and k = 3.

A negative value in Table 5 indicates that the formulation gives a better bound than that ob-
tained by the separated flow formulation while a positive value indicates that the formulation
produces a greater bound. From this table, we can see that the separated path formulation pro-
duces, for most cases, a better bound than the separated flow formulation. Also, this formulation
produce better bounds than the natural and aggregated formulation.
The comparison between the natural and aggregated formulations shows that for 5 instances in
Table 5 over 8, the aggregated formulation gives better bound.

We conclude this compuational study by making a comment on the separated cut formulation.
This formulation performs bad results in terms of CPU time and in terms of upper bound. For
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several instances, the algorithm is not able to solve the linear programming relaxation of the
root node of the Branch-and-Cut tree after 5 hours of CPU time, and this, even for L = 2, and
for all of these instance, the algorithm does not produce an upper bound. This is explained by
the long time spents by the algorithm in the separation of the cut constraints (3.13).

7 Concluding remarks

In this paper, we have studied the k-edge-connected hop-constrained network design problem
when k ≥ 3 and L = 2, 3. We have presented four integer programming formulations based on
the transformation of the initial graph into directed layered graphs. We have also compared the
linear programming relaxation of these formulations and shown that all of them give the same
LP-bound.

We have also compared these formulations in a computational study, which shows that, as
expected, the resolution of problem is significantly easier when L = 2. It also shows that the
flow-based and path-based formulations produce better results than the other formulations when
L = 2. For L = 3, the path-based formulation outperforms the other formulations in terms of
obtaining upper bound and the aggregated formulation produces, in some cases, good results.
Finally, the results show that the separated cut formulation achieves bad results for both L = 2
and k = 3 and is, apparently, unusable from a practical point of view.

The experiments in this work let us suppose that some improvement may be needed in the
resolution of the problem, especially for L = 3 (gaps relatively high). Hence, it would be inter-
esting to use other techniques to solve the problem, like Benders decomposition-based algorithm
(as in [5]), or improve the Branch-and-Cut algorithms by using further valid inequalities in the
cutting plane phase. This latter improvement can be done especially with the aggregated graph
transformation.
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