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Abstract

Let G be an N -player game in strategic form and C be a set of permissible coali-
tion of players (exogenously given). A strategy profile σ is a coalitional-equilibrium
if no permissible coalition in C has a unilateral deviation that profits to all its mem-
bers. At the two extremes: when C contains only singleton players, σ reduces to
a Nash equilibrium and when C consists on all coalitions of players, σ is a strong
Nash equilibrium. Our paper provides conditions for existence of coalitional equi-
libria that combine quasi-concavity and balancedness.

JEL classification: C62, C72.

Keywords: Fixed point theorems, maximum of non-transitive preferences, Nash and
strong equilibria, coalitional equilibria.

1 Introduction

Nash [18] and strong Nash [2] equilibria are among the main solution concepts in non-
cooperative game theory. The first asks the stability of the strategy profile against all
single player unilateral deviations while the second asks the stability against all coalitions
unilateral deviations. The usual conditions that are assumed to show existence seems of
different kind. For the existence of Nash equilibria, the game is supposed to be quasi-
concave while for the existence of strong equilibria, it is assumed to be balanced [4] (formal
definitions are given in the next sections).

Our paper proposes to unify both notions in one single model and provides a condition
that is reduced to quasi-concavity for Nash equilibria and is related to balancedness for
strong equilibria. More precisely, the concept of coalitional equilibrium is defined and a
sufficient geometric condition is provided for its existence. To do so, some classical fixed
point theorems are revisited, related to each others and sometimes extended.

The concept of coalitional equilibrium lies between Nash equilibrium and strong equi-
librium. An exogenous coalitional structure defines which coalitions are permissible to
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deviate. A strategy profile is a coalitional-equilibrium if it is stable against all permissible
coalitions unilateral deviations. When only single-player coalitions are permissible it is
Nash-equilibrium and when all coalitions are permissible it is strong-equilibrium. The
motivation is straightforward. In many applications (voting, council of Europe, or market
competition) some coalitions are not natural and so cannot be expected to coordinate
(extreme-leftists and -rightists, western and eastern countries, or firms of different areas).

Ray and Vohra [19] consider a solution concept that uses coalitional equilibria but only
for partition structures. First, for each partition of the players, they associate the set of
coalitional equilibria (as in our definition). Second, given a coalitional-equilibrium for a
given partition, one can define internal stability with respect to stable coalitional equilib-
ria of all finer partitions. The set of stable equilibria for a given partition is constructed
recursively. Starting from the finest partition structure (that contains only singleton),
one can construct stable coalitional equilibria for larger partition structures, and so on.
Clearly, their construction could be extended naturally by relaxing the partition assump-
tion.

In section 2.1 Sonnenschein’s [24] classical fixed point theorem is established in topo-
logical vector spaces (TVS) without the Hausdorff and the local convexity usual assump-
tions1. This theorem provides concavity and continuity conditions on a non-transitive
preference relation to have a maximal element. Secondly, it is shown that Gale and
Mas-Collel’s theorem [6] still hold under the same topological assumptions and so also
Nash-Glicksberg’s theorem. This conclusion has already been reached by Reny [20]. Inter-
estingly, Nash-Glicksberg’s theorem still valid even when there are infinitely many players.
The proofs follow the one in Border [4]. Our unique contribution relies on the observa-
tion that (1) Fan-KKM’s lemma, which is known to hold without the local convexity [1]
assumption, still hold without the Hausdorff hypothesis and (2) that Fan-KKM’s lemma
implies all the fixed point theorems of section 2.1.

In section 2.2, a new version of Sonnenschein’s theorem is established for locally convex,
not necessary Hausdorff TVS. The new version reinforces the concavity assumption and
relaxes the continuity hypothesis of the classical version. The new continuity requirement
merely asks some correspondence to be lower-hemi-continuous, while the classical version
asks the lower sections of the correspondence to be open. Sections 2.3 and 2.4 studies
some related fixed point theorems (dealing with lower-hemi-continuous correspondences)
in Hausdorff, metrizable, Banach and finite-dimensional spaces.

