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Abstract

A cooperative game with transferable utility (TU-game) describes a
situation in which all players can freely interact with each other, i.e. every
coalition of players is able to form and cooperate. However, this is not the
case in many real world scenarios. A typical situation is when there exists
a restriction on the communication possibilities among players. Different
approaches to model the restrictions of the interaction possibilities among
players exist in literature.

This paper deals with a particular class of TU-games, those whose coop-
eration is restricted by a network structure. We consider a communication
situation in which a network is produced by subsequent formation of links
among players and at each step of the network formation process, the sur-
plus generated by a link is shared between the players involved, according
to some rule. As a consequence, we obtain a family of solution concepts
that we investigate on particular network structures. This approach pro-
vides a different interepretation of the position value since it turns out
that a specific simmetric rule leads to this solution concept. Moreover, we
provide formulas for the position value on trees and cycles for canonical
games.

MSC: 91A12, 91A40, 91A43.

Keywords: TU-games; Networks; Communication situations; Coalition for-
mation; Allocation protocols; Position value.

1 Introduction

A TU-game (a cooperative game with transferable utility), also referred to as
coalitional game describes a situation in which all players can freely interact with
each other, i.e. every coalition of players is able to form and cooperate. However,
this is not the case in many real world scenarios. A typical situation is when
there exists a restriction on the communication possibilities among players, as
in the context of social interactions between groups of people, political alliances
within parties, economic exchange among firms, research collaborations and so
on. In order to represent and study such situations it is necessary to drop the
assumption that all coalitions are feasible. Then a natural question arises: how
can we model restrictions of the interaction possibilities between players?

∗Corresponding author: giulia.cesari@polimi.it
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A typical way to do so is that of considering a network structure† that de-
scribes the interaction possibilities between the players: the nodes of the network
are the players of the game and there exists a link between two nodes if the cor-
responding players are able to interact directly. In this context it is usual to
refer to such networks as communication networks, since a tipical situation they
model is a restriction of communication possibilities between players.
This approach leads to the definition of a so called communication situation

(Myerson 1977) and to the search for solution concepts that take into account
the constraints imposed by the underlying network structure. For the class of
graph games, a crucial point is to study how the communication constraints in-
fluence the allocation rules. There are at least two ways to measure this impact,
that correspond to two different main streams in the recent literature.

In a first approach, the communication constraints determine how a coalition
is evaluated. There is no actual restriction constraint on the set of feasible
coalitions, but if a coalition is not connected through the communication graph,
its worth is evaluated on the connected components in the induced graph. This
approach is investigated in the seminal paper by Myerson (1977), who introduces
the Myerson value in order to generalize the Shapley value from TU-games
to graph games. Jackson and Wolinsky (1996) extend Myerson’s model by
considering a function assigning values to networks as a basic ingredient. Borm
et al. (1992) introduce the position value for communication situations. Like the
Myerson value, the position value is based on the Shapley value, but it stresses
the role of the pairwise connections in generating utility, rather than the role of
the players. The value of a pairwise connection is derived as the Shapley value of
a game on the set of links of the network and the position value equally divides
the value of each link among the pair of players who form it. The position
value has been extended in Slikker (2005b) to the setting of network situations
introduced in Jackson and Wolinsky (1996) and an axiomatic characterization
in this context is given in van den Nouweland and Slikker (2012).

In a second approach, the communication constraints determine which coali-
tions can actually form. The definition of the Shapley value relies on the idea of
a one-by-one formation of the grand coalition: its interpretation assumes that
the players gather one by one in a room; each player entering the room gets
his marginal contribution to the coalition that was already there and all the
different orders in which the players enter are equiprobable. To take into ac-
count the communication constraints, the orderings of the players that induce
disconnected coalitions are ruled out: the formation of the grand coalition re-
quires a communication at any stage. In order to satisfy the communication
constraints Demange (2004) proposes to model the sequential formation of the
grand coalition by a rooted spanning tree of the communication graph.
Each rooted spanning tree represents a partial order on the players set such
that the arrival of a new player forms a connected coalition. Demange (2004)

†Other models introduced in the literature are discussed in Slikker (2000), including ex-
tensions of the interaction channels to hypergraphs and probabilistic networks, among others.
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introduces the hierarchical outcome in order to extend the concept of marginal
contribution from orderings of the players to rooted spanning trees.
This second approach is also studied by Herings et al. (2008) who introduce
the average tree solution for graph games in which the communication graph
is a forest (cycle-free graph). This allocation is the average of the hierarchical
outcomes associated with all rooted spanning trees of the forest.
Hering et. al. (2010) and Baron et al. (2010) show how an extension of the
average tree solution to arbitrary graph games can be seen as another general-
ization of the Shapley value. In Béal et al. (2012), the principle of compensation
formulated by Eisenman (1967) is generalized from orderings of the players to
rooted spanning trees and the compensation solution for graph games is intro-
duced.

