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1 Introduction

Since the number of coalitions grows exponentially with respect to the number
of players, it is computationally very interesting to single out classes of games
that can be described in a concise way.
In the literature on coalitional games there exist several approaches for defin-
ing classes of games whose concise representation is derived by an additive
pattern among coalitions. In some contexts, due to an underlying structure
among the players, such as a network, an order, or a permission structure, the
value of a coalition S ⊆ N can be derived additively from a collection of sub-
coalitions {T1, · · ·Tk}, Ti ⊆ S ∀i ∈ {1, · · · , k}. Such situations are modeled,
for example, by the graph-restricted games, introduced by Myerson (1977) and
further studied by Owen (1986), the component additive games (Curiel et al.
1993) and the restricted component additive games (Curiel et al. 1997).

Sometimes, the worth of each coalition is computed from the values that
single players can guarantee themselves by means of a mechanism describing
the interactions of individuals within groups of players. In the simplest case
we can consider that, when a coalition of players forms, each player brings
his own value and the worth of the coalition is computed as the sum of the
single contributions of players that form it. As an example, consider a cost
game where n players want to buy online n different objects and the value of
a single player in the game is defined as the price of the object he buys. Then,
if the members of a group S of buyers agree to make the purchase together,
the cost of the operation will simply be the sum of the s = |S| prices of the
objects bought by players in S, i.e. the sum of the costs that the single players
in S should bear if they bought the objects separately.
This situation can be described by means of an additive game, where the value
of a coalition is computed as the sum of the disjoint coalitions that form it.
An additive game is indeed determined by the vector of the n values of the
single players.
However, such a model may fail to reflect the importance of a subset of players
in contributing to the value of the coalition they belong to. In the previous
example, it might be the case that, by making a collective purchase, the costs
of shipping will decrease, or when a certain threshold price is reached, some
of the objects will be sold for free and therefore the price that a coalition S
should pay will depend only on the price of a subset of purchased objects.

In fact, in some cases the procedure used to assess the worth of a coalition
S ⊆ N is strongly related to the sum of the individual values over another
subset S ⊆ N , not necessarily included in S.
Several examples from the literature fall into this category. As a simple exam-
ple, consider the well-known glove game: the set of players N is divided into
two categories, the players in L that own a left-hand glove, and those in R
with a right-hand glove. The worth of a coalition of players S ⊆ N is defined
as the number of pairs of gloves owned by the coalition S. In this context,
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the valuable players in a coalition are those whose class is represented by a
minority of the players, since the value of S is given by the minimum between
the number of players in S ∩ L and in S ∩ R. Therefore, we can represent
this game by assigning value 1 to each player and by describing the worth of
each coalition S as the sum of single players’ values over the smaller subset
among S ∩ L and S ∩ R. A similar approach can be used to describe several
other classes of games from the literature, among them the airport games (Lit-
tlechild and Owen 1973; Littlechild and Thompson 1977), the argumentation
games (Bonzon et al. 2014) and some classes of operation research games, such
as peer games (Branzei et al. 2002) and mountain situations (Moretti et al.
2002), that will be described in Section 4.

In all the aformentioned models, the value of a coalition S of players is
calculated as the sum of the single values of players in a subset of S. On the
other hand, in some cases the worth of a coalition might be affected by exter-
nal influences and players outside the coalition might contribute, either in a
positive or negative way, to the worth of the coalition itself. This is the case,
for example, of the bankruptcy games (Aumann and Maschler 1985) and the
maintenance problems (Koster 1999; Borm et al. 2001), that will be described,
respectively, in Section 3 and 4.

In this paper we introduce a general class of additive TU-games where
the worth of a coalition S ⊆ N is evaluated by means of an interaction filter,
that is a map M which returns the valuable players involved in the coopera-
tion among players in S.
Our objective is to provide a general framework for describing several classes
of games studied in the literature on coalitional games and to give a kind of
taxonomy of coalitional games that are ascribable to this notion of additivity
over individual values.
The general definition of the mapM allows various and wide classes of games
to be embraced, as for example the simple games and the aformentioned classes
of games. Moreover, by making further hypothesis on M, our approach en-
ables to classify existing games based on the properties of M. In particular,
we introduce the class of basic GAGs, which is characterized by the fact that
the valuable players in a coalition S are selected on the basis of the presence,
among the players in S, of their friends and enemies, that is, a player con-
tributes to the value of S if and only if S contains at least one of his friends
and none of his enemies is present.

The paper is structured as follows. Section 2 provides the basic defini-
tions and notations regarding coalitional games. In Section 3 we introduce the
class of Generalized Additive Games (GAGs) and provide examples of games
falling into this category. In Section 4 we introduce some hypothesis on the
map M and describe the resulting subclass of basic GAGs, providing further
examples from the literature. In Section 5 we describe some possible extensions
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and in Section 6 we draw some conclusions and present possible directions for
future research.

2 Preliminaries

In this section we introduce some preliminary notation and definitions on coali-
tional games.