The fixed point theorems for hemi-continous preferences established in sections 2.2 and
2.4 are used in section 3 to obtain a condition for the existence of coalitional equilibria
in strategic games. This new condition is shown to be equivalent to quasi-concavity for
Nash equilibria and to be closely related to balancedness for strong equilibria.

1It was already known that local convexity is not necessary [1].
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2 Some Fixed Point Theorems Revisited

2.1 General Topological Vector Spaces

S is a compact convex set of a topological vector space (TVS). The interior of X ⊂ S
relatively to S is denoted intX, its convex envelope coX and the closed convex hull coX.

The classical results described in this section usually assumes the TVS to be Hausdorff.
We will show that this assumption is not needed. Our proofs are slight adaptations of
the corresponding one in [1] or [4].

Assume the following classical KKM lemma that could easily be proved using the
famous Sperner’s lemma (see [4]).

Lemma 1 (Knaster-Kuratowski-Mazurkiewicz [7]) Let {x1, ..., xk} ∈ Rm and {Fk}
be a family of closed subset of the Euclidean linear vector space Rm. If for any K ∈
{1, ..., k}, co{xi, i ∈ K} ⊂ ∪i∈KFi, then ∩i=1,...,kFi is non-empty and compact.

Let us show that following Fan’s lemma (see [1] theorem 17.46) does not need the
Hausdorff assumption.

Lemma 2 (Fan) If the correspondence F from S to S has closed values and if for any
finite family {x1, ..., xk}, co{x1, ..., xk} ⊂ ∪i=1,...,kF (xi) then ∩x∈SF (x) 6= ∅.

Proof. For each finite family {x1, ..., xk}, let G(xi) = F (xi) ∩ co{x1, ..., xk}. Since
each G(xi) is finite dimensional, and since the Euclidean topology is finer than the initial
topology [21] on the vectorial space generated by {x1, ..., xk}, each G(xi) is also closed
in the Euclidean topology. KKM lemma then implies that ∩i=1,...,kG(xi) 6= ∅ and con-
sequently ∩i=1,...,kF (xi) 6= ∅. Since a family of compact sets with the finite intersection
property has a nonempty intersection, ∩x∈SF (x) 6= ∅.

Let A be a correspondence on S (i.e. from S to S), best viewed as a (not necessarily
transitive) preference where A(x) ⊂ S is interpreted as the set of points in S strictly
better than x (that is A(x) = {y ∈ X : y ≻ x} where ≻ is a preference relation). The set
of maximal elements of A is E = {x ∈ S such that A(x) = ∅}.

A famous implication of Fan’s lemma is the following important result, first established
in Sonnenschein [24]. For its proof and the numerous applications, see [1] and [4]. This
theorem is equivalent to other fixed point theorems of the literature [15]. In general, the
theorem is stated with the Hausdorff assumption. This is not needed.

Theorem 3 (Sonnenschein [24] ) Let A be a correspondence on S. If (i) for all x ∈ S,
x /∈ coA(x) and (ii) for any y ∈ A−1(x) there exists x′ ∈ S (possibly x′ = x) such that
y ∈ intA−1(x′), then the set of maximal elements of A is compact and non-empty.

Let us first extends the useful lemma 17.47 in [1] to non Hausdorff TVS (using exactly
the same proof).
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Lemma 4 (Aliprantis Border [1]) If for each x ∈ S, x /∈ coA(x), then ∩x∈SF (x) 6= ∅
where F (x) is the closure of the complementary of A−1(x): F (x) = S\A−1(x).

Proof. From Fan’s lemma, it is sufficient to show that for any finite family {x1, ..., xk}
and any y ∈ co{x1, ..., xk}, y ∈ ∪i=1,...,kF (xi). Suppose not. This implies that for any i,
y /∈ F (xi) implying that xi ∈ A(y) so that y ∈ coA(y), a contradiction.