Based on the idea that the formation of the grand coalition requires a com-
munication at any stage, our approach is different in spirit with respect to the
aforementioned models. We assume indeed a different mechanism of coalition
formation which results from subsequent connection of links among players.
This idea naturally leads to consider a communication situation where a net-
work between the players is produced by a permutation of links and we suppose
that, at each step of the network formation process, the surplus generated by a
link is shared between the players involved according to a certain protocol. Tak-
ing into account this mechinism, we propose a class of solution concepts where
each solution corresponds to a different allocation protocol. In particular, at a
certain step when a link between two players forms, it is reasonable to equally
share the surplus between the players that are responsible for this connection,
i.e. the two nodes incident to the link that is formed. It turns out that the solu-
tion obtained by this particular allocation protocol is indeed the position value.
Our model thus provides a different interpretation for this well-known solution
concept and proposes a family of solution that embraces the basic principles of
both the approaches described above, providing a bridge between two different
ways of modeling the restriction of communication possibilities between players
in a coalitional game.

The paper is structured as follows. In Section 2 we introduce basic definitions
and notations regarding coalitional games and networks. Section 3 describes
the concept of communication situation and related solutions in literature. In
Section 4 we introduce the notion of allocation protocol and the class of solution
concepts that derives. Section 5 presents some preliminary results and in Section
6 we give formulas for the position value on specific communication situations.
Section 7 colcludes the paper.

2 Games and networks

In this section, we introduce some basic concepts and notations on coalitional
games and networks.
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A coalitional game is a pair (N, v), where N denotes the set of players and
v : 2N → R is the characteristic function, with v(∅) = 0. A group of players
S ⊆ N is called coalition and v(S) is called the value or worth of the coalition
S. If the set N of players is fixed, we identify a coalitional game (N, v) with the
characteristic function v.
We shall denote by G the class of all coalitional games and by GN the class of all
coalitional games with players set N . Clearly, GN is a vector space of dimension
2n − 1, where n = |N |. The canonical basis for this vector space is given by the
family of canonical games {eS , S ⊆ N}. The game eS is defined as:

eS(T ) =

{

1 if S = T
0 otherwise

∀S ⊆ N,S 6= ∅.

It is possible to consider another basis for GN , the family of the unanimity games

{uS , S ⊆ N}, where uS is defined as:

uS(T ) =

{

1 if S ⊆ T
0 otherwise

∀S ⊆ N,S 6= ∅.

Every coalitional game v can be written as a linear combination of unanimity
games as follows:

v =
∑

S⊆N,S 6=∅

cS(v)uS , (1)

where the constants cS , referred to as unanimity coefficients of v, can be in-
ductively defined in the following way: let c{i}(v) = v({i}) and, for S ⊆ N of
cardinality s ≥ 2,

cS(v) = v(S)−
∑

T(S,T 6=∅

cT (v). (2)

An equivalent formula for the unanimity coefficients is given by:

cS(v) =
∑

T⊆S

(−1)|S|−|T | v(T ). (3)

Given a coalitional game, it is usual in many applications to consider as a
solution the Shapley value of the game.
The Shapley value was introduced by Shapley (1953) in the context of coopera-
tive games with transferable utility. The approach followed by Shapley consists
of providing a set of properties that a solution for TU-games should satisfy.
A formula to compute the Shapley value is the following:

Φi(v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!

(

v(S ∪ {i})− v(S)
)

, ∀i ∈ N, (4)

where s = |S| is the cardinality of coalition S and n = |N |.
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The Shapley value belongs to the broader class of semivalues:

Ψp

i (v) =
∑

S⊆N\{i}

pns
(

v(S ∪ {i})− v(S)
)

∀i ∈ N, (5)

where n = |N |, s = |S| and pns is such that pns ≥ 0 ∀s = 0, 1, . . . , n − 1,
∑n−1

s=0

(

n−1
s

)

pns = 1 and represents the probability that a coalition of size s + 1
forms. Furthermore, if pns > 0 for all s, then the semivalue is called regular

semivalue. We shall write ps instead of pns when there is no ambiguity about
the players set. In particular, the Shapley value is a regular semivalue with

ps =
1

n
(

n−1
s

) . (6)

and the Banzhaf index is defined by (5) with ps =
1

2n−1 .