A TU-game (cooperative game with transferable utility), also referred to as
coalitional game, is a pair (N, v), where N denotes the set of players and
v : 2N → R is the characteristic function, with v(∅) = 0. A group of players
S ⊆ N is called coalition and v(S) is called the value or worth of the coalition
S. If the set N of players is fixed, we identify a coalitional game (N, v) with
its characteristic function v.
From now on, we shall assume w.l.o.g. that N = {1, · · · , n}. Moreover, for a
coalition S, we shall denote by s its cardinality |S|.

A particular class of games is that of simple games, where the characteristic
function v can only assume values in {0, 1}.
A game (N, v) is said to be monotonic if it holds that v(S) ≤ v(T ) for all
S, T ⊆ N such that S ⊆ T and it is said to be superadditive if it holds that

v(S ∪ T ) ≥ v(S) + v(T )

for all S, T ⊆ N such that S ∩ T = ∅.
Moreover, a game (N, v) is said to be convex if it holds that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ⊆ N .
For a general introduction on cooperative games, see Maschler et al. (2013).

3 Generalized Additive Games (GAGs)

Definition 1 We shall call Generalized Additive Situation (GAS) any triple
〈N, v,M〉, where N is the set of the players, v : N → R is a map that assigns
to each player a real value and M : 2N → 2N is a coalitional map, which
assigns a (possibly empty) coalition M(S) to each coalition S ⊆ N of players
and such that M(∅) = ∅.

Definition 2 Given the GAS 〈N, v,M〉, the associated Generalized Additive
Game (GAG) is defined as the TU-game (N, vM) assigning to each coalition
the value

vM(S) =







∑

i∈M(S) v(i) if M(S) 6= ∅

0 otherwise.
(1)
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Example 1

1. Let w be a simple game. Then w can be described by the GAG associated
to 〈N, v,M〉 with v(i) = 1 for all i and

M(S) =

{

{i} ⊆ S if S ∈ W
∅ otherwise

where W is the set of the winning coalitions in w.
In case there is a veto player, i.e. a player i such that S ∈ W only if i ∈ S,
then the game can also be described by v(i) = 1, v(j) = 0 ∀j 6= i and

M(S) =

{

T if S ∈ W
R otherwise

with T,R ⊆ N such that i ∈ T and i /∈ R.
This in particular shows that the description of a game as GAG need not
be unique.

2. Let w be the glove game defined in the following way. A partition {L,R}
of N is assigned. Define w(S) = min{|S ∩ L|, |S ∩ R|}. Then w can be
described as the GAG associated to 〈N, v,M〉 with v(i) = 1 for all i and

M(S) =

{

S ∩ L if |S ∩ L| ≤ |S ∩R|
S ∩R otherwise.

3. Consider the bankruptcy game (N,w) introduced by Aumann (1985), where
the value of a coalition S ⊆ N is given by

w(S) = max{E −
∑

i∈N\S

di, 0}.

Here E ≥ 0 represents the estate to be divided and d ∈ R
N
+ is a vector

of claims satisfying the condition
∑

i∈N di > E. It is easy to show that a
bankruptcy game is the difference w = vM1 − vM2 of two GAGs vM1 , vM2
arising, respectively, from 〈N, v1,M1〉 and 〈N, v2,M2〉 with v1(i) = E and
v2(i) = di for all i and

M1(S) =

{

{i} ⊆ S if S ∈ B
∅ otherwise

and

M2(S) =

{

N \ S if S ∈ B
∅ otherwise

for each S ∈ 2N \ {∅}, where B = {S ⊆ N :
∑

i∈N\S di ≤ E}.
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4. An extension of the bankruptcy game has been introduced by Pulido et al.
(2002): an extended bankruptcy game (N,w) is defined as

w(S) = max{E −
∑

i∈N\S

di,
∑

i∈S

ri}

where E ≥ 0 represents the estate to be divided, d ∈ R
N
+ is a vector of

claims satisfying the condition
∑

i∈N di ≥ E and r ∈ R
N
+ is a vector of ob-

jective entitlements satisfying the conditions 0 ≤ ri ≤ di for all i ∈ N . The
extended bankruptcy game can be represented as the linear combination
w = vM1 −vM2 +vM3 of three GAGs vM1 , vM2 , vM3 arising, respectively, from
〈N, v1,M1〉, 〈N, v2,M2〉 and 〈N, v3,M3〉 with v1(i) = E, v2(i) = di and
v3(i) = ri for all i and

M1(S) =

{

{i} ⊆ S if S ∈ R
∅ otherwise

M2(S) =

{

N \ S if S ∈ R
∅ otherwise

and

M3(S) =

{

∅ if S ∈ R
S otherwise

for each S ∈ 2N \ {∅}, where R = {S ⊆ N :
∑

i∈N\S di +
∑

i∈S ri ≤ E}.

Observe that, clearly, not every game can be described as a GAG. Obvious
examples can be provided for all n, in particular for n = 2.

Some natural properties of the map M can be translated into classical prop-
erties for the associated GAG. Here is some example.

Definition 3 The mapM is said to be proper ifM(S) ⊆ S for each S ⊆ N ;
it is said to bemonotonic ifM(S) ⊆M(T ) for each S, T such that S ⊆ T ⊆ N .