Now we can know prove Sonnenschein’s theorem in without the Hausdorff assumption
of the TVS.

Proof. We follow the proof in Border [4]. Note that E = ∩x∈SS/A
−1(x). By (ii),

E = ∩x′∈SS\intA
−1(x′) and so it is compact (as the intersection of a family of compact

sets). Thus S\A−1(x) ⊂ S\intA−1(x). Hence, ∩x∈SS\A−1(x) ⊂ ∩x∈SS\intA
−1(x). By

(i) and the lemma 4, ∩x∈SS/A−1(x) 6= ∅.
Assumption (i) of Sonnenschein asks that coA does not have a fixed point. The condi-

tion may be viewed as a quasi-concavity assumption on the preference relation. Assump-
tion (ii) imposes a kind of continuity on the preference relation but allows the possibility
of having some discontinuities. It is satisfied if for example the lower-sections A−1(x) are
open for every x. However, (ii) is not satisfied if A is only lower-hemi-continuous (i.e.
A−1(W ) open for any W open).

Let us now extend Gale and Mas-Collel theorem to non Hausdorff TVS as well.
A correspondence A on S is called2 FS if (i) for all x ∈ S, x /∈ coA(x) and (ii-o) it

has an open graph. A is locally FS-majorized at x if there is a FS-correspondence Bx

on S and a neighborhood V x of x such that A(y) ⊂ Bx(y) for all y ∈ V x. A is globally
FS-majorized if Bx is the same for all x.

Observe that for a correspondence, open graph implies open lower sections which
implies lower-hemi-continuity.

Lemma 5 (Borling/Keiding [5]) If A is everywhere locally FS-majorized, it is globally
FS-majorized and thus admits a maximal element.

Proof. Follow again the proof in Border [4]. For each x, let Bx locally FS-majorizes
A on a closed neighborhood V x of x. Let V x1 , ..., V xk be a finite subcover of S (by
compactness of S). Define the correspondence Di(x) = Bxi(x) if x is in V xi and S if not.
Let B(x) = ∩iD

i(x). Then B is a FS-correspondence that globally majores A.
Assume now that S =

∏
i∈N Si where each Si is a compact-convex subset of a TVS

(typically, the strategy set of player i where N is the set of players). By Tychonoff’s
theorem [1], S is convex and compact for the product topology. N may be any set, not
necessarily finite. As usual, let S−i =

∏
j 6=i Sj be the set of profiles of players other than i.

Let {Ai}i∈N be a family of correspondences, where for each i in N , Ai is a correspondence
from S to Si. The set of maximal elements of {Ai} is {x such that Ai(x) = ∅ for all i in
N}.

Theorem 6 (Gale/Mas-Colell [6] Extended) If for each i ∈ N and x ∈ S (i) xi /∈
coAi(x) and (ii) Ai has an open graph then the set of maximal elements of {A} is nonempty
and compact.

2FS is the name given in Border [4]. F stands for Fan and S for Sonnenschein.
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Proof. Follow the proof of [5]. For each i, define Ãi(x) = S−i × Ai(x). Let I(x) =
{i : Ãi(x) 6= ∅} et let B(x) = ∩i∈I(x)Ãi(x). Since each B(x) is locally majorized by some

Ãi(x) for each x, it follows from the last lemma that there is an x such that B(x) = ∅.
Observe that Gale and Mas-Colell’s proved their theorem in finite dimensions. A

direct application is the following extension of the Nash-Glicksberg’s [11] theorem to non
Hausdorff locally convex TVS.