Another class of regular semivalues is the one of the q-binomial semivalues Ψq,
where

ps = qs(1− q)n−s−1 (7)

with q ∈ [0, 1]. In particular if q = 0 we obtain the dictatorial index Ψ0
i (v) =

v({i}), while if q = 1 we get the marginal index Ψ1
i (v) = v(N)−v(N\{i}). Note

that q = 1/2 gives Ψ1/2 = β, the Banzhaf value.

An undirected graph or network Γ is the pair (V,E), where V is a set of
nodes and E ⊆ {{i, j} : i, j ∈ V, i 6= j} is the set of links between the nodes.
We denote by deg(i) the degree of a node i ∈ V , i.e. the number of links inci-
dent to i in Γ. Given a subset S ⊆ V of nodes, we define the induced subgraph
ΓS = (S,ES), where ES is the set of links {i, j} ∈ E such that i, j ∈ S. Simi-
larly, we denote by ΓA the graph (VA, A) induced by a subset A ⊆ E of links,
where VA is the set of nodes incident to at least one link of A.
A path between i and j in a graph Γ is a sequence of distinct nodes (i0, i1, · · · , ik)
such that i0 = i, ik = j and {is, is+1} ∈ E ∀s = 0, . . . , k − 1. Two nodes i and
j are said to be connected in Γ if i = j or if there is a path between them in Γ.
We call chain the set of nodes on a path with different endpoints and we denote
by s-chain a chain with s nodes. A connected component in Γ is a maximal
subset of V with the property that any two nodes of V are connected in Γ. We
denote by CΓ the set of connected components in Γ. A graph Γ is said to be
connected if there exists a path between every two elements of V . A subset of
nodes S ⊆ V (respectively a set of links A ∈ E) is connected if the induced
graph ΓS (respectively ΓA) is connected.
A cycle in Γ is a path (i0, i1, · · · , ik) such that i0 = ik. A forest is a graph
without cycles. A tree is a forest with only one connected component.
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3 Cooperative games with restricted communi-

cation: the position value

A coalitional game describes a situation in which every coalition of players is
able to form and cooperate. If there exists a restriction on the interaction pos-
sibilities among players, not all coalitions are feasible. We can represent this
situation by introducing a network structure that models the interactions be-
tween players. This leads to the definition of a communication situation.

Given a graph Γ and a coalitional game (N, v) we can define a so called
communication situation (Myerson 1977) as the triple (N, v,Γ), where N is the
set of players, (N, v) is a coalitional game and Γ is an undirected graph with N
as set of vertices. The graph Γ = (N,E) describes the communication possibil-
ities between players: an indirect communication between i and j is possible if
there is a path that connects them; if {i, j} ∈ E, then i and j can communicate
directly.

Borm et al. (1992) introduce a solution concept for a communication situation
based on the approach of Meessen (1988): given Γ = (N,E) and A ⊆ E, the
link game vL is defined by:

vL(A) =
∑

T∈CΓA

v(T ), (8)

where CΓA
is the set of connected components in ΓA. We denote by GL the vector

space of all link games on Γ = (N,E), E ⊆ {{i, j} : i, j ∈ V, i 6= j}, where N is
a fixed set of players. Note that the dimension of GL is equal to the number of
connected subsets of E; i.e. the cardinality of {A ⊆ E : ΓA is connected}.
Every link game vL can be written as a linear combination of unanimity link
games as follows:

vL =
∑

A⊆E

cA(v
L)uA, (9)

where cA are the unanimity coefficients of vL:

cA(v
L) =

∑

B⊆A

(−1)|A|−|B| vL(B); (10)

or equivalently c{l}(v
L) = vL({l}) and for A ⊆ E, |A| ≥ 2:

cA(v
L) = v(A)−

∑

B(A,B 6=∅

cB(v
L). (11)

Given a communication situation (N, v,Γ), the position value π(N, v,Γ) is de-
fined as:
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πi(N, v,Γ) =
1

2

∑

a∈Ai

Φa(v
L) ∀i ∈ N, (12)

where Ai = {{i, j} ∈ E, j ∈ N} is the set of all links for which player i is an
endpoint. Note that, since the players in vL are the elements of E, i.e the links
of Γ, in formula (12) we compute the Shapley value of a link. We shall write
π(v) when there is no ambiguity about the underlying network.