Note that a map M can be monotonic but not proper, or proper but not
monotonic. An example of mapM which is not monotonic is that one relative
to the glove game. Maps that are not proper will be seen later.

The following results are straightforward.

Proposition 1 Let 〈N, v,M〉 be a GAS with v ∈ R
N
+ and M monotonic.

Then the associated GAG (N, vM ) is monotonic.

Proposition 2 Let 〈N, v,M〉 be a GAS with v ∈ R
N
+ and M proper and

monotonic. Then the associated GAG (N, vM) is superadditive.
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Proof Let S and T be two coalitions such that S ∩ T = ∅. By properness it is
M(S) ∩M(T ) = ∅. By monotonicity it is

M(S) ∪M(T ) ⊆M(S ∪ T ).

Thus, since v ∈ R
N
+ ,

vM(S ∪ T ) =
∑

i∈M(S∪T )

v(i) ≥
∑

i∈M(S)∪M(T )

v(i) = vM(S) + vM(T ).

Observe that Propositions 1 and 2 provide only sufficient conditions, for
instance the glove game is monotonic and superadditive but the associated
map M is not monotonic.

The following example shows that, if the mapM is proper and monotonic,
the corresponding GAG needs not be convex.

Example 2 Let N = {1, 2, 3, 4}, v(i) ≥ 0 ∀i ∈ N , and M be such that
M({2, 3}) = {3} and M(S) = S for all S 6= {2, 3}. Then M is proper
and monotonic but the corresponding GAG is not convex, since it holds that
vM(S ∪ T ) + vM(S ∩ T ) < vM(S) + vM(T ) for S = {1, 2, 3}, T = {2, 3, 4}.

On the other hand, the next proposition shows that it is possible to provide
sufficient conditions for a monotonic map M to generate a convex GAG.

Proposition 3 Let 〈N, v,M〉 be a GAS with v ∈ R
N
+ and M monotonic and

such that
M(S) ∩M(T ) ≡M(S ∩ T ), (2)

for each S, T ∈ 2N . Then the associated GAG (N, vM) is convex.

Proof The convexity condition for the GAG (N, vM) can be written as follows:

∑

i∈M(S∪T ) v(i) +
∑

i∈M(S∩T ) v(i) ≥
∑

i∈M(S) v(i) +
∑

i∈M(T ) v(i)

=
∑

i∈M(S)∪M(T ) v(i) +
∑

i∈M(S)∩M(T ) v(i),
(3)

for each S, T ∈ 2N . By monotonicity of M, we have that M(S) ∪M(T ) ⊆
M(S ∪ T ) and M(S ∩ T ) ⊆ M(S) ∩M(T ) for each S, T ∈ 2N . Clearly, if
M(S ∩ T ) ≡M(S) ∩M(T ) for each S, T ∈ 2N , then relation (3) holds.

The condition provided by relation (2) can be useful to construct a mono-
tonic map M such that the corresponding GAG is convex when v ∈ R

N
+ . The

most trivial example is the identity mapM(S) = S for each S ∈ 2N . Another
example is a map M of a GAS 〈N, v,M〉 with N = {1, 2, 3} and v ∈ R

N
+

such that M({1, 2, 3}) = {1, 2, 3}, M({1, 2}) = {1, 2}, M({2, 3}) = {2},
M({2}) = {2} and M({1}) =M({3}) =M({1, 3}) = ∅.

We conclude this section with an example showing that relation (2) is not
a necessary condition to have a convex GAG.
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Example 3 Let N = {1, 2, 3}, v = (v(1), v(2), αv(2)) with v(1), v(2) ≥ 0 and
M be such that M({1, 2, 3}) = {1, 2, 3}, M({1, 2}) = {1, 2}, M({2, 3}) =
{2} and M({1}) = M({2}) = M({3}) = M({1, 3}) = ∅. The map M is
monotonic, but relation (2) does not hold (to see this, just take S = {1, 2}
and T = {2, 3}). On the other hand, one can check that relation (3) holds for
each S, T ∈ 2N if and only id α ≥ 1 (in particular note that for S = {1, 2}
and T = {2, 3} relation (3) gives v(1) + v(2) + αv(2) ≥ v(1) + 2v(2)).

4 Basic GAGs

We now define an interesting subclass of GASs. Consider a collection
C = {Ci}i∈N , where Ci = {F 1

i , . . . , F
mi

i , Ei} is a collection of subsets of N

such that F j
i ∩ Ei = ∅ for all i ∈ N and for all j = 1, · · · ,mi.

Definition 4 We denote by 〈N, v, C〉 the basic GAS associated with the coali-
tional map M defined as:

M(S) = {i ∈ N : S ∩ F 1
i 6= ∅, . . . , S ∩ F

mi

i 6= ∅, S ∩ Ei = ∅} (4)

and by 〈N, vC〉 the associated GAG, that we shall call basic GAG.

For simplicity of exposition, we assume w.l.o.g. that m1 = m2 = · · · = mn :=
m. We shall call each F k

i , for all i ∈ N and all k = 1, . . . ,m, the k-th set of
friends of i, while Ei is the set of enemies of i. Note that in the definition of
the coalitional map M the union is made over the set N , and thus M is not
proper in general. On the other hand, anytime one is interested in imposing
the properness property in relation (4), it suffices to impose F 1

i = {i} for each
i ∈ N .