Let N be a finite set of players. Let G = (N, {Si}i∈N , {gi}i∈N) be a strategic game.
Assume that for each i in N , Si, the strategy set of player i, is a compact subset of a
TVS and that the payoff function of player i, gi : S =

∏
i∈N Si → R is continuous for

the product topology and quasi-concave in si ∈ Si. A strategy profile s ∈ S is a Nash
equilibrium if for all t ∈ S and all i ∈ N, gi(s) ≥ gi(ti, s−i). Define Ai(s) = {ti ∈ Si :
gi(ti, s−i) > gi(s)}. Then Ai satisfies (i) and (ii) of the last theorem. Consequently, one
has the following extension of Nash-Glicksberg’s theorem to any TVS and infinitely many
players.

Theorem 7 (Nash-Glicksberg’s [11] Extended) Under the assumptions described above,
the set of Nash equilibria of the strategic game is non-empty and compact.

Reny [20] proved the above theorem in general TVS for finitely many players without
assuming continuity but a better-reply security assumption.

Existence of a Nash equilibrium for infinitely many player games could be used to show
the following extension of Kreps and Wislon’s result to extensive form games with infinite
duration (we assume the reader to be familiar with the extensive form game literature).

Theorem 8 (Kreps and Wilson [8] Extended) Any extensive form game with finitely
many players, perfect recall, with at most M actions at each information set, infinite dura-
tion and continuous payoff functions with respect to the product topology, has a sequential
equilibrium.

Let us give the sketch of the proof, following essentially Kreps and Wislon’s proof.
The agent normal form game is the game with infinitely many players where each player
is duplicated to as many agents as there are informations sets of that player. Each
agent of a player is maximizing his payoff, conditionally to some Bayes-consistent belief
that his information set is reached. Let the ǫ-perturbed agent normal form game be the
game where all agents are constrained to choose their actions with a probability at least
1
M

> ǫ > 0. In this game, all information sets are reached with positive probability
so the belief system is well defined. Moreover, the belief system moves continuously
with respect to the strategies in the ǫ-perturbed game. The last theorem can thus be
applied to this perturbed game to obtain existence of Nash equilibrium. As ǫ goes to
zero, one obtains, by compactness and diagonal extraction, a limiting strategy profile
and an associated consistent belief system where, at each information set, the one-shot
deviation principle is satisfied for the agent playing at that information set. This defines
a sequential equilibrium.
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2.2 Locally Convex TVS

Assume now that the Topological vector space is locally convex (LC). Under this ad-
ditional assumption, the fixed point theorem that follows reinforces slightly the quasi-
concavity assumption (i) and relaxes sufficiently the continuity assumption (ii). This
allows the possibility of considering lower-hemi-continuous correspondences.

Theorem 9 Let A be a correspondence on S. If there is a convex open neighborhood
W of zero such that (i’) x /∈ coA(x) −W for all x and (ii’) for any y ∈ A−1(x), there
exists x′ ∈ S (possibly x′ = x) such that y ∈ intA−1(x′ +W ), then the set E of maximal
elements of A is compact and non-empty.

Thus, the theorem provides new conditions for a nontransitive preference to have a
maximal element. We first establish a useful lemma (to be compared with lemma 4).

Lemma 10 If there is a convex open neighborhood W of zero such that for each x ∈ S,
x /∈ coA(x) − W , then ∩x∈SF (x) 6= ∅ where F (x) is the closure of the complement of
A−1(x+W ): F (x) = S\A−1(x+W ).

Proof. From Ky Fan’s lemma, it is sufficient to show that for any finite family
{x1, ..., xk} and any y ∈ co{x1, ..., xk}, y ∈ ∪i=1,...,kF (xi). Suppose not. This implies that
for any i, y /∈ F (xi) implying that xi ∈ A(y) −W . Since W is convex, conclude that
y ∈ coA(y)−W, a contradiction.

We now prove the fixed point theorem (to compare with the proof of Sonnenschein’s
theorem).