We point out here a particular property satisfied by the position value that
will be useful for our purpose, namely the superfluous arc property (Van den
Nouweland et al. 2012). Given a communication situation (N, v,Γ), with
Γ = (N,E), we call superfluous a link a such that vL(A∪{a}) = vL(A) ∀A ⊆ E.
The superfluous arc property states that if a is a superfluous arc, then π(N, v,Γ) =
π(N, v,Γ′), where Γ′ = (N,E\{a}). The property follows directly by formula
(12): the links (or arcs) that provide a marginal contribution equal to zero to
every coalition of links (not containing the link itself) do not give contribution
to the sum in (12), thus the position value does not change if they are removed
from the network.

See Slikker (2005a), Slikker (2005b) and Van den Nouweland (2012) for an
axiomatic characterization of the position value for network situations, which
generalize the context of communication situations.

Note that, like the Shapley value, every semivalue Ψp induces a solution concept
ψp for communication situations given by:

ψp

i (N, v,Γ) =
1

2

∑

a∈Ai

Ψp

a (v
L). (13)

We write ψ(v) when there is no ambiguity about the underlying network. Note
that, by definition of semivalue, the superfluous arc property still holds for every
solution ψ corresponding to a given semivalue.

4 Coalition formation and allocation protocols

In Section 2 we introduced the Shapley value and gave a formula to compute it.
Formula (4) has the following interpretation: suppose that the players gather one
by one in a room to create the grand coalition. Each player entering the room
gets his marginal contribution to the coalition that was already in the room.
Assuming that all the different orders in which they enter are equiprobable, one
gets the formula, where n! is the number of permutations on a set of n elements.

Let us consider a different mechanism of coalition formation: let us assume
that a coalition forms by subsequent formation of links among players. This nat-
urally leads to consider a communication situation, where a network between
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the players is produced by a permutation of links and all the different orders in
which the links form are considered to be equiprobable.
In this scenario, we can imagine that, when a link between two players forms,
the players that are connected to each other receive a certain value according
to some rule.

Let us suppose that, at each step of the network formation process, when a link
between two players i and j forms, the value of the coalition S, where S is the
connected component containing i and j, reduced by the values of the connected
components formed by the players of S at the previous step, is shared between
the players involved according to a certain protocol. Then a natural question
rises: How to share this value?

Given a communication situation (N, v,Γ), let us consider a possibile permu-
tation σ of links. At each step k of the network formation process, when the
k-th link a = {i, j} in the sequence determined by σ forms, let us consider the
surplus produced by a:

Sσ
k = v(S)− v(Ci

k−1,σ)− v(C
j
k−1,σ) (14)

where S is the connected component in Γ containing i and j at the step k,
and Ci

k−1,σ and Cj
k−1,σ are the connected components in Γ at the step k − 1,

containing i and j respectively.

An allocation protocol is a rule that specifies how to divide Sσ
k between the

players in S. Given an allocation protocol r and a communication situation
(N, v,Γ), a solution of v, that we shall denote by φr(v), is given by:

φri (v) =
1

|E|!

∑

σ∈ΣE

|E|
∑

k=0

fri (S
σ
k ), ∀i ∈ N, (15)

where ΣE is the set of possible orders on the set of links E in Γ and fri is
a function that assigns to each player i ∈ N a fixed amount of the surplus Sσ

k ,
depending on the allocation protocol r.
In other words, the solution φr(v) is computed by considering all possible per-
mutations of links, and summing up, for each player i, all the contributions he
gets with the allocation procedure r, averaged by the number of permutations
over the set of links among the players, with the interpretation discussed at the
beginning of this section.
This idea leads to the introduction of a class of solution concepts: different
choices of the allocation protocol define different solutions for a communication
situation.

At a certain step, when a link a = {i, j} forms, it is possible to consider the
allocation protocol that equally divides the surplus between players i and j only.
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The solution obtained by this particular allocation protocol is indeed the posi-
tion value π defined in (12).

Note that other solution concepts can be achieved by sharing the surplus among
the players involved in a different way.

5 Preliminary results

In this section we present some preliminary results that will be useful in the
next sections.