The following proposition characterizes monotonic basic GAGs.

Proposition 4 Let 〈N, v, C〉 be a basic GAS with v ∈ R
N
+ and C = {Ci}i∈N .

Then the associated GAG (N, vC) is monotonic if and only if Ei = ∅ ∀i ∈ N .

Proof The sufficient condition is obvious. Moreover, suppose Ei 6= ∅ for some i
and let j ∈ Ei. Consider S = F 1

i ∪· · ·∪F
m
i . Then i ∈M(S), while i /∈M(S∪j).

Remark 1 Consider a GAS situation (N, (F 1
i = {i}, . . . , Fm

i , Ei = ∅)i∈N , v)
with v(i) ≥ 0 for each i ∈ N . It is easy to check that M is both monotonic
and proper. Then, by Proposition 2, the associated GAG is superadditive.

The basic GAG vC associated with a basic GAS can be decomposed in the
following sense: define the collection of n games vCi , i = 1, . . . , n, as

vCi(S) =

{

v(i) if S ∩ Ei = ∅, S ∩ F
k
i 6= ∅, k = 1, . . . ,m

0 otherwise.
(5)
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Proposition 5 The basic GAG vC associated with the map defined in (4)
verifies:

vC =
n
∑

i=1

vCi . (6)

A particularly simple case is when m = 1 for all i, which means that
every player has a unique set of friends, that we shall denote by Fi. Also, an
important case is when each player i has at most two set of friends, one of
them being the singleton {i}, i.e. the coalitional map is proper. The following
examples show that this case too includes interesting classes of games.

Example 4 We provide two examples of basic GAGs where each player has a
unique set of friends.

1. (airport games) (Littlechild and Owen 1973; Littlechild and Thompson
1977): LetN be the set of players. We partitionN into groupsN1, N2, . . . , Nk

(according to the original interpretation (Littlechild and Owen 1973; Lit-
tlechild and Thompson 1977), representing groups of players who need
landing strips of the same length) such that to each Nj , j = 1, . . . , k, is
associated a positive real number cj with c1 ≤ c2 ≤ · · · ≤ ck (representing
the cost associated to the k different landing strips). Consider the game
w(S) = max{ci : i ∈ S}. This type of game (and variants) can be described
by a basic GAS 〈N, (Ci = {Fi, Ei})i∈N , v〉 by setting for each i ∈ Nj and
each j = 1, . . . , k − 1:
- the value v(i) =

cj
|Nj |

,

- the set of friends Fi = Nj ,
- the set of enemies Ei = Nj+1 ∪ . . . ∪Nk,

and with the sets Fl = Nk and El = ∅ for each l ∈ Nk.
2. (argumentation games) (Bonzon et al. 2014): Consider a directed graph
〈N,R〉, where the set of nodes N is a finite set of arguments and the set
of arcs R ⊆ N ×N is a binary defeat (or attack) relation (see Dung 1995).
For each argument i we define the set of attackers of i in 〈N,R〉 as the
set P (i) = {j ∈ N : (j, i) ∈ R}. The meaning is the following: N is a set
of arguments, if j ∈ P (i) this means that argument j attacks argument
i. The value of a coalition S is the number of arguments in the opinion
S which are not attacked by another argument of S. This type of game
(and variants) can be described as a basic GAS 〈N, v, {Fi, Ei}〉 by setting
v(i) = 1, the set of friends Fi = {i} and the set of enemies Ei = P (i).

In the setting of the argumentation, it is possible to consider different types
of characteristic functions. For instance, it is interesting to consider the game
(N, vM) such that for each S ⊆ N , vM(S) is the sum of v(i) over the elements
of the set D(S) = {i ∈ N : P (i) ∩ S = ∅ and ∀j ∈ P (i), P (j) ∩ S 6= ∅} of
arguments that are not internally attacked by S and at the same time are
defended by S from external attacks:

vM(S) =
∑

i∈D(S)

v(i). (7)
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It is clear that such a situation cannot be described by a basic GAG where each
player has a unique set of friends. The game in (7) can however be described
as a basic GAG 〈N, vC〉, where, given a bijection k : P (i) → {1, · · · , |P (i)|},

Ci = {F 1
i , · · · , F

|P (i)|
i , Ei} is such that F

k(j)
i = P (j) \ P (i) for all j ∈ P (i),

and Ei = P (i) for all i ∈ N.

Example 5 The following examples show that the unanimity and canonical
games can be represented as basic GAGs with more than one set of friends.

1. (unanimity games) Let S = {s1, · · · , ss} ⊆ N . Consider the unanimity
game (N, uS) defined as

uS(T ) =







1 if S ⊆ T

0 otherwise.

This game can be described by a basic GAS 〈N, v, {F 1
i , · · · , F

s
i , Ei}〉 by

setting v(i) = 1 for some i ∈ S, v(j) = 0 ∀j 6= i, F k
i = {sk} ∀k = 1, · · · s

and ∀i ∈ N , and Ei = ∅ ∀i ∈ N .