Proof. By assumption, there is an open and convex neighborhood W of zero such
that, for all x ∈ S, x + W ∩ coA(x) = ∅. Note that E = ∩x∈SS\A

−1(x + W ). By (ii’),
E = ∩x′∈SS\intA

−1(x′ + W ), so that it is compact (as the intersection of a family of
compact sets). Thus S\A−1(x+W ) ⊂ S\intA−1(x+W ). Hence, ∩x∈SS\A−1(x+W ) ⊂
∩x∈SS\intA

−1(x+W ). By (i’) and the last lemma, ∩x∈SS\A−1(x+W ) 6= ∅.
This version may be useful in other contexts such as competitive equilibria as in

Sonnenschein [24] or social coalitional equilibria as in Ichiishi [12].

2.3 Locally Convex and Hausdorff TVS

The topological vector space is assumed now to be locally convex and Hausdorff (LCH).
Theorem 9 allows to deduce that:

Corollary 11 (Tychonoff’s theorem) If A is continuous and has non-empty values,
then there is x ∈ S such that x ∈ coA(x).

Proof. If there is a convex neighborhood of zero such that for all x ∈ S, x + W ∩
{coA(x)} = ∅, since A(x) is lower-hemi-continuous, theorem 9 implies that A has a
maximal element: a contradiction. Thus, for each W , there exists xW ∈ S such that
xW +W ∩ {coA(xW )} 6= ∅. Since coA is upper-hemi-continuous when A is (see [1]), by
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compactness of S and by the Hausdorff and local convexity assumptions, tending W to
zero implies that there x ∈ coA(x).

This provides a short proof of Tychonoff’s theorem [1]. Actually, if f is continuous
from S to S, and if A(x) = {f(x)} then there is x ∈ co{A(x)} = {f(x)}.

Schauder conjectured in 1935 that local convexity is not necessary in Tychonoff’s
theorem. The conjecture has been proved only recently by Robert Cauty [10].

In the next section we prove that some fixed point theorems closely related to theorem
9 from Tychonoff’s theorem when S is metrizable, some are known.

2.4 Metric and Banach Spaces

From now on, the topological vector space is always assumed to be Hausdorff and locally
convex. Some of the following theorems are known ([6], [25], [26]). They are estab-
lished from two Michael’s selection theorems and Tychonoff’s theorem (established in the
previous section).

Theorem 12 (Wu [25]) Suppose S metrizable. If (a) x /∈ coA(x) for all x and (b) A
is lower-hemi-continuous, then the set E of maximal elements of A is non-empty and
compact.

Proof. Observe that coA is lower-hemi-continuous when A is (see [1]). If A has no
maximal element, from Michael’s [16] selection theorem (3.2”), there is a continuous selec-
tion f from S to S such that f(s) ∈ coA(s). By Tychonoff’s theorem, f has a fixed point
s = f(s) ∈ coA(s), contradicting (a). Compacity follows because E = ∩x∈SS\A

−1(x+W ).

Alternatively, Wu’s theorem says that metrizable spaces, if A is lower-hemi-continuous
with convex-closed and non-empty values, it has a fixed point.

In finite dimensions, Yannelis and Prabhakar [26] (theorem 5.2) proved a powerful
result. Under only the assumptions (i) x /∈ coA(x) and (b) A is lower-hemi-continuous,
they show that A has a maximal element. The proof is simple: if there was no maximal
element, Michael’s [17] theorem (3.2”’) implies the existence of a continuous selection f
such that for all x, f(x) ∈ coA(x). By Brouwer’s fixed point theorem, f admits a fixed
point: a contradiction with (i).

Michael’s [17] theorem (3.2”’) is more powerful and it implies the existence of a max-
imal element under the same conditions (i) and (b) when S is a subset of a Banach space
and for all x ∈ S, coA(x) has an inside point.

Recall that if K is a convex subset of a Banach space, then a supporting set of K is a
closed, convex subset L of K different from K such that if an interior point of a segment
in K is in L, then the whole segment is in L. The set of all elements of K which are not
in any supporting set of K will be ”Inside of K”. This is always non-empty if K is finite
dimensional or is closed (see [17]).