Proposition 1. Let (N, v,Γ) be a communication situation and vL the corre-

sponding link game. Then cA(v
L) = 0 for any coalition A ⊆ E which is not

connected in Γ, where cA(v
L) are the unanimity coefficients of vL.

Proof. The Lemma states that cA(v
L) = 0 ∀A ⊆ E, where A is not connected in

Γ, i.e. there exist at least two nodes that do not belong to the same connected
component of Γ. We prove the result by induction on a = |A|.
Suppose a = 2, i.e. A = {l1, l2}, l1, l2 ∈ E, where l1 and l2 belong to two
different connected components. From this hypothesis and from (8) and (11)
we get:

vL(A) = v({l1}) + v({l2})

= c{l1}(v
L) + c{l2}(v

L) (16)

and

vL(A) =
∑

B⊆A

cB(v
L)

= c{l1}(v
L) + c{l2}(v

L) + cA(v
L) (17)

By comparing (16) and (17), we get that cA(v
L) = 0.

Let us now consider k ≥ 2 and suppose by inductive hypothesis that
cB(v

L) = 0, ∀B such that |B| ≤ k and B is not connected in Γ. We shall
prove that cA(v

L) = 0 ∀A such that A is not connected and |A| = k + 1. Let
B1 ⊂ A be a connected component in Γ, i.e. B1 ∈ CΓA

. Then by hypotesis
A\B1 6= ∅. It follows that:

vL(A) = vL(B1) + vL(A\B1). (18)
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Moreover it holds:

vL(S) =
∑

B⊆A

cB(v
L)

=
∑

B⊆B1

cB(v
L) +

∑

B⊆A\B1

cB(v
L) +

∑

B⊆A:A∩B1 6=∅∧B∩(A\B1) 6=∅

cB(v
L)

= vL(B1) + vL(A\B1) +
∑

B(A:B∩B1 6=∅∧B∩(A\B1) 6=∅

cB(v
L) + cA(v

L)

= vL(B1) + vL(A\B1) + cA(v
L), (19)

where (19) follows from the inductive hypothesis.
Then, by comparing (18) and (19) we get: cA(v

L) = 0, which ends the proof.

Note that an equivalent result has been proved by Van den Nouweland et al.
(2012) for a value function (i.e. a characteristic function over subsets of links).

Corollary 1. The family of unanimity games {uA, A ⊆ E, where A is connected

in Γ} is a basis for GL.

Proof. From the previous lemma, we get that {uA, A ⊆ E, where A is connected
in Γ} is a spannig set for the vector space GL. Moreover the cardinality of this
set is equal to the dimension of GL.

Equivalent results hold in the context of graph-restricted games and the proofs
can be found, for example, in Hamiache (1999).
Moreover, the previous results hold for a generic value function v that satisfies
the component additivity property, i.e. such that v(A) =

∑

T∈CΓA
v(T ) for every

network Γ over the set of nodes N .

6 The position value on particular classes of com-

munication situations

In general, given a communication situation (N, v,Γ) it is not easy to compute
the position value. However, it is so for particular classes of games and graphs.
In this section we give formulas to compute the position values on particular
classes of communication situations, where the underlying network is described
by a tree or a cycle. We assume w.l.o.g troughout our work that v({i}) = 0
∀i ∈ N .

6.1 The position value on trees

Let (N, v,Γ) be a communication situation, where Γ = (N,E) is a tree and
|N | = n. Given a node i ∈ N and a coalition S ⊆ N , we define fringe(S) =
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{j ∈ N\S such that {i, j} ∈ E for some i ∈ S}. Let f(S) := |fringe(S)|,
degS(i) the degree of i in S, i.e. the number of nodes in S that are directly
connected to i in Γ and degfringe(S)(i) the number of nodes in fringe(S) that
are directly connected to i in Γ.

We provide a formula for the position value on eS , with S ⊆ N connected in Γ
such that |S| ≥ 2. If S is not connected, it doesn’t make sense to consider the
position value of eS , since the associated link game e

L
S is the null game.

Proposition 2. Let S ⊆ N connected in Γ, where Γ is a tree and |S| ≥ 2.
Then the position value on the canonical game eS is given by:

πi(eS) =



























1
2
(s−2)!(f(S)−1)!

(m−1)! δi(s) if i ∈ S

− 1
2
(s−1)!(m−s−1)!

(m−1)! if i ∈ fringe(S)

0 otherwise

(20)

where m = s+ f(S) and δi(s) = f(S)degS(i)− (s− 1)degfringe(S)(i).