2. (canonical games) Let S ⊆ N . Consider the canonical game (N, eS) defined
as

eS(T ) =







1 if S = T

0 otherwise.

This game can be described as a basic GAS 〈N, v, {F 1
i , · · · , F

s
i , Ei}〉 by

setting v(i) = 1 for some i ∈ S, v(j) = 0 ∀j 6= i, F k
i = {sk} ∀k = 1, · · · s

and ∀i ∈ N , and Ei = N \ S.

We now provide further examples of classes of coalitional games from the
literature which can be represented as basic GAGs, where in general each
player can have several sets of friends.

4.1 Maintenance problems

A maintenance problem as introduced by Koster (1999) (see also Borm et al.
(2001)) arises when a group of players N is connected by a tree T (e.g., a
computer network) to a root 0 (e.g., a service provider) and each edge of the
tree has an associated maintenance cost; the problem is how to share in a fair
way the cost of the entire network T among the players in N . More formally,
a couple (T, t) is given, where T=(N ∪ {0}, E) is a tree. N ∪ {0} represents
the set of vertices (or nodes) and E is the set of edges, i.e. the pairs {i, j}
such that i, j ∈ N . 0 is the root of the tree having only one adjacent edge, and
t : E → R

+ is a nonnegative cost function on the edges of the tree. Note that
each vertex i ∈ N is connected to the root 0 by a unique path Pi; we shall
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denote by ei the edge in Pi that is incident to i. A precedence relation � is
defined by: j � i if and only if j is on the path Pi. A trunk R ⊆ N ∪ {0} is a
set of vertices which is closed under the relation �, i.e. if i ∈ R and j � i, then
j ∈ R. The set of followers of player i ∈ N is given by F (i) = {j ∈ N |i � j}
(note that i ∈ F (i) for each i ∈ N). The cost of a trunk R is then defined as

C(R) =
∑

i∈R\{0}

t(ei),

and the associated maintenance cost game (N, c) is defined by

c(S) = min{C(R) : S ⊆ R and R is a trunk}.

Note that edge ei is present in the cheapest trunk containing all members of S
whenever a member of S is a follower of player i, i.e. S ∩ F (i) 6= ∅. Therefore,
we can represent the cost game (N, c) as the GAG associated to the basic
GAS on N where v(i) = t(ei) and where M is defined by relation (4) with
collections Ci = {Fi, Ei} such that Fi = F (i) and Ei = ∅ for every i ∈ N .

4.2 Peer situations

In peer games (Branzei et al. 2002) over a player set N , the economic relation-
ships among players are represented by a hierarchy described by a directed
rooted tree T with N as the set of nodes and with 1 as the root (representing
the leader of the entire group). The individual features are agents’ potential
economic possibilities, described by a vector a ∈ R

N , where ai is the gain that
player i can generate if all players at un upper level in the hierarchy cooperate
with him. In other words, player i becomes effective and may produce a gain
ai only if his superiors cooperate with him.
For every i ∈ N , we denote by S(i) the set of all agents in the unique directed
path connecting 1 to i, i.e. the set of superiors of i. Given a peer group situa-
tion (N,T, a) as described above, a peer game is defined as the game (N, vP )
such that for each non-empty coalition S ⊆ N

vP (S) =
∑

i∈N :S(i)⊆S

ai.

A peer game (N, vP ) can be represented as the GAG associated to the
basic GAS on N where v(i) = ai and whereM is defined by relation (4) with
collections Ci = {F

1
i , . . . , F

n
i , Ei} such that:

F j
i =

{

{j} if j ∈ S(i)
{i} otherwise

and Ei = ∅ for all i ∈ N.

An interesting example of peer games (Branzei et al. 2002) (and indeed
of GAGs) are coalitional games arising from sealed bid second price auctions,
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where there is a seller who wish to sell an object at price not smaller than a
given r > 0 (reservation price). Each player i ∈ N has his own evaluation wi
of the object and can submit a bid bi in an envelope (not necessarily equal
to wi). The mechanism of the auction is such that after the opening of the
envelopes, the object is given to the player with the highest bid at the second
highest price1. Suppose that w1 > w2 > . . . > wn ≥ r. It is easy to check that
in such a situation, a dominant strategy for each player i who acts alone (i.e.,
without colluding with the other players) is to bid his own value bi = wi. This
leads to a situation where player 1 obtains the object at the price w2, so the
players’ payoffs are v(1) = w1 − w2 and v(i) = 0 if i 6= 1.

Now, consider the possibility of collusion among the players, which means
that players may form coalitions and agree on the bid each player should put
in the respective envelope. For a coalition S, the dominant strategy is that
the player i(S) ∈ N with the highest evaluation in S bids wi(S), and the other
players in S bid r, the reservation price. In this way, if all players collude,
the worth of coalition N is v(N) = w1 − r. In general, for every coalition
S ⊆ N , we have that v(S) = 0 if 1 /∈ S (it is still dominant for players in
N \ S to play their true evaluation, and then 1 ∈ N \ S gets the object),
and v(S) = w1 − wi(N\S) if 1 ∈ S, where i(N \ S) is the player with highest
evaluation in N \ S. Such a game (N, v) can be seen as the GAG associated
to the basic GAS with collections Ci = (F 1

i , . . . , F
i
i , Ei) where F j

i = {j} for
every j in {1, . . . , i}, Ei = ∅ and v(i) = wi − wi+1 for every i ∈ N .