Theorem 13 (Yannelis and Prabhakar [26] Extended) Suppose S is a subset of a
Banach space. If (i) x /∈ coA(x) for all x, (b) A is lower-hemi-continuous, (c) coA(x) has
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an inside point for all x such that coA(x) is non-empty, then set of maximal elements of
A is non-empty and compact.

3 Coalitional Nash Equilibria

Let N be a set of players (not necessarily finite). Let G = (N, {Si}i∈N , {gi}i∈N) be a
strategic game. Assume that for each i in N , Si, is a compact subset of a Hausdorff and
locally convex TVS and that the payoff function of player i, gi is continuous. This defines
a compact-convex-continuous strategic game.

Let C ⊂ 2N be an exogenously given set of what we will call permissible coalitions.
As usual, S =

∏
i∈N Si is the set of strategy profiles. For a coalition of players C, let

SC =
∏

j∈C Sj and let N\C denote the set of players outside C.

Definition 14 s is a C-coalitional-equilibrium of G if no permissible coalition in C has
a unilateral deviation that profits to all its members; That is, there is no C in C and no
tC ∈ SC such that for any i ∈ C, gi(tC , sN\C) > gi(s).

Definition 15 G is C-quasi-concave if for all s ∈ S, ǫ > 0 and any family of permis-
sible coalitions (Ck)k∈K with corresponding strategies tCk

∈ SCk
, if for all k and i ∈ Ck

gi(tCk
, sN\Ck

) ≥ gi(s) + ε, then s /∈ co{(tCk
, sN\Ck

), k ∈ K}.

In finite dimensional strategy spaces, Caratheodory’s theorem implies that co above
could be replaced by co and that finitely many deviating coalitions are sufficient.

When only single player coalitions are permissible, the condition is reduced to the
quasi-concavity assumption in Nash-Glicksberg’s [11] theorem. When all coalitions are
permissible, the quasi-concavity condition is related to the balanced-condition (defined
just below) under which Ichiishi [14] proved the existence of a strong equilibrium3. Thus
C-quasi-concavity may be viewed as a mixture of quasi-concavity and the balancedness
conditions.

Theorem 16 If a compact-convex-continuous strategic game is C-quasi-concave, the set
of C-coalitional-equilibria is compact and non-empty.

Proof. Let AC(s) = {(tC , sN\C) such that for all i ∈ C, gi(tC , sN\C) > gi(s) + ε} and
let A =

⋃
C AC . From the continuity of the game, A is lower-hemi-continuous. Suppose

that for each convex and open neighborhood W of zero there is sW such that sW +W ∈
coA(s). Thus there exists a finite family of permissible coalitions (CW

k )k∈K and strategies
(tWCk

∈ SCk
)k∈K such that sW +W ∈ co{(tCk

, sN\Ck
), k ∈ K} and gi(tCk

, sN\Ck
) > gi(s)+ ε

for all k and i ∈ Ck. Using compactness of the strategy space, Hausdorff assumption
and continuity of the payoff functions, by tending W to zero one deduces the existence
of s and of a family of permissible coalitions (Ck)k∈K and strategies (tCk

∈ SCk
)k∈K such

that s ∈ co{(tCk
, sN\Ck

), k ∈ K} and gi(tCk
, sN\Ck

) ≥ gi(s) + ε for all k and i ∈ Ck: a

3The result may be found in definition 23.3 and theorem 23.7 in Border [4].

8



contradiction. Thus, (i’) and (b) are satisfied. Since (b) implies (ii’), theorem 9 implies
that A has a maximal element sε whose accumulation points are coalitional-equilibria
(thanks to compactness of the strategy spaces and continuity of the payoff functions).

Observe that the correspondences A and AC in the proof above do not have open
lower-sections: they are only lower-hemi-continuous. Thus, Sonnenschein’s [24] fixed
point theorem cannot be used. This justify the need of a fixed point theorem that deals
with lower-hemi-continuous correspondences. In metrizable or Banach spaces, theorems
12 and 13 may well be used to establish the result.