Proof. We observe that every link not in ES∪fringe(S) is superfluous. Therefore
πi(eS) = 0 for every i /∈ S ∪ fringe(S) and we can reduce the network to
(S ∪ fringe(S), ES∪fringe(S)).
Consider i ∈ S. Node i gets a positive contribution (equal to 1/2) every time a
link incident to it is the last one to form inside S and no link outside S already
formed. This happens degS(i) times. Moreover it gets a negative contribution
(equal to −1/2) when all the links in S already formed and a link incident to i
is the first one to form outside S. This happens degfringe(S)(i) times. Therefore
we get

πi(eS) =
1

2

[ (s− 2)!(m− s)!

(s− 1)!
degS(i)−

(s− 1)!(m− s− 1)!

(m− 1)!
degfringe(S)(i)

]

,

where m = s+ f(S) and the expression (20) follows directly.
Consider i ∈ fringe(S). Node i gets a negative contribution when all the links
in S already formed and the only link that connects i to S is the first one to
form outside S. Therefore we get

πi(eS) = −
1

2

(s− 1)!(m− s− 1)!

(m− 1)!
.

Note that the formula holds also for S = N , with fringe(N) = ∅, which
implies that f(N) = 0. On the other hand, when S = {i}, the associated link
game eLS is the null game, as for S not connected.

Let us consider the unanimity games {uS , S ⊆ N}. We also provide a
formula for the position value on uS , with S ⊆ N connected in Γ such that
|S| ≥ 2.
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Proposition 3. Let S ⊆ N connected in Γ, where Γ is a tree and |S| ≥ 2.
Then the position value on the unanimity game uS is given by:

πi(uS) =







1
2degs(i)

1
s−1 if i ∈ S

0 otherwise.
(21)

Proof. We observe that every link not in ES is superfluous. Therefore πi(uS) =
0 for every i /∈ S and we can reduce the network to (S,ES).
Consider i ∈ S. Node i gets a positive contribution (equal to 1/2) every time a
link incident to it is the last one to form inside S. This happens degS(i) times.
Therefore we get

πi(eS) =
1

2

(s− 2)!(m− s)!

(m− 1)!
degS(i),

where m = s and the result follows directly.

Note that if S = {j}, easy calculations show that:

πi(uS) =







1
2 if i = j
1

2f(S) if i ∈ fringe({j})

0 otherwise.

6.2 The position value on cycles

Let (N, v,Γ) be a communication situation, where Γ = (N,E) is a cycle and
|N | = n.

We provide a formula for the position value on eS , where S ⊆ N is a s-chain
(i.e. S is connected in Γ) with 2 ≤ s ≤ n− 2. If S is not connected, or S = {i},
it doesn’t make sense to consider the position value of eS , since the associated
link game eLS is the null game.

Proposition 4. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and 2 ≤ s ≤
n− 2. Then the position value on the canonical game eS is given by:

πi(eS) =











































1
2
(s−2)!(m−s−1)!

(m−1)! (m− 2s+ 1) if i ∈ Se

(s−2)!(m−s)!
(m−1)! if i ∈ Si

− 1
2
(s−1)!(m−s−1)!

(m−1)! if i ∈ fringe(S)

0 otherwise

(22)

where m = s + f(S), Se is the set of the extremal nodes and Si = S\Se is the

set of the internal nodes.
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Proof. We observe that every link not in ES∪fringe(S) is superfluous. Therefore
πi(eS) = 0 for every i /∈ S ∪ fringe(S) and we can reduce the network to
(S ∪ fringe(S), ES∪fringe(S)).
Consider i ∈ S. We shall distinguish between the internal and extremal nodes
of the chain S. Let i ∈ Se the set of endpoints in ΓS . Node i gets a positive
contribution when the link incident to it in the chain is the last one to form
inside S and no link outside S already formed. Moreover it gets a negative
contribution when all the links in S already formed and the link incident to i
in fringe(S) is the first one to form outside S. Therefore we get

πi(eS) =
1

2

[ (s− 2)!(m− s)!

(m− 1)!
−
(s− 1)!(m− s− 1)!

(m− 1)!

]

,

where m = s+ f(S) and the expression (22) follows directly.
Let i ∈ Si = S \ Se. Node i gets a positive contribution when one of the two
links incident to it in S is the last one to form inside S. Therefore we get

πi(eS) = 2
[1

2

(s− 2)!(m− s)!

(m− 1)!

]

.