4.3 Mountain situations

Consider a special version of a directed minimum cost spanning tree situation,
introduced in Moretti et al. (2002), characterized by a group N of persons
whose houses lie on mountains and are not yet connected to a water puri-
fier downhill. It is possible but not necessary for every person (house) to be
connected directly with the water purifier; being connected via others is suffi-
cient. Only connections from houses to strictly lower ones are allowed. Such a
situation can be represented by a rooted directed graph < N ∪ {0}, A > with
N ∪ {0} as set of vertices, A ⊂ N × (N ∪ {0}) as set of edges and 0 as the
root, and a weight function w : A → R

+, representing the cost associated to
each edge. We assume that for each k ∈ N , (k, 0) ∈ A (i.e., every node has the
possibility to be directly connected with the source) and in order to impose the
fact that only connection to lower houses are possible, no cycles are allowed.

Given such a mountain situation, the corresponding cooperative cost game
(N, c) is given by c(∅) = 0 and the cost c(T ) =

∑

a∈Γ (T ) w(a) of a non-empty

coalition T is the cost of an optimal 0-connecting tree Γ (T ) ⊆ A(T ) in the
mountain problem on the directed graph < T ∪{0}, A(T ) >, i.e. Γ (T ) is a tree
of minimum cost connecting all players in T to the source 0.

It can be checked that for each optimal 0-connecting tree Γ (T ) ⊆ A(T ),
each node i ∈ T is directly connected with his best connection in T ∪{0}, that

1 We do not consider here the case where players may submit equal bids.
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is a node bT (i) ∈ argminl∈T∪{0}:(i,l)∈A w(i, l) (see Moretti (2008)) for further
details).

Now, assume that for each a ∈ A, w(a) can assume only two values, let’s
say m or 0, with m > 0, and let Bi = {j ∈ N : w(i, j) = 0} the set of best
connections for i ∈ N (actually, every mountain situation can be decomposed
as a sum of simple dichotomous mountain situations like that). We can rep-
resent the cost game (N, c) as the GAG associated to the basic GAS on N
where v(i) = 0 if w(i, 0) = 0, and v(i) = m otherwise, and whereM is defined
by relation (4) with collections Ci = {Fi, Ei} such that Fi = {i} and Ei = Bi
for every i ∈ N .

4.4 A characterization of basic GASs

As it has been shown in the previous sections, a variety of classes of games
that have been widely investigated in the literature can be described using the
formalism provided by basic GASs. It is therefore interesting to study under
which conditions a GAS can be described as a basic one. To this purpose, the
following proposition provides a necessary and sufficient condition when the
set of enemies of each player is empty.

Proposition 6 Let 〈N, v,M〉 be a GAS. The map M can be obtained by
relation (4) via collections Ci = {F

1
i , . . . , F

mi

i , Ei = ∅}, for each i ∈ N , if and
only if M is monotonic.

Proof It is obvious that every map M obtained by relation (4) over a collec-
tions Ci = {F

1
i , . . . , F

mi

i , Ei = ∅}, for each i ∈ N , is monotonic.
Now, consider a monotonic map M and, for each i ∈ N , define the set

M−1
i = {S ⊆ N : i ∈ M(S)} of all coalitions whose image in M contains i.

Let SM,i be the collection of minimal (with respect to set inclusion) coalitions
in M−1

i , formally:

SM,i = {S ∈M−1
i : it does not exist T ∈M−1

i with T ⊂ S}.

For each i ∈ N , consider a collection Ci = {F
1
i , . . . , F

mi

i , Ei = ∅} such that

{F 1
i , . . . , F

mi

i } = {T ⊆ N : |T ∩ S| = 1 for each S ∈ SM,i and |T | ≤ |SM,i|},
(8)

where each set of friends F k
i , k ∈ {1, . . . ,mi}, contains precisely one element

with each coalition in T ∈ SM,i and no more than |SM,i| elements.
Denote by M∗ the map obtained by relation (4) over such collections Ci,

i ∈ N . We need to prove that M(S) =M∗(S) for each S ∈ 2N , S 6= ∅.
First note that for each i ∈ N and for every coalition S ∈ M−1

i , we have
i ∈M∗(S). Let us prove now that i /∈M∗(S) for each S /∈ SM,i. Suppose, by
contradiction, that there exists T ⊆ N with T /∈ M−1

i such that F k
i ∩ T 6= ∅,

for each k ∈ {1, . . . ,mi}. This means that for every S ∈ SM,i, |S \ T | 6= ∅.
Define a coalition U ⊆ N such that |U ∩ (S \ T )| = 1 for each S ∈ SM,i,
i.e. U contains precisely one element S that is not in T , for each S ∈ SM,i
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Then U must be a set of friends in the collection {F 1
i , . . . , F

mi

i }, which yields
a contradiction with the fact that U ∩ T = ∅. It follows that for each i ∈ N ,
i ∈M∗(S) if and only if i ∈M(S) for each S ⊆ N , which concludes the proof.