Interestingly, another definition of AC in the last proof would lead to another well
known equilibrium concept. For example, if one defines AC(s) = {tC ∈ SC : there is i ∈ C
such that gi(tC , s−C) > gi(s) + ǫ}, the underlying concept requires that a permissible
coalition has a deviation if at least one of its members profits even if all the other players
inside the coalition lose (this is of course too demanding!). Hence, at equilibrium, players
outside a permissible coalition forces all the players inside the coalition to play according to
the equilibrium. The concept was defined by Berge [3] but only for permissible coalitions
of the form N\{i}, i ∈ N . A coalitional Berge-equilibrium exists if G is compact-convex-
continuous and for all s ∈ S, ǫ > 0 and any family of permissible coalitions (Ck)k∈K with
corresponding strategies tCk

∈ SCk
, if for all k there is i ∈ Ck such that gi(tCk

, sN\Ck
) >

gi(s) + ǫ, then s /∈ co{(tCk
, sN\Ck

), k ∈ K}.
Recall that a finite family of nonempty subsets B of N is balanced if for each B ∈ B,

there are nonnegative real numbers λB (balancing weights) such that for each i in N ,∑
B:i∈B λB = 1.

Definition 17 G is balanced if for all α ∈ RN and any finite balanced family of coalitions
{Ck} with weights {λk} and corresponding strategies {tCk} ∈ S, if gi(t

Ck) > αi for all k
and i ∈ Ck then gi(s) > αi for all players i ∈ N , where si :=

∑
k:i∈Ck

λkt
Ck

i .

A quite similar condition4 is:

Definition 18 G is quasi-balanced if for all α ∈ RN and any finite balanced family of
coalitions {Ck} with weights {λk} and corresponding strategies {tCk} ∈ S, if gi(t

Ck) ≥ αi

for all k and i ∈ Ck and gi(t
Ck) > αi for some k and i ∈ Ck then gi(s) 6= αi for some

player i ∈ N , where si :=
∑

k:i∈Ck
λkt

Ck

i .

Lemma 19 In finite dimensional strategy spaces, G quasi-balanced implies it is C-quasi-
concave for every C.

Proof. Take (Ck)k∈K to be a finite family of permissible coalitions, let tCk
∈ SCk

and suppose s =
∑

k αk(tCk
, sN/Ck

). The family {{Ck} ∪ {N/Ck}}k∈K with weights

{(αk, αk)}k∈K is balanced. Define tCk = (tCk
, sN/Ck

) and tN/Ck = s. Then, si =
∑

k:i∈Ck
αkt

Ck

i +
∑

k:i∈N/Ck
αkt

N/Ck

i . Suppose that for each k and i ∈ Ck, gi(t
Ck) > gi(s). Since for all

i ∈ N/Ck, gi(t
N/Ck) = gi(s), taking α = g(s) leads to a contradiction.

4We expect that every balanced game could be approximated by a quasi-balanced game.
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4 Conclusion

To establish the existence of Nash equilibria, Glicksberg [11] needs quasi-concavity of the
payoff functions and uses a standard fixed point theorem (Brouwer/Kakutani). Scarf [22]
establishes the existence of the core of a NTU game using the Lemke-Howson algorithm.
Shapley [23] establishes the KKMS lemma (22.4 in [4]) using the Lemke-Howson algorithm
and apply it to prove the non-vacuity of the core. Around that time, there was no
successful work who proves the non-vacuity of the core using an abstract fixed point
theorem and no sufficient conditions for the existence of strong equilibria. Ichiishi [13]
proves the KKMS lemma from Fan’s [9] coincidence theorem and from the same theorem
he provides the existence of strong equilibria in balanced strategic games. However,
the Fan coincidence theorem does not permit a deep understanding of the link between
the quasi-concavity condition for Nash equilibria and the balanced condition for strong
equilibria. Our paper shows that they are but two sides of the same coin.
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