Consider i ∈ fringe(S). Node i gets a negative contribution when all the links
in S already formed and the only link that connects i to S is the first one to
form outside S. Therefore we get

πi(eS) = −
1

2

(s− 1)!(m− s− 1)!

(m− 1)!
.

On the other hand, if S = N\{j}, the following proposition holds.

Proposition 5. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and s = n−1.
Then the position value on the canonical game eS is given by:

πi(eS) =























4−n
2n(n−1)(n−2) if i ∈ Se

2
n(n−1)(n−2) if i ∈ Si

− 1
n(n−1) if i ∈ fringe(S)

(23)

where Se is the set of the extremal nodes and Si = S\Se is the set of the

internal nodes.

Proof. Using the same argument of the previous proof, formulas for i ∈ S are
derived by noting that there is no superfluous link and m = n. Moreover, the
only node i ∈ fringe(S) gets twice the contribution he gets in the previous case
since it is directly connected to S by its incident links.

13



Note that if S = N , there is no superfluous link and by simmetry πi(eS) =
1
n ,

for all i ∈ N .

We provide a formula for the position value on uS , with S ⊆ N a s-chain. If
2 ≤ |S| ≤ n− 1, the following proposition holds.

Proposition 6. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and 2 ≤ s ≤
n− 1. Then the position value on the unanimity game uS is given by:

πi(uS) =



























1
2

[ (n−s+1)
n(s−1) + (2s− 3) 1

n(n−1)

]

if i ∈ Se

1
2

[

2 (n−s+1)
n(s−1) + 2(s− 2) 1

n(n−1)

]

if i ∈ Si

(s− 1) 1
n(n−1) if i /∈ S

where Se is the set of the extremal nodes, i.e. the endpoints in ΓS, and

Si = S\Se is the set of the internal nodes.

Proof. We observe that there is no superfluous link. Consider i ∈ Se. Node i
gets a positive contribution (equal to 1/2) every time the link incident to it in
the chain is the last one to form inside S (no matter which links already formed
outside S).
Moreover it gets a positive contribution when the link incident to it outside the
chain is the last one to form in E \ {a}, where a is the link incident to i in the
chain S and every time one of the two links incident to i is the is the last one
to form in E \ {b}, where b is one of the links in the chain S not incident to i.
Note that the first case happens

∑n−s
k=0

(

n−s+1
k

)

times; the second one only occurs
once and the last case happens 2(s− 2) times.
This yields the following formula for i ∈ Se:

πi(uS) =
1

2

[

n−s
∑

k=0

(

n− s+ 1

k

)

(s− 2 + k)!(n− s− k + 1)!

n!
+ (2s− 3)

1

n(n− 1)

]

.

Consider i ∈ Si. Node i gets a positive contribution (equal to 1/2) every
time one of the two links incident to it in the chain is the last one to form inside
S (no matter which links already formed outside S). Moreover it gets a positive
contribution whenever one of the two links incident to it is the last one to form
in E \ {a}, where a is other link incident to i in the chain S and every time one
of the two links incident to i is the is the last one to form in E \ {b}, where b is
one of the links in the chain S not incident to i.
Note that the first case happens 2

∑n−s
k=0

(

n−s+1
k

)

times; the second one only
occurs twice and the last case happens 2(s− 3) times.
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Consider i /∈ S. Node i gets a positive contribution (equal to 1/2) every
time one of the two links incident to it is the last one to form in E \ {a}, where
a is one of the links in the chain S. This happens 2(s−1) times. It follows that:

πi(uS) =



























1
2

[
∑n−s

k=0

(

n−s+1
k

) (s−2+k)!(n−s−k+1)!
n! + (2s− 3) 1

n(n−1)

]

if i ∈ Se

1
2

[

2
∑n−s

k=0

(

n−s+1
k

) (s−2+k)!(n−s−k+1)!
n! + 2(s− 2) 1

n(n−1)

]

if i ∈ Si

(s− 1) 1
n(n−1) if i /∈ S

This formula can be simplified by using Lemma 1 (see Appendix):

n−s
∑

k=0

(

n− s+ 1

k

)

(s− 2 + k)!(n− s− k + 1)!

n!

=
1

n

n−s
∑

k=0

(

n− s

k

)

n− s+ 1

n− s− k + 1

(s− 2 + k)!(n− s− k + 1)!

(n− 1)!

=
n− s+ 1

n

n−s
∑

k=0

(

n− s

k

)

(s− 2 + k)!(n− s− k)!