Based on the arguments provided in the proof of Proposition 6, the follow-
ing example shows a procedure to represent a GAS with a monotonic mapM
as a basic GAS.

Example 6 Consider a GAS 〈N, v,M〉 with N = {1, 2, 3, 4} andM monotonic
such that M({1, 2, 3}) = {3}, M({3, 4}) = {2, 3}, M({1, 3, 4}) = {2, 3, 4},
M({1, 2, 3, 4) = {2, 3, 4}, and M(S) = ∅ or all other coalitions. The sets
of minimal coalitions are as follows: SM,1 = ∅, SM,2 = {{3, 4}}, SM,3 =
{{1, 2, 3}, {3, 4}}, SM,4 = {{2, 3, 4}}. Such a map can be represented via re-
lation (4) with the collections: F 1

1 = ∅, {F 1
2 , F

2
2 } = {{3}, {4}}, {F

1
3 , . . . , F

5
3 } =

{{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, {F 1
4 , . . . , F

3
4 } = {{2}, {3}, {4}}, where such

collections of friends are obtained via relation (8).

Moreover, by Propositions 1, 4 and 6 we have the following corollary.

Corollary 1 Let 〈N, v,M〉 be a basic GAS with v ∈ R
N
+ . Then the associated

basic GAG (N, vC) is monotonic if and only if M is monotonic.

Proof The sufficient condition follows directly from Proposition 1. Moreover,
by Proposition 4, if vC is monotonic, then Ei = ∅ for all i ∈ N and, by
Proposition 6 it follows that M is monotonic, which concludes the proof.

5 Possible extensions

Further extensions can be introduced, in order to embrace a wider range of
games that can be represented in a compact way into our framework.

Observe that the definition of GAG is based on the coalitional mapM, which
is a multimap that assigns a coalition M(S) ⊆ N to each coalition S ⊆ N
of players. A further generalization is possible: think of the graph-restricted
game introduced by Myerson (1977), where the worth of a coalition is evalu-
ated on the connected components induced by an underlying graph. This class

of games can be represented by considering a multimapM : 2N → 22
N

, which
assigns to each coalition S ⊆ N , a subset M(S) ∈ 2N .

Moreover, every TU-game (N, v) can be described as a sum of k GAGs. For
example, every game with 3 players can be represented as the sum of at most
3 GAGs. To see this, it suffices to consider 3 GAGs with maps, respectively,
M1, M2 and M3 such that M1(i) = {i} for all i, M1({i, j}) = ∅ for all i, j,
M1({1, 2, 3}) = ∅, M2(i) = ∅ for all i, M2({1, 2}) = {1}, M2({1, 3}) = {3},
M2({2, 3}) = {2}, M2({1, 2, 3}) = ∅, M3(i) = ∅ for all i, M3({i, j}) = ∅ for
all i, j, M3({1, 2, 3}) = {1} and v1, v2, v3 such that v1(i) = v({i}) for all i,
v2(1) = v({1, 2}), v2(2) = v({2, 3}), v2(3) = v({1, 3}), v3(1) = v({1, 2, 3}) and
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v3(2) = v3(3) = 0. In general at most 2n−1
n

GAGs are needed, but even less
are sufficient if there are some “additive” coalitions, i.e. coalitions such that
their value can be derived as the sum of values of other coalitions.

Another extension is the following. The definition of a basic GAG is based on a
collection of sets C = {Ci}i∈N , one for each player, where Ci = {F

1
i , . . . , F

m
i , Ei}

is a collection of subsets of N that satisfy some particular properties.
If we provide each player i with multiple collections {C1i , · · · , C

k
i }, with

Cki = {F k1
i , . . . , F km

i , Ek
i }, we are then able to represent those games that

are associated to marginal contribution nets (MC-nets), introduced by Ieong
and Shoham (2005).
The basic idea behind marginal contribution nets is to represent in a com-
pact way the characteristic function of a game, as a set of rules of the form:
pattern −→ value, where a pattern is a Boolean formula over a set of n vari-
ables (one for each player) and a value is a real number. Here we restrict our
attention to Boolean formulas that are conjunctions of literals, i.e. variables or
their negations, and we shall call the corresponding rule a basic rule. A basic
rule is said to apply to a coalition S if S contains all players whose variables
appear unnegated in the pattern (represented by the literal xi), and does not
contain any of the players that appear negated (represented by the literal ¬xi).
For example, a rule with pattern x1 ∧ x2 ∧ ¬x3 applies to the coalition {1, 2}
and {1, 2, 3, 4} but not to the coalitions {1} or {1, 2, 3}.
More formally, consider a collection of rules R = {r1, · · · , rm}, where rk =
ψk −→ xk for each k = 1, · · · ,m, with ψi is being a basic rule over {x1, · · · , xn}
and xk ∈ R for all k. A coalition S is said to satisfy ψ (and we write S |= ψ)
if and only if r : ψ −→ x applies to S. The set R defines a coalitional game
(N, vR), introduced by Ieong and Shoham (2005), where N = {1, · · · , n} and
the value of a coalition is computed by summing the values of all the rules
that apply to it, i.e. vR is given by

vR(S) =
∑

ri∈R:S|=ψi

xi.

As an example, consider the following MC-net:

r1 : x1 ∧ x2 ∧ ¬x3 −→ 3

r2 : x2 −→ 4

The corresponding game is (N, v), with N = {1, 2, 3} and v = 3e{1,2}+4u{2},
where eS and uS are defined as in Example 5.

Indeed, every coalitional game can be represented through MC-nets by
defining one rule for each coalition S ⊆ N , where the pattern contains all the
variables corresponding to the players in S and the negation of all the other
variables, and the corresponding value is equal to the value of S in the game.
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We show here how a game deriving from a MC-nets representation can be
described as a generalization of a basic GAG, where each player has multiple
collections of set of friends and enemies. For each rule rk = ψk −→ xk such
that the variable xi appears unnegated in ψk, we provide player i with a
collection of sets of friends and enemies Cki = {F k1i , . . . , F kmk

i , Eki }, defined as

follows: F kji = {j} if xj appears unnegated in ψk and Eki = {j ∈ N such that
xj appears negated in ψk}, where mk is the number of variables that appear
unnegated in the pattern ψk. Moreover, for each player i we define a vector
of values v(i) = {v1(i), · · · , vm(i)}, where vk(i) = 0 if xi appears negated or
does not appear in ψk and, for each rule rk where xi appears unnegated, vk(i)
is given by:

vk(i) =
xk

ck
,

where ck is the number of players whose corresponding variables appear un-
negated in rule rk. With the aformentioned definitions, a MC-nets game vR

can be described as

vR =
∑

i∈N

vC
R
i ,

where vC
R
i is defined as follows for every i ∈ N :

vC
R
i (S) =







0 if S ∩ F kji = ∅ ∀j, k or S ∩ Eki 6= ∅ ∀k
m
∑

k=1

vk(i) otherwise.

For the previous example, the collections of friends and enemies would be
defined as:

C11 = {F 11
1 = {1}, F 12

1 = {2}, E1
1 = {3}}

C12 = {F 21
1 = {1}, F 22

1 = {2}, E2
1 = {3}}

C22 = {F 21
2 = {2}, E2

2 = ∅}

Moreover, v(1) = ( 32 , 0), v(2) = ( 32 , 4) and v(3) = (0, 0).

In this way, we are indeed able to describe every TU-game, since the rep-
resentation of MC-nets is complete. The computational complexity of such
representation is in general high. However, when a game can be described by
a small collection of rules, and therefore the associated extended GAS is de-
scribed in a relatively compact way, the complexity of its representation and
of the computation of solutions is consequently reduced.
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6 Conclusions

In the present paper, the class of generalized additive games is introduced,
where the worth of a coalition of players is evaluated by means of a map M
that selects the valuable players in the coalition.
Several examples from the literature of classical coalitional games that can be
described within our approach are presented.

An interesting direction for future research is that of coalition formation, since
for generic basic GAGs associated to GASs with nonnegative v, where the sets
of enemies are not empty, the grand coalition is not likely to form. As an
example of coalition formation problem that can be well represented in these
terms, consider the following “triangle” situation on three researchers, namely,
Alice, Bob and Carol. Due to their characters’ affinities, Alice and Bob love
to do research together, but they do not like at all to be involved in research
projects with Carol. Instead, Carol loves to do research with Bob, but not with
Alice. On the other hand, in order to make a successful research, they need to
perform a certain number of expensive experiments. Because of the bad finan-
cial status of their respective departments, Alice and Bob’s personal research
funds are very limited, whereas Carol can rely on a conspicuous international
funding. Such a situation can be represented by as basic GAS on the three
researchers N = {Alice,Bob,Carol} where the set of friends of Alice contains
only Bob, the set of friends of Bob and Carol is the same and coincides with
the singleton Alice, the set of enemies of Alice and Bob is the singleton Carol
and, finally, the set of enemies of Carol is the singleton Alice. In addition,
the function v = (v(Alice), v(Bob), v(Carol)) of their individual contribution
is given by their respective research funds. The corresponding basic GAG is
vC(Alice,Bob) = v(Alice)+ v(Bob), vC(Bob,Carol) = v(Carol) and vC(S) = 0
for all the other coalitions S ⊆ N . It is quite natural to expect that if v(Carol)
is quite larger than v(Alice) + v(Bob), then the coalition {Bob,Carol} will
form, despite the reciprocal friendship between Alice and Bob. In general, we
believe that the issue about which coalitions are more likely to form in a basic
GAG is not trivial and deserves to be further explored.

Another interesting problem is related to the analysis of classical solutions
for GAGs, that is partially addressed in the forthcoming paper by Cesari et
al. (2015), where the behaviour of certain solutions like semivalues and core
allocations are studied in connection with the properties of the filtering map
M introduced and discussed in this article.
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