(n− 1)!

=
(n− s+ 1)

n(s− 1)
, (24)

where (24) follows from identity (27). This ends the proof.

Note that if S = N , all players are simmetric and πi(uS) =
1
n . On the other

hand if S = {j}, the position value is very easy to compute. In fact, the links
a = {i, j} and b = {j, k} are simmetric players in the link game, while all the
remaining links are superfluous. This implies that Φa = Φb =

1
2 and Φc = 0

∀c ∈ E\{a, b}.

πi(uS) =







1/2 if i = j
1/4 if i 6= j, {i, j} ∈ E
0 otherwise.

6.3 The position value for a generic coalitional game

In the last two sections we provided formulas for the position value on particular
classes of games. We shall use those formulas and the results of Section 5 to
derive the position value for a generic game.

Proposition 7. Let (N, v,Γ) be a communication situation. Then the position

value for i ∈ N is given by

15



πi(v) =
∑

A⊆E connected

cA(v
L)πi(w), (25)

where w is such that wL = uA.

Proof. By definition of position value and by Corollary 1 we get that:

πi(v) =
1

2

∑

a∈Ai

Φa(v
L)

=
1

2

∑

a∈Ai

∑

A⊆E connected

cA(v
L)Φa(uA)

=
∑

A⊆E connected

cA(v
L)πi(w)

where w is such that wL = uA.

This result implies that, in order to compute the position value of a generic
game, it is sufficient to consider the position value on those games whose corre-
sponding link game is a unanimity game on a connected subset of links. More-
over, when Γ is a tree, the formula (25) can be further simplified.

Corollary 2. Let (N, v,Γ) be a communication situation, where Γ is a tree.

Then the position value for i ∈ N is given by

πi(v) =
∑

S⊆N connected

cES
(vL)πi(uS). (26)

Proof. Consider A ⊆ E connected in Γ. Let S be the set of nodes in ΓA. This
definition of S induces a bijection between the set {w : wL = uA, A connected in Γ}
and the set {uS : S ⊆ N,S connected in Γ}. Therefore the result follows di-
rectly.

On the contrary, if Γ is a cycle it is not possible to derive a concise formula for
π(v).

Appendix

Lemma 1. Given n, s ∈ N and 2 ≤ s ≤ n, the following combinatorial identity

holds:

n−s
∑

k=0

(

n− s

k

)

(s− 2 + k)!(n− s− k)!

(n− 1)!
=

1

s− 1
. (27)
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Proof. To derive the position value on trees for the unanimity games uS , we
made use of the superfluous arc property. An equivalent formula can be obtained
directly by considering all the possible coalitions to whom a given link provides
a positive marginal contribution.
Each i /∈ S gets a null contribution from every incident link, because of the
superfluous arc property. Consider i ∈ S. Node i gets a positive contribution
(equal to 1/2) every time a link incident to it is the last one to form inside S
(no matter which links already formed outside S). This happens degS(i) times.
It follows that:

πi(uS) =







1
2degS(i)

∑n−s
k=0

(

n−s
k

) (s−2+k)!(n−s−k)!
(n−1)! if i ∈ S

0 otherwise.

(28)

From the equivalence of formulas (21) and (28), the result follows directly.

We point out that other combinatorial identities arise by considering a generic
regular semivalue Ψ and computing the corresponding ψ(N, uS ,Γ) as in (13),
when Γ is a tree.
As for the position value, the solution ψ(uS) can be obtained directly or by
using the superfluous arc property. From the equivalence of the corresponding
formulas, it follows that:

n−s
∑

k=0

(

n− s

k

)

pn−1s+k−2 = ps−1s−2 (29)

where {pmj }j is a probability distribution over the subsets of links in a net-
work with m links. Precisely, pmj represents the probability for a link to join a
coalition of cardinality j, with 0 ≤ j ≤ n− 1.

For example, by considering the Banzhaf index, we get the trivial identity

n−s
∑

k=0

(

n− s

k

)

1

2n−2
=

1

2s−2
. (30)

Non-trivial identities can be derived by considering other regular semivalues,
such as the p-binomial semivalues:

n−s
∑

k=0

(

n− s

k

)

qs+k−2(1− q)n−s−k = qs−2, (31)

where q ∈ (0, 1).
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Note that the combinatorial identities that we derived can be easily obtained
through classical game-theoretical tools by computing the corresponding power
indices on the unanimity games.